
Page 1

Building User Interfaces by
Direct Manipulation

Luca Cardelli

Digital Equipment Corporation, Systems Research Center
130 Lytton Avenue, Palo Alto, CA 94301

Appears in: ACM Siggraph Symposium on User Interface Software, pp. 152-166, ACM Press, 1988.

SRC Research Report 22, October 2, 1987. Revised January 1, 1993.
 Digital Equipment Corporation 1987,1993.
This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of the Systems Research Center of Digital Equipment Corporation
in Palo Alto, California; an acknowledgment of the authors and individuals contributors to the work; and all applicable portions of the
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a license with payment of fee to the
Systems Research Center. All rights reserved.

Page 2

1. Introduction
User interfaces based on mice, bitmap displays and windows are becoming

commonplace, and there are guidelines on how such interfaces should function [Apple
85]. As a consequence, there is a growing expectation that all programs, no matter how
trivial or how complicated, should present a graphically elegant and sophisticated user
interface.

Unfortunately, such polished interfaces are normally difficult to build. There are three
major factors contributing to this problem.

The first one is what we might call the artistic burden: the artistic insight needed in
preparing good-looking interfaces. This requires taste in the choice of shapes,
proportions, arrangements and colors. Professional graphic designers are sometimes
assigned to work on this aspect of an interface.

The second factor is the polishing burden. An interface must be functional, in the
sense of providing ways of carrying out tasks, but this is just a minimal requirement.
Most of all, an interface must be smooth, in the sense of being intuitive and not causing
surprises to the user. Smoothness is achieved by using coherent paradigms (the best
known is the "desktop" paradigm [Smith 83]), by constantly redesigning and polishing
interfaces as the result of user feedback [Buxton 80], and by eliminating minor interface
problems which often have no effect on functionality or performance, but greatly
contribute to the "professional" feel of an interface.

The third factor is the programming burden: the knowledge of graphics and
windowing techniques required to build such interfaces. Application programmers often
would rather not know all the low-level quirks of a window system. Even when a
programmer is familiar with the details of the techniques, the difficulty of "getting things
to work" may be such that building even a small user interface is perceived as a major
task to be undertaken only for important applications. Furthermore, final polishing of the
task is reserved only for those applications considered important enough to deserve the
extra time. As a consequence of the programming burden, application programmers tend
to invest less effort than is ideally needed, and the quality of their user interfaces
degrades.

Burdens should not necessarily be eliminated. We do want interface builders to have
fine control on the appearance of an interface, to be able to achieve smoothness to the
desired degree, and to be able to program arbitrary behavior when needed. Our goal,
however, is to make these tasks much simpler, so that application builders and even
application users can confront them as routine and painless activities.

The approach described in this paper achieves this goal by separating the user
interface from the application program, as is done in many user interface management
systems [Pfaff 83], and by using a user interface editor to build the interfaces. In a sense,
we apply the direct manipulation style [Schneiderman 83] characteristic of user interfaces
to the very process of building them, as opposed to building them by programming. The
disadvantage is that we have to determine fixed but sufficiently general classes of user
interfaces that can be assembled by direct interaction and yet cover most of the common
cases. However, we gain a method of easily constructing, modifying, maintaining and
customizing interfaces.

Page 3

1.1 Some examples
Using the tools described here, one can build user interfaces for simple applications in

a very short time: for example, less than an hour for the examples below. Moreover, one
can often modify such interfaces without affecting the application program. To make our
discussion more concrete we use as examples, throughout the paper, three simple
programs exhibiting a graphical user interface.

Figure 1: A cursor editor

The first program, a cursor editor , is used to edit the shape of the 16x16 cursor which
tracks the mouse movements on a bitmap screen. The cursor editor interface in Figure 1
consists of a central, magnified, bitmap region, which can be used as a drawing pad; a
real size image of the cursor; a choice of painting colors determining how every pixel
modifies the background; and a "hot spot" setting specifying the pixel at which the cursor
is pointing. Button icons around the central region provide rotations, reflections, and
tumbling. A "File" pulldown menu is used to read and write files containing cursor
images, and a "Clear" button is used to clear the cursor image.
The second program, a card file browser, (Figure 2) maintains files of index cards, such
as may be used to store address lists or library references. The current card is shown in
the central editable text region, and other cards can be selected by the scroll bar at the
bottom (the card file icons next to it are just decoration). A card can be retrieved by
typing a search string in the "Find:" region and pressing carriage return to search forward,
or by pressing "Find Prev" and "Find Next" buttons. A "File" menu is used to load, store,
and merge card files, and a "Card" menu is used to insert or delete cards.

Page 4

Figure 2: A card file browser

The third program is a single-file text editor, shown in Figure 3. This is used in a
programming example later on in the paper, and its functionality is kept to a minimum.
The interface consists of a text region which can contain and edit a file, and a pulldown
menu to clear the text, open and save the file, and exit.

Figure 3: A simple text editor

These are very simple applications, and many other such applications can be
imagined. As we pointed out, such applications are not necessarily simple to develop.
That is, the machinery underlying a cursor editor or a card file browser can certainly be
written in less than a week, but developing a customized user interface may take many

Page 5

days when starting from a standard user interface toolkit, or even weeks and months when
starting from a bare window system.

1.2 Some principles
We now discuss some principles which we follow in order to achieve our goals. One

should keep in mind that these principles may only be partially realized, but they are still
useful for explaining our motivations and general orientation.

First, user interfaces should be created by direct graphical interaction through a user
interface editor, as opposed to the common practice of generating them by calls to user
interface libraries from some programming language. Direct manipulation facilitates
experimentation, has quick turnaround, and results in nicer-looking interfaces. It avoids
the tedious and error-prone task of describing two-dimensional layouts in linear notation;
in particular it avoids specifying precise numerical positions of features or constraints
between them. The main advantage of linear notation, namely the ability to parameterize
to arbitrary degrees, does not seem essential in this context and, as we shall see, some
useful parameterization can be achieved graphically. A user interface editor can make a
program less dependent on the details of its user interface (since the interface is not
described by the program) while maintaining a high degree of flexibility in customizing
the interface.

Second, user interfaces should work through some abstract protocol. In other words,
client programs should not have to know how their interfaces are put together, or
understand the peculiar behaviour of interface components. For example, replacing a
pulldown menu by a set of buttons should not affect the program code. Again, the intent
is to make programs less dependent on the user interface. This separation of concerns
facilitates quick maintenance and experimentation, since one does not have to modify (or,
in our case, even recompile) an application when experimenting with the user interface.

