26

Parallel Compilation on a
Tightly Coupled Multiprocessor

by Mark Thierry Vandevoorde

March 1, 1988

cliloliltlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

DEC’s business and technology objectives require a strong research program. The Systems
Research Center (SRC) and three other research laboratories are committed to filling that need.

SRC began recruiting its first research scientists in 1984 — their charter, to advance the state
of knowledge in all aspects of computer systems research. Our current work includes exploring
high-performance personal computing, distributed computing, programming environments,
system modelling techniques, specification technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems so
that we can investigate their properties fully. Complex systems cannot be evaluated solely in
the abstract. Based on this belief, our strategy is to demonstrate the technical and practical
feasibility of our ideas by building prototypes and using them as daily tools. The experience
we gain is useful in the short term in enabling us to refine our designs, and invaluable in the
long term in helping us to advance the state of knowledge about those systems. Most of the
major advances in information systems have come through this strategy, including time-sharing,
the ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our systems research.
Some of this work is in established fields of theoretical computer science, such as the analysis
of algorithms, computational geometry, and logics of programming. The rest of this work explores
new ground motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained through
pursuing these activities. The Company values the improved understanding that comes with
exposing and testing our ideas within the research community. SRC will therefore report results
in conferences, in professional journals, and in our research report series. We will seek users
for our prototype systems among those with whom we have common research interests, and
we will encourage collaboration with university researchers.

Robert W. Taylor, Director

Parallel Compilation on a Tightly Coupled Multiprocessor

Mark Thierry Vandevoorde
March 1, 1988

Submitted in partial fulfillment of the requirements for the degree of Master of Science, Massachusetts
Institute of Technology, May 22, 1987,

©Digital Equipment Corporation 1988

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Systems Research Center of Digital Equipment Corporation in Palo Alto, Cal-
ifornia; an acknowledgment of the authors and individual contributors to the work; and all applicable
portions of the copyright notice. Copying, reproducing, or republishing for any other purpose shall
require a license with payment of fee to the Systems Research Center. All rights reserved.

Author’s abstract

This thesis describes a C compiler that runs in parallel on a tightly coupled multiprocessor. The
compiler, called PTCC, consists of a two-stage pipeline. The first stage performs extended lexical
analysis for the second stage, which does the parsing and assembly code generation. The second stage
processes units of the source program concurrently. Units as fine as a single statement are compiled in
parallel.

To avoid unproductive concurrency, a new scheduling abstraction, called WorkCrew, is used in PTCC.
In the WorkCrew model of computation, the client creates tasks and specifies how they can be subdi-
vided. WorkCrews favor serial execution when parallel execution is unproductive and coarser grains of
parallelism over finer ones.

Several experiments were done to measure the performance of PTCC. With 5 processors, PTCC per-
formed up to 3.3 times better than a similar sequential compiler.

Mark Thierry Vandevoorde

Capsule review

Parallel compilation is important to computer science for two reasons. First, parallel techniques make
it possible for compilers to take advantage of multiprocessor architectures to improve the real-time
responsiveness of a programming environment. Second, because the structure of a compiler offers
opportunities for concurrency at several distinct levels, parallel compilers provide a useful testbed for
understanding the structure and performance of parallel algorithms in a more general way.

This report describes a prototype implementation of a parallel compiler and examines how compiler
performance is affected by the number of parallel threads and the granularity of the subtasks. Unlike
previous work in this area, which tends to restrict the parallel decomposition to the procedure level,
this report measures the effect of carrying this decomposition through to individual statements.

This report also introduces a dynamic strategy called WorkCrews, which is used to control parallelism
and reduce the associated overhead. This technique is quite general and is appropriate for a variety of
concurrent applications.

Eric Roberts

Contents

1 Introduction
1.1 A Parallel C Compiler
1.2 Overview of Related Work

1.2.1 A Parallel Attribute Grammar Evaluator

1.2.2 Parallel Shift-Reduce Parsing
1.3 Overview of Remainder of Thesis
1.4 The Firefly

2 Algorithms for Parallel Compilation

2.1 Pipelining ..
2.1.1 General Pipelining
2.1.2 Pipelining Compilation
2.1.3 A Distributed Pipelined Compller

2.2 Processing Code Concurrently
2.2.1 Grammars of Programming Languages
2.2.2 Constraints on the Flow of Information
2.2.3 The Parallel Algorithm
2.2.4 Synthesized Attributes
2.2.5 Advancing Past Code Units Efﬁcxently

3 A Parallel C Compiler
3.1 The Titan C Compiler (TCC)
3.2 Relevant Specifics of C
3.2.1 Decl and Code Units
3.2.2 Exploiting C’s Syntax
3.2.3 Violations of Block Structure in C
3.3 The Mahler Intermediate Language
3.4 A Parallel Version of TCC (PTCC)
3.4.1 Basic Design
3.4.2 Pipelining the Scanner ..
3.4.3 Processing Code Blocks Concurrently

4 Controlling Parallelism
4.1 Rampant Forking Is Inefficient
4.2 Using Fewer Threads ..
4.2.1 Restricting the Level of Parallelism
4.2.2 Workers and Task Lists

L= N T O S OO N

© 0o oo

11
11
12
12
13
16
16

20
20
21
21
21
21
24
24
24
26
27

31
31
32
32
32

4.2.3 Reducing the Number of Tasks
4.2.4 WorkCrews

4.3 Using WorkCrews in PTCC
4.3.1 Operations on WorkCrews
4.3.2 Operations on Worker Tasks

5 Performance of PTCC

5.1 Versions of Compiler

5.2 Source Files

5.3 Data

5.4 Observations

5.5 Factors Limiting Performance
5.5.1 Lack of Parallelism
5.5.2 DBus contention

5.5.3 Overhead to Support Concurrency

6 Extensions
6.1 Handling Syntax Errors ..
6.2 Extending WorkCrews to Support Error Recovery
6.2.1 AbortSuccessors
6.2.2 Restart
6.3 Compiling Multipass Languages

7 Conclusions

Acknowledgements
Appendix A Thread.def
Appendix B Data

Bibliography

Index

33
33
38
38
40

47
47
48
49
50
53
53
56
57

60
60
62
62
66
67

69

71

73

76

83

85

2.1
2.2
2.3
2.4

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1

6.1
6.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8

6.1

List of Figures

Information flow in compilers
Grammar for a generic programming language
Parallel recursive-descent compiler

Example using synthesized attributes

C’s switch statement violates block structure
Handling C’s switch statement
Structure of PTCC

An example task tree

Starting up a WorkCrew

Compiling procedures concurrently using WorkCrews
PTCC’s handling of C’s switch statement

Processor utilization graphs for anystmt

Utility procedures for syntax error recovery in PTCC

An example task tree

List of Tables

Source files used

Data for window.c

Data for eval.c

Data for dispatch.c

Data for mlcompile.c

Processor utilization by file

Performance increase from concurrent processing
of code units

CPU slowdown due to bus contention

Abort and Restart sets for figure 6.2

10
13
15
17

23
23
25

35
40
45
46

55

63
64

49
51
52
52
53
54

56
58

63

Chapter 1

Introduction

Compilers are among the tools most heavily used by programmers. Therefore, the
speed of a compiler can have a great impact on the process of programming. One

way to speed up compilation is to exploit parallelism.

Other techniques used to reduce compile time include incremental compilation and
separate compilation of program modules. Incremental compilers save time by re-
compiling only those units of a program that depend on changes made since the last
compilation. Separate compilation is incremental compilation where the units are
files (program modules). Parallel compilation can make both of these techniques
faster.

1.1 A Parallel C Compiler

This thesis describes the development, implementation, and measurement of an
algorithm for parallel compilation on a tightly coupled multiprocessor. It also in-
troduces a method for dynamically restricting unproductive parallelism at runtime.
The parallel compiler developed, called the Parallel Titan C Compiler (PTCC), is an
extension of an existing syntax-directed C compiler which generates assembly code.

This research does not address the problem of designing a parallel optimizer.

Goals in developing PTCC were that it:

® use as many processors as possible
¢ exploit concurrency efficiently

¢ minimize dependencies on the source program.

Two techniques have been used to obtain concurrency in compilers running on dis-
tributed systems: pipelining stages of compilation, and processing units of the source
language in parallel. PTCC exploits both forms of concurrency. It uses a two-stage
pipeline in which scanning is done by the first stage while the second stage parses
and generates code. The second stage runs in parallel, processing units as fine as a
simple statement concurrently. Unlike code, all declarations in a block are processed
serially.

PTCC differs from previous parallel compilers in several ways. First, it extends the
role of the scanner to include matching delimiters for the parser. This allows the
parser to advance past units of the source program quickly.

Second, PTCC uses finer grains of parallelism than have been used on distributed
systems. Previous compilers have processed only procedures in parallel; PTCC pro-
cesses units as small as a simple statement concurrently.

Finally, it runs on a tightly coupled multiprocessor. Since such computers have only
recently become widely available, most previous parallel compilers have been built
on top of distributed workstations [7, 12, 4]. Therefore, the performance possible

on a tightly coupled system is not yet well understood.

1.2 Overview of Related Work

This section briefly describes other efforts related to parallel compilation. Some
previous work has been purely of a design nature, and some has involved implemen-
tations of parallel compilers on distributed systems. The methods which have been
studied include concurrent:

e pipelining

e processing of units of the source program

e evaluation of attribute grammars

e shift/reduce parsing.

Compilers that use the first two methods are discussed in greater detail in chapter 2.

Lipkie is perhaps the first to have suggested pipelining and concurrent processing of
procedures as general technriques for parallel compilation [10]. His thesis proposes
a design for a parallel compiler which uses both methods, but it does not report on

any implementation.

Miller and LeBlanc wrote a pipelined compiler for Jigsaw, a subset of Pascal [12].
The compiler consists of three stages running on three computers connected by a
local area network. Frankel extended a one-pass recursive-descent Pascal compiler to
process procedures concurrently [7]. Whenever it encounters a procedure definition,
it creates a new compiler instance to process the definition and skips to the end of
the procedure. Miller’s and Frankel’s compilers are discussed in greater detail in

chapter 2.

Seshadri, Small, and Wortman are in the process of building a parallel compiler to
run on a distributed system [14]. Their design is based solely on processing units of
the source program concurrently, using syntax-directed translation. Their project is
more ambitious than PTCC because they are examining the possibility of processing
declarations concurrently. The latter introduces what they call the “doesn’t know
yet” problem: the compiler may attempt to access information introduced by a
declaration before it has been processed.

1.2.1 A Parallel Attribute Grammar Evaluator

Compilers based on pure attribute grammar evaluation differ from those based on
syntax-directed translation like PTCC and Frankel’s recursive-descent compiler. In a
syntax-directed translator, pieces of the input are translated as the parser processes
the input. In translators based on attribute grammars, attributes are associated
with grammar symbols. Productions applied by the parser mefely define functional
relationships between attributes. Because the relationships between attributes must
be purely functional (free of side effects), independent attributes can be computed
concurrently. (See [1] for a detailed description of attribute grammars.)

Boehm and Zwaenepoel developed a compiler-generator which produces parallel
evaluators for attribute grammars [4]. With this tool, they built a compiler for a
subset of Pascal. The compiler, like Frankel’s, processes procedures in parallel. It
runs on SUN-2 workstations connected by an Ethernet. First, the input is scanned
and parsed. Then, the parser divides the parse tree into approximately equal pieces
- one for each attribute evaluator. Each evaluator then processes its subtree, trans-

mitting and receiving shared attributes as necessary.

For efficiency, Boehm and Zwaenepoel use both static and dynamic attribute eval-
uators. Once the entire program has been parsed, a dynamic evaluator creates a
graph of the dependencies between attributes. It then evaluates the attributes in
an order analogous to a topological sort of the graph. A static evaluator, however,
never creates a dependency graph. Instead, it evaluates the attributes in a standard
order determined by the compiler-generator. Boehm and Zwaenepoel use static
evaluation, which is more efficient, to evaluate all attributes local to a processing
node. Dynamic evaluation, which is more powerful, is required for attributes which

are shared between nodes.

The maximum speedup Boehm and Zwaenepoel observe for a 1000-line program is
approximately 2.5, using five workstations. They are currently tuning their compiler

and intend to experiment with statement-level decomposition.

1.2.2 Parallel Shift-Reduce Parsing

One area of research related to parallel compilation is parallel parsing. Mickunas
and Schell describe a parallel algorithm for shift-reduce parsing and a method for
computing the necessary tables [11]. Their work is of a design nature; they do
not build a parallel parser. Their algorithm uses multiple parsers, each working
on an arbitrary segment of the token stream. All parsers except the leftmost one,
which starts at the beginning of the input, start in a super-initial state that accepts
postfixes of the original language and may introduce conflicts in the grammar. When
a parser encounters such a conflict or is unable to perform a reduction, it sends its
stack to the neighbor to its left and picks up where it left off. Once it has exhausted
its segment of the source, a parser merges the stacks it receives from the neighbor

to its right.

Cohen and Kolodner constructed tools for estimating the performance of parallel
shift-reduce parsers [5]. One tool was a simulator whose parameters included the
number of processors and the relative costs of the shift, reduce, and merge opera-
tions. They found that when the three operations are equal in cost, the performance
of the algorithm levels off when the number of processors used is approximately 5%
of the length of the input. However, their analytical model did not account for the

cost of communication between processors.

Typically, parsing represents a relatively small part of the total compilation time.
Therefore, parallel shift-reduce parsing alone will not significantly reduce compila-
tion time — other sources of concurrency are needed.

1.3 Overview of Remainder of Thesis

Chapter 2 describes two general techniques, pipelining and concurrent processing of
blocks, that can be used to make compilers run in parallel. It discusses, in a general
setting, issues that arise in writing a parallel compiler. These issues include the
impact of the granularity of parallelism on performance and the flow of information

during compilation.

Chapter 3 explains how, using the methods developed in chapter 2, I extended
an existing C compiler to run in parallel. This third chapter identifies both the
desirable and undesirable properties of C when applying the techniques developed
in chapter 2, and it lists the changes required in TCC, the original C compiler, to

support parallel compilation.

Once practical opportunities for concurrent execution are identified, a strategy to
control parallel execution is needed to improve efficiency. This is the subject of
chapter 4, which describes WorkCrews. WorkCrew is a scheduling abstraction that
improves the efficiency of parallel programs by avoiding unproductive concurrency.
In the WorkCrew model of computation, a set of workers (processors) cooperate to
solve a problem by dividing it into individual tasks. Chapter 4 also explains how
WorkCrews are used in PTCC.

Chapter 5 contains a performance analysis of PTCC. The primary experiment was to
measure the elapsed time and CPU time required by PTCC to compile a set of files.

Two compiler parameters were varied for each file: the granularity of parallelism
used, and the number of workers used. Chapter 5 also quantifies the effects of bus

contention, insufficient parallelism, and concurrency overhead on the performance
of PTCC.

Chapter 6 sketches how error recovery might be performed in a parallel compiler.
It also explains how the techniques used in PTCC can be applied to compilers of
multipass languages.

Chapter 7 summarizes the conclusions of this research. The major conclusion is
that parallel compilation can reduce compilation time significantly. Furthermore,
statement-level compilation, though typically unnecessary given only five processors,

sometimes offers significant improvement over procedure-level compilation.

1.4 The Firefly

PTCC runs on the Firefly, a tightly coupled multiprocessor developed at Digital
Equipment Corporation’s System Research Center [15]. A Firefly may have from
one to seven MicroVax II processors sharing its single bus.! All memory is global,
and each processor has a 16-kilobyte cache. Because the hardware maintains the

caches, cache management is not a software issue.

Processors may communicate by writing and reading the shared memory. Binary
semaphores, which are implemented with the test-and-set instructions of the Vax,
are used to control access to shared memory. Furthermore, all accesses to aligned

memory words are atomic.

