25

Real-time Concurrent Collection
on Stock Multiprocessors

by John R. Ellis, Kai Li, and Andrew W. Appel

February 14, 1988

clilgliltlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301



Systems Research Center

DEC’s business and technology objectives require a strong research program. The Systems
Research Center (SRC) and three other research laboratories are committed to filling that need.

SRC began recruiting its first research scientists in 1984 — their charter, to advance the state
of knowledge in all aspects of computer systems research. Our current work includes exploring
high-performance personal computing, distributed computing, programming environments,
system modelling techniques, specification technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems so
that we can investigate their properties fully. Complex systems cannot be evaluated solely in
the abstract. Based on this belief, our strategy is to demonstrate the technical and practical
feasibility of our ideas by building prototypes and using them as daily tools. The experience
we gain is useful in the short term in enabling us to refine our designs, and invaluable in the
long term in helping us to advance the state of knowledge about those systems. Most of the
maijor advances in information systems have come through this strategy, including time-sharing,
the ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our systems research.
Some of this work is in established fields of theoretical computer science, such as the analysis
of algorithms, computational geometry, and logics of programming. The rest of this work explores
new ground motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained through
pursuing these activities. The Company values the improved understanding that comes with
exposing and testing our ideas within the research community. SRC will therefore report results
in conferences, in professional journals, and in our research report series. We will seek users
for our prototype systems among those with whom we have common research interests, and
we will encourage collaboration with university researchers.

Robert W. Taylor, Director



Real-time Concurrent Collection on Stock Multiprocessors

John R. Ellis, Kai Li. and Andrew W. Appel
February 14, 1988



Kai Li and Andrew Appel are members of the Department of Computer Science at Princeton University,
Princeton, New Jersey 08544.

Kai Li was supported in part by the Defense Advanced Research Projects Agency of the Department
of Defense and by the Office of Naval Research under Contracts Nos. N00014-85-C-0456 and N00014-
85-K-0465, and by the National Science Foundation under Cooperative Agreement No. DCR-8420948.

©Digital Equipment Corporation 1988

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research
purposes provided that all such whole or partial copies include the following: a notice that such copying
is by permission of the Systems Research Center of Digital Equipment Corporation in Palo Alto, Cal-
ifornia; an acknowledgment of the authors and individual contributors to the work; and all applicable
portions of the copyright notice. Copying, reproducing, or republishing for any other purpose shall
require a license with payment of fee to the Systems Research Center. All rights reserved.



Authors’ abstract

We’ve designed and implemented a copying garbage-collection algorithm that is efficient, real-time,
concurrent, runs on commercial uniprocessors and shared-memory multiprocessors, and requires no
change to compilers. The algorithm uses standard virtual-memory hardware to detect references to
“from space” objects and to synchronize the collector and mutator threads. We’ve implemented and
measured a prototype running on SRC’s 5-processor Firefly. It will be straightforward to merge our
techniques with generational collection. An incremental, non-concurrent version could be implemented
easily on many versions of Unix.

John R. Ellis, Kai Li, and Andrew W. Appel

Capsule review

A conventional garbage collector periodically halts the application program in order to trace all of the
reachable objects and sweep up the garbage, a procedure that can take several seconds. Because of this
obtrusiveness, many programs (interactive applications and systems programs, for instance) cannot
use such a garbage collector.

Recent garbage collector designs interrupt the program more often but for shorter periods, giving
interactive response. But each of these designs suffers from at least one of these drawbacks: it doesn’t
collect circular structures, it requires microcode support, it doesn’t support multithreaded applications
or exploit shared-memory multiprocessors, or it requires an extra level of indirection in every pointer.

This report describes a garbage collector design with none of these drawbacks, and gives the results of
testing a prototype implementation of this garbage collector on a shared-memory multiprocessor.

Mark R. Brown
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Introduction

This paper presents the first copying garbage-collection algorithm that is efficient,
real-time, concurrent, runs on stock commercial uniprocessors and multiprocessors,
and requires no change to compilers. (Our algorithm is also trustworthy, brave,
clean, and reverent.)

A collection algorithm is efficient if the amortized cost to allocate and collect
an object is small compared to the cost of initializing the object.

An algorithm is real-time if the mutator (the program) is never interrupted
for longer than a very small constant time. A collector has small latency if the
interruptions are short. An interactive workstation requires latencies of less than 0.1
second if collections are not to affect communications, mouse tracking, or animation
on the screen.

An algorithm is concurrent if the collector can do its work in parallel with the
mutator. A concurrent collector allows for multiple mutator threads (lightweight
processes) and multiple processors. Concurrency pays even on a uniprocessor, since
the collector can run while the mutator is waiting for external events such as user
input, page faults, and i/o.

An algorithm runs on stock hardware if it can run on commercial architectures
such as the VAX and the 68000. We assume that the multiprocessors have an
efficient shared memory.

Shared-memory multiprocessors are becoming widespread, so it’s important
to find efficient concurrent collection algorithms. With today’s technology, the
marginal cost of adding extra processors and caches to a machine is small. Most
new large mainframes are multiprocessors, and the System Research Center’s Firefly
[Thacker 87)] has shown that it is economical to build multiprocessor workstations.