Third, the set of user interface components should be open-ended. For example, we
may want to provide several suites of interface components, each reflecting a different
user interface style; it would then be possible to have two interfaces for the same
application, exhibiting different interaction styles. Also, a new class of applications may
require a new component (e.g. an analog input knob), or an individual application may
require a new specialized component (e.g. a music notation editor). It should be possible
to add new suites and components to the existing environment. This flexibility makes the
construction of user interface editors a bit more challenging.

1.3 Interactors and dialogs
The primary function of an arbitrary application may require an interface component

(e.g. for specialized graphical editing) which must be built for the occasion. However, the
auxiliary functions of most applications, such as opening and closing files, can normally
be carried out by a relatively small and fairly standardized set of functional components.
These components, standard or ad-hoc, are here called interactors. Interactors include the
familiar buttons, pulldown menus, scroll bars and text areas [Apple 85].

Page 6

Figure 4: Pop-up dialogs

A simple user interface, or part of a complex user interface, can be realized by a
small, fixed collection of interactors. We call such a collection a dialog (also known as a
dialog box [Apple 85] or a form). Applications can use one dialog for the basic interface,
and temporarily or permanently expose additional dialogs for additional functions. For
example, our card file browser may pop up dialogs on top of the background dialog in
response to reshape-card or open-file menu commands (Figure 4).

The dialog paradigm can be used as the basis for a large set of conceivable user
interfaces. A "simple" user interface can be realized by a single dialog; if the interface is
too complex or ill-suited for a single dialog, multiple dialogs can be used. We are not
necessarily advocating using dialogs for all possible interfaces; the emphasis here is on
building simple interfaces simply, without claiming that arbitrarily complex interfaces
should be built this way. However, it is often the case that interfaces that are too complex
to fit directly in the dialog paradigm can be redesigned to fit into it, sometimes gaining in
consistency and simplicity.

The main limitation of dialogs is that they have a fixed number of interactors, each
with a fixed size or, as we shall see, a size dependent on the size of their dialog. This
limitation is also a feature, in the sense that it makes building dialog editors possible,
since editors in general must operate on concrete and fixed data structures.

This limitation causes a problem when one needs to display large, variable-size or
dynamically changing information. In such common situations several approaches are
possible, if the designer wishes to remain within the dialog paradigm: (a) use interactors
able to display variable-size information, for example scrollable text areas and menus; (b)
animate dialogs by hiding and exposing some of their components under program control;
(c) pop up additional dialogs under program control. Combinations of these ways of
dealing with dynamic information turn out to be adequate in most situations.

Page 7

1.4 Outline
This paper is organized around the basic pieces of information that have to be

specified for any user interface; throughout, a user interface editor is used to specify such
information. Section 2 shows how the geometry of an interface is determined by fixing
the location of interface components and their geometric relationships. Section 3 shows
how the behavior of an interface is described by the kind of interface components used
and by their dynamic behavior; this behavior includes the specification of the protocol
that a client program must obey to interact successfully with the interface. Section 4
shows how the appearance of an interface is specified by text, fonts, bitmaps, colors, etc.;
similarity of appearance across interface components is captured by a notion of graphical
resources, which can be shared by several components. Section 5 discusses how the
meaning of an interface is determined by attaching program routines carrying out certain
tasks to the events specified as part of the behavioral protocol. Finally, Section 6 is about
the internal architecture of the user interface editor.

2. Geometry
In this section we discuss the geometrical aspects (shape, position and stretching) of

user interface components independently of the function of such components.

2.1 Editing dialogs
Since interfaces will be organized around the dialog paradigm described in the

introduction, the basic interface editing tool is a dialog editor. The first function of a
dialog editor is to define the geometric layout of a dialog. Starting with an empty dialog,
one can add instances of various kinds of interactors (which, from a geometric point of
view, are all handled as rectangles), move them around and change their size, individually
or in groups.

In Figure 5 we see a snapshot of the dialog editor open on our two example interfaces
(the dim one in the background is inactive). The interactor near the top right of the cursor
editor dialog (normally showing the cursor being edited in its actual size) has been
selected and its eight control points have been highlighted. This interactor could now be
moved around by pointing at it and dragging it, or it could be reshaped by dragging one
of its control points. The central square region is a fatbits interactor used for editing the
cursor bitmap; it is surrounded by eight buttons for rotations reflections and tumbling
(which look like fat arrows or rows of little arrows). The square border around the small
and fat arrows is provided by a passive area interactor. Passive areas can display static
textures, text or bitmaps, with or without a border; the horizontal line below the "File"
pulldown and the various text labels are also passive area interactors.

Each dialog has a title area at the top which can be used to drag the dialog around. In
the right corner of the title area, a reshape control allows changing the dialog dimensions
without affecting the relative positions (w.r.t. the north-west corner) of its interactors.

Page 8

Figure 5: The dialog editor

The editing interface is similar to MacDraw [Apple 83]; one can select many items,
move them around in groups, cut and paste groups, and change the shape of all the
elements of a group in a single operation. A single selection is done by clicking over an
item (which highlights the 8 control points). A multiple selection is done by shift-clicking
over other items, or by sweeping a rectangle with the mouse: all the elements intersecting
the rectangle will be selected. Moving is done by dragging items, and reshaping by
dragging control points. All movements are relative to a settable grid step, for easy
alignment; the grid is shown only during dragging operations.

To complete our first look at the dialog editor, here is a quick description of its
pulldown menus which are shown in Figure 5 under the "Dialog Editor" header; more
details will be provided in later sections. The "File" menu can be used to load and save
dialog descriptions, which are stored on disk as data structures. The "Edit" menu can be
used to cut and paste sets of interactors, within or between dialogs, and to move sets of
interactors in front of or behind other interactors. The "Create" menu contains a list of the
available interactors. The "Change" menu is used to change interactor and dialog
properties. The "Mode" menu is used to switch between Edit (as in Figure 5), Stretch,
Test and Debug modes; the first two have to do with geometry, the latter two with
behavior. Finally, the "Resources" menu gives access to resources (e.g. fonts or colors)
which are shared by many interactors in the same dialog.