The caches of the Firefly are used to reduce bus traffic. The cycle time of the
memory and bus is twice the maximum memory access rate of any single processor.
Therefore, up to two processors may access memory at the maximum rate without
bus contention provided that memory references are perfectly interleaved. Every
cache miss requires a bus cycle to read the main memory. Furthermore, every
write to locations cached by other processors requires a bus cycle to maintain cache

consistency.

'Only Fireflies with up to five processors were available when I ran my parallel compiler.

The primary programming environment for the Firefly is based on Modula-2+, which
is Modula-2 with extensions for garbage collection, exception handling, and concur-

rency [16, 13]. For this work, the principal new feature is, of course, concurrency.

The primary concurrency abstraction in Modula-2+ is the Thread module. A thread
is a process in a shared address space. Threads are manipulated using a fork/join

semantics.

In Modula-2+, Thread.Fork takes two arguments, the first of which is a procedure.
Fork creates and returns a new thread which invokes the procedure on the second
argument. Thread.Join takes a thread as an argument. It suspends the caller until
the thread has completed. Join passes the return value of the procedure passed to
Fork to the caller.

Although Modula-2+ does not impose a hierarchy on threads, it is often useful to
impose an abstract hierarchy. If thread A forks thread B, then A is the parent of B,
and B is the child of A.

Appendix A contains Thread.def, the definition module for threads. Thread.def also
defines a semaphore abstraction, Thread.Mutex, used to synchronize threads.

Chapter 2

Algorithms for Parallel

Compilation

This chapter describes two general techniques that can be used to make compil-
ers run in parallel: pipelining, and processing source language blocks concurrently
using syntax-directed translation. Both of these have been studied on distributed
computers. Miller and LeBlanc built a pipelined compiler [12], and Frankel added

concurrency to a recursive-descent compiler [7]. I use both techniques in PTCC.

2.1 Pipelining

2.1.1 General Pipelining

Pipelining is a common technique used to exploit concurrency in tasks that can be
divided into a series of stages. The stages are cascaded so that the output of one
stage is the input for the next. Some form of buffering is needed between each pair
of stages to facilitate the transfer of information from one stage to the next. If each

stage runs concurrently, the maximum speedup is equal to the number of stages.

Pipelining has several limitations. First, if there are fewer stages than processors, a
pipeline will not be able to utilize a multiprocessor fully. Second, the stages may be
unbalanced. A pipeline can be no faster than its slowest stage, so if 50% of the CPU

time is spent in one stage, then pipelining can offer a speedup of two at best. Much
of the effort to implement an efficient pipeline may go to balancing the different
stages. Finally, pipelining can introduce significant overhead. Each stage represents
an additional pass over the input, and buffering is required between stages.

2.1.2 Pipelining Compilation
Information Flow in Compilers

The first step in designing a pipeline is to analyze the flow of information in the com-
putation of the task. Figure 2.1 depicts the flow of information in many compilers.
Here, the compiler uses several passes. First, a scanner converts the input stream of
characters into a stream of tokens. Second, a parser converts the token stream into
a parse tree. Third, a symbol table is built by walking over the parse tree. Fourth,
intermediate code is generated from the parse tree and the symbol table. Finally,
an optimizer improves the intermediate code and constructs an executable file. Of-
ten, the optimizer is subdivided into multiple stages. Some languages also provide
a preprocessor; this can be added either before or after the scanner in figure 2.1.
Although each pass is conceptually distinct, multiple passes are often merged for

efficiency reasons.

A Compilation Pipeline

A simple way to pipeline a compiler is to have a thread for each pass of the com-
pilation. For example, a scanner thread reads the characters of the source file and
converts them into tokens for the parser thread. The parser thread converts the

tokens into a parse tree for the code generator, and so on.

Each pair of adjacent stages has a producer/consumer relationship. The type of
data passed between stages varies, but it has some linear form. The scanner might
create a stream of tokens, which the parser would transform into a stream of semantic
actions. Because stages run concurrently, mutexes must be used to coordinate access
to the data stream. To reduce synchronization costs, multiple data units can be

transferred each time the mutex is acquired.

It is important to note that pipelining is probably not a feasible strategy for the front

Source Language

!

Scanner

Parser

—-» Syntax Errors

N

~

Symbol Table
Builder

A

{

Y

Intermediate
Code

Generator

Type Checker

Optimizer

Final Code

Generator

!

Target Language

!

Type Errors

Figure 2.1: Information flow in compilers.

10

ends of compilers of multipass (as opposed to one-pass) languages. For example,
any type-checked language which allows an identifier to be used before it is declared
requires at least two passes: one to build the symbol table, and a second to check for
type errors. In general, the second pass cannot begin until the first pass is complete,
since a declaration at the end of the source file may be needed to type-check code
at the beginning of the source file. If a compiler for such a language were pipelined,
then the opportunities for concurrency would depend on the ordering of declarations
and references.

2.1.3 A Distributed Pipelined Compiler

Miller and LeBlanc wrote a pipelined compiler for Jigsaw, a subset of Pascal [12].
The compiler consisted of three stages: a lexical analyzer, a syntactic analyzer, and
a semantic analyzer. The lexical analyzer tokenized the input, passing information
to the two other stages. The syntactic analyzer converted a stream of tokens into a
stream of semantic actions, which the semantic analyzer combined with information
from the lexical analyzer to generate code.

Miller ran the compiler on three distributed computers (two Prime 550’s and one
slightly slower Prime 400) connected by a local area network. Each stage was put
on one computer; the semantic analyzer ran on the 400. The syntactic analyzer was
the slowest stage. Miller also ran a sequential version of the compiler, in which com-
munication was done via procedure invocation on a single computer. For programs
longer than 100 lines, Miller observed a speedup factor between 2 and 2.5. As one
might expect, Miller found that buffering of information between stages is critical to
performance in a distributed compiler. Without buffering, the speedup factor was
at best 1.4.

2.2 Processing Code Concurrently

When performing parallel compilation on a large-scale multiprocessor, pipelining is
not enough. Additional parallelism may be possible by exploiting the structure of
the input to a program. When a problem can be decomposed into several indepen-
dent parts, a divide-and-conquer approach is possible. Divide-and-conquer creates

11

multiple threads to solve independent subproblems and then merges the results. If

a problem is tree-structured, divide-and-conquer may be used recursively.

This section explores when and how a divide-and-conquer approach can be used to
compile programs. It focuses on the tree-structure of programs. Although the tech-
nique described uses a top-down recursive-descent parser, the same basic strategy

could be used for deterministic bottom-up parsers.

2.2.1 Grammars of Programming Languages

Figure 2.2 is an abstract grammar for typical programming languages. The gram-
mar defines a program as a sequence of declaration and code units. The undefined
nonterminals decl and stmt correspond to the normal intuitive concepts of decla-
ration and simple statement. A simple statement is any statement which does not

itself contain statements.

In this example, I use decl to represent any construct which introduces information
required to compile other constructs in the source file. The stmt construct, on the
other hand, is self-contained: it provides only information required to compile itself,
although it typically also uses information introduced by decls. The grammar is
intended to be as general as possible; therefore, it allows decls and stmts to be

intermixed freely.

Most programming languages also provide constructs for compound statements and
nested blocks. In the grammar of figure 2.2, the nonterminal code may designate
either structure. Both constructs allow a sequence of stmts to be grouped into a
single unit; the difference is that nested blocks may contain decls as well as stmts.
Production 5 of the grammar represents nested blocks. Since compound statements
can be viewed as nested blocks containing no decls, I did not introduce a production

for them.

2.2.2 Constraints on the Flow of Information

Through their scoping rules, lexically scoped languages constrain the flow of informa-
tion introduced by declarations. Scoping requires that all references to a declaration

be from code units in the same scope as the declaration. In terms of the grammar

12

program ::= decl program (1)

| code program (2)

| <empty> 3

code ::= stmt (4)
| begin program end (5

Figure 2.2: Grammar for a generic programming language.

of figure 2.2, the scope of a declaration is its smallest enclosing code unit. Lexical
scoping decouples sibling code units from one another and makes the parent/child
coupling unidirectional. (The parent knows nothing of the child, but the child knows
all about its parent and ancestors.)

Some languages impose another constraint: declarations must appear in the source
file before they are used. Whereas the constraints of lexical scoping are usually
considered desirable because they enhance modularity, requiring declaration before
use is sometimes a hindrance to programmers.! The purpose of this constraint is to
allow compilers for the language to run using only one pass, making the compilers
faster.

For languages which are both one-pass and lexically scoped, such as C and Pascal,
these constraints can be restated as the following properties:
1. All the information required to process the contents of a code unit appears

before the code unit itself.

2. The contents of a code unit are not needed to process the contents of outer

code units or decl units.

2.2.3 The Parallel Algorithm

Together, the two constraints on information flow make the parallel recursive-descent

compilation strategy described in figure 2.3 possible. The top-level procedure,

!For example, FORWARD procedure declarations in Pascal are a nuisance.

13

Program, compiles a sequence of decl and code units. However, whenever a code
unit is encountered, it forks a thread to compile the code unit and skips to the next
unit. The parent thread must then buffer its output until the child completes. The
child thread is inserted into the set CompilerThreads. All threads in this set must

be joined before the compilation terminates.

If the source language has the properties mentioned earlier, then both the parent
and child threads can proceed independently. Property 1 ensures that the child will
not have to wait for further information from the parent. All of the information
required to compile the code unit must have appeared in decl units prior to the
the code unit, and these decl units were processed before the child was forked.
Similarly, property 2 ensures that the parent will not have to wait for information
from the child before continuing. Decl units nested in a code unit do not affect

outer units.

The algorithm outlined in figure 2.3 may fork threads recursively since procedures
Code and Program are mutally recursive. It is possible that nodes at each level of
the parse tree may be processed concurrently, but note that decl units of a scope
are always processed serially. Unlike pipelining, which offers a fixed performance
improvement, processing code units in parallel is limited only by the structure of
the source file and the number of available processors. Furthermore, if the algorithm
of figure 2.3 is implemented using the technique described in chapter 4, an upper
bound on the number of threads used can be specified (and altered) by the user or

the operating system at runtime.

Although the decl units of each scope are always processed serially, decl units at
different levels in the parser tree may be processed concurrently. Therefore, care
must be taken to ensure that programs with use-before-declaration errors are still
considered illegal. Using the algorithm described in figure 2.3, there is a race between
the processing of a variable declaration and uses of the variable. By adding position
stamps to each entry of the symbol table, it is possible to determine if a variable is

used before it is declared.

14

VAR CompilerThreads: SetOfThreads.T; (* the set of all compiler threads *)

PROCEDURE Program(VAR ts: TokenStream.T);
(* Effect: Compiles a program and advances ts past the tokens of the program. *)
BEGIN
WHILE NOT TokenStream.Empty(ts) DO
IF the next token denotes the beginning of a declaration
THEN Decl(ts);
ELSE Set0fThreads.Insert(CompilerThreads, Thread.Fork(Code,ts));
SkipCode(ts);
END;
END;
END Program;

PROCEDURE Decl(VAR ts: TokenStream.T);

(* Modifies: ts. *)
(* Effect: Compiles a declaration and advances ts past the tokens of *)
* the declaration. *)
END Decl;

PROCEDURE Code(ts: TokenStream.T);
(* Effect: Compiles a code unit. *)
BEGIN
IF the next token is a BEGIN
THEN TokenStream.Get(ts); (* Consume the BEGIN *)
Program(ts);
verify that the next token is an END and consume it
ELSE Stmt(ts);
END;
END Code;

PROCEDURE Stmt(ts: TokenStream.T);
(* Effect: Compiles a statement. *)

PROCEDURE SkipCode(VAR ts: TokenStream.T);
(* Modifies: ts. *)
(* Effect: Advances ts past the tokens for the next code unit in ts . *)

(* In the TokenStream Module: *)

PROCEDURE Peek(ts: T): Token.T;
(* Effect: Returns the first token in ts . *)

PROCEDURE Get(VAR ts: T): Token.T;
(* Modifies: ts. *)
(* Effect: Returns the first token in ts and advances ts to the next token. *)

Figure 2.3: Parallel recursive-descent compiler

15

2.2.4 Synthesized Attributes

The second constraint of section 2.2.2 prohibits a code unit from using informa-
tion gathered by other code units. Thus, code units may not have synthesized
attributes.

Often, compilers associate an intermediate-code attribute with each code unit; the
attribute’s value is the compiled code. This attribute can be eliminated by out-
putting the compiled code directly. However, eliminating the use of synthesized

attributes is not always possible.

For example, suppose the target language provides a bounded number of registers.
Once the registers have been exhausted, the compiler must use stack temporaries. To
determine how many stack temporaries are required, the compiler might associate a
synthesized attribute NTemps with each code unit. NTemps for a compound code
unit is computed by taking the maximum of the NTemps of its nested code units.

Figure 2.4 shows how the algorithm might be revised to allow the synthesized at-
tribute NTemps. The primary change is that Program delays its return until all of
the threads it has forked terminate. (This is implemented using Thread.Join, which
yields the return value of the procedure invoked when the thread was forked.) Now,
whenever Program or Code return, any threads forked to process code units must
have terminated. Therefore, the synthesized attributes of code units are available

when Code returns.

Because the use of synthesized attributes violates the second constraint of sec-
tion 2.2.2, the assertion that the parent will never have to wait for information
computed by the child is no longer true. The parent may block whenever it uses a
synthesized attribute of the child.

2.2.5 Advancing Past Code Units Efficiently

Recall that whenever a thread is forked to process a code unit, the forker must
then skip to the next unit. In figure 2.3, Program calls SkipCode after each call to
Fork. Unless SkipCoda is significantly faster than Code, the parallel strategy will not
produce any gains in performance. In a simple, general approach, the skipped code

unit must be parsed. However, by exploiting the structure of the source language’s

16

PROCEDURE Program(VAR ts: TokenStream): INTEGER;
(* Effect: Compiles a program and advances TS past the tokens of *)
(* the program. Returns the number of temporartes used. %)
VAR
ntemps: INTEGER;
thread: Thread.T;
threads: Set0fThreads.T;
BEGIN
ntemps := 0;
threads := SetOfThreads.Create();
WHILE NOT TokenStream.Empty(ts) DO
IF the next token denotes the beginning of a declaration
THEN Decl(ts);
ELSE
Set0fThreads.Insert (threads, Thread.Fork(Code,ts));
SkipCode(ts);
END;
END;
WHILE NOT SetOfThreads.Empty(threads) DO
thread := Set0fThreads.DeleteAnyMember(threads);
ntemps := MAX(ntemps, Thread.Join(thread));
END;
RETURN ntemps;
END Program;

PROCEDURE Code(ts: TokenStream): INTEGER;
(* Effect: Compiles a code unit; returns the number of temporaries used. *)
VAR
ntemps: INTEGER;
BEGIN
IF the next token is a BEGIN
THEN TokenStream.Get(ta); (Consume the BEGIN)
ntemps := Program(ts);
verify that the next token is an END and consume it
ELSE RETURN Stmt(ts);
END;
RETURN ntemps;
END Code;

PROCEDURE Stmt(ts: TokenStream): INTEGER;

(* Effect: Compiles a statement; returns the number of temporaries used. *)
END Stmt;

Figure 2.4: Example using synthesized attributes.

17

syntax, complete parsing can be avoided.?

Consider again the grammar in figure 2.2. Note that nested blocks are always sur-
rounded by begin and end. By extending the scanner to match each begin/end
pair, SkipCode can be made extremely fast. Note that such a scanner is an elemen-
tary parser: it will have to keep a stack of pointers to unmatched begin tokens.
Fach begin token will have a match field which will point to the matching end in
the token stream. Whenever an end is encountered, the match field of the begin
on the top of the stack is set. Because Code does not need to read the match field of
begin tokens, the processing of a nested block is not delayed until the entire block

is scanned.