Fine-grained synchronization between the collector and the mutator is a problem
for concurrent collectors. Our algorithm uses the virtual-memory hardware of tra-
ditional processors to implement a medium-grained synchronization that is coarse
enough to be efficient, yet fine enough to keep latency low. The full algorithm
needs only slight modification to most Unix-like operating systems, and a real-time,
sequential version can be built on many standard versions of Unix. Further, our
algorithm will work with any compiler already geared for a copying collector.

Previous Work

In recent years, researchers have built collectors that are far less obtrusive to pro-
grams than the original “stop-the-world” collectors.



Reference-counting collectors first demonstrated that collection could be unob-
trusive even to systems programs [Rovner 85a]. The current Modula-2+ collector
[Rovner 85b] is real-time, concurrent, and runs on the Firefly, a shared-memory
multiprocessor built from 5 MicroVAX II CPUs (1 MIP each) [Thacker 87]. But
compared to copying collectors, it isn’t particularly efficient, and it cannot reclaim
circular structures.

Asymptotically, copying-based collectors have the potential to be much more ef-
ficient than reference-counting or mark-and-sweep collectors. As the total available
memory is increased relative to the number of reachable objects, the time for a copy-
ing collector to collect an object approaches zero in the limit [Baker 78, Appel 87],
whereas reference-counting and mark-and-sweep collectors must do at least a small,
constant amount of work to collect each object.

However, in practice other factors dominate the asymptotic behavior: the cost
of allocation, the cost of counted assignments, the load placed on virtual memory.
Copying collectors may increase locality of reference by compacting reachable objects
and clustering related ones, but concurrent copying collectors may also have larger
working sets due to the copying and the interleaved mutator and collector page
references. Unfortunately, we still don’t have enough experience with scaled-up
implementations to make final comparisons.

Baker’s algorithm [Baker 78] was the first real-time, copying-based collector.
But it isn’t concurrent, it requires special hardware and its first implementation on
Lisp machines wasn’t efficient (users turned it off). Brooks [Brooks 84] showed how
to implement Baker’s algorithm on stock hardware at the cost of an extra word
per object, an extra memory indirection per object reference, and several extra
instructions to change the contents of a cell.

Later generational collectors of various sorts [Moon 84, Ungar 86, Shaw 87] were
much more efficient and provided much better average latency by reducing the load
on virtual memory. But none of them are concurrent. Only Moon’s is real-time,
but it requires special hardware.

The Concert Multilisp collector [Halstead 84] generalized Baker’s algorithm to
a shared-memory multiprocessor. The algorithm is concurrent, in the sense that
multiple threads can be executing at the same time, but as with Baker’s algorithm,
the execution of each thread is interleaved incrementally with calls to the collector.
The collector requires special hardware support for acceptable efficiency.

The Pegasus collector [North 87] starts with Brooks’s basic technique to make
a concurrent collector that runs on stock uniprocessors. But it relies on basic as-
sumptions that would prevent it from running on a multiprocessor. Like Brooks’s
algorithm, objects require an extra word and an extra indirection on every reference.
Also, assigning a pointer into an already initialized object is very expensive, making



the algorithm suitable only for programming styles that are mostly applicative.

No one has yet built a practical concurrent mark-and-sweep collector, and it may
be difficult to make them efficient [Hickey 84]. Mark-and-sweep collectors do work
proportional to the total amount of memory, making it unlikely they could ever be
as efficient as copying collectors with today’s large memories.

Stop-and-Copy Collection

In the simplest stop-and-copy collector, memory is divided into two contiguous re-
gions, from-space and to-space. At the beginning of a collection, all objects are
in from-space, and to-space is empty. Starting with the registers and other global
roots, the collector traces out the graph of objects reachable from the roots. As each
object is visited, it is copied into to-space. When there are no more objects to visit,
all the reachable objects have been copied into to-space, and all the ob jects remain-
ing in from-space are garbage. At that point, the roles of to-space and from-space
are reversed (a flip), and the mutator resumes allocating from the new to-space.

When an object is copied from from-space, a distinguished forwarding pointer is
left in its place, pointing to that object’s new location in to-space. If the collector
encounters another pointer to that from-space object, it updates the pointer to
refer to the object’s new location in to-space. Examining a pointer into from-
space, copying the referenced object if necessary, and updating the pointer is called
forwarding.

To-space is partitioned by three pointers (figure 1). During a collection, objects
are copied from from-space to the end of the unscanned area (from scanned to
unscanned), which grows down. Starting at the scanned pointer, the collector
scans the objects in the unscanned area, looking for pointers to from-space objects.
When it finds such a pointer, it copies the object to to-space (if it hasn’t already
been copied), and updates the pointer to point at the object’s new location.

When scanned meets up with unscanned, there are no more reachable objects
to be copied from from-space, and the collection is finished. Everything remaining
in from-space is garbage. The mutator resumes and starts allocating objects in the
new area (from end to new), which grows up. When to-space fills up, the mutator
stops and initiates a new collection.

While very efficient, stop-and-copy is unsuitable for real-time or interactive ap-
plications because of the long delay while the mutator is suspended.
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Figure 1: To-space

Baker’s Algorithm

In Baker’s real-time algorithm [Baker 78], when to-space fills up, the collector stops
the mutator, flips, but then copies only the root objects (for example, those ref-
erenced from the registers). It then resumes the mutator immediately. Reachable
objects are copied incrementally from from-space while the mutator executes. Every
time the mutator allocates a new object, it invokes the collector to copy a few more
objects from from-space.