2.2 Stretching
The main dialog of an application (called the root dialog) is embedded in a window

within the window system, and hence may be subject to size changes when the user

Page 9

reshapes that window. Some pop-up dialogs may also be resized by the user. Hence, there
should be a way of specifying how a dialog behaves under size changes.

All size changes are interpreted as stretching operations. A dialog has a minimum size
which is the size of the dialog when the dialog editor is in edit mode. Dialogs are allowed
to stretch, but can never become smaller than their minimum size; if they are placed in a
window smaller than that, they will be clipped.

Figure 6: Specifying stretching information

Stretching is an instance of constraint resolution, and one could very easily be carried
away implementing arbitrary constraints models1. This temptation should be resisted, for
many reasons. General constraint resolution algorithms are often very complex and
highly unpredictable; we want something simple and reliable, since we are not interested
in overly complex geometric arrangements. More important, it may be hard to devise a
graphical language for expressing general constraints. So, we have adopted a relatively
simple-minded solution which allows us to express constraints graphically, but which
does not always specify "correct" arrangements, in the sense of preventing abnormal
interactor movements such as accidental overlapping. After all, in an interactive editing
situation such problems are easily detected and fixed.

To allow stretching, each interactor has four attachment points which attach it to the
underlying dialog, one for each edge. Attachment points are shown as black squares when
the dialog editor is in stretching mode and one or more interactors are selected. Two rules

1 Incidentally, note that unlike the TeX boxes-and-glue model, we are interested in rigid glue (preserving separation
between items) and stretchable boxes (making items as large as possible).

Page 10

determine the way attachment points (and hence interactors) move and stretch when the
dialog is stretched.

First rule of stretching: as a dialog stretches from a minimum size, all the
attachment points move proportionally to the stretching of the dialog.

Figure 6 shows the card file dialog, with the editor in stretching mode; three of the
interactors have been selected so that their attachment points are visible. Initially, the
attachment points lie on the edge of their interactors (as in the text-line box to the right of
the "Find:" label); this causes them to stretch proportionally to the stretching of the
dialog, as determined by the first rule of stretching. For example, imagine an attachment
point for a vertical interactor edge positioned so that the point divides the horizontal
distance between the left and right dialog edges in the ratio 1:2. After stretching, the
attachment point will still divide the new distance in the same ratio.

The attachment points can be dragged away from the edges, in which case a line
connects them visually to their respective edge. The meaning of the relation between an
attachment point and its interactor edge is given by the second rule of stretching, below.
In the other two selected interactors in Figure 6, all the attachment points have been
dragged to the edges of the dialog (this is a bit hard to see for the "Find Next" button
because the attachment points and their connecting lines are xor-ed over the picture). The
common situation of positioning an attachment point at a dialog edge can be achieved by
double-clicking the attachment point: this action will project it to the closest dialog edge
(of the proper kind, horizontal or vertical); double clicking an interactor projects each of
its attachment points to the closest dialog edge (of the proper kind).

Second rule of stretching: as a dialog stretches from a minimum size, the
distance between an attachment point and its interactor edge remains constant.

To satisfy the second rule of stretching, interactors may have to change their size
under stretching. For example, all four edges of the central interactor in Figure 6 are
attached to the corresponding dialog edges (the attachment points blend visually with the
dialog border). Since the distance between an interactor edge and the corresponding
dialog edge must remain constant under stretching, the interactor will have to become
larger when the dialog stretches. This is the common situation in which we want one
particular interactor to become "as large as possible" under stretching.

Another common situation is when we want an interactor to "stick to a corner". This
happens for the "Find Next" button: its vertical edges are both attached to the east edge of
the dialog (hence its horizontal size remains constant). Similarly its horizontal edges are
both attached to the top (this is a bit hard to see in Figure 6) (hence, its vertical size must
remain constant). Hence, all edges must maintain their distance from the north-east corner
of the dialog.

What should we do about the box next to the "Find:" label? We probably want it to
"stay to the top" of the dialog, hence we should attach its north and south edges to the
north edge of the dialog. We also probably want it to stretch horizontally. Hence, we
should attach its west edge to the west edge of the dialog, and its east edge to the east

Page 11

edge of the dialog. Note that the gap between it and the central interactor will remain
constant.

An effective heuristic for setting a roughly correct stretching behaviour is to select all
the interactors in a dialog and double click one of them. This will project all the
attachment points of all the interactors to their corresponding closest dialog edge. (In the
case of the card file dialog, this is exactly what we want: interactors close to the corners
will stick to the corners, and interactors near the center will stretch in the appropriate
direction.) The few incorrect attachments can then be fixed by hand.

So far we have considered attaching interactor edges to dialog edges only. This really
covers the majority of simple situations, as in the case of the card file dialog. Finer
control over stretching can be achieved by attaching interactor edges to arbitrary points
within the dialog. As an excercise, imagine positioning the attachment points of two
interactors lying next to each other horizontally, so that when the dialog stretches they
each stretch by half the stretching amount, and maintain their distance to the edges of the
dialog and between them.

There is no check against bad stretching behavior. If the attachment points are not set
properly, some interactors may end up unintentionally overlapping each other. It is even
possible to make interactors shrink as the dialog stretches. These anomalous situations
can be easily detected by using the reshape control in the right corner of the header (while
in stretching mode) to stretch the dialog and observe its stretching behavior. This process
does not affect the minimum size of the dialog, which will be reinstated when switching
back to edit mode.

3. Behavior
In this section we discuss the behavioral aspects (events, states and attributes) of user

interface components. We also see how to test and debug the behavioral part of
interfaces, and how to express some semantic relations (called groupings) between
unconnected geometric entities.

3.1 Interactor attributes
Various classes of interactors are provided by the dialog editor; they include passive

areas, buttons, menus, scroll bars, text areas and text lines (a complete list appears in the
Appendix). For each interactor class there is an associated dialog used to set the attributes
of interactors of that class. Figure 7 shows the attributes of the selected text line
interactor; we now examine these attributes in turn.

Each interactor in a dialog may optionally be given a "Name" (so a program can refer
to it), and the text line interactor in Figure 7 has been named "Find". Interactor names are
forced to be unique within each dialog.

Most interactors generate events in response to user actions; events are represented as
text strings. The text line dialog in Figure 7 does not specify an "Event", which would
otherwise be generated whenever the text line contents are modified, but specifies instead
a "Completion Event" which is generated when a carriage return is typed to the text line
during normal operation. In this case the action corresponding to a completion event is to
find the next occurrence of a string, hence the event is named "FindNext".