The strategy above requires that syntactic structures of the source language be
delimited by some set of reserved words, and the delimiting reserved words must
not be used elsewhere.® The set of delimiting reserved words is partitioned into two
subsets, Start and Stop, which contain the tokens that delimit the beginning and end,
respectively, of syntactic structures. It is not necessary for each syntactic structure
to have its own pair of delimiters. For example, Start might contain if, while, and
repeat, with Stop containing only end. The scanner needs to distinguish only the
sets Start and Stop. It can ignore distinctions between elements of the same set and

let the parser handle inappropriately paired delimiters.

Fortunately, large syntactic structures are usually delimited by a pair of reserved
words. However, smaller syntactic structures such as simple statements may not
be delimited as required. If the language requires a statement terminator then the
parser can skip past a statement by advancing to the next terminator. If statement
separators are used instead, then the parser can skip past a statement by advanc-
ing to the next separator or member of Stop. In both cases, the symbol used to
delimit statements must not occur within them. If neither a terminator nor a sepa-
rator is required, then the skipped statement must be parsed. In this case, parallel

compilation of simple statements may not be practical.

Seshadri, Small, and Wortman independently developed a similar algorithm for

advancing past units of the source program [14].

21f the compiler is integrated with a syntax-oriented editor, an alternative is possible: the editor
can produce a parse tree for the compiler. In this case, skipping past code units is trivial.
3Languages which have keywords rather than reserved words are unsuitable for this strategy

because keywords may be used as identifiers in certain contexts.

18

Frankel extended a one-pass recursive-descent Pascal compiler to process procedures
concurrently using the algorithm of figure 2.3 [7]. Whenever it encounters a pro-
cedure definition, the compiler creates a new instance to process the definition and
skips to the end of the procedure by matching delimiters. Error recovery is restricted
to deleting tokens until either an expected token is encountered or the end of file is

reached.

Frankel’s compiler ran on Xerox Alto workstations connected by an Ethernet. Pro-
cessors communicate via a file server, and the Fork operation must manipulate idle

machines through the network.

Frankel observed a speedup of 3.74 when using six workstations to compile a 6000-
line program (2.07 for three workstations). However, he partly discounts these
numbers because his compiler, which was built on multiple levels of interpretation,
was CPU-bound. The network was not a bottleneck. When communication costs
are negligible, the addition of processors is expected to increase performance signif-

icantly.

19

Chapter 3

A Parallel C Compiler

This chapter describes the design and implementation of PTCC, a C compiler which
exploits concurrency using the methods decribed in chapter 2. Rather than writing
a compiler from scratch, I chose to add parallelism to an existing compiler, the Titan
C Compiler (TCC).!

3.1 The Titan C Compiler (TCC)

The Titan C Compiler is a recursive-descent compiler written in Modula-2. It
compiles preprocessed C, which contains no comments or macros, into the Mahler
intermediate language. Mahler is a source-language independent intermediate lan-
guage designed for the Titan instruction set. TCC makes no attempt to recover from
syntax errors, and I did not add such facilities to PTCC. Although not extensively
used, TCC has compiled large programs, including the UNIX operating system.

Before I could begin to experiment with TCC, I had to translate TCC from Modula-2
to Modula-2+. Translation involved changes in syntax, data types, and system calls,
which were modified to reflect the conversion from Ultrix to Topaz, the operating

system of the Firefly.

1The Titan is a RISC computer developed for research at Digital’s Western Research Laboratory.

20

3.2 Relevant Specifics of C

3.2.1 Decl and Code Units

In C, any variable or type declaration is a decl unit: static initializers, typedefs,
structs, unions, etc. are all decl units. Any procedure body or statement is a
code unit.

A procedure definition is a decl unit followed by a code unit: the procedure header

is a declaration, and its body is code.

3.2.2 Exploiting C’s Syntax

C’s syntax has most of the characteristics, listed in section 2.2.5, that allow code
blocks to be skipped efficiently. All compound statements, procedure bodies, and
nested blocks are delimited by braces, which do not appear elsewhere in code units.
C’s simple statements are all terminated by semicolons, which do not appear else-
where in simple statements.

C’s structured statements, such as if, while, and for, are not bracketed by any
delimiters. Each structured statement begins with a unique reserved word, but none
is terminated by a delimiter. Therefore, structured statements must be partially
parsed. Several of the structured statements (if, for, while, and switch) contain
an expression enclosed in parentheses, which always occur in matched pairs. By
having the scanner match parentheses as well as braces, it is possible to skip over

the structured statements more efficiently.

3.2.3 Violations of Block Structure in C

GoTo

Perhaps the most prominent violation of block structure in C is the goto statement.
Forward goto’s violate the first constraint of section 2.2.2. Furthermore, C allows
the target of a goto to be any statement in the program; this violates the second
constraint.

21

If the target language has global symbolic labels, then one-pass parallel compilation
is possible: the compiler simply reuses the label names of the source program.
PTCC uses this strategy. If the target language does not provide symbolic labels,
then compilation requires two passes.

Switch Statement

C’s switch statement violates block structure because the case arms are equivalent
to labels that may be inserted before any statement inside the switch body. For
example, the program in figure 3.1 is legal. Note that each case header is a decl
rather than a code unit: its location and the value of its expression are needed to

compute a dispatch table.

One way to handle switch statements would be to treat the switch bodies as decl
units as defined in chapter 2. This has the serious disadvantage of serializing the
compilation of the switch body, which may be quite large. A better strategy is
to treat case arms as synthesized attributes of the switch body and to do parallel
compilation as described in section 2.2.4. This is the approach used in figure 3.2.
Each child stores any case arms it encounters in a shared data structure, embedded in
cs, which is allocated and deallocated using EnterSwitch and ExitSwitch. When
procedure Statement returns, all the information needed to generate a dispatch
table is available in this data structure.

Extern

C’s extern construct violates block structure because an extern declaration in a
nested block may be referenced by any code after the extern. Using the algorithm
of figure 2.3, there is a race between the processing of such a nested declaration
and its uses outside the nested block. Since eliminating this race would eliminate
all parallelism, PTCC does not promise to compile such programs properly unless it
is run in serial mode. In parallel mode, references to extern declarations outside
the scope of the declaration may be flagged as undefined variables. Programs which

rely on this behavior of extern can be easily rewritten to avoid the problem.

22

switch (n) case 1: {
case 2: printf("2\n"); break;
if (foobar()) {
case 3: n = 10;
}

default: n = n + 1;

Figure 3.1: C’s switch statement violates block structure.

PROCEDURE SwitchStatement(cs: CompilerState.T)

(* Effect: Compiles a switch statement. *)

VAR
expr: Expression.T;
ts: TokenStream.T;

BEGIN
ts := CompilerState.GetTokenStream(cs);
ASSERT (Token.GetKind (TokenStream.Get (ts8)) = TOKEN_SWITCH);
ASSERT (Token.GetKind(TokenStream.Get (ts)) = TOKEN_LEFT_PAREN);
expr := Expression(cs);
ASSERT (Token.GetKind(TokenStream.Get(ts)) = TOKEN_RIGHT PAREN);
CompilerState.EnterSwitch(cs);

(* Call Statement to compile the body of the switch, which is *)

(* usually a compound statement. *)
(* Statement may execute in parallel, but when it returns, any *)
(* threads which it may have forked will have terminated. *)
Statement(cs);

GenerateDispatchTable(cs, expr);
CompilerState.ExitSwitch(cs);
END SwitchStatement;

Figure 3.2: Handling C’s switch statement.

23

3.3 The Mahler Intermediate Language

Mabhler has several features which facilitate code generation [17]:

¢ It supports top-level (unnested) procedures with an optional return value.
Both direct and indirect recursion are allowed.

o It assumes responsibility for managing the runtime stack. Rather than gener-
ating code to do address arithmetic, the front end of the compiler uses Mahler
variables, and the Mahler Compiler handles address computations. Mahler

variables may be used before they are declared.

o It allows symbolic labels in conditional and unconditional branch instructions.

All labels and variable names must be unique.

¢ It provides an essentially unlimited number of temporaries (anonymous vari-
ables) and assumes responsiblity for register allocation.

There are two types of variables in Mahler: named variables and anonymous vari-
ables. Anonymous variables are used as expression temporaries. Their values, unlike
those of named variables, are not preserved across labeled instructions or transfers
of control. Anonymous variables need not be declared.

Named variables may be declared to be local or static. A local variable is stored
in the activation record of the current procedure; a static variable is stored in a
common area. Mahler allows declaration before use. A procedure may reference the
local variables of another procedure; this is used to reference free, lexically scoped
variables.

3.4 A Parallel Version of TCC (PTCC)

3.4.1 Basic Design

PTCC consists of a two-stage pipeline as shown in figure 3.3. The first stage is the
scanner; the second stage parses the token stream, type-checks the program, and
generates Mahler intermediate code. The bulk of concurrency is obtained in the
second stage by processing blocks of code in parallel.

24

Pass One

= Syntax Errors

~

Type Checker

- —— e — — — - —

| Source Language

|

, !

: Scanner

e e o e e e e e e o -

Pass Two

ot Sl

: Parser

|

, PN

| 4

| Symbol Table

| Builder

|

i

{

, [N
Intermediate

' Code

| Generator

B ¢

I Target Language Type Errors

Figure 3.3: Structure of PTCC.

25

The pipelined scanner serves two purposes. Since scanning represents 10% to 20%
of compilation time, pipelined scanning offers modest performance gains. However,
the primary reason for making the scanner an independent stage is to tokenize the

input quickly so that the parallel parser will not be delayed by the scanner.

I did not pipeline other stages for several reasons. Pipelining, though conceptually
simple and relatively easy to implement, works best on a predetermined number
of processors, and I wanted an algorithm which would scale to the number of pro-
cessors available. Therefore, pipelining was not suitable as the primary source of
concurrency. Once PTCC processed code blocks in parallel, more extensive pipelin-
ing seemed unnecessary for the 5-processor Firefly. In fact, the additional overhead
of pipelining might have outweighed any real increases in parallelism. Moreover,
PTCC is a recursive-descent compiler whose static semantics and code-generation

are intertwined with the parser; separating these stages would have been difficult.

PTCC generates the same code as TCC, except that labels may be renamed.

3.4.2 Pipelining the Scanner

Pipelining the scanner with the rest of the compiler was straightforward. In TCC,
the scanner is driven by the parser through a procedure GetNextToken. Therefore,
I modified the scanner to generate the token stream independently and altered

GetNextToken to merely return a token in the stream.

Access to the token stream by the second stage of the pipeline is restricted by valve
tokens. Each valve token contains a mutex which the second stage must acquire and
release before it proceeds to the next token. The token stream always begins with a
valve token whose mutex is held by the scanner. Once it has added some number of
tokens to the stream, the scanner inserts a new valve token and opens the previous

valve by releasing its mutex.

Because the scanner is faster than the second stage in the pipeline, PTCC was not
significantly delayed by the valves in practice.

26

3.4.3 Processing Code Blocks Concurrently

Processing code blocks in parallel required significantly more effort than pipelining

the scanner. Several changes were necessary.

Eliminating Global Variables

TCC uses many global variables to store the state of the compiler. To allow multiple
concurrent instances of compilers, these global variables had to be eliminated. I
encapsulated them into CompilerState objects and mechanically substituted Com-
pilerState operations for references to the global variables.

Scanner Extensions

Matching braces and parentheses in PTCC is straightforward. I added a stack to
store references to each unclosed brace or parenthesis. Whenever a right brace or
parenthesis is detected, the match field of the token at the top of the stack is set.
There is actually one complication: match fields must never cross an unopened valve
token since this would circumvent access control to the token stream. Therefore,
the scanner may selectively delay initializing match fields.

Because the second stage may try to reference the match field before the scanner
has reached the corresponding close brace or parenthesis, I implemented the match
field of left brace/parenthesis tokens as write-once variables [2].2 As their name
implies, write-once variables may be written only once, although they may be read
any number of times. Attempts to read uninitialized write-once variables are delayed

until the variable is initialized.

In Modula-2+, I implemented write-once variables as a tuple <mutex, variable>.
Readers of the write-once variable must first acquire and release the mutex, which is
marked unavailable at creation time and then marked available by the single writer.

Therefore, all reads block until the variable has been written.

*Write-once variables were developed by Arvind in the functional language Id designed for
dataflow computers. In Id, they are used for the elements of I-structures, which are similar to
arrays [2].

27

Because reads and writes of aligned words are atomic on the Firefly, an optimization
is possible. If the write-once variable is word-aligned and is created with a value
outside the legal range (e.g., NIL for pointers), then readers may first read the
variable and check that the value is within the range. If so, then no further action
is necessary. Otherwise, the reader must block until the variable is initialized by
acquiring and releasing the mutex. This optimization avoids serializing reads once

the variable has been written.

Restructuring the Symbol Table

TCC’s symbol table is a tuple <hashtable, scopestack>. The hashtable maps iden-
tifiers to stacks of values; the top of this stack contains the identifier’s value for the
smallest enclosing scope in which the identifier is defined. Scopestack is used to
maintain a list of all the local identifiers in each accessible scope; it is pushed on
scope entry and popped on scope exit. When an identifier is declared, a new value
is pushed onto its stack in hashtable and its name is added to the top of scopestack.
On scope exit, the stacks in hashtable for each of the identifiers listed in the top of

scopestack are popped.

The symbol table structure described above is not suitable for parallel compilation
of code blocks. It is not possible for concurrent instances of the compiler to share
common parts of the symbol table such as the global scope. Copying the symbol
table each time a new instance of a parallel compiler is created would be prohibitively
expensive. Therefore, I redesigned the symbol table in PTCC. The new symbol table
is a tree of hash tables. Each hash table corresponds to a single scope, with the
global scope at the root of the tree. The tree structure makes sharing possible;
unfortunately, it increases the time for a lookup operation from a constant to a

linear function of the relative depth of an identifier.

In order to detect all use-before-declaration errors, positionstamps were added to
each symbol table entry. This was a small change.

Label Generator

TCC has a global label generator. In PTCC, I added a mutex to control access to

28

the label generator, which is shared by all concurrent compiler instances. Because
the order in which labels are allocated may vary each time PTCC is run, label names

vary in the output code from different runs using the same source file.

Buffering Data: SplitWriters

As a one-pass compiler, TCC outputs Mahler code and error messages continuously
using the standard Modula-2+ I/O facilities. Whenever a new compilation task is
created, a new pair of output streams is needed (one for code, one for errors). The
final output of PTCC must be the concatenation of the outputs of each compiler

instance.

In Modula-24-, output is performed using a generic type Writer. A Writer is an
output character stream to some target, e.g., a file or a terminal. Writers are

implemented using a subclass for each type of target.

I defined a new subclass of Writer, SplitWriter, which allows parallel programs
to divide a single Writer into a series of ordered Writers with a common target.
SplitWriter introduces the operation Split, which takes a SplitWriter as an argu-
ment and returns a new SplitWriter. The semantics of SplitWriter are that every-
thing written to the new SplitWriter will be written to the original SplitWriter once
the latter is closed.

SplitWriters with a common target are logically chained in lists; the Split operation
inserts a new SplitWriter just after its argument. The output stream of a list of
SplitWriters is the concatenation of the each of the individual SplitWriter streams.

The first unclosed SplitWriter in a SplitWriter list is treated specially. It is called
the active SplitWriter. Anything written to it is immediately written to the target.
Anything written to an inactive SplitWriter is buffered by the SplitWriter abstrac-
tion. When the active SplitWriter is closed, the next SplitWriter in the list becomes
active, and its buffer is flushed to the target. Therefore, output to the target is
continuous as long as SplitWriters are closed as early as possible.

It is an error to try to Split a closed SplitWriter since output of SplitWriters later
in the list may have already been flushed to the target.