The mutator sees only to-space pointers in its registers, and thus can reference
to-space objects only. To satisfy this invariant, every pointer fetched from an object
must be checked to see if it points to from-space. If it does, the from-space object is
copied to to-space and the pointer updated; only then is the pointer returned to the
mutator. This checking requires hardware support to be implemented efficiently.

Baker’s algorithm stops the mutator at a flip only long enough to copy the root
objects. Every fetch and allocation is slowed down by a small, bounded amount of
time. Thus Baker’s algorithm is more suitable for real-time applications.

Neither Baker’s algorithm nor Brooks’s variant is concurrent—the mutator stops
whenever the collector does a bit of work. Implementing a concurrent version on a
multiprocessor would require fine-grain locking on each object, adding more over-

head.



Our Algorithm

Instead of using microcode to check every pointer fetched from memory, our algo-
rithm uses virtual-memory page protections to detect from-space memory references
by the mutator.

We take advantage of (and maintain) the following invariants maintained by the
copying algorithm:

The mutator sees only to-space pointers in its registers.

Objects in the new area contain to-space pointers only (because new
objects are initialized from the registers).

Objects in the scanned area contain to-space pointers only.

Objects in the unscanned area contain both from-space and to-space
pointers.

Thus, only the unscanned area can contain from-space pointers.

The collector sets the virtual-memory protection of the unscanned area’s pages
to be “no access.” Whenever the mutator tries to access an unscanned object, it
will get a page-access trap. The collector fields the trap and scans the objects on
that page, copying from-space objects and forwarding pointers as necessary. Then
it unprotects the page and resumes the mutator at the faulting instruction. To the
mutator, that page appears to have contained only to-space pointers all along, and
thus the mutator will fetch only to-space pointers to its registers.

The collector also executes concurrently with the mutator, scanning pages in the
unscanned area and unprotecting them as each is scanned. The more pages scanned
concurrently, the fewer page-access traps taken by the mutator.

The virtual-memory hardware provides an efficient, medium-grained synchro-
nization between the collector and the mutator. Because the mutator doesn’t do
anything extra to synchronize with the collector, compilers needn’t be reworked.
Multiple processors and mutator threads are accommodated with almost no extra
effort, since the operating system must support concurrent operations on virtual
memory anyway.

Initially, we’ll assume that objects are no larger than a page and that the collector

never copies an object so that it crosses a page boundary. Later we’ll relax these
constraints.

Page Traps and Concurrent Scanning

The collector uses two threads, one to handle access traps and one to scan the
unscanned area concurrently with the mutator. A single lock protects the use of the



scanned, unscanned, and new pointers by the two threads and the allocator.
The trap thread executes:

LOOP
thread, pageAddress := WaitForTrappedThread()
LOCK lock DO
ScanPage( pageAddress )
ResumeThread( thread )

It waits for a page-access trap from a mutator thread, grabs the lock, scans and
unprotects the page, and then resumes the thread.
The scanner thread scans unscanned pages continually:

LooP
LOCK lock DO
WHILE NOT (scanned < unscanned) DO
WAIT( lock, unscannedPages )
ScanPage( scanned )
scanned := MIN( scanned + PageSize, unscanned )

Once scanned catches up with unscanned, there will be no more objects to be
copied from from-space until after the next flip. In that case, the scanner thread
blocks until the flip signals the condition variable unscannedPages, indicating that

there are more pages to be scanned.
The ScanPage procedure is called by both the trap and scanner threads with

the address of a page of objects to be scanned:

ScanPage( objectAdr ) =
page = Page( objectAdr )
IF Unprotected( page ) THEN RETURN

WHILE Page( objectAdr ) = page AND
objectAdr < unscanned
DO
ScanObject( objectAdr )
objectAdr := objectAdr + ObjectSize( objectAdr )

Unprotect( page )

If the page is unprotected, that means its objects have already been scanned as the
result of a previous page trap, so ScanPage returns immediately.



Otherwise, ScanPage scans successive objects, forwarding from-space pointers
by copying objects from from-space and advancing unscanned. As new pages are
added to the unscanned area, they are immediately protected before any objects
are copied into them. The scanning stops when either a page boundary is crossed
or when unscanned is reached (meaning there are no more unscanned objects in
to-space).

Finally, ScanPage unprotects the page so the mutator can reference it.

You might wonder how ScanPage could copy objects into a protected page or
scan its contents; if the mutator can’t read the page without trapping, how can
the trap and scanner threads? ScanPage can’t unprotect the page before scanning
it because then the mutator, running concurrently, would be able to reference un-
scanned objects. Most stock architectures with virtual memory also provide two
modes, kernel and user; the operating system runs in kernel mode, and ordinary
programs run in user mode. Pages have two protections, one for kernel mode and
one for user mode. By running the trap and scanner threads in kernel mode and the
mutator in user mode, and by changing only the user-mode protections of pages,
the collector threads can read and write pages not accessible to the mutator.