Page 12

Figure 7: Interactor attributes

The text inside each text line forms its "State" attribute: in the figure this is currently
empty in our text line. Most interactors have a "State" component, which by convention is
always a text string representing the most important property of the interactor.

Finally, a text line can be in one of four states of activation. Active means that it
functions normally. Dormant means that it does not function and looks dim: this is to
warn the user that a text line is available but not currently enabled. ReadOnly means that
the text line contents can be copied but not modified. Passive means that the text line
looks normal but its contents cannot be copied of modified.

Other interactors in the card file dialog generate events, which are inspected and set
by opening their respective attributes dialogs. The pulldown menus generate events for
each menu selection. Buttons generate events when pressed. The central text region
generates "Modified" events so the file card program can keep track of cards which have
been modified. The scroll bar generates scroll events.

This notion of events provides a level of abstraction between the application and the
user interface. The application receives high-level events, and does not have to deal with
low-level mouse and keyboard actions. More interesting, many different low-level actions
may generate the same high-level event. For example, the "Find Next" button in Figure 7
generates a "FindNext" event, just like the text line does. The client program receives a
"FindNext" event from the dialog, but does not know whether it comes from a text line, a
button, a menu, etc. Hence, the aspect of the user interface generating "FindNext"
requests can be modified at will without affecting the client program.

Page 13

3.2 Testing and debugging
It is very useful to try out a dialog without waiting until it is embedded in an

application, in order to see how it looks "live". When the dialog editor is put in test mode,
dialogs behave to some extent as they will behave in the application: menus pull down,
buttons click, text can be written into text areas, etc.

Figure 8: Debug dialog

Of course no semantics is attached to these actions, and dynamic behavior which
happens under direct program control will not be performed. However, this limited
testing has proven to be quite useful in practice for tuning the geometry and appearance
of the dialog.

A further step is to put the dialog editor in debug mode. This is like test mode, but in
addition a debug dialog appears which can be used to inspect the state of interactors and
monitor the events they generate (often catching spelling mistakes in the attribute values).

Figure 8 shows the debug dialog after some interaction. We first typed "inns"
followed by carriage return in the text line interactor next to the "Find:" label. This
caused the event "FindNext" to be generated and to appear in the debug dialog. We then
typed "Find" (the name of the text line) in the debug dialog and pressed the "Get" button
to display the current state (contents) of the text line. We could also change the "inns"
string in the debug dialog and press "Set" to set the new contents of the text line.

Using the debug dialog we can emulate the main information flow between a user
interface and its client program: the program receives events in response to user actions,
and it can then inspect and modify the dialog. (Client programs can also modify other

Page 14

attributes beyond the "State" attributes, but for simplicity this is not supported by the
debug dialog.)

3.3 Interactor groups
Some collections of interactors function as logical units. These collections are called

interactor groups, and are best illustrated by examples.

Figure 9: Interactor groups

As a first example, a radio button group is a group of independently operated on-off
buttons. Only one button in such a group can be in the "on" state at any given time; if
another button is switched on, the previous one is set to "off". The dialog editor can group
individual on-off buttons into radio button groups and can ungroup them.

Pulldown menus are another example of groupable interactors. When a menu in a
group is pulled down by a mouse click, all the other menus in the same group can be
pulled down by dragging the mouse over them, without having to release and click again.
Figure 9 shows the attributes dialog of the "File" pulldown menu, which belongs to the
"MenuBar" group, together with the "Cards" menu. Again, the dialog editor can group
individual pulldown menus and can ungroup them.

Whenever a collection of similar groupable interactors (e.g. all on-off buttons or all
pulldown menus) is selected, the operations of "grouping" and "ungrouping" can be
invoked from the dialog editor. The meaning of these operations varies according to the
kind of interactors being grouped.

The notion of groupable interactors is supported at an abstract level. The dialog editor
can be extended with new classes of groupable interactors. When a new class of

Page 15

interactors is introduced, grouping and ungrouping operations can be specified for that
class. If such operations are present, the dialog editor knows that such interactors can be
grouped, and that the grouping operations should be invoked when appropriate. Details
about how new interactor classes are introduced appear in a later section.

Incidentally, Figure 9 shows that pulldown menu items are specified just by listing
them. They are duplicated because in some situations one may want to distinguish
between what appears in the menu and the event which is generated when that menu item
is selected.

4. Appearance
In this section we discuss the visual aspects (colors, fonts, borders, etc.) of user

interface components, and show how the visual aspects of related components can be
uniformly changed.

4.1 Looks
The appearance of interactors can be specified by setting their looks. Most interactors

require more than one look, since their appearance changes depending on their state of
activation. A single look is a fairly complex data structure, designed to achieve a
compromise between generality and convenience.

Figure 10: Interactor looks

One of the most important properties of looks is that they do not contain size
information; looks are independent of geometry, and must adapt to the geometry of

Page 16

interactors. For example, a look may specify color and thickness of a border, but the
dimensions of the border must change as the corresponding interactor stretches.

Figure 9 showed some buttons which can be used to set the looks of pulldown menu
buttons and items. There are three looks for a pulldown menu button, one each for the
normal state, the excited state (when the menu is pulled down), and the dormant state
(when the menu is inactive). If we press the "Normal Looks" button, we get Figure 10.

Here we see that the normal look of the "File" button is a text look containing the
string "File", which is left-aligned horizontally (with a west margin of four pixels), and
vertically centered. The remaining properties of this look (font and color) are further
specified by a frame called FrameLabelNormal.

4.2 Frames
In general, looks are composed of a frame and an image to be shown in the frame.

The image can be either a uniform tint, a texture, a bitmap, or text in some font.
Just as a physical picture frame has a back board, a border and a piece of glass, so a

frame has a background, a border and an overlay (the latter is used to achieve special
translucence effects). Figure 11 shows a dialog open on the "FrameLabelNormal" frame:
this is a font frame using the "FontBuiltIn" font. It has no border (its thickness is 0), but if
it had one it would be painted in the "TintBd" tint.