Regardless of whether a SplitWriter channels its writes directly to the target writer

29

or holds them in a temporary buffer, using SplitWriters adds a second level of
buffering. (Characters are copied exactly twice.) This second level is introduced by
the generic Writer abstraction.3

Given SplitWriters, it is easy to handle buffering in PTCC. Each time a new compiler
instance is created, the output Writers are Split. Whenever a compiler instance
completes its task, it closes its output Writers.

Putting It All Together

Once all of the pieces above were completed, it would have been possible to do
parallel compilation of code blocks using the algorithm presented in chapter 2. All
that is missing are the calls to Fork and some procedures to replicate CompilerStates
when Fork is called. This would have led to a correct parallel compiler, but not a
very efficient one because the number of threads would greatly exceed the number
of processors. In the next chapter, I present a method which restricts parallelism to
improve efficiency and show how it was used in PTCC.

3A better implementation would include SplitWriter functionality in the generic Writer abstrac-
tion so that the second level of buffering would be eliminated for the active SplitWriter.

30

Chapter 4
Controlling Parallelism

Often, the first step in writing a parallel program is to find all possible.sources
of parallelism. The second is to restrict the use of parallelism to make the most
effective use of available resources. For problems with ample parallelism, the second

step can be the more difficult one.

4.1 Rampant Forking Is Inefficient

On the Firefly, there is no performance advantage in having more runnable threads
than available processors. Instead, this is a performance liability due to increased
scheduler overhead. Furthermore, even if scheduling were free, each thread repre-
sents a division of labor. Typically, the division has a cost. For example, consider
a parallel game-playing program based on a tree-search with alpha-beta pruning.
Concurrent evaluation of the tree may result in less pruning because less informa-
tion is shared between the parallel evaluators. Excess runnable threads, therefore,

represent a liability.

In PTCC, dividing the task of compilation involves duplicating CompilerStates, cre-
ating new SplitWriters, and skipping past units of the input. These operations delay
PTCC and increase its memory demands. Again, excess runnable threads represent

unproductive overhead.

In chapter 2, I presented an algorithm for parallel compilation which forked a thread

31

for each nondeclaration node in the parse tree. This uses an unproductively large
number of threads. For maximum efficiency, it would be best to divide the task of
compilation once, at the start, into equal parts for each processor, thereby minimiz-
ing overhead while maximizing concurrency. Such a division is impossible on the
first pass since the size of the task is unknown. In general, the problem is finding

an efficient way to divide a problem of unknown size and structure.

4.2 Using Fewer Threads

4.2.1 Restricting the Level of Parallelism

For recursively divisible problems, one simple way to reduce the number of threads
would be to fork threads only for each top-level branch. For example, in a compiler
such a strategy is analogous to restricting concurrency to the procedure level. The
disadvantage with this approach is that the numbers of branches may differ from
the number of processors. Moreover, even if the number of processors and branches
match, the branches are not necessarily equal in size, so the multiprocessor may be
underutilized towards the end of the computation.

In general, it is best to allow (but not necessarily exploit) as much concurrency
as a problem will permit so as to minimize the chance of having idle processors.
Eliminating opportunities for concurrency has the effect of reducing the class of
input trees for which a parallel program will make full use of a multiprocessor.
Furthermore, if the number of processors is increased, the program is less likely to

be able to use them.

4.2.2 Workers and Task Lists

An alternative method is to use a constant number of worker threads equal to the
number of processors and to maintain a list of unfinished, nonblocking tasks. This
approach, which is equivalent to a nonpreemptive scheduler, is implemented by
replacing the call to Thread.Fork in figure 2.3 with a call to TaskList.AddTask.
One advantage of this worker/tasklist model is that the number of processors used

is bounded by the number of workers rather than by the number of tasks.

32

Although the worker model eliminates the overhead due to competing runnable
threads, it does not avoid the overhead of division of labor. Tasks are created and

added to the list even when there are more tasks than idle processors.

4.2.3 Reducing the Number of Tasks

The previous strategy could be amended so that each worker thread checks the size
of the task list before adding a task. If the size of the list is less than the number
of idle workers, then the task is created and added. Otherwise, the worker does the
task directly.! Thus, the overhead of creating a task is incurred only when the task
will indeed be performed in parallel.

The disadvantage of this strategy is that opportunities for concurrency may be lost.
The decision to execute a divisible task in parallel is made before the first subtask
is started. If, at that time, all workers are busy, then the task is performed serially.
However, should a worker become idle before the first subtask is completed, it will
not be able to perform the second subtask.

4.2.4 'WorkCrews

The strategies of the previous two sections demonstrate that there is a conflict be-
tween using all processors and avoiding unproductive overhead. Both strategies
minimize scheduler overhead by using one thread per processor. The former maxi-
mizes parallelism, but it fails to avoid the overhead of dividing a task when there are
more tasks than workers. The latter minimizes overhead, but it sometimes leaves
processors idle when tasks could be subdivided.

The reason the latter method misses opportunities for parallelism is that it decides
whether to execute the second part of a task concurrently only on the basis of the
number of busy coworkers when the task is begun. If a coworker becomes available
before the worker completes the first part of its task, then concurrency is needlessly
lost. The technique that I use in PTCC avoids this situation by allowing the second
subtask to be started at any time during the execution of the first subtask. Each
worker merely notes opportunities for concurrency without fully dividing tasks. If

Forking only when there are idle processors is equivalent to this strategy.

33

the second part of a task has not been started by a coworker when the worker

completes the first part, then it executes the second part serially.

In PTCC, WorkCrews are used to implement an extension and variation of the
original worker/tasklist strategy with the following properties:

o Coarser grains of parallelism are favored over finer grains of parallelism.

e In the absence of idle workers, serial execution is favored over parallel execu-

tion. This is accomplished by

— including as much of the overhead of division of labor as possible in the

second subtask of a task

— allowing workers to cancel unstarted tasks that they entered into the task
list.

e Precedence constraints may be imposed between tasks.

Coarser grains of parallelism are favored because they tend to have a lower percent-
age of overhead than finer grains of parallelism — e.g., a parallel compiler should
avoid statement-level compila.tionb until procedure-level compilation fails to utilize
all processors. To distinguish different grains of parallelism, a tree-structured task
hierarchy is used. A task is divisible if it can be broken into subtasks that can be
performed in parallel.

Workers always begin by executing their tasks serially — i.e., they traverse the task
tree in depth-first order. When a worker encounters a fork in the tree, it adds a
task to compute the right branch and proceeds to compute the left branch. The
worker does the minimum amount of work required to define the task. Whenever
possible, the overhead required to divide the task is included in the task itself.
When it is finished evaluating the left branch, the worker attempts to cancel the
right branch task. If the task has not been started by a coworker, this succeeds and
the worker proceeds to evaluate the right branch serially without performing the
additional overhead required for parallel execution. When a worker completes its

task, it begins the coarsest granularity task of a coworker.

Figure 4.1 is an example of a task tree for a compilation. At the outset, shown in
(a), the task is to compile a list of procedures (PL). It is being performed by worker

wi.

34

PL

. A

P PL
PL ////
SL
7\
S SL
(2) (b)

PL

I’//// \\\;)IJ I’///;)I<\\;’IL
SI;/// :j;// \\:DIJ SI;/// I)//// \\EEIL
AN

S SL SLSL

/Y

(c) (d)

Figure 4.1: An example task tree.

35

In (b), w; divides the task into two parts: compiling a procedure (P), and compiling
the remainder of the procedure list. An arrow is used to denote an unstarted task
(PL). It proceeds to do (P) by reducing it into the task (SL) — compiling a list of
statements — and divides the (SL) into the two parts (S) and (SL).

At this point, imagine worker w, decides to help wy, so it begins (PL). It cannot
begin (SL) because (PL) is the coarsest uncompleted subtask of w;. Worker w,
then divides its task. Meanwhile, assume w, finishes compiling its statement, so it
cancels the previous (SL) task it created and performs the task itself. Both events

are shown in (c).

Finally, in (d), w, has divided its task, and w3 is helping w;. At this point, sup-
pose w; completes. It may choose to help either wz by performing (SL) or w3 by

performing (PL).

For PTCC, I wrote a module called WorkCrew to implement this strategy. The
task tree and task list are represented using a deque (double-ended queue) of tasks
for each worker. Conceptually, the task list is the union of the deques. Successive
entries in a worker’s deque denote finer subdivisions of its original task. A worker
always adds tasks to the end of its task deque. When it finishes its current task,
it removes a task from the end of its deque; this LIFO ordering is equivalent to
serial execution. If the deque is empty, it removes a task from the front of one of
the deques of its coworkers. This is equivalent to parallel execution at the coarsest

granularity.

Because the abstract task list is decomposed into multiple worker task deques, syn-
chronization costs are reduced. If a single, global task list were used, there would
be contention between workers for the task list. With WorkCrews, each worker will
make the majority of accesses to its task deque. Contention can occur only when

an idle worker examines a coworker’s task deque in search of work.

Managing Idle Workers

When an idle worker examines all of the workers’ task deques, it may find that they
are all empty. In this case, it must block until a coworker creates a new task. These
semantics can be implemented using the Condition facilities of the Modula-2+
Thread module. When an idle worker is unable to find work, it calls Thread.Wait

36

on the condition variable helpWanted. When a worker adds a task onto its deque, it

calls Thread.Signal to awaken coworkers suspended on the helpWanted condition.

WorkCrews improve the strategy above by reducing the number of calls to Signal. A
WorkCrew maintains a counter, unemployed, of the number of idle workers. Workers
signal helpWanted only when unemployed is nonzero. Write access to unemployed is
controlled by a global mutex. However, read access is unprotected because serializing
the reads would also serialize task creation. Because aligned memory reads and

writes are atomic on the Firefly, there is no danger that a read will corrupt a write.

A read may yield an out-of-date value of unemployed, but this is unlikely. Therefore,
most of the unproductive calls to Signal are avoided, and few of the productive ones
are lost. The latter is not a serious problem because the next worker to create a
task will signal helpWanted, and tasks are created frequently. In the worst case,
the worker which created the subtask will perform it serially after completing the
sibling subtask.

Supporting Precedence Constraints

One limitation of the task list methods described so far is that they lack facilities for
establishing precedence contraints between tasks. In the thread-oriented schemes,
precedence constraints are implemented using mutexes. In worker/tasklist schemes
where there is one worker per processor, this simple strategy is not acceptable since
a blocked worker represents an idle processor. If tasks cause workers to block for

any length of time, processor utilization will suffer.

WorkCrews can be extended to support precedence constraints between tasks by
maintaining a precedence constraint tree. Define a trigger to be any task that
represents a precedence constraint: if task A must be completed before task B may
begin, task A is a trigger for B. When a worker begins evaluating a trigger, it
adds a node for the trigger to the precedence constraint tree. This node contains
a description of B and a count (initially one) of the number of workers evaluating
tasks which are descendants of A. Whenever a worker begins a subtask of a trigger
(or descendant thereof), it increments the count; when it completes the task, it
decrements the count. The worker that decrements the count to zero is responsible
for adding B to the task list.

37

4.3 Using WorkCrews in PTCC

This section describes the user interface of WorkCrews and how WorkCrews were
used in PTCC.

A WorkCrew is a scheduling abstraction for parallel programs. Users of WorkCrews

specify:

¢ the maximum number of threads to use
e precedence constraints between tasks

e how to divide tasks

4.3.1 Operations on WorkCrews
Creating and Joining WorkCrews

WorkCrews? are created and joined using the operations:

PROCEDURE Create(n: INTEGER): WorkCrew.T;
PROCEDURE Join(crew: WorkCrew.T);

Create returns a WorkCrew with n worker threads. Join suspends the caller until

all of crew’s tasks have been completed.

Adding Tasks

Tasks are described as a procedure/argument pair. The procedure must be of type
Doer, defined as

Doer = PROCEDURE(WorkerInfo, REFANY)

2The convention in Modula-2+ is to use the name T for the prinicipal type exported by a module.
Hence, a WorkCrew object is of type WorkCrew.T.

38

The REFANY is the argument provided by the client. The WorkerInfo is provided
by WorkCrew. It contains private data of the worker performing the task. When a

client wishes to divide a task, it must pass this WorkerInfo to the relevant WorkCrew
operations.

New, top-level tasks are added using the AddTask operation with the following

interface:

PROCEDURE AddTask(
crew: WorkCrew.T;
partli: Doer;
datai: REFANY;
part2: Doer := NIL;
data2: REFANY := NIL)
RAISES JoinInProgress;

After AddTask returns, crew first completes

parti(some WorkerInfo, datal);
and then completes

part2(some Workerinfo, data2);

The tuples <part1 datal> and <part2, data2> represent two tasks. The second
task is not started until the first one is finished: part2 will not be called until all
workers performing some subtasks of parti have finished.

If part2 and data2 are not supplied, then only a single task is added.

Calls to AddTask are atomic. All <parti,datal> tasks are started (but not nec-
essarily finished) in the order they are added. This is used to avoid deadlock when
task B needs data generated by task A but there is no reason to delay starting B
until A completes.

AddTask is also atomic with respect to the invocation (but not the return) of Join.
If AddTask is called after Join, then the AddTask operation fails and it raises the
exception JoinInProgress.

Figure 4.2 describes how these procedures might be used to initiate a parallel compi-

lation. Procedure ProcedureList compiles a list of procedures. PrintCompilerSta-

39

PROCEDURE StartUp (input: Rd.T; output, error: Wr.T);
(* Compiles the sequence of procedures in input. *)

(* Object code is written to output. *)
(* Errors are written to error. *)
VAR

cs: CompilerState.T;
wc: WorkCrew.T;

BEGIN
cs := CompilerState.Create(input, output, error);
vc := WorkCrevw.Create(System.NumberOfProcessors);
WorkCrew.AddTask(wc, Procedurelist, cs,

PrintCompilerStatistics, cs);

WorkCrew. Join(wc);
CompilerState.CloseQutputWriters(cs)

END StartUp;

Figure 4.2: Starting up a WorkCrew

tistics, which is invoked only after ProcedureList has completed, might output
information such as the number of procedures compiled. Sometime after AddTask

is invoked, a worker thread of wc will perform

ProcedureList(wi, cs);

The first argument wi is the WorkerInfo for the particular worker. The second
argument cs is the CompilerState that was passed to AddTask.

After all workers cooperating to perform the ProcedureList task have finished,

some worker will perform

PrintCompilerStatistics(wi, cs);

4.3.2 Operations on Worker Tasks

This section describes the operations used to manipulate the task of a worker. The
operations differ from the previous ones described in that they take a WorkerInfo
as an argument rather than a WorkCrew.T.

40

Dividing Tasks

Clients specify how a task may be divided using the procedures RequestHelp and
GotHelp. Typically, these operations are used as follows:

WorkCrew.RequestHelp(description of second subtask) ;
do first subtask

IF WorkCrevw.GotHelp(...) THEN RETURN END;

do second subtask

RequestHelp and GotHelp are analogous to BEGIN/END’s; they delimit a region.
If a coworker answers a request, it will do so while the worker is executing the code
within this region, which represents one subtask of the worker’s original task. The
second subtask is performed by a helper or by the code executed when GotHelp
returns FALSE, but not both.

WorkCrew allows RequestHelp/GotHelp pairs to be nested. Quter requests for
help are always answered before inner ones. Thus, coarser grains of parallelism are
favored over finer ones.

The headers of the procedures are as follows:

TYPE Divider = PROCEDURE(REFANY, VAR Thread.Mutex): REFANY;
PROCEDURE RequestHelp(

wi: WorkerInfo;

doer: Doer;

data: REFANY;

divideTask: Divider);

PROCEDURE GotHelp(wi: WorkerInfo): BOOLEAN;

The latter three arguments of RequestHelp form a triple <doer, data, divideTask>
that represents a task. If the request is answered, some worker thread will invoke

doer(wi, divideTask(data, mutex));

The first argument wi is the WorkerInfo of the worker providing the help. The
argument divideTask is a procedure provided to compute the initial state of the

41

helper from the argument data provided by the worker requesting help. The role of
the argument mutex is explained later.