It wasn’t hard to add two new kernel calls to the Firefly’s operating system
that implemented the trap and scanning loops. At program startup, the collector
forks two threads which then make the kernel calls and which never return until the
program halts.

Allocation
The Allocate procedure, called from the mutator, allocates a new object:

Allocate( size ) =
LOCK lock DO
unused := new - unscanned
IF unused < size OR unused < FlipThreshold THEN
Flip()
new := new - size
RETURN new

If the size of the unused area (between scanned and new) is too small or is less
than a given threshold, the collector initiates a flip. Then it allocates the object
and returns. (The FlipThreshold must be set large enough so that there is room
for the collector to finish scanning, copying any remaining reachable objects into
to-space [Baker 78].)



In our experiments, we quickly discovered that the collector and the mutator
(via the allocator) were contending for the global lock. This contention would get
worse with many mutator threads. So we modified Allocate to use a two-stage
allocation, where each mutator thread would grab off a large chunk of storage and
then allocate from the chunk without holding the lock. Only when Allocate needed
another chunk would it get the lock and check for a flip:

Allocate( size ) =
chunkLeft := chunkLeft - size
IF chunkLeft < O THEN
AllocateChunk()
chunkNew := chunkNew - size
RETURN chunkNew

AllocateChunk() =
LOCK lock DO
unused := new - unscanned
IF unused < ChunkSize OR unused < FlipThreshold THEN
Flip()

chunkNew := new
chunkLeft := ChunkSize
new = new - ChunkSize

The variables chunkNew and chunkLeft are specific to each mutator thread;
chunkNew points at the last allocated object in the chunk, and chunkLeft is the
space remaining in the chunk.

Besides reducing contention for the global lock, this version of Allocate is small
enough to be compiled inline. The thread-specific chunkNew and chunkLeft can
be put in dedicated registers or in a thread-data area pointed to by one dedicated
register. Allocate then compiles to just a few instructions, such as these VAX
instructions:

subl2 size,chunkLeft
blss CallAllocateChunk
subl2 size,chunkNew

Depending on the number of mutator threads and the actual value of ChunkSize
relative to the cost of a page trap, it may be profitable to forego an explicit
chunkLeft, using instead an inaccessible guard page at the end of the chunk. When
the allocator tries to initialize an object in the guard page, it will trap; the trap
handler can then grab a new chunk and resume the mutator.



But ChunkSize must be fairly big for the use of guard pages to be more efficient
than explicit tests. And if there are a hundred or more threads (as there are in many
Modula-2+ programs), it may not be practical to have chunks that are large enough.
The chunks could be processor-specific instead of thread-specific (assuming there
are far fewer processors than threads), but that introduces further complexity—
allocations must be atomic relative to rescheduling, and implementing that on stock
hardware would probably be at least as expensive as using an explicit test on the
chunk size.

Flipping
The procedure Flip performs these steps:

Stop all the mutator threads.
Scan any remaining unscanned objects.

Flip the roles of the two spaces, and initialize start, end, new, scanned,
unscanned.

Copy the root reachable objects from from-space.
Resume the mutator threads.

Signal the unscannedPages condition variable, resuming the scanner
thread.

“Root reachable objects” are those objects referenced in registers, in global variables
not stored in the heap, and on stacks (if stacks aren’t stored in the heap).

A flip could have rather high latency if there are a large number of root ob-
jects, such as with large stacks or with many threads (each with its own stack and
registers). But we can reduce the number of root objects copied using two tricks.

First, if stacks are not stored in the heap, then instead of scanning them dur-
ing a flip, the collector just sets their pages to be inaccessible. The pages of a
stack can then be scanned like pages of the unscanned area, both concurrently and
incrementally as they are referenced by the mutator.

Second, even the registers of threads needn’t be scanned at flip time. Instead,
Flip stops the threads and changes their program counters to the address of a
special routine, saving away the old PCs. It then resumes all the threads. When the
thread is next scheduled and actually runs, it resumes at the special routine, which
then scans the registers and jumps back to the original PC.

This technique is especially important when there are many more threads than
processors, and many of those threads are blocked on locks or condition variables



or waiting for a remote procedure call to finish. (A large Modula-2+ program could
have 150 threads or more.) Each thread’s registers are scanned concurrently with
the execution of other threads. We haven’t implemented this technique yet, but it
takes about 80 msecs to stop and resume 150 threads on the 5-processor Firefly.

Before a flip, when there are no more objects in the unscanned area, all of from-
space is known to be garbage. The collector discards those pages, reinitializing
them to be demand-zero-on-write or undefined; this discards any backing store and
physical memory attached to those pages. Backing store and physical memory will
be reallocated on demand as the pages are referenced.

Large Objects

So far, we’ve assumed that the trap thread scans just the single page referenced by
the mutator. Each page in the unscanned area would begin with an object and no
object would cross a page boundary (thus implying that no object could be bigger
than a page).

For objects smaller than a page, the collector could skip to the next page if
an object being copied doesn’t fit on the current one. If most objects were small
relative to the page size, this wouldn’t waste much space. But what if objects are
larger and the wastage becomes significant? And what about objects larger than a
page?