Let us examine the components of frames in more detail.
A tint is a function mapping colors to colors, which is applied to the background

during painting. Only some such functions are supported; basically, there are three
classes: (a) constant tints opaquely paint a given color over the background (black or
white for monochrome, RGB for color); (b) swap tints swap two given colors and have
unpredictable effects on other colors (in monochrome, the unique swap tint inverts black
and white); (c) the transparent tint leaves the background unaffected. Color tints are
specified by RGB values (24 bits), and painted in the "closest" color found in the color
map (8 bits). Color tints can also be set to "high quality", in which case the given RGB
value is approximated by four color-map colors painted in 2x2 squares. Figure 12 shows
the dialog used to set tint properties; the large area at the bottom displays the current
color.

A tint pair is a pair of tints, used to paint black and white images in color.
A texture consists of two 16x16 bit patterns (normally also called textures), one for

painting in monochrome and one for painting in color, plus a tint pair to specify the
coloring (background tint for the "white" pixels, and foreground tint for the "black" pixels
of the pattern).

A bitmap consists of an arbitrary-size bit pattern with a tintpair for painting.
Optionally, one can specify an additional bit pattern of the same size (the mask) and an
additional tint pair. This option allows one to paint bitmaps in three colors, normally one
color each for the background, the borders and the inside of an image.

A font consists of a screen font and a tint pair for coloring.
A frame (Figure 11) consists of (a) border thicknesses for the four edges, (b) a border

tint, (c) an overlay texture, and (d) an image which is either a tint, a texture, a font or a
bitmap.

Page 17

Figure 11: Frames

Finally, a look (Figure 10) specifies: (a) a frame; (b) a piece of text for font frames;
(c) horizontal and vertical alignments and margins for font and bitmap frames. The
alignments are left, center and right, horizontally, and top, middle and bottom, vertically.
Margins determine distances between the edge of the looks, and the corresponding edge
of non-centered text or bitmaps.

4.3 Dialog resources
While the looks of an interactor are local to it, the tints, tintpairs, textures, bitmaps,

fonts and frames which define such looks are shared between all the interactors of a
dialog, and are called dialog resources.

The sharing of dialog resources allows one to change the looks of many interactors at
once. For example, imagine wanting to change the background color of a dialog. The
background is composed of the actual background of the dialog, but also of the
background of many interactors (e.g. borderless labels). It would be very painful to have
to select each interactor in turn, and change the appropriate looks. Similarly, imagine
wanting to change the font of all the interactors, or maybe the font of all text interactors
but not the font used in labels.

The solution to these global replacement problems is provided by changing the dialog
resources, as opposed to changing individual interactors. Changing a resource affects the
looks of all the interactors which refer to it. Each resource is identified by a resource
name (a string) within another resource or a look. All resources point to each other
through symbolic names. For example, a tint pair is composed of the names of two tints.
A menu in the dialog editor gives access to the list of all resources in a dialog.

Page 18

Figure 12: Tints

Here is an example of how to modify resources. A look L may mention a frame called
"FrameDefault", shared by many other looks. To change the appearance of L, one can
replace the string "FrameDefault" by "FrameSpecial". If "FrameSpecial" already exists in
the list of dialog resources, the looks L will change accordingly, otherwise a new "blank"
frame will be created which can then be further defined. To change the appearance of all
the looks which mention "FrameDefault" one selects "FrameDefault" from the resources
menus, and modifies it (which involves modifying more resource names).

Newly created dialogs have a predefined collection of resources, which are used for
the default looks of the available interactors. Unused dialog resources are garbage
collected when saving to disk. The standard resources are made available again when
loading a dialog into the dialog editor (unless there are already different resources with
the same name)

Groups of resources can be copied and pasted across dialogs.

5. Meaning
In this section we discuss how to give meaning to a user interface by specifying its

connections to the application.

Page 19

5.1 Attaching procedures to events
Meaning is given to a user interface by attaching procedures to interactor events. As

we have already explained, high-level events are produced by interactors in response to
low-level user actions.

The attachment is achieved by registering procedures with a dialog to respond to
given events; when such events are generated, the corresponding procedures are invoked
directly. Hence the client program does not have to poll the dialog, nor is there a main
interaction loop to be programmed: the client program simply registers event routines and
then passes control to the dialog, which takes care of the flow of control. This is
sometimes called event-driven programming.

To illustrate how to attach procedures to events, we present a simple but complete
application whose code is less than two pages of Modula2+ [Rovner 85]. The application
is a file editor which can load, modify and save a single text file at a time. Figure 3
showed the user interface of this application, which consists of a scrollable text area and a
pulldown menu.

Here is the code of the application:

SAFE MODULE FileApplication; (* A simple single-file text editor. *)
IMPORT Time, Text, Rd, Wr, FileStream, RootDialog, InitInteractors, FileDialogVBT;

TYPE
 Argument = REF RECORD
 dialog: RootDialog.T;
 fileDialog: FileDialogVBT.T;
 END;

PROCEDURE ReadProc(argument: REFANY; fileName: Text.T);
 VAR arg: Argument; text: Text.T; rd: Rd.T;
 BEGIN
 arg := NARROW(argument, Argument);
 rd := FileStream.OpenRead(NIL, fileName);
 text := Rd.GetText(rd, Rd.Length(rd));
 Rd.Close(rd);
 RootDialog.SetTextProperty(arg^.dialog, "File", "State", text, TRUE);
 END ReadProc;

PROCEDURE WriteProc(argument: REFANY; fileName: Text.T);
 VAR arg: Argument; text: Text.T; wr: Wr.T;
 BEGIN
 arg := NARROW(argument, Argument);
 text := RootDialog.GetTextProperty(arg^.dialog, "File", "State");
 wr := FileStream.OpenWrite(NIL, fileName);
 Wr.PutText(wr, text);
 Wr.Close(wr);
 END WriteProc;

PROCEDURE NewProc(argument: REFANY; dialog: RootDialog.T; eventName: Text.T;
 eventValue: REFANY; eventTime: Time.Ticks);
 VAR arg: Argument;
 BEGIN
 arg := NARROW(argument, Argument);
 RootDialog.SetTextProperty(arg^.dialog, "File", "State", NIL, TRUE);
 END NewProc;

PROCEDURE OpenProc(argument: REFANY; dialog: RootDialog.T; eventName: Text.T;
 eventValue: REFANY; eventTime: Time.Ticks);
 VAR arg: Argument;

Page 20

 BEGIN
 arg := NARROW(argument, Argument);
 FileDialogVBT.Interact(arg^.fileDialog, ReadProc, arg, eventTime);
 END OpenProc;