The crux of the WorkCrew abstraction lies in the conditional execution of divideTask.
Because divideTask is invoked only if and when the task is divided, clients should
do the minimal amount of work required to create data and have divideTask do
the rest.

Workers that have requested help use the procedure GotHelp to determine if their
request was answered. If it was answered, GotHelp returns TRUE. Otherwise, Got-
Help cancels the request and returns FALSE. Naturally, the test for help received
and the cancellation of the request must be atomic with respect to attempts to
answer the request. If GotHelp returns TRUE, it does not mean that the helper has
completed — only that it has begun.

Sometimes, divideTask needs a resource that the worker will destroy once GotHelp
returns TRUE. Therefore, it is necessary to delay GotHelp until divideTask has
finished using the resource. This is done using the argument mutex: GotHelp will
block until divideTask releases mutex.? Furthermore, no later requests for help by

the worker are answered until mutex is released.

The purpose of the divideTask procedure is to perform the overhead necessary to
divide the task. Where there is division, there is often a need for union. Thus,
WorkCrew provides the operation:

TYPE Merger = PROCEDURE(REFANY) ;
PROCEDURE Merge(
wi: WorkerInfo;

proc: Merger;
data: REFANY)

Merge should be invoked only by divideTask procedures. It causes the helper to

perform

proc(data);

3The mutex passed to divideTaskis part of the WorkerInfo of the worker which requested help.
It is the one used to implement the atomicity of GotHelp. When divideTask is called, mutex has
already been acquired.

42

when the Doer listed in the call to RequestHelp returns.

Figure 4.3 is an example of how to divide the task of compiling a list of procedures
using WorkCrews. (The code to process statement lists is very similar.) The worker
assigned to compile the list of procedures requests that a coworker compile all pro-
cedures except the first; then it compiles the first procedure by calling Procedure.
If its request was answered, it is finished. Otherwise, it repeats the process for the

remaining procedures.

Note how the overhead of task division is divided into two parts: the creation and
initialization of ncs, and the code of ProcedureListPrep. If the WorkCrew has only
one worker thread, then the overhead introduced to compile a list of procedures is
only the WorkCrew startup time, the creation of ncs and, for each procedure, a call
to RequestHelp, GotHelp, and CompilerState.CopyEssentials.

ProcedureListPrep is used to divide the task of compiling a list of procedures. It
creates new output writers for the helper by splitting those of the helpee, initializes a
new CompilerState, and advances the input pointer to the next procedure to be com-
piled. For correctness, each new writer created must eventually be closed. There-
fore, ProcedureListPrep uses Merge to specify that CompilerState.CloseCutput-
Writers should be called once the helper returns. Thus, although ProcedureList
does not close its output writers, they are closed implicitly when it returns if and
only if ProcedureList was performed by a helper.

Recall that writers must be split before they are closed (see section 3.4.3). Since
the writers of cs may be closed implicitly when ProcedureList returns, its return
must be delayed until ProcedureListPrep has completed splitting them. This is
done by calling CompilerState.SplitOutputWriters before releasing mutex.

Establishing Precedence Constraints

As already mentioned, AddTask provides a mechanism for introducing precedence
constraints between top-level tasks. WorkCrews also allow the user to specify prece-
dence constraints between divisible subtasks. The relevant procedures are:

PROCEDURE EnterSubTask(wi: WorkerInfo);

PROCEDURE SubTaskIsFinished(wi: WorkerInfo): BOOLEAN;

43

PROCEDURE WhenSubTaskDoneDo (
wi: WorkerInto;
proc: PROCEDURE;
data: REFANY);

EnterSubTask and SubTaskIsFinished are associated procedures much like Request-
Help and GotHelp. EnterSubTask is called to delimit the start of the first task.
SubTaskIsFinished is called to delimit its end. Any number of RequestHelp/Got-
Help or EnterSubTask/SubTaskIsFinished pairs may be nested recursively within
the first task.

If SubTaskIsFinished returns TRUE, then there are no other worker threads still
computing part of the first task, either because they all completed or the task was

never divided. In either case, the worker simply begins the second task.

If SubTaskIsFinished returns FALSE, then there may be other worker threads still
processing parts of the first task. Therefore, the worker may not begin the second
task. Instead, it adds a description of the second task using WhenSubTaskDoneDo.

Figure 4.4 shows how I used WorkCrew precedence constraints to implement switch
statements in PTCC. The strategy is the same as that of figure 3.2: the information
from the case arms is stored in a synthesized attribute stored in the CompilerState.
If SubTaskIsFinished returns TRUE, then SwitchStatement generates the dispatch
table immediately. Otherwise, it is necessary to delay generating the dispatch table
until the switch body has been completely parsed. Note that the latter case incurs

the overhead of creating a new CompilerState and splitting the output writers.

44

PROCEDURE ProcedureList (
wi: WorkCrew.WorkerInfo;
rcs: REFANY);
(* Effect: Compiles a list of procedures. Does not close the output writers of rcs. *)
VAR

cs, ncs: CompilerState.T;

wc: WorkCrew.T;
BEGIN

cs := NARROW(rcs, CompilerState.T); (rcs is a CompilerState. T}

ncs := CompilerState.New();

WHILE NOT CompilerState.NoMoreInput(cs) DO
CompilerState.CopyEssentials(cs, ncs);
WorkCrew.RequestHelp(

wi, ProcedurelList, ncs, ProcedureListPrep);
Procedure(wi, cs);
IF WorkCrew.GotHelp(wi) THEN RETURN END;
END;
END ProcedureList;

PROCEDURE ProcedureListPrep (
rcs: REFANY;
VAR m: Thread.Mutex)

REFANY;
VAR
cs: CompilerState.T;
BEGIN

cs := NARROW(xrcs, CompilerState.T);
CompilerState.SplitQutputWriters(cs);
Thread.ReleaseMutex(m) ;
CompilerState.FullyInitialize(cs);
SkipProcedure(cs);
WorkCrew.Merge(wi, CompilerState.CloseDutputWriters, cs);
RETURN (cs8);

END ProcedureListPrep;

PROCEDURE Procedure(wi: WorkCrew.WorkerInfo; cs: CompilerState.T);

Figure 4.3: Compiling procedures concurrently using WorkCrews

45

PROCEDURE SwitchStatement (

vi: WorkCrew.WorkerInfo;
cs: CompilerState.T)

VAR
expr: Expression;
ncs: CompilerState.T;

BEGIN
ASSERT(CompilerState.GetToken(cs) = TOKEN_SWITCH);
ASSERT(CompilerState.GetToken(cs) = TOKEN.LEFT PAREN);
expr := Expression(cs);
ASSERT (CompilerState.GetToken(cs.ts) = TOKEN_RIGHT_PAREN);
CompilerState.EnterSwitch(cs);

(* Call Statement to compsle the body of the switch, which is *)
(* usually a compound statement. *)
(* When the body has been compiled, generate the dispatch table. *)

WorkCrew.EnterSubTask(wi);
Statement (vi, cs8);
IF WorkCrew.SubTaskIsFinished(wi)
THEN
GenerateDispatchTable(cs, expr);
CompilerState.ExitSwitch(cs);
ELSE
ncs := CompilerState.Copy(cs);
CompilerState.SplitOutputWriters(cs);
CompilerState.StoreSwitchExpr(ncs, expr);
WorkCrev.WhenSubTaskDoneDo (vi, GenDispT, ncs);
END;
CompilerState.ExitSwitch(cs);
ERD SwitchStatement;

PROCEDURE GenDispT(cs: CompilerState.T);
BEGIN
GenerateDispatchTable(cs, CompilerState.GetSwitchExpr(cs));
CompilerState.CloseQutputWriters(cs);
END GenDispT;

Figure 4.4: PTCC’s handling of C’s switch statement.

46

Chapter 5

Performance of PTCC

To measure the performance of PTCC, I compiled an arbitrary set of source files on
an otherwise idle five-processor Firefly. I varied both the granularity of parallelism
and the number of worker threads used.

5.1 Versions of Compiler

TCC and PTCC are actually sets of compilers. Each successive version of PTCC
exploits additional, finer grains of parallelism.

TCC
tccl The original TCC translated into Modula-2+.
tcc2 Same as tccl, except all POINTER types converted to
REF types.
PTCC

scanning Pipelines scanning with parsing and code generation.

procs Processes procedures concurrently.

47

bigstmts Processes if, while, for, do, switch, and compound

statements concurrently.

anystmt Processes any statement concurrently.

Tcc2 is only interesting because of peculiarities of the Modula-2+ runtime system.
In the Modula-2+ system, REF types, which are garbage-collected, are favored over
POINTER types, which are allocated on a user-managed heap. Many library routines
support only REF types. I found it necessary to replace all POINTER types with REF
types in PTCC.

The Modula-2+ compiler handles POINTER and REF types differently, making REFs
less efficient. Each time a REF is accessed, a runtime test is performed to check
that it is non-NIL. Furthermore, a 4-byte header is created for each REF object.
(Garbage collection, however, is not an issue because I did not enable the collector.)
By measuring tcc2, these costs, which are unrelated to parallel compilation, can be
factored out in the data analysis.

Scanning, procs, and bigstmts are actually variations of anystmt in which calls
to the WorkCrew operations have been selectively removed (i.e., commented out).

Each successive version adds finer grains of concurrency.

Scanning is the only version that incurs unnecessary overhead — namely, the over-
head of:

o SplitWriters used to buffer the output of multiple compiler instances

the indirection introduced by CompilerState objects

the tree-structured symbol table

matching of braces and parentheses.

5.2 Source Files

I ran each version of TCC and PTCC on several preprocessed files. The C prepro-
cessor expands macros, strips comments, and inserts the text of each #include’d

48

Number of lines
File Original { PP | Procs Brief description
dispatch.c 1658 | 3053 3 | Part of X Window System server
eval.c 1127 | 1725 76 | Pooh evaluator?
mlcompile.c 1203 | 2936 12 | Part of emacs
origdisplay.c 1305 | 3827 18 | Part of emacs
Large | parse.c 356 | 1833 15 | YACC parser for Pooh
schan.c 1372 | 4072 48 | Part of emacs
types.c 835 | 1254 64 | Part of Pooh
window.c 1251 | 2697 26 | Part of X Window System server
xterm.c 1153 | 3559 12 | Part of X terminal emulator
keywords.c 182 714 5 | Part of Pooh
Small | libfns.c — | 451 3 | Part of Pooh
pooh.c — 621 2 | Part of Pooh

The Original column is the size (in lines) of the original source file.

The PP column is the size (in lines) of the preprocessor output for the file.
The Procs column indicates the number of procedures in the source file.
“—” indicates a missing data point.

“Pooh is a programming language developed by Eric Roberts for novice programmers. The files
used here are from a Pooh interpreter.

Table 5.1: Source files used

file. The output of the preprocessor is typically longer than its input.

Table 5.1 lists a few parameters for each file. The files are divided into two categories:
small and large. A small preprocessed file is approximately 100 lines long; a large
one is approximately 1000 lines long. Parallel compilation of small files yields only
minor reductions in elapsed time since small files require only a few seconds to
compile.

5.3 Data

Appendix B contains the data obtained from running each compiler using from one
to six worker threads for each input file. Data for four of the files also appears in
tables 5.2 through 5.5. All runs were on an otherwise idle five-processor Firefly.
Therefore, no performance improvement is expected when more than five workers

are used.

The data in appendix B includes both the elapsed time and the CPU time for each

49

compilation. To gauge the accuracy of these measurements, I ran anystmt ten
times on the file types.c using one worker and ten times using four workers. The
elapsed time measurements were very accurate! — only one sample differed for the
one-worker case. For the remainder of this chapter, measurements of elapsed times
are assumed to be accurate to within one second. The CPU time measurements were
also low in variance. For the one-worker samples, the standard deviation was .29
and the mean was 29.2. For the four-worker samples, the standard deviation was
.20 and the mean was 33.6.

5.4 Observations

For the large files, anystmt is 2.3 to 3.1 times faster than tccl when five worker
threads are used. If tcc2 is used as the base of comparison, the range is 2.5 to 3.3.
If one-second errors are assumed in the elapsed time, these ratios vary by roughly
+/- .2. On the smaller files, the speedup is between 1 and 2.

Pipelined scanning reduces compilation time by approximately 10% using two work-
ers. Scanning is .93 to 1.11 times faster than tccl and 1.07 to 1.18 times faster
than tcc2 on the large files. Assuming one-second errors in the measurements of
elapsed time, these ranges become .89 to 1.20 and 1.02 to 1.25 respectively. As
expected, using more than two workers does not significantly reduce the time re-
quired for compilation. Scanning is only slower than tccl on the file parse.c, which
contains a large statically declared array. The slowdown is caused primarily by the
substitution of REFs for POINTERs, which are used extensively by the code which
handles initializers.

For many of the files (eval.c, origdisplay.c, schan.c, types.c, window.c, and xterm.c),
processing procedures in parallel provides the bulk of the concurrency. For example,
tccl compiles window.c in 41 seconds (see table 5.2). With five workers procs takes
16 seconds. Anystmt only brings this down to 13 seconds. The data for eval.c is
similar (see table 5.3). Tecl requires 36 seconds, procs reduces this to 13 seconds,

and anystmt provides no improvements.

Statement-level compilation does improve performance significantly for some of the

1The elapsed time measurements for all of the files almost never varied by more than one second.

50

Number of worker threads
Compiler | 1 2 3 4 5 6

tcel 41

tcc2 43
Elapsed | scanning 45 39 38 39 38| :39
Time | procs 145 24 18 16 :16 | :16

bigstmts 45 24 :18 15 14| :14
anystmt 44 24 18 15 13| :14

tecl 45.4

tce2 47.3
CPU | scanning | 50.0 51.1 50.4 51.1 50.5 | 50.7
Time | procs 506 51.5 53.0 54.2 55.2| 55.3

bigstmts | 50.6 51.7 53.0 54.3 56.4 | 57.3
anystmt | 49.6 52.0 53.4 54.9 56.8 | 58.2

Table 5.2: Data for window.c

files (dispatch.c, mlcompile, and parse.c). For example, with five workers, anystmt
requires only 22 seconds to compile dispatch.c (see table 5.4). Bigstmts requires
40 seconds. Another example is micompile.c (table 5.5). Tccl requires 33 seconds,
procs reduces this to 23 seconds, and bigstmts requires only 13 seconds. These
results are not surprising since the code portions of dispatch.c and parse.c are es-
sentially one large switch statement. Mlcompile.c also has a couple of monolithic
procedures.

Note that supporting statement-level compilation is never a performance liability
when compared with procedure-level compilation. Anystmt is never significantly
slower (more than one second) than procs. This suggests that the WorkCrew
abstraction is making efficient use of parallelism.

Finally, note that the elapsed time is sometimes less than the CPU time in the
one-worker column. For example, tcel compiles dispatch.c in 51 seconds, but it
requires 56 CPU seconds to do so (see table 5.4). This is possible because the
number of workers used is not a precise bound on the number of threads used.
Topaz, the operating system for the Firefly, exploits concurrency. In particular, I/O
is performed in parallel. Therefore, even the “serial” compilers teccl and tcc2 use
some concurrency.