Some language implementations tag every word in the heap as “pointer” or
“non-pointer”. The collector can thus scan any one page without regard to object
boundaries, even if objects extend across page boundaries. Most such implementa-
tions also provide non-pointer data types such as arrays of characters or numbers in
which the words are not explicitly tagged; these objects would have to be segregated
in a separate area that isn’t scanned (like the new area).

A tagged implementation is very simple, but the simplicity costs time and space.
The tag bits must be manipulated at runtime and the implementation must often
use a level of indirection to combine pointers and scalars in the same object. Though
compilers and hardware have been getting better at supporting tags, it still isn’t
clear that the simplicity of tagged implementations is worth the cost for commercial
applications.

Our algorithm does not depend on uniform tagged representations. Instead, it
maintains a map, crossing, such that crossing(p] is true iff an object crosses the
boundary between page p — 1 and p. When the collector gets a page trap for page
p, it scans backward for the first page o < p such that crossing[o] is false; that is,
such that o begins with a fresh object. The collector then scans all the pages from o
on, until it encounters a page ¢ > p such that crossing]q] is false. This map must
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be maintained for objects in the unscanned area only, since that is the only part of
to-space scanned as the result of page traps.

The crossing map allows the collector to trade off latency for wastage. If it wants
to waste absolutely no space at all, it can simply append copied objects directly to
the end of the unscanned area, setting entries in the map appropriately. Of course,
this could result in large page runs being scanned as the result of a single page trap,
thus increasing the latency of a page reference.

A more reasonable policy uses a small amount of wastage to limit the number of
consecutive page crossings and thus reduce latency. When copying an object that
doesn’t fit entirely on the current page, the collector will skip to a new page if the
wasted fragment is less than a small percentage w of the page size. The collector
also skips to a new page if crossing[p] is true for the previous ¢ pages. In a typical
Lisp system with smaller objects, for example, setting w to 10% and ¢ to 1 would
probably be adequate to keep the latency to little more than one page scanned per
page trap and to keep the wastage around 10%.

Large arrays pose another problem: Copying or scanning a large array takes time
proportional to the size of the array, and thus the time for a page trap wouldn’t be
bounded by a small constant. To solve this problem, we can use a technique similar
to that suggested by Baker for incrementally copying and scanning arrays.

Each large array in to-space has an extra header word for storing a pointer to the
from-space copy of the array. When the collector copies an array to the unscanned
area, it just copies the array header and reserves space for the elements without
actually copying them. It also sets the from-space link to point at the from-space
copy. On a page trap, the collector uses the crossing map to scan backwards to find
the array header and the pointer to the from-space copy. The collector then copies
and scans only those elements on the referenced page. Similarly, the scanner thread
of the collector copies and scans elements one page at a time.

Unlike Baker’s scheme, this imposes no additional burden on the mutator’s array
indexing. But it does require that array elements must be padded so that the element
size divides the page size evenly.

Scanning Stacks

Thread stacks are large objects requiring special treatment. In many language
implementations, stacks are usually small; for example, the average size of a stack
in a Modula-2+ program is about 300 bytes, less than a page. But any one stack
could be much larger, especially in highly recursive algorithms, so we’ll need to scan
them incrementally by protecting their pages after a flip and fielding the page traps.
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If the language implementation tags pointers and non-pointers as described in
the previous section, then scanning individual stack pages is straightforward. But
again, our algorithm does not require tags.

Individual stack frames are small and bounded, with large objects always al-
located in the heap (this is true, or could easily be made true, for most Lisp and
Algol-family language implementations without affecting performance). Given a
frame, the collector can easily discover its size and the location of pointers within
the frame. (For example, there may be a map maintained by the compiler from
program-counter locations to frame descriptors.)

In many languages, including Lisp, a mutator can reference only the top frame of
a stack, and thus page traps can happen for the top frame only. But languages like
Modula-2+ provide by-reference parameters in which a called procedure is passed
a pointer to a stack-allocated object in the caller’s frame; for these languages, the
trap handler must be prepared for trapped page references anywhere in a stack.

When the mutator references a protected page in the middle of a stack, the trap
handler must scan its pointers, and to do that, it must first find the frames on
the page. It can start at the top or bottom of the stack (whichever is closer) and
skip over frames until it gets to the referenced page. If a frame overlaps the page
boundary, the trap handler scans only the fragment on that page.

Of course, skipping over frames to get to a page in the middle of a stack takes time
proportional to the stack size, and if stacks have unbounded size, then the algorithm
isn’t real-time. But in practice, skipping over frames is very cheap compared to the
cost of scanning a page and can be considered “constant”. For example, supposing
each frame has a dynamic link to the previous frame, the necessary inner loop would
take about 2.5 msecs per 1000 frames on MicroVAX II; whereas it takes anywhere
from 15 to 40 msecs to field a page trap and scan a page. (Of course, implementations
that don’t have by-reference parameters won’t have to worry about middle-of-stack
traps.)

Scanning a stack concurrently while the mutator executes is, after a little
thought, not hard. If the mutator attempts to change a write-protected stack page
by, say, pushing and writing a new stack frame, the algorithm will guarantee the
page will be scanned first.

But the mutator can pop frames, unsynchronized with the collector, simply by
adjusting the stack pointer. What happens if the collector starts scanning a page
of stack frames while the mutator pops some of those frames from the stack? The
collector could suspend a thread every time it scanned one of its stack pages, but
that wouldn’t be satisfactory for threads with large stacks; the scanning would be
real-time but not concurrent.