PROCEDURE SaveProc(argument: REFANY; dialog: RootDialog.T; eventName: Text.T;
 eventValue: REFANY; eventTime: Time.Ticks);
 VAR arg: Argument;
 BEGIN
 arg := NARROW(argument, Argument);
 FileDialogVBT.Interact(arg^.fileDialog, WriteProc, arg, eventTime);
 END SaveProc;

PROCEDURE ExitProc(argument: REFANY; dialog: RootDialog.T; eventName: Text.T;
 eventValue: REFANY; eventTime: Time.Ticks);
 BEGIN
 RootDialog.Terminate(dialog, eventTime);
 END ExitProc;

PROCEDURE Run;
 VAR arg: Argument;
 BEGIN
 NEW(arg);
 arg^.fileDialog := FileDialogVBT.New();
 arg^.dialog := RootDialog.New("File Application", "Icon", "Dialog");
 RootDialog.Register(arg^.dialog, "New", NewProc, arg);
 RootDialog.Register(arg^.dialog, "Open..", OpenProc, arg);
 RootDialog.Register(arg^.dialog, "Save..", SaveProc, arg);
 RootDialog.Register(arg^.dialog, "Exit", ExitProc, arg);
 RootDialog.Interact(arg^.dialog);
 END Run;

BEGIN
 RootDialog.Init;
 InitInteractors.Init;
 FileDialogVBT.Init;
 Run;
END FileApplication.

First, starting at the bottom, some initialization routines are called. FileDialogVBT is
a module providing a pop-up dialog for reading and writing files (this dialog is visible in
Figure 4).

The Run procedure is then invoked; it creates a new FileDialogVBT object and a new
RootDialog object (i.e. a top-level dialog for an application). The file containing the
application's dialog, here called "Dialog", is found by following a directory path which
is specified elsewhere.

Once we have a dialog, we can start registering procedures to respond to the events
the dialog generates: these are the events produced by the pulldown menu. (The last
parameter to RootDialog.Register is an argument record which is passed back to the
event procedure when this is invoked.) Finally, a call to RootDialog.Interact gets
things started: the application window is installed into the window system and interaction
with the user may begin.

The simplest event routine is ExitProc; it simply calls RootDialog.Terminate to
close the application window and exit. All the event procedures must have the same type,
and hence the same parameters; many of these parameters may remain unused in most
situations, as is the case in ExitProc. The Modula2+ REFANY type and the NARROW
construct represent dynamic types and dynamic typechecking respectively.

Page 21

5.2 Accessing the dialog state
When event procedures are called, they must be able to examine the dialog in order to

read parameters or set results.
Let us see how this works in NewProc, whose purpose is to clear the file being edited

and revert to an empty file. This procedure consists of a call to
RootDialog.SetTextProperty, whose parameters are: (a) the dialog; (b) the name of an
interactor within the dialog ("File" is the scrollable text area); (c) the name of a property
of that interactor ("State" denotes the contents of the text area); (d) the new value to be
set for that property (NIL will set it to the empty text); and (e) a repaint flag.

Here we see that interactors within a dialog are accessed by symbolic names, so that
programs do not have to know what kind of interactors they are dealing with. Different
interactors having the same name could be substituted without affecting the program,
provided they have a similar event protocol and properties.

When a program refers to a property of an interactor, the program relies on knowing
that a given property makes sense for a given interactor. In such a case, we have a
dependency on the inner structure of the dialog, which in general should be avoided.
However, this dependency is usually very weak because many interactors have similar
properties, and even if we know the name of the appropriate property it might not say
much about the interactor itself. In the example above, "State" is a property of almost all
interactors, and certainly of all text interactors.

The SaveProc is not very different from the NewProc, but shows the use of pop-up
file dialogs. A call to FileDialogVBT.Interact causes a dialog to pop up so the user
can type a file name. The procedure passed to FileDialogVBT.Interact (WriteProc, in
this case) is invoked with the file name typed by the user. WriteProc extracts the current
contents of the text area, and attempts to write them to the file. If WriteProc fails (e.g.
because the file name is illegal), FileDialogVBT.Interact intercepts the failure and
presents an error message to the user, who can try again with a different file name. If
WriteProc is successful, the file dialog is taken away.

OpenProc and ReadProc are similar to SaveProc and WriteProc. This completes the
description of the application.

6. Architecture
This is a bottom-up review of interactors, dialogs and the architecture of the dialog

editor. Many of the features described here have already been encountered, but are
repeated for completeness.

6.1 Windows
Interactors and dialogs are implemented on top of the Trestle window system

[Manasse 87], which provides a window abstraction called VBT (for Virtual Bitmap
Terminal). Trestle supports hierarchies of VBT's, where a VBT can be a leaf (a proper
window) or a split composed of other VBT's. A split can organize its children into
overlapping or tiling arrangements (or other less common arrangements). A dialog is a

Page 22

tiling split composed of a header and a body, and the body is an overlapping split of
interactors. Each interactor is a VBT, and some interactors are themselves splits.

Interactors and dialogs are "real" windows: they could be directly inserted into the
window system. Dialog-based applications are very window-intensive: it is not
uncommon for them to use hundreds of VBT's.

6.2 Interactors
An interactor is a "user interface primitive"; something which is seen as a functional

unit. It can be used to present some internal state, to operate a mechanism, or to modify a
structure. Normally, an interactor has a well defined geometrical extent.

Some interactors are composed of other interactors (several have embedded scroll
bars, which are also interactors). Such complexity in something which is supposed to be a
primitive is admissible when there is a very tight semantic coupling between the
embedded interactors. Whenever possible, composite interactors should be avoided.

Interactors have a given "reactivity" at any point in time, that is they can be
functioning at various levels of activation or sleepiness. Here are the standard meanings
for the reactivities currently in use:

Active: Functions normally.
ReadOnly: Functions but cannot be modified (to some degree).
Protected: Needs special action to become temporarily active.
Passive: Does not function, but looks normal.
Dormant: Does not function and looks "dim".

Interactors have one or more looks specifying their appearance. There is a common looks
data structure used by all interactors.