51

Number of worker threads
Compiler | 1 2 3 4 5 6
tccl :36
tec2 :39
Elapsed | scanning | 41 :35 :34 34 34| :34
Time | procs (41 23 16 14 :13 | :13
bigstmts 42 23 :16 14 13| :13
anystmt 41 22 17 14 13| :13
tecl 40.2
tce2 43.2
CPU | scanning | 45.8 47.0 46.6 46.6 46.8 | 47.0
Time | procs 45.5 47.7 489 51.2 51.8 32.1
bigstmts | 46.8 48.1 49.8 51.5 53.3 | 53.6
anystmt | 45.8 47.8 50.8 52.4 54.2| 56.0
Table 5.3: Data for eval.c
Number of worker threads
Compiler | 1 2 3 4 5 6
tccl :51
tcc2 :56
Elapsed | scanning 57 49 49 48 49| 48
Time | procs 56 44 44 44 44| 44
bigstmts 57 41 40 40 40| :39
anystmt 56 31 25 22 22| :21
teel 56.4
tcc2 60.4
CPU | scanning | 63.0 64.2 63.7 63.6 63.7| 634
Time | procs 62.2 63.5 64.2 63.5 64.2 | 64.0
bigstmts | 62.7 65.2 65.2 66.1 65.9 | 66.0
anystmt | 62.6 654 683 700 73.5| 724

Table 5.4: Data for dispatch.c

52

Number of worker threads
Compiler | 1 2 3 4 5 6

tccl :33

tce2 :35
Elapsed | scanning | :37 :32 33 :33 :33| :33
Time | procs 37 23 23 23 23| :23

bigstmts 38 21 7 14 13| :14
anystmt 37 21 :16 13 :13 :12

tccl 36.8

tcc2 39.2
CPU | scanning | 41.8 42.4 424 425 428|424
Time | procs 42.0 429 43.5 434 43.7 | 44.2

bigstmts | 42.6 42.6 44.1 454 46.6 | 47.0
anystmt | 41.5 43.1 444 455 47.0 | 47.6

Table 5.5: Data for micompile.c

5.5 Factors Limiting Performance

5.5.1 Lack of Parallelism

One performance limitation of PTCC is that it fails to keep all processors busy
throughout a compilation. Table 5.6 lists the average processor utilization of anystmt
for each of the C source files. These numbers were computed by dividing the CPU
time by the elapsed time for the five-worker case. Note that compiling the small files
tends to have lower utilization. This is probably because the start-up and clean-up
times of the compiler process are independent of the source file.

Processor Utilization Graphs

When analyzing the processor utilization of a parallel program, it is helpful to have
a utilization graph. A utilization graph displays the number of busy processors at
different points during the execution of a parallel program. On the Firefly, this
information is displayed by the watchtool, a program used to monitor system per-
formance.

93

File CPU Usage | Procs
dispatch.c 3.3 3
eval.c 3.9 76
keywords.c 3.2 5
libfns.c 2.9 3
micompile.c 3.6 12
origdisplay.c 3.7 18
parse.c 2.3 15
pooh.c 2.5 2
schan.c 3.5 48
types.c 4.4 64
window.c 4.4 26
xterm.c 3.4 12

Compiler is anystmt using 5 worker threads.
CPU Usage is CPU time divided by elapsed time.
The Procs column indicates the number of procedures in the source file.

Table 5.6: Processor utilization by file

Figure 5.1 is a utilization graph of the anystmt compiler processing each C bench-
mark file. Time is plotted on the horizontal axis, and the number of processors in

use is plotted on the vertical axis.

As the graph indicates, PTCC is not always able to keep a five-processor Firefly fully
utilized. In particular, the compiler performs somewhat poorly for the reasonably
large files dispatch.c, parse.c, and xterm.c. The root of the problem is that PTCC
processes declarations serially.

Dispatch.c begins with a lengthy sequence of struct and typedef declarations.
During the early parts of the compilation of dispatch.c, two processors are used:
one for the scanner, and one for a parser. Code is then reached before scanning
completes, and processor utilization increases to the maximum of five. Xterm.c also
begins with numerous declarations, and the compiler behaves in a similar manner.

Parse.c, a table-driven parser generated by YACC, contains two sections of code sepa-
rated by large array declarations. The two peaks in the graph for parse.c correspond

to the code sections. After the first code section has been processed, utilization drops

54

origdisplay : parse

mlcompile pooh
libfns schan
keywords———— ——————types
eval indow
dispatch xterm
Y Y VY v Yy Fr v v

Figure 5.1: Processor utilization graphs for anystmt

to two. As for dispatch.c, one processor is scanning and one is parsing. However,
here the scanner terminates before the parser finishes processing the arrays. Thus,

utilization drops to one until the second section of code is reached.

Factoring Out Declarations and Scanning

With the measurements thus far, it is not possible to calculate the performance
improvement that is due solely to the parallel processing of source code units. This
improvement can be diluted by lengthy series of declarations, and it can be strength-
ened by the pipelined scanning. Therefore, I built a special version of anystmt that
first scans its entire input. Then it measures the time it requires to process the file
from the first procedure to the end of the file. For most source files, this has the
effect of skipping the bulk of the declarations.

Table 5.7 contains the results of this experiment. Note that the performance for

55

ELAPSED TIME (SECONDS)

FROM FIRST PROCEDURE BODY TO END QF FILE
Number of workers | Speed Up

File 1 2 3 4 5| []/1[5
dispatch.c 48 26 18 14 14 34
eval.c 32 17 13 10 9 3.6

keywords.c 5 3 2 2 2 2.5
mlcompile.c |29 15 12 10 8 3.6
origdisplay.c | 28 14 10 8 7 4.0

parse.c 39 28 24 23 23 1.7
schan.c 26 14 10 8 8 3.3
types.c 19 10 7 6 5 3.8
window.c 36 19 13 11 9 4.0
xterm.c 32 17 12 9 9 3.6

Note: Time values are accurate to one second.
Speed Up column is simply the first column divided by the fifth.
The compiler used was a special version of anystmt.

Table 5.7: Peformance increase from concurrent processing of code units.

parse.c is still poor because parse.c has large array declarations after its first proce-

dure.

5.5.2 Bus Contention

Another factor influencing the performance of PTCC is bus contention. The Firefly
is a single, shared-bus multiprocessor. Only one processor may use the bus at a
time, so processors may be delayed any time they need to access the bus.

Bus contention appears in the data as an increase in both elapsed and CPU times
as the number of active processors increases. However, an increase in the number of
active processors is typically accompanied by an increase in the overhead to divide
work into smaller units. Therefore, only part of the increase in CPU time is caused

by bus contention.

I used the Modula-2+ profiler to measure bus contention in PTCC. The profiler

56

collects PC samples as a program executes. Using these samples, it determines how
much CPU time was spent in each procedure of the program.

For a given source file, several procedures of PTCC are called the same number of
times with the same arguments regardless of the number of worker threads used.
These procedures perform a constant amount of work every time PTCC compiles the
same program. However, the profiler indicates that these procedures require more
CPU time as more processors are used. By measuring the discrepancy, it is possible
to compute the slowdown in CPU speed caused by bus contention.

Table 5.8 contains the results of this experiment, which shows that bus contention
slows PTCC by up to roughly 10%. The compiler was a profiled version of anystmt.
The source file was constructed artificially to ensure that it contained sufficient
opportunities for concurrency to keep four processors occupied. Because the profiler
ties up roughly 40% of a CPU while it is gathering PC samples, a maximum of
four worker threads are used. The experiment indicates that the processors run
approximately 10% slower when roughly 4.4 processors are active than when a single
processor is active.

Charles Thacker and Larry Stewart, the designers of the Firefly hardware, devel-
oped an analytical model of bus traffic on the Firefly for differing numbers of pro-
cessors [15]. Their results project that the CPU slowdowns for two to five processors
are .89, .87, .86, and .84. These slowdowns are significantly worse than those mea-
sured. They are based on the data referencing and instruction execution properties
of typical programs running on the MicroVax II. I was unable to ascertain why
the performance of PTCC was better than that of the typical programs studied by
Thacker and Stewart.

5.5.3 Overhead to Support Concurrency

To support concurrency in PTCC, it was necessary to add mechanisms to control the
sharing of data. The cost of these mechanisms is yet another factor which affects
the performance of PTCC.

57

Number of | Mean | 98% Confidence | Slowdown | 98% Confidence
workers | Time Interval [N)/[1] Interval
1 29.08 | 28.79 29.36
2 29.67 29.43 29.91 .98 98 1.00
3 30.15 | 29.82 30.48 .96 .94 .98
4 32.10 31.88 32.32 91 89 .92

Mean Time is the mean CPU time.

[N] is the mean CPU time for the N-worker case.

Slowdown is the is the speed of a processor when there are N active processors
relative to the speed of a single active processor.

Table 5.8: CPU slowdown due to bus contention.
Synchronization Costs

Synchronization appears in several places in PTCC. The primary mechanism used
to divide the compilation task was the WorkCrew abstraction. In turn, WorkCrew
used the Modula-24+ Mutex and Thread facilities.

I used the Modula-2+ profiler to measure the cost of the WorkCrew and Thread
procedures. The total cost of both abstractions when anystmt compiles eval.c,
which allows extensive concurrency, is approximately .3 (+/- .04 at 98% confidence)

seconds, which is insignificant.

Although WorkCrews and Threads probably account for the bulk of synchronization
costs, some of these costs are scattered throughout PTCC. For example, procedures
using Modula-2+’s LOCK statement have inline code to manipulate mutexes instead

of calls to Thread.Acquire and Thread.Release.

Buffering (SplitWriter) Costs

When PTCC actually processes source code units in parallel, it must buffer the code
generated by the parallel parsers. This is done using the SplitWriter abstraction.
Individual measurement of SplitWriters indicate that they are 50% slower than
ordinary writers.

58

Total Concurrency Costs

The total overhead introduced to support concurrency can be calculated by taking
the difference between the CPU times of tcc2 and anystmt in the one-worker case.
The sum of these differences is 27.8 CPU seconds. This represents 6.7% of the 417.9
CPU seconds required by tee2 to compile all of the files.

The measurement above accounts for the overhead of using SplitWriters, Work-
Crews and Threads, of duplicating CompilerStates, and of scanning concurrently?
regardless of where this functionality was introduced in PTCC. Furthermore, the
measurement does not include any significant bus contention overhead since the

one-worker data was used.

The measurement does not account for increases in concurrency costs as additional
processors are used because I was unable to distinguish between such costs and bus
contention.

2Concurrent scanning, which can improve performance, is required to process source code units
in parallel.

59

Chapter 6

Extensions

The algorithms presented in chapter 2 and implemented in PTCC are not power-
ful enough for production compilers. As described, they work only for one-pass
languages, and they neglect syntax errors. This chapter sketches how the algo-
rithms might be extended to allow syntax error recovery and to support multipass
languages.

6.1 Handling Syntax Errors

In PTCC, syntax errors might be divided into two classes: those which involve
delimiting terminals and those which do not. (See section 2.2.5 for a definition of
delimiting terminals.) An error involves a terminal if the parser’s recovery action

for the error requires the insertion or deletion of the terminal.

If an error does not involve a delimiting terminal, no special error recovery measures
are necessary for the parallel compiler: the error is contained within the region of a
single parser which will detect and recover from the error independently. Otherwise,

error recovery is more complicated.

Seshadri, Small, and Wortman are designing a parallel compiler whose scanner
matches delimiters much like PTCC does [14]. They advocate that the scanner

should correct any delimiter errors before parsing begins.! They argue that the

INote that this precludes scanning and parsing in parallel.

60

scanner can recover from errors approximately as well as the parser can, especially

when the source language uses distinct delimiters such as if, endif, for, and endfor.

This claim seems correct for insertion errors and substitution errors, where the
patches are to delete or replace a token. However, for omission errors, which are
patched by inserting a token, it is unclear that the scanner can find the proper
place to insert the token. Furthermore, when an unpaired delimiter is encountered,
the scanner has no context to determine whether the error is one of insertion or
omission. The parser, however, has context to perform such recovery. For example,
it can use the existence of a boolean expression following an if to determine whether
an endif should be inserted.

I believe syntax error recovery is best performed during parsing. Error recovery can
be added to PTCC using the following additional procedures:

e SplitWriter.Truncateis used to discard the output of any compiler instances
working on parts of the source program following a syntax error. It takes a
SplitWriter sw as an argument and discards all SplitWriters after sw in the
SplitWriter list for sw’s target. Truncate requires that sw not have been
closed; therefore none of the writes to the discarded SplitWriters have been
flushed to the target when Truncate is called.

e SymbolTable.Restore is used to remove entries made by compiler instances
working on parts of the source program following a syntax error. Restore
takes a SymbolTable st and a positionstamp p as arguments and removes any

entries in st whose positionstamps are later than p.

e TokenStream.MakePristine is used to undo changes made by compiler in-
stances working on parts of the source program following a syntax error.
MakePristine restores a TokenStream to its original form as created by the
scanner (i.e., it undoes any changes made by parsers for syntax error recovery).

e WorkCrew.AbortSuccessors is used to halt and reclaim workers processing
parts of the source program following a syntax error. AbortSuccessors is
called by a worker to abort any tasks in progress which would have been
performed after the worker’s current task if only serial execution were used.
Thus, it aborts any task which occurs later than the worker’s task in a depth-

first traversal of the task tree. Its signature is:

61

PROCEDURE AbortSuccessors(wi: WorkCrew.WorkerInfo);

e WorkCrew.Restart is called by a worker which previously called AbortSuc-

cessors. It causes the aborted tasks to be started anew. Its signature is:

PROCEDURE Restart(wi: WorkCrew.WorkerInfo);

Given these procedures, error recovery can be implemented as shown in figure 6.1.
Whenever a parser detects a syntax error involving a delimiter token, it first calls
PrePatch, then it implements a patch, and finally it calls PostPatch. PrePatch
stops potentially errant compiler instances and restores the SymbolTable and Split-
Writers to a known state. Implementing the patch includes repairing the delimiter
tree created by the scanner. PostPatch undoes any changes to the TokenStream
made by errant compiler instances and restarts the aborted tasks.

6.2 Extending WorkCrews to Support Error Recovery

The error recovery mechanism described earlier relies on two new WorkCrew op-
erations: AbortSuccessors and Restart. In designing these operations, it is im-
perative not to slow down the common WorkCrew operations such as RequestHelp
and GotHelp. Because AbortSuccessors and Restart should not be called as fre-

quently, their implementations are less critical.

6.2.1 AbortSuccessors

As mentioned earlier, WorkCrew.AbortSuccessorsis called by a worker to abort any
tasks in progress which would have been performed after the worker’s current task
if only serial execution were used. Thus, it aborts any task which occurs later than
the worker’s task in a depth-first traversal of the task tree. When AbortSuccessors

returns, all successors have terminated execution.

Figure 6.2 is an example of a task tree. Each task is labeled with the worker which
executes it. (The labeling represents only one of the possible divisions of the tree
among workers.) For each worker, the Abort column of table 6.1 lists the coworkers
that would be halted if it called AbortSuccessors.

62

PROCEDURE PrePatch (

wi: WorkCrew.WorkerInfo;
cs: CompilerState.T;
);

BEGIN
WorkCrew.AbortSuccessors(vi) ;
SymbolTable.Restore(CompilerState.GetSynTab(cs));
SplitWriter.Truncate(CompilerState.GetOutput(cs));
SplitWriter.Truncate(CompilerState.GetError(cs));

END PrePatch;

PROCEDURE PostPatch (

wi: WorkCrew.WorkerInfo;
cs: CompilerState.T;
ts: TokenStream.T
H

BEGIN
TokenStream.MakePristine(ts);
WorkCrew.Restart (vi);

END PostPatch;

Figure 6.1: Utility procedures for syntax error recovery in PTCC.

AbortSuccessors is, in some sense, an optimization. The successors may have
already run to completion. Therefore, it serves to stop useless (and, in some appli-
cations, potentially infinite) computations.

WorkCrew does not attempt to undo aborted tasks. It is the responsibility of the
client to do so.

Worker Abort Restart
%1 W2,W3,Wyq,Ws,We | Wo,W3,Ws
wa ws ws
w3 Wa,Wq,Ws W2,Wyq
Wy w2,Ws oY)

Ws
We W2, w3,W4,Ws w2,w3

Table 6.1: Abort and Restart sets for figure 6.2

63

we Ws

w3 Wy

wy We

Figure 6.2: An example task tree.