Instead the collector can simply ignore the fact that some of the frames it is
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scanning may already have been popped, since the mutator can’t change the page
until it is fully scanned and unprotected. At worst, a few extra garbage objects
recently popped from the stack may get copied and survive this collection. To
minimize this possibility, the collector should examine the current stack pointer
before scanning each stack page.

Finally, Brooks [Brooks 84] and others have pointed out that it is better to scan
stacks from the bottom up, since those objects are more likely to survive the current
collection (pointers to objects on the top of the stack will soon get popped). Unlike
previous algorithms, ours requires no special bookkeeping or hardware to scan the
stacks bottom up.

Derived Pointers

A derived pointer is a pointer into the middle of an object that may arise during the
address calculation of an array or record access. Architectures like the VAX, 68000,
or 370 provide efficient index-mode addressing, so derived pointers aren’t necessary.
But reduced-instruction-set machines may not have index-mode addressing and thus
require derived pointers for array indexing.

Derived pointers cause problems for a concurrent collector. The collector may
suspend the mutator threads at any time and initiate a collection. At the flip,
the collector must know which registers contain derived pointers and the objects
corresponding to those pointers.

The simplest scheme would reserve one or more register pairs to hold a pointer
and its derivative, making it easy for the collector to identify derived pointers and
their base objects. But this would make good code generation harder on a ma-
chine with relatively few registers (though newer RISC machines tend to have more
registers).

A less-constraining scheme would mix pointers and derived pointers freely in
registers, using the crossing map to find the base object of a pointer. (The new area
doesn’t have an explicit crossing map, but the collector can assume objects don’t
cross the boundaries of allocation chunks.) To find a base object of a pointer, the
collector would skip backwards to the first page starting with an object and then
skip forwards over objects until getting to the base object.

For small objects this would take time proportional to the page size, while for
large objects this would take time proportional to the object size. In either case,
the cost is much smaller than the cost of copying and scanning an object. For
example, on a MicroVAX II it would take about 5 msecs to skip over 1000 pages in
the crossing map. Since each thread has a small, constant number of registers and
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those registers are scanned concurrently after a flip is finished, neither latency nor
concurrency would be affected.

A Sequential, Real-time Version

The general concurrent algorithm can be specialized for single-threaded programs in
which the collector is real-time but not concurrent, resulting in a variant similar to
Baker’s original algorithm but more efficient than Brooks’s variant (because extra
header words aren’t needed and the new area of the heap doesn’t have to be scanned).
The sequential, real-time verison would be suitable for languages implemented on
traditional operating systems like Unix that allow access to virtual-memory facilities
but don’t provide multiple threads or cheap synchronization.

To handle page traps by the single mutator thread, the collector provides a
“trap handler” routine to the operating system that fields page traps (these are
called “signal handlers” on Unix). When the mutator references a protected page,
the handler is invoked. The handler unprotects the page, scans it, and returns,
automatically resuming the mutator.

To ensure that all reachable objects are copied before to-space fills up, the
Allocate procedure scans a small number of unscanned objects every time it is
called (as in Baker’s algorithm).

Because the algorithm is synchronous and single-threaded, there is no need for
any kind of locking or special kernel-mode threads. It is easily implemented on
many different variants of Unix (for example, AT&T’s System V, Apollo’s Domain,
DEC’s Ultrix, and CMU’s Mach all provide the necessary page-protection and trap-
handling primitives).

But of course, this sequential version can’t run the collector while the mutator is
waiting for i/o, page faults, or interactions from the user. And even on uniprocessors,
more and more operating systems are starting to offer multi-threaded capabilities
as support is added for distributed computing based on remote procedure call.

A First Implementation and Experiment

We have implemented the collector in an early version of ML, a statically type-
checked polymorphic language [Cardelli 84]. While this version of ML is not par-
ticularly efficient, it is both simple and tractable. The implementation runs on the
Firefly using SRC’s Taos operating system [Thacker 87], which extends DEC Ul-
trix (Berkeley Unix 4.2) with multiple threads, cheap synchronization, and virtual-
memory primitives.
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Stop-and-Copy Sequential Concurrent

Total elapsed time 252 sec 281 (1.11) 207 ( .82)
Mutator time 180 180 180
Mutator overhead  29% 36% 13%
Total CPU time 247 257 (1.04) 266 (1.08)
Collector time 67 77 (1.15) 86 (1.28)

Table 1: Execution times

We built three versions of the collector: simple stop-and-copy, sequential real-
time, and concurrent. They all used the same object representations and the same
copying and forwarding primitives. The object representations were somewhat com-
plex and not well tuned for a copying collector, and allocation was implemented by
a procedure call, not compiled inline.

The sequential real-time and the concurrent versions scanned all of the stacks
(there were several) at a flip, instead of scanning them incrementally, as described
above. When copying objects, the collectors used a more primitive heuristic for
limiting the number of page crossings by unscanned objects; but that didn’t matter
in our benchmarks since there were very few crossings. We didn’t implement the
incremental scanning of large arrays (but the benchmarks didn’t allocate any).