Interactors have two interfaces, in a sense. One is a standard Modula2+ interface,
providing routines to create interactors, activate them, set and inspect their properties and
appearance. This interface is suitable for clients who want to use interactors in isolation,
independently of dialogs, and is not described here in any detail. The second interface is
intended for interactors which are embedded in dialogs. It is based on multiple-
inheritance subclassing, which is implemented in (but not directly supported by)
Modula2+, and which is described below and in the Appendix.

All interactors must be subclasses of the "Interactor" class, which is defined as any
VBT providing the following four methods: (1) GetProperty: get the current value of a
property of an interactor; (2) SetProperty: set the value of a property of an interactor; (3)
GetDescription: produce a standard data structure which completely describes an
interactor; (4) SetDescription: make an interactor conform to a given description.
Moreover, two routines for creating and deleting interactors of a given class must be
provided; such routines have the same type for all interactor classes.

The data structure returned by GetDescription (called a description) is suitable to be
stored on disk; it is a list of name-value pairs, where the name is a Text.T (an immutable
character string) and the value is a REFANY (an arbitrary pointer, dynamically
typechecked).

To implement a new interactor class, one can take any existing VBT performing some
function and supply the four methods and two routines above. This will allow the new
interactor to be inserted in dialog boxes and to be manipulated by the dialog editor.

Page 23

We have claimed in the introduction that the specialized VBT's to be used in a single
application should be made into interactors in order to be inserted into dialogs. However,
the task of making an interactor out of a one-off VBT can be distracting, hence a shortcut
is provided. A special class of generic interactors is provided: they look like grey
rectangles in the dialog editor, and have a single property ("VBT") that can be assigned
only at run-time. At run time, these generic interactors can be given an arbitrary VBT,
and they "become" that VBT. From then on, this foreign VBT appears in the dialog, but is
handled by bypassing the dialog abstraction (i.e. there is no notion of registering event
procedures for generic interactors).

This violation of abstraction turns out to be very useful for experimentation, since
application builders can insert fragments of applications into dialogs with no overhead
(even applications which had been built independently of dialogs). For example, a
specialized graphical editor can be implemented as a VBT using whatever interaction
style is considered necessary; this specialized editor is then embedded into a standard
dialog as a generic VBT, taking advantage of the standard menus, buttons, etc.

6.3 Dialogs
A dialog is a "user interface subroutine". It is, visually, just a collection of interactors,

but from the client point of view each dialog consists of a list of named interactors, and
an association of client procedures with abstract "events" (text strings) generated by the
interactors.

Interactors in a dialog are set up to generate events in response to user actions; the
dialog receives those events and calls the corresponding client procedures. The client
procedures can then inspect and modify the state of the dialog and its interactors.

The state of a dialog consists mostly of the state of its interactors, and this is
accessible only by knowing the name of a particular interactor and operating on it by
"GetProperty" and "SetProperty" methods.

Dialogs also support a notion of "interactor groups", as we have seen. Each interactor
is optionally associated with a "group" interactor (there are no groups of groups).

Dialogs have a minimum size; when placed in a window smaller than their minimum
size they are incompletely shown. Dialog elements have stretching information, which
determines what happens to them when the dialog changes sizes beyond its minimum
size.

Dialogs are saved to disk as data structures (in fact, as descriptions, as returned by the
GetDescription routines). To use them, client programs have to (a) load them from disk,
(b) register procedures to respond to events, and (c) pop them up and take them down.

Dialogs have no knowledge of what kind of interactors they contain; they manipulate
their interactors through generic procedures which can be applied to all interactors. One
might think that the module implementing dialogs imports all the interactor modules, but
actually things work the other way around, to maintain dialogs independent of any given
set of interactors. Each interactor module imports the dialog module, and registers
creation and deletion routines for that interactor with the dialog module. These routines
are inserted in an association list, together with the kind of interactor they apply to (as a
string).

The dialog module must be able to read a dialog description from disk and convert it
into a dialog; this implies creating the necessary interactors. The dialog description

Page 24

contains the kind of each interactor as a string (e.g. "PullDownMenu"). The dialog
module then searches the list of registered interactor creation routines; if it finds a routine
under that kind, it is able to create the corresponding interactor, otherwise a run-time
error is reported.

6.4 Dialog editor
The Modula2+ dialog interface provides routines which can be used to build dialogs

and user interfaces by brute force programming, although this is discouraged. These
routines are used by the dialog editor for its normal operation, and can also be used by
client programs, for example to dynamically change the number or properties of
interactors in a dialog, to move them around, or to hide and expose them.

The dialog editor is structured so that it does not have any knowledge of the kind of
interactors it is dealing with, but still is able to change interactor properties and looks.
This is achieved as follows. When a new interactor class (I) is added to the dialog editor,
a new matching dialog (D) must be supplied with it. This dialog has one field for each
property of the interactor (i.e. for each property P of I, D has has one interactor whose
name in the dialog is P, and whose "State" property represents the value of P).

When the user selects "Change Attributes" in the dialog editor, the interactor is asked
to supply a description of itself (a list of <name,value> pairs). This description is
transformed, in a uniform way, into a dialog setting (which is also a description
consisting of <name, <"State", value>> triples). The dialog is then told to assume this
setting and is popped up, hence showing the current state of the interactor. The user can
then modify the dialog; when the changes are done the dialog is asked to supply its dialog
setting, which is converted back into a description. The description is then forced upon
the interactor, which assumes the new state. In all this process, the dialog editor has no
idea of what the interactor does, what the dialog contains, or what the properties mean.

The looks of an interactor are just some of its properties, hence they can be modified
as described above (The "matching" dialog of an interactor may contain some special
buttons, called "EditLooks" buttons, which pop up dialogs for defining looks properties.)

Since the dialog editor itself uses dialogs in its normal operation, there is a small
problem of bootstrapping the interface. The first version of the editor used dialogs built
"by hand" which were quickly replaced by editor-generated dialogs as soon as there was
sufficient critical mass.

7. Conclusions

7.1 Discussion
We have described a set of modules and tools for building certain classes of user

interfaces. The general approach is to provide a set of ready-to-use interaction primitives,
generically called interactors (buttons, menus, text areas, etc.) and to use an editor to
assemble them into user interfaces.

One way of assembling basic interactors into more complex objects can be provided
at the window system level through the notion of sub-window managers (called splits in
Trestle [Manasse 87], and geometry managers in the X window system [Scheifler 86]);

Page 25

each window can be split into sub-windows, each containing other splits or windows (e.g.
interactors). We have described a way of composing interactors by the notion of dialogs;
dialogs are specialized sub-window managers, which in addition present a standard
simplified event interface to client programs.