64

Halting a Worker

Aborting a worker is a delicate operation because a running thread must not be
halted at arbitrary times. For example, it may be holding a lock, or it may be in a
critical section of code which temporarily violates data invariants.

One possible solution is to abort a worker only by raising an exception at the in-
vocation of the next WorkCrew operation. Clients which do not invoke WorkCrew
operations frequently might call a special WorkCrew.CheckAbort periodically. The
cost of this strategy is an additional test for each WorkCrew operation, which seems
acceptable. Upon receiving the Abort exception, clients would be required to re-
store any invariants and propagate the exception. This method of aborting workers

is similar to the Alert mechanism of Threads described in [3].

Implementing AbortSuccessors

Define the relation abort between workers as follows: A abort B if and only if A
precedes B in a depth-first traversal of the task tree. This relation is transitive and
antisymmetric. It is total for any set of workers performing tasks in a common task

tree.

To implement AbortSuccessors, the WorkCrew module must store enough infor-
mation to be able to compute the abort relation for any pair of workers. One way
to store the relation is to use a directed graph whose nodes are workers. An edge
from A to B implies A abort B. Furthermore, since abort is transitive, a path from
A to B also implies A abort B. Because the relation is antisymmetric, the graph is

acyclic.

WorkCrew assigns each worker an id number from 1 to N, the number of workers.
It maintains a set Succ of the ids of coworkers computing a successor of the worker’s
task. In terms of the graph, j € Suce; if and only if there exists an edge from w; to
wj.

An idle worker’s Succ set is always empty. When a worker w; helps worker w;, it
copies Succ; to Suce; since all successors of w;’s task are successors of w;’s new
task. This is true because a worker’s requests for help are answered in depth-first
(FIFO) order. It then inserts ¢ into Suce;.

65

Given the Succ sets, it is possible to compute Abort;, the set of workers aborted by
w;:
Abort; = Suce; U | Abort,
k€Suce;
This computation is equivalent to determining all of the nodes (workers) reachable
from node : in the directed acyclic graph representing the abort relation.

When w; finishes its task, the information in Suce; must be transferred to the
remainder of the graph. Thus, for each Succ containing i, WorkCrew sets Succy
to be Succy U Suec; — {¢}. This removes the indirection through Succ; in the
computation of Abort, so w; may be reused.

Maintaining the Succ sets can be done efficiently using bit vectors. Only a constant
amount of memory is needed.? Moreover, the sets are only updated when a task is
performed in parallel, helping WorkCrews meet the goal of avoiding overhead when
performing a task serially.

When w; invokes AbortSuccessors, it computes Abort;. Then, for each k € Abort;,
it sets the abort flag in wy’s WorkerInfo. Thus, the next WorkCrew operation on

wy will raise the Abort exception. Worker w; then waits for each aborted coworker
to halt.

6.2.2 Restart

Once the situation requiring that a task’s successors be aborted has been remedied,
the successors must be selectively restarted. Not all successors are restarted since

part of the remedy may include canceling a successor.

To provide this functionality, a new operation Restart is supported. Restart will
create new instances of uncancelled aborted tasks which are immediate descendants
of the aborting worker’s task’s ancestors. Table 6.1 lists the tasks that would be
restarted if a worker in figure 6.2 called AbortSuccessors and Restart in succes-

sion.

A task is restarted in the same manner as that in which it was originally begun (see
section 4.3.2). The WorkCrew module invokes its dataPreparer and Doer. There-

2The amount of memory needed is proportional to N?, where N is the number of workers.

66

fore, clients must structure their programs accordingly. In particular, dataPreparer
and Doer must not overwrite information needed to begin the task.

In terms of PTCC, this means doubling the calls to CompilerState.CopyEssential.
Previously, CopyEssential was invoked once by the worker requesting help, and the
helper used (i.e., overwrote) the resulting CompilerState. Now, dataPreparer must

make and keep a private copy in case it is called multiple times.

After an abort, the number of tasks that might have to be restarted is bounded by
the depth of the tree, which may be arbitrarily deep. Therefore, WorkCrew cannot
store the information required to support Restart in constant space as it does for
AbortSuccessors. Instead, it stores this information in the task tree. Previously,
only the parts of the tree required to support precedence constraints between tasks
were stored. This required one node per precedence constraint. Now, a node is also

required for each task that is begun in parallel.

To restart the tasks that it aborted, a worker traverses the task tree from the root to
its current task. It creates a new task for each aborted one. Because it starts at the
root, the WorkCrew promise to answer requests for help in FIFO order is honored.

Between the invocations of AbortSuccessors and Restart, a worker can perma-
nently cancel aborted tasks using GotHelp. GotHelp normally returns a boolean
indicating whether a help request was answered. If it returns FALSE, no help was
ever received so none was aborted. If it returns TRUE, help was received and thus
aborted. When GotHelp returns, this help is then cancelled.

6.3 Compiling Multipass Languages

The algorithm of figure 2.3 can be extended for multipass languages in a way which
preserves the number of passes required to compile the source language. The se-
quence of serial passes is replaced by a sequence of possibly parallel passes. Any
pass whose input meets the requirements of sections 2.2.1 and 2.2.2 is made to run
in parallel using the algorithms of figures 2.3 and 2.4. The passes might be allowed
to run concurrently using pipelining; however, a pass may be forced to wait for

information computed by earlier passes.

Typically, the front end of a compiler for a multipass language requires at most two

67

passes: one which builds the parse tree and the symbol table from the input, and
one which converts the parse tree into intermediate code. Since parse trees satisfy
the constraints of section 2.2.2, the extended algorithm would produce two parallel
passes for such compilers. Since parsing is faster than code generation, the latter

pass should be delayed only when a variable is used before it is declared.

Note that the number of passes required is a function not only of the source language
but also of the target language. For example, if the target language does not allow
branches to symbolic labels, then the compiler must compute displacements based
on the size of the code it generates. Thus, forward branches require two passes: one
to compile the code between the branch and its target, followed by one to generate
the forward branch instruction.

The desired code quality can also affect the number of passes. Suppose runtime
efficiency concerns may mandate that registers (when available) be allocated for the
index variables of loops.3 If registers are scarce, then registers should be allocated
for innermost loops first. This requires a separate pass for each loop. First, a register
is allocated for the index variable of the innermost loop and code is generated for its
body. Then, a different register is allocated for the enclosing loop’s index variable
and code is generated for its body, etc.

Such multiple passes can be implemented in the parallel compiler by maintaining a
synthesized attribute InderRegs for each code unit to represent the registers reserved

for index variables nested within the code unit.

3Such optimizations are best left for a separate optimizer phase, but assume here that no such

phase exists.

68

Chapter 7

Conclusions

The results of the experiment of chapter 5 indicate that parallel compilation can
increase performance by factors as large as 3.3 on the five-processor Firefly. For the
files listed in table 5.1, PTCC reduces the total compilation time from 350 to 152
seconds.

For parallel compilation to be useful, certain conditions must exist. First, there must
be sufficient processors available. Given only one processor, PTCC is approximately
7% slower than TCC. With two processors, PTCC runs faster than TCC. Second, the
source file must be sufficiently large to obtain significant reductions in elapsed time.
PTCC runs 2.5 to 3.3 times faster than TCC on the larger files listed in table 5.1.
For smaller files, the speedup factor ranges from one to two. This is not a serious
problem since small files take less time to compile.

Procedure-level parallelism is usually sufficient to fully utilize a five-processor ma-
chine when PTCC is processing code (as opposed to declarations). For the set of C
files discussed in chapter 5, statement-level parallelism was always sufficient. This
suggests that PTCC could make use of additional processors, at least when com-
piling the files for which procedure-level compilation provided the bulk of the real
concurrency. However, increased bus contention will dampen benefits from addi-
tional processors.

In PTCC, statement-level compilation is sometimes significantly better than, and

never worse than, procedure-level compilation. This indicates that WorkCrews,

69

whose overhead was insignificant, control parallelism efficiently.

The main factor limiting PTCC’s performance is lack of parallelism while processing
declarations. Mean processor utilization ranges from 2.3 to 4.4. A second factor is
bus contention, which slows PTCC on the order of 10%. Finally, the overhead to
support concurrency makes PTCC run approximately 7% slower using one worker
than TCC.

Perhaps the best way to improve PTCC is to extend it to compile declarations
in parallel. Processing statically initialized arrays concurrently is a very simple
extension to PTCC. This would solve the performance problems when compiling
files such as parse.c.

The bulk of declarations in large programs consist of type definitions, e.g., struct
and union declarations in C. An area for future research might be to develop an
algorithm which processes the bodies of structs and unions in parallel. Because the
bodies of structs and unions contain information required to compile subsequent

code, they are harder to process concurrently than code units.

Further research might also investigate the improvement obtained by integrating
a parallel compiler with a syntax-directed editor. Such an integrated system has
two benefits. The startup and cleanup times of the compiler are eliminated, so
performance improves, especially on small files. Furthermore, since the input to the
compiler is a syntactically valid parse tree, the compiler may be able to divide the
tree evenly among processors before compilation begins.

Finally, little or no work has been done in the area of parallel optimization. How-
ever, advanced optimizers can take up to 50% or more of the total compilation
time. Parallel optimizing compilers will have to divide the task of optimization to

maximize increases in performance.

PTCC demonstrates that significant benefits can be obtained by exploiting concur-
rency during compilation. As tightly coupled multiprocessors become more common,

so will parallel compilers.

70

Acknowledgments

I owe a great many thanks to the people at the DEC Systems Research Center for
having me as an intern. Foremost, of course, is my host Eric Roberts, whom I
want to thank for his technical assistance, his hospitality, and his patience with my
writing. I’'m also especially grateful to Chris Hanna for her abilities with ADB and
for working diligently to get the Modula-2+ profiler working before I left. Many
others helped make my stay in California a pleasant one: the volleyball team, fellow
interns (Marks & Sparks), Tom, and Mark M. with his pizzicato bass-playing. I
hope to work and play with you all again.

Upon my return to MIT, I was warmly welcomed into the ranks of the graduate
community by my advisor John Guttag. I am indebted to him, as I am to Eric,
for patiently reading and correcting my preliminary drafts on short notice. If this
thesis is understandable, it is in a large part because of their efforts.

71

Appendix A

Thread.def

Modula-2+ provides several concurrency structures:

e Threads (type Thread.T) are lightweight processes in a shared address-space.
Threads are manipulated using a fork/join semantics.

e Mutexes (type Thread.Mutex) are binary semaphores. Mutexes provide a
mutual exclusion mechanism for threads.

o Conditions (type Thread.Condition) are used to signal events between threads.
A condition may be waited upon, signalled (to some waiter chosen by the sys-

tem), or broadcast (to all waiters).

The Modula-2+ LOCK statement is a useful shorthand used in conjunction with

mutexes. In this report,
LOCK <expr> DO <stmt-1list> END
can be considered equivalent to
Thread.Acquire(<expr>); <stmt-list>; Thread.Release(<expr>);

The actual semantics of the LOCK statement are more complicated due to exceptions.

These complications are not important in this work.

73

The following is the definition module Thread.def. See [3] for a formal specification of

threads, mutexes, and conditions, and a discussion of their use and implementation.

SAFE DEFINITION MODULE Thread;

(eannnn e *)

(* Types and Related Constants *)

(LTI)

TYPE
T = REF;

ForkeeArg = REFANY;
ForkeeReturn = REFANY;
Forkee = PROCEDURE (ForkeeArg): ForkeeReturn;

TYPE Mutex;

TYPE Condition;

()
(*» Thread Creation/Deletion #*)
(%)

PROCEDURE Fork(proc: Forkee; arg: ForkeeArg): T;
(* Fork a nev thread at normal priority.
The new thread will invoke proc(arg) *)

PROCEDURE Join(t: T): ForkeeReturn;

(* Wait until "t" has terminated, and get its result. This can be
done at most once for each "t". If "Join" is never called, the
result of a thread is discarded when the thread is
garbage-collected. *)

()
(* Synchronization Procedures *)
(*)

(* Mutexes *)

PROCEDURE InitMutex(VAR s: Mutex);
(* Initialize a Mutex (mutual exclusion lock). Call once

74

(* Initialize a Mutex (mutual exclusion lock). Call once
before first use. The initial state is 'released". =)

PROCEDURE Acquire(VAR s: Mutex);
(* Acquire an exclusive lock. If someone else has the lock,
block until it is released. =)

PROCEDURE Release(VAR s: Mutex);
(* Release a previously acquired lock and if any threads
are blocked awaiting the lock, wake up one of them. *)

(* Conditions *)

PROCEDURE InitCondition(VAR c: Condition);
(* Initialize a condition variable. Must be called
precisely once, before first use of 'c". *)

PROCEDURE Wait (VAR m: Mutex; VAR c: Condition);
(* The caller releases the mutex '"m" and waits on condition "c¢". This
combined operation is atomic with respect to calls of "Broadcast", so
vake-ups cannot be lost. Reacquires the mutex before returning.

*)

PROCEDURE Broadcast(VAR c: Condition);
(* All threads that have executed "Wait" on the condition "c" cease
vaiting and become eligible to resume execution. If no threads are
vaiting on "c", "Broadcast" has no effect.

*)

PROCEDURE Signal(VAR c: Condition);

(* "Signal" is an optimization of "Broadcast". It is functionally
similar; however, it typically wakes up only one vaiting thread. This
is not an absolute guarantee, since "Signal" will, on rare occasions,
avaken more than one thread. Thus, the client should use Signal only
as a performance optimization in cases where it is unproductive to
avaken multiple wvaiting threads.

*)

END Thread.

75

Appendix B

Data

dispatch.c

Number of worker threads

Compiler | 1 2 3 4 5 6
tecl :51
tcc2 :56
Elapsed | scanning 57 49 49 48 49| 48
Time | procs 56 44 44 44 44| 44
bigstmts :57 41 40 40 40| :39
anystmt 56 31 25 22 221 21
tccl 56.4
tcc2 60.4
CPU | scanning | 63.0 64.2 63.7 63.6 63.7|63.4
Time | procs 62.2 63.5 64.2 63.5 64.2 | 64.0
bigstmts | 62.7 65.2 65.2 66.1 65.9 | 66.0
anystmt | 62.6 654 683 70.0 73.5|72.4

76

eval.c

Number of worker threads

Compiler | 1 2 3 4 5 6
tecl :36
tcc2 :39
Elapsed | scanning 41 35 34 34 34} 34
Time | procs 41 23 16 14 13| :13
bigstmts 142 23 :16 14 13| :13
anystmt 41 22 17 14 13| :13
tccl 40.2
tcc2 43.2
CPU | scanning | 45.8 47.0 46.6 46.6 46.8 | 47.0
Time | procs 45.5 47.7 48.9 51.2 518|521
bigstmts | 46.8 48.1 49.8 51.5 53.3 | 53.6
anystmt | 45.8 47.8 50.8 524 54.2| 56.0
mlcompile.c
Number of worker threads
Compiler | 1 2 3 4 5 6
tecl :33
tcc2 :35
Elapsed | scanning 37 32 33 33 33 :33
Time | procs 237 23 23 23 23| :23
bigstmts 38 21 17 14 13| :14
anystmt 37 21 16 13 13| :12
tccl 36.8
tcc2 39.2
CPU | scanning | 41.8 424 424 42.5 428|424
Time | procs 42.0 42.9 43.5 434 43.7| 44.2
bigstmts | 42.6 42.6 44.1 45.4 46.6 | 47.0
anystmt | 41.5 43.1 444 455 47.0 | 47.6