All three versions used a page size of 1K bytes and a heap with 3 megabytes
per space. The sequential version scanned from 1 to 4K bytes for every 1K bytes
allocated. The concurrent version used an Allocate chunk size of 65K.

We picked the Boyer benchmark from Gabriel [Gabriel 85] as our first experi-
ment. It is a small rule rewriter designed to test the performance of Lisp systems
executing theorem provers. It allocates a large amount of non-trivial, fine-grained
data structures and then accesses those structures repeatedly. According to Gabriel,
the Boyer program does 226,000 list-cell allocations and 1,250,000 fetches of point-
ers from the list cells. In addition to the allocations by the program itself, the ML
implementation allocates procedure-argument records in the heap, adding to the
load on the collector.

Table 1 shows the execution times of the three versions. The numbers in paren-
theses express table entries as ratios with the corresponding entries for the stop-
and-copy version.

Total elapsed time shows that the sequential real-time version is 11% slower
than the more efficient stop-and-copy, while the concurrent version is 18% faster.

Mutator time is the time spent executing the mutator, including calls to the
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Stop-and-Copy Sequential Concurrent

Bytes allocated 12.2M 12.2M 12.2M
Number of flips 7 7 8
Time per flip 9.5 secs .164 .120
Traps per second — 1.7 3.3
Time per trap — 43 msecs 38
Time per allocation 127 usecs 166 (1.31) 83 ( .65)
allocation 56 67 (1.20) 56 (1.00)
collection 71 99 (1.39) 27 ( .38)

Table 2: Latency

allocator but excluding all other collection-related time: page traps, all scanning,
and flips.

Mutator overhead is the percent of total elapsed time that wasn’t spent ex-
ecuting the mutator. For the stop-and-copy and sequential versions, overhead is
about 1/3 of total time, typical for Lisp-like systems. The overhead for the concur-
rent version is less than half of that, only 13%.

Total CPU time is the total CPU time used by all the threads in the benchmark
(as measured by the operating system). The sequential version takes 4% more than
stop-and-copy, and the concurrent version takes 8% more.

Collector time is the total CPU time on all processors used by the collector,
including page traps and scanning. The sequential and concurrent collectors take
15% and 28% more CPU time than stop-and-copy.

Table 2 shows the latency of the three versions, each of which allocated 12.2
megabytes during execution.

A stop-and-copy flip takes 9.5 seconds, while the sequential and concurrent ver-
sions take .164 and .120 seconds. A tenth of a second is almost good enough for
an interactive workstation; using incremental stack and register scanning, the flip
time should be well under that. The sequential collector flips more slowly than the
concurrent one because it usually has to scan a few remaining pages before flipping.

Traps per second and Time per trap show that the disruption due to page
traps is extremely small.

Time per allocation is the average elapsed time needed by the mutator to
allocate and collect a two-pointer list cell. That time is broken into the time spent
in the Allocate procedure (excluding page scanning) and the elapsed time the mu-
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tator is blocked waiting for the collector (including page scanning). The sequential
version is about 1/3 slower than stop-and-copy, and the concurrent version is about
1/3 faster. The time spent in Allocate could easily drop to 10 usecs, and the col-
lection time should drop quite a bit with better object representations, hand-tuned
collectors, and generational collection.

How concurrent is the concurrent collector? That is, how much of the stop-and-
copy collection time could be successfully overlapped with the mutator? Look at
the collection part of the Time per allocation—44 usecs (62%) of the stop-and-
copy collection time was overlapped with the mutator, leaving 27 usecs (38%) not
overlapped. That 27 usecs breaks down as follows:

Page-trap scanning 7.8 usecs
Operating-system trap overhead 2.0
Flips 9
Allocator waiting for lock 5
Page trap waiting for lock 5.3
Unexplained 10.4

Trap overhead is the cost of the context switch caused by a page trap. The waiting-
for-lock time is the time the allocator and the trap handler must wait for the scanning
thread to finish scanning a page and release the global lock.

That leaves 10.4 usecs (15%) of the collection time unaccounted for. We have
a hypothesis: The Firefly’s MicroVAX II CPU has a tiny 8-entry VMtransiation
buffer; interleaving the page traps and their scanning with the mutator will cause
more translation-buffer misses. Also, the operating system must flush the translation
buffer (on all 5 processors) whenever it changes the protection of pages. No pages
were swapped in during the experiment, so we can rule out differences in swapping
behavior.

Several improvements waiting in the wings should increase the concurrency by
quite a bit, perhaps to as high as 85 or 90%. We should double the speed of scanning
by using better object representations and hand-coded scanning. An experiment
showed that scanning two or four consecutive pages per trap would reduce the
number of traps and the overhead per trap, while still providing adequate latency.
Page-trap handling in the Firefly operating system is untuned, costing 3 msecs
compared to 1 msec on Ultrix. Newer CPUs have much larger translation buffers,
reducing the effect of frequent traps. And generational collectors should reduce
translation-buffer misses and contention for the global lock by reducing scanning
and copying. Finally, incremental stack scanning will reduce flip time.

More complicated scanning heuristics might reduce the number of page traps.
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The scanning thread of the current algorithm always scans the next unscanned page
after the scanned pointer. But we might be able to guess which unscanned pages
are likely to be referenced next and scan those instead. For instance, if there is
locality in the mutator’s data references, then it might be better to scan the pages
of the unscanned area (since objects on the trapped page contain pointers to objects
in those recently added pages).

A Comparison with Reference Counting

Out of curiosity, we implemented the same Boyer benchmark in a small, compiled
Lisp that uses the Modula-2+ allocator and concurrent reference-counting collec-
tor [Rovner 85b]. The Lisp version allocated 1.8 megabytes compared to the 12.2
megabytes allocated by the ML version; unlike the ML implementation, the Lisp
doesn’t allocate things like argument records in the heap.

Here is a comparison showing the ratio of the execution times of the reference-
counting collector with the ML concurrent collector:

Elapsed time 1.3
Total GC CPU time .81
Time per allocation 3.5

The Elapsed time ratio shows only that the Lisp and ML compilers produce
code in the same ballpark.

The Total GC CPU time and Time per allocation ratios show that, though
the reference-counting collector consumes 20% less CPU time than the concurrent
collector, the ML mutator can allocate and collect cells 3.5 times faster than the
Lisp/Modula-2+ mutator. (There’s no discrepancy here—the ML concurrent col-
lector can overlap more of its work with the mutator.)

Neither collector has been tuned much, so these results should be treated gin-

gerly.

Generational Collection

Generational collection can drastically reduce the work of a copying collector by
scanning and copying far fewer objects [Lieberman 83, Moon 84, Ungar 86]. Many
fewer pages are touched by the collector, resulting in better virtual-memory perfor-
mance [Shaw 87].

Generational collection is based on two observations: new objects have a higher
death rate than old objects, and few old objects reference new objects. The collector
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allocates new objects in a small “new” area and somehow remembers all pointers
to new-area objects that the mutator stores outside of the new area. During most
collections, only the new area and the remembered pointers must be scanned, copy-
ing only the new-area objects that are still live. As objects survive collections, they
are “aged” and copied outside of the new area; the entire heap is collected very
infrequently.

Ungar [Ungar 86] and Shaw [Shaw 87] show how to implement generational col-
lectors on stock hardware while reducing the demand on virtual memory. Shaw
suggests using the dirty-page bits of virtual memory hardware to keep track of
where the mutator stores pointers, and he compares that to schemes that use a few
extra instructions per assignment. He presents a scheme for managing the vari-
ous segments of the heap efficiently. But Shaw’s proposal is neither real-time nor
concurrent.

We expect to merge our techniques with Shaw’s with little effort. Instead of the
traditional stop-and-copy to extract live objects from the new area, the collector
can use our algorithm to collect concurrently while the mutators execute. Though
the arrangement of the heap areas is somewhat different from that of our algorithm,
the basic invariants are still maintained.

Based on our experiments and the results of Ungar and Shaw, the reduced load
on virtual memory should increase efficiency, reduce latency, and perhaps improve
concurrency.

Multiple Mutator Threads

How many mutators could our implementation support while remaining real-time
and concurrent? Our initial implementation was limited to one mutator thread
(because ML allows for only one thread), so we don’t have hard data. But we can
make a reasonable guess.

Assuming that each thread has its own processor, then the critical resource is the
thread that handles page traps and scanning (it doesn’t matter if there are separate
threads for traps and scanning, since they are serialized by the global lock).

In the concurrent version, for every 207 seconds of elapsed time, the trap/scanner
thread executes 86 seconds. Thus the processor running the trap/scanner thread
should support 207/86 = 2.5 mutator threads.

But our Boyer/ML benchmark does a huge amount of allocation compared to
most programs written in Lisp or Modula-2+. In addition to the large number of al-
locations by the mutator, the ML implementation allocates things such as argument
records in the heap that more efficient implementations would put on the stack.
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Also, a generational scheme should reduce dramatically the amount of scanning,
copying, and page traps. Based on Ungar’s experience, the total amount of copying
and scanning might be reduced by a factor of three or more.

Thus a single collector might very well support at least 10 continuously executing
threads.

Multiple Collector Threads and Shared Virtual Memory

What if there are a very large number of threads and processors? Using multi-
ple heaps like those of the Multilisp collector [Halstead 84}, our general techniques
should allow for multiple scanning and trap threads. (The “multiple heaps” can
be viewed as partitions of a single heap.) Each heap would have its own trap and
scanning threads. A lock bit per from-space page ensures that an object is copied
at most once. Only at a flip must all the threads synchronize.

Kai Li [Li 86) introduced the notion of shared virtual memory, providing a single,
shared virtual-memory address space for many processors having distinct physical
memories. Pages are exchanged between processors using a high-bandwidth bus or
local network, with only one processor at a time allowed write access to a page.
In such a system, it’s crucial to ensure that processors don’t thrash on a shared
writeable page.

Our algorithm, extended with generational collection and multiple heaps, is well
suited for shared virtual memory. Because each thread has its own allocation chunk,
there won’t be thrashing of newly allocated pages. In addition, each processor would
have its own collector thread. To scan a page, the collector must, if necessary,
acquire the page for write access from another processor. It then “pins” the page
while scanning it, preventing other processors from trying to access it. This imposes
almost no extra overhead on the virtual memory implementation and naturally
prevents thrashing by the collector threads.
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