77

origdisplay.c

Number of worker threads

Compiler | 1 2 3 4 5 6
tecl :34
tce2 :36
Elapsed | scanning 38 32 32 32 32 32
Time | procs :38 22 17 15 14| :14
bigstmts 37 21 16 14 13} :13
anystmt :38 21 :16 14 13| :13
tecl 37.7
tcc2 39.8
CPU | scanning | 43.1 42.7 42.7 42.8 43.1 | 42.8
Time | procs 424 43.1 44.0 45.0 459 | 45.6
bigstmts | 42.0 43.6 44.6 46.5 47.2 | 474
anystmt | 42.6 43.5 454 46.8 47.8 [48.7
parse.c
Number of worker threads
Compiler | 1 2 3 4 5 6
tecl 142
tce2 48
Elapsed | scanning 63 45 45 45 45| 45
Time | procs 53 44 42 41 41| 41
bigstmts 54 43 40 39 39 :39
anystmt 53 37 32 30 29| :29
tccl 44.7
tcc2 52.1
CPU | scanning | 58.6 58.9 59.4 59.1 59.4 | 59.6
Time | procs 579 58.9 58.9 594 59.9 (604
bigstmts | 58.7 58.8 60.0 60.9 61.0 | 61.2
anystmt | 58.4 61.3 63.8 66.7 67.6 | 68.2

78

schan.c

Number of worker threads

Compiler | 1 2 3 4 5 6
tccl :34
tcc2 :36
Elapsed | scanning 37 31 31 31 31| 31
Time | procs 38 25 21 :19 18| :18
bigstmts 37 21 17 14 13| :14
anystmt 37 21 116 14 14| :14
tecl 37.2
tcc2 39.6
CPU | scanning | 41.6 42.2 43.0 43.1 42.8 | 42.9
Time | procs 41.7 43.0 43.7 44.7 45.7 | 45.8
bigstmts | 41.8 43.5 45.5 46.0 47.0 | 48.5
anystmt | 41.6 44.2 46.2 48.4 49.6 { 50.3
types.c
Number of worker threads
Compiler | 1 2 3 4 5 6
tecl 23
tce2 124
Flapsed | scanning | :25 :21 :21 :21 :21| :21
Time | procs 25 14 11 09 09| :08
bigstmts 26 14 11 09 09 :09
anystmt 25 14 11 09 08| :09
teel 25.6
tcc2 27.2
CPU | scanning | 28.9 29.6 29.2 29.6 29.3 | 294
Time | procs 28.9 30.6 30.7 31.5 32.3] 32.8
bigstmts | 29.3 29.7 31.1 32.5 33.2 | 34.2
anystmt | 28.9 30.0 31.9 33.8 349 | 34.7

79

window.c

Number of worker threads

Compiler | 1 2 3 4 5 6
teel 41
tcc2 43
Elapsed | scanning 45 39 38 39 38| :39
Time | procs 45 24 18 :16 16| :16
bigstmts 45 24 18 15 14| :14
anystmt 44 24 18 :15 13| :14
tecl 45.4
tcc2 47.3
CPU | scanning | 50.0 51.1 50.4 51.1 50.5| 50.7
Time | procs 50.6 51.5 53.0 54.2 55.2 | 55.3
bigstmts | 50.6 51.7 53.0 543 56.4 | 57.3
anystmt | 49.6 52.0 53.4 549 56.8 | 58.2
xterm.c
Number of worker threads
Compiler | 1 2 3 4 5 6
tecl 142
tcc2 45
Elapsed | scanning 47 38 38 :38 38| :38
Time | procs 48 26 22 20 :19{ :19
bigstmts 48 26 21 :18 17| :18
anystmt 47 26 20 :18 17| 17
teel 46.0
tee2 49.2
CPU | scanning | 52.0 52.8 52.9 525 53.1|52.5
Time | procs 52.5 53.6 54.2 55.0 55.6 | 56.1
bigstmts | 52.7 53.3 55.3 56.5 57.0 | 59.0
anystmt | 52.0 53.7 55.7 58.0 58.3 | 58.9

80

keywords.c

Number of worker threads
Compiler | 1 2 3 4 5 6
tecl :08
tcc2 :08
Elapsed | scanning | :09 :07 :07 :08 08 :08
Time | procs 09 06 :07 06 :06(:06
bigstmts 09 06 06 06 05| :05
anystmt :10 06 05 05 05| :05
tecl 9.9
tcc2 10.5
CPU | scanning | 11.6 11.8 11.8 122 12.0 11.8
Time | procs 11.5 11.7 12.7 121 123|123
bigstmts | 11.8 123 13.2 13.3 13.3 | 13.9
anystmt | 12.5 12,5 13.2 14.1 159 15.6
libfns.c
Number of worker threads
Compiler | 1 2 3 4 5 6
tccl :03
tcc2 :02
Elapsed | scanning | :03 :03 :02 :03 :02 (:03
Time | procs :03 :03 :02 :02 :02]:03
bigstmts | :03 :02 :02 :02 :02|:02
anystmt | :03 :03 :02 :02 :02/{:03
tccl 4.2
tcc2 4.3
CPU | scanning | 4.7 5.6 5.0 52 52]5.6
Time | procs 48 5.7 5.1 54 56]6.0
bigstmts | 4.9 5.6 5.5 54 57|58
anystmt | 4.7 5.6 5.3 56 5.7/6.2

81

pooh.c

Number of worker threads

Compiler | 1 2 3 4 5 6
tecl :03
tcc2 :03
Elapsed | scanning | :04 :03 :03 :03 :03|:03
Time | procs :03 :03 :03 :03 :03]:03
bigstmts | :03 :03 :02 :03 :03|:03
anystmt | :03 :03 :03 :03 :03|:03
tecl 4.9
tce2 5.1
CPU | scanning | 5.5 6.2 6.3 6.2 6.1|6.1
Time | procs 53 6.1 6.1 6.0 6.3]|6.5
bigstmts [5.5 6.3 59 6.6 6.4]6.9
anystmt | 55 6.1 6.5 6.7 74 (7.5

82

Bibliography

(1]

[2]

(3]

[4]

[5]

[6]

(7]

(8]
[9]

Alfred Aho, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles, Technigues,
and Tools. Addison-Wesley, 1986.

Arvind, and R. Nikhil, and K. Pingali. I-structures: Data Structures for Parallel
Computing. In Lecture Notes in Computer Science, Vol. 279, edited by G. Goos
and J. Hartmanis, Springer-Verlag, 1987.

A. D. Birrel, J. V. Guttag, J. J. Horning, and R. Levin. Synchronization
primitives for a multiprocessor: A formal specification. ACM Operating Systems
Review, Vol. 21, No. 5, pages 94-102, November 1987.

Hans-Juergen Boehm and Willy Zwaenepoel. Parallel attribute grammar eval-
uation. October 1986. Department of Computer Science, Rice University. Pre-
liminary draft.

Jacques Cohen and Stuart Kolodner. Estimating the speedup in parallel pars-
ing. IEEE Transactions of Software Engineering, SE-11(1), January 1985.

R. Cooper and K. Hamilton. Preserving Abstraction in Concurrent Program-
ming. Computer Laboratory Technical Report 76, University of Cambridge,
Cambridge, England, August 1985.

James Frankel. The Architecture of Closesly-Coupled Distributed Computers
and Their Language Processors. PhD thesis, Harvard University, 1983.

Samuel Harbison and Guy Steele. C: A Reference Manual. Prentice-Hall, 1984.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice-Hall, 1978.

83

[10]

[11]

[12]

(13]

[14]

(18]

(16]

Daniel Lipkie. A compiler design for multiple independent processor computers.
PhD thesis, University of Washington, Seattle, 1979.

Dennis M. Mickunas and Richard M. Schell. Parallel compilation in a multipro-
cessor environment. In Proceedings of the ACM Annual Conference, pages 241-
246, 1978.

John A. Miller and Richard J. LeBlanc. Distributed compilation: A case study.
In IEEE Proceedings of the 3rd International Conference on Distributed Com-
puting, October 1982.

Paul Rovner, Roy Levin, and John Wick. On Ertending Modula-2 for Building
Large, Integrated Systems. Research Report 3, Digital Equipment Corporation
System Research Center, Palo Alto, California, 1985.

Venkatadri Seshadri, Ian Small, and David Wortman. Concurrent compilation.
To appear in Proceedings of the IFIP Conference on Distributed Processing,
North Holland, 1988.

Charles Thacker and Larry Stewart. Firefly: A multiprocessor workstation. In
Proceedings of the Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS IT), October 1987.

Mary-Claire van Leunen. Modula-2+ User’s Manual. Digital Equipment Cor-
poration Systems Research Center, Palo Alto, California, April 1986.

[17] David Wall. The Mahler intermediate language. June 1985. Digital Equipment

Corporation Western Research Lab, Palo Alto, California. Unpublished.

84

Index

AbortSuccessors procedure, 6266
AddTask procedure, 39, 43

Alert mechanism, 65

Alto workstation, 19

anonymous variable, 24

Arvind, 27

attribute grammar, 34

block structure

violations of, in C, 21-22
Boehm, Hans-Juergen, 4
buffering, 29, 58-59
bus contention, 56-57, 59, 70

C programming language, 13, 21-23
Code procedure, 14, 16, 18
Cohen, Jacques, 5
CompilerStates, 30, 31
concurrency

cost of mechanisms for, 57-59
conditions, 73
CopyEssential procedure, 67
Create procedure, 38

dataPreparer procedure, 66, 67
decl, defined, 12

divideTask procedure, 41, 42
Doer procedure, 66

Ethernet, 19

extern declaration, 22

85

Firefly, 6, 7, 20, 26, 28, 49

and bus contention, 56, 57
Fork procedure, 16, 19, 30
Frankel, James, 3, 8, 19

GetNextToken procedure, 26
GotHelp procedure, 42, 67
goto statement, 21

hashtable, 28

Jigsaw, 3, 11
Join procedure, 38

Kolodner, Stuart, 5

label generator, 28
LeBlanc, Richard, 3, 8, 11
lexical scoping, 12

Lipkie, Daniel, 3

Mabhler programming language, 20, 24
match field, 18, 27

Merge procedure, 42, 43

Mickunas, Dennis, 4

MicroVax II processor, 6

Miller, John, 3, 8, 11

Modula-2, 20

Modula-2+, 7, 20, 27, 29, 38, 48, 73
Modula-2+4 LOCK statement, 58, 73
multipass languages, 67

named variable, 24

parallel parsing, 4
parallel processing, 2
of code blocks, 27-30
of code units, 13-14
Parallel Titan C Compiler, 24-30
introduced, 1-2
Pascal, 11, 13
performance
buffering costs, 58-59
bus contention, 5657
compilers compared, 50-53
costs of concurrency, 57-59
lack of parallelism, 53-56, 70
processor utilization, 53-53
pipelining
distributed pipelined compiler, 11
general ~, 2, 8-11, 14
in PTCC, 24-26
the scanner, 26, 50
POINTER type, 48, 50
Pooh programming language, 49
precedence constraints, 37, 43
see also AddTask procedure
ProcedureListPrep procedure, 43
Program procedure, 14, 16

race condition, 22

recursive-descent compilation, 13-15
REF type, 48, 50

RequestHelp procedure, 41

reserved words, 18

Restart procedure, 66-67

scanner, 9, 24-26, 50
Schell, Richard, 4

86

scopestack, 28

Seshadri, Venkatadri, 3, 18, 60
shift-reduce parsing, 4

simple statements, defined, 12
SkipCode procedure, 16, 18
Small, Ian, 3, 18, 60

Split procedure, 29
SplitWriter abstraction, 29, 31, 58, 61
Statement procedure, 22
statically initialized arrays, 70
Stewart, Larry, 57

switch statement, 22, 23
symbol table, 28
synchronization cost, 58

syntax errors, in PTCC, 60-62
syntax-directed translation, 3, 8
synthesized attributes, 16, 17

Thacker, Charles, 57
thread, 7, 58, 73, 74
Thread.def, T3-75
Thread.Fork, 7
Thread.Join, 7
Thread.Mutex, 7
Titan C Compiler, 20
parallel version of, 24-30
Titan instruction set, 20
token stream, 9, 24, 26
Topaz operating system, 20, 51
trigger, defined, 37

Ultrix operating system, 20
UNIX operating system, 20
utilization graph, 53

valve token, 26

WorkCrews
and error recovery, 62—-67
and parallelism, 51
and synchronization cost, 58
compiling procedures using, 43
important function of, 42
introduced, 5, 34, 36
operations on, 38-40
used to specify precedence constraints,

43

Wortman, David, 3, 18, 60

Writer, 29
see also SplitWriter abstraction

Zwaenepoel, Willy, 4

87

SRC Reports

“A Kernel Language for Modules and Abstract Data
Types.”
R. Burstall and B. Lampson.
Research Report 1, September 1, 1984.

“Optimal Point Location in a Monotone
Subdivision.”
Herbert Edelsbrunner, Leo J. Guibas, and Jorge
Stolfi.
Research Report 2, October 25, 1984.

“On Extending Modula-2 for Building Large,
Integrated Systems.”

Paul Rovner, Roy Levin, John Wick.

Research Report 3, January 11, 1985,

“Eliminating go to’s while Preserving Program
Structure.”
Lyle Ramshaw.
Research Report 4, July 15, 1985.

“Larch in Five Easy Pieces.”
J. V. Guttag, J. J. Horning, and J. M. Wing.
Research Report 5, July 24, 1985.

“A Caching File System for a Programmer’s
Workstation.”
Michael D. Schroeder, David K. Gifford, and Roger
M. Needham.
Research Report 6, October 19, 1985,

“A Fast Mutual Exclusion Algorithm.”
Leslie Lamport.
Research Report 7, November 14, 1985.

“On Interprocess Communication.”
Leslie Lamport.
Research Report 8, December 25, 1985.

“Topologically Sweeping an Arrangement.”
Herbert Edelsbrunner and Leonidas J. Guibas.
Research Report 9, April 1, 1986.

“A Polymorphic A-calculus with Type:Type.”
Luca Cardelli.
Research Report 10, May 1, 1986.

“Control Predicates Are Better Than Dummy
Variables For Reasoning About Program
Control.”

Leslie Lamport.
Research Report 11, May 5, 1986.

“Fractional Cascading.”
Bernard Chazelle and Leonidas J. Guibas.
Research Report 12, June 23, 1986.

“Retiming Synchronous Circuitry.”
Charles E. Leiserson and James B. Saxe.
Research Report 13, August 20, 19886.

“An O(n?) Shortest Path Algorithm for a Non-
Rotating Convex Body.”
John Hershberger and Leonidas J. Guibas.
Research Report 14, November 27, 1986.

“A Simple Approach to Specifying Concurrent
Systems.”

Leslie Lamport.

Research Report 15, December 25, 1986. Revised
January 26, 1988

“A Generalization of Dijkstra’s Calculus.”
Greg Nelson.
Research Report 16, April 2, 1987.

“wtn and sin: Predicate Transformers for
Concurrency.”
Leslie Lamport.
Research Report 17, May 1, 1987.

“Synchronizing Time Servers.”
Leslie Lamport.
Research Report 18, June 1, 1987.

“Blossoming: A Connect-the-Dots Approach to
Splines.”
Lyle Ramshaw.
Research Report 19, June 21, 1987.

“Synchronigation Primitives for a Multiprocessor:
A Formal Specification.”
A. D. Birrell, J. V. Guttag, J. J. Horning, R. Levin.
Research Report 20, August 20, 1987.

“Evolving the UNIX System Interface to Support
Multithreaded Programs.”

Paul R. McJones and Garret F. Swart.

Research Report 21, September 28, 1987.

“Building User Interfaces by Direct Manipulation.”
Luca Cardelli.
Research Report 22, October 2, 1987.

“Firefly: A Multiprocessor Workstation.”
C. P. Thacker, L. C. Stewart, and
E. H. Satterthwaite, Jr.

Research Report 23, December 30, 1987.

“A Simple and Efficient Implementation for Small
Databases.”
Andrew D. Birrell, Michael B. Jones, and
Edward P. Wobber.
Research Report 24, January 30, 1988.

“Real-time Concurrent Collection on Stock
Multiprocessors.”
John R. Ellis, Kai Li, and Andrew W. Appel.
Research Report 25, February 14, 1988.

clilgliltlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