To put this approach into context, let us consider alternatives. The obvious one is to
let users build their own interfaces from scratch, using bare window system interfaces.
This has many disadvantages, both in terms of discouraging people from building user
interfaces, wasting people's time, generating bad interfaces and producing inconsistent
interaction styles. Probably, some of this activity will always be required, but the hope is
that it will be limited to generating specialized interactors when really needed, and that
such interactors will be combined with the standard ones whenever possible within a
dialog (or similar) paradigm.

The next step up is to provide a set of tools to help application programmers to build
user interfaces. This has produced various toolkits and user interface management
systems at various levels of sophistication [Pfaff 83, Schulert 85]. These are libraries
which provide a set of standard components and composition methods, and a
programming policy of how to use them.

One can even go to the extreme of setting up an environment where totally
standardized user interfaces are generated with little or no user control over the geometry
of the interface. This meets the abstraction and quick-turnaround criteria, but leaves much
to be desired in flexibility and aesthetics.

Instead of supplying a fixed set of interactors, one could try to provide a special-
purpose language for specifying the appearance and behavior of interactors [Cardelli 85,
Green 86] (window interfaces are a low-level example of this). Such a language gives
more flexibility and coherence in building libraries of interactors, but is very hard to
provide in a clean and effective way; note that ordinary sequential languages are ill
suited, because of the complex non-deterministic and concurrent activities present in user
interfaces. The approach taken in this work is instead to provide a fixed set of basic
interactors known to be useful for most interfaces, and to structure the environment so
that new interactors can be easily added (by making sure that dialogs do not care, or
know, what kind of interactors they contain).

Another approach is to supply a graphical interactor editor for building certain
classes of interactors, instead of building them by a special purpose or a general purpose
language. This is similar to the dialog editor approach, but one level lower, and has been
attempted with some success [Myers 86]. This idea runs into some difficulties, on one
side, by its inability to build arbitrary interactors, and on the other side, by the existence
of relatively small sets of interactors which can cover most standard situations.

Finally, one could design a "user interface specification language" to specify
geometry, appearance, behaviour, etc. [Jacob 86]. This is extremely ambitious and maybe
too hard. Textual languages tend to be very inconvenient when one is trying to specify
two-dimensional information. Hence the message is that user interfaces should not be
described by languages, but should be built by direct manipulation.

7.2 Related work
The dialog paradigm comes from the Macintosh environment [Apple 85], with roots

in work done at Xerox PARC. The Macintosh Resource Editor also includes a dialog

Page 26

editor. However, Macintosh dialogs do not provide any abstraction: dialog clients directly
access the dialog components.

The stimulus for building a dialog editor came from a timely talk by Jean-Marie
Hullot about a user interface editor in a Lisp environment, which later developed into the
ExperTelligence Interface Builder [Hullot 86, Hullot 87]. The latter program turned out to
be very similar to this work, modulo the diversity of the underlying environments.

7.3 Environment and acknowledgements
The software described in this paper is written in Modula2+ [Rovner 85] and runs on

Firefly personal multiprocessors [Thacker 87] under the Taos operating system [McJones
87] and the Trestle window system [Manasse 87]. The tint model comes directly from
Trestle.

Greg Nelson and Mark Manasse provided the window system machinery necessary to
make interactors and dialogs work smoothly.

The current stretching model, generalizing a previously implemented model, was
devised in a discussion with Leslie Lamport.

Page 27

Appendix: Supplied interactors
This appendix describes the kinds of interactors available at the time of writing this

report, together with their properties. Neither the interactors nor their properties are
critical to the general architecture. New interactor classes can be added to the dialog
editor by adding a single program line and recompiling (in lack of dynamic linking). New
properties can be added to interactors without changing any of the interfaces.

A.1 Passive Areas
A passive area constantly shows one look. Passive areas are mostly used to

provide backgrounds, borders, text labels and bitmap icons. As interactors, they
have the following description in terms of name-value pairs:

"Kind" = "PassiveArea"
"Reactivity" = "Active" or "Dormant"
"NormalLooks", "DormantLooks" : IconLooks.T

"Kind" is a property of all interactors (a constant string describing the kind of interactor),
and IconLooks.T is the Modula2+ data type of looks.

A.2 Trill Buttons
A trill button generates events on mouse down-transitions, and then

generates more events (by auto-repeating, up to the corresponding up-
transition) while the mouse cursor is on top of the button.

"Kind" = "TrillButton"
"Event" : Text.T
"Reactivity" = "Active" or "Dormant"
"NormalLooks", "ExcitedLooks", "DormantLooks" : IconLooks.T

The "ExcitedLooks" are shown while the button is generating events.

A.3 Trigger Buttons
Trigger buttons are stateless buttons which generate events on mouse

transitions. There are both down-triggered and up-triggered flavors. If
"protected", one has to click twice to activate them.

"Kind" = "TriggerButton"
"Event" : Text.T
"Transition" = "Up" or "Down"
"Reactivity" = "Active", "Dormant" or "Protected"
"NormalLooks", "ExcitedLooks", "DormantLooks",

"ProtectedLooks": IconLooks.T

A.4 Radio Buttons
An individual radio button has one bit of state; when used in isolation

it is also called an on/off button, since it can be put into an "on" or "off"
state, and toggled by mouse clicks. Events are generated on state changes.

Radio buttons can be logically "grouped" while remaining physically separated. If
there are many buttons in the same group, only one of them can be "on", (they can all be
"off"). Clicking one button in a group will switch off any button that is "on" and set the
current one to the "on" state.

An individual radio button is an interactor with the following description:

Page 28

"Kind" = "RadioButton"
"Event" : Text.T ("something changed" event)
"State" : Text.T (either OffName (shared by the group)
"StateOnName" : Text.T or one of the group's OnNames)
"StateOffName" : Text.T (shared by the group)
"Transition" = "Up" or "Down"
"Reactivity" = "Active", "Dormant" or "Protected"
"OffLooks", "ExcitedOffLooks", "OnLooks", "ExcitedOnLooks",

"DormantLooks", "ProtectedLooks" : IconLooks.T

A.5 Pulldown Menus
A pulldown menu is a button which pops up a list of selections when the

mouse is pressed over it.
"Kind" = "PullDown"
"State" : Text.T
"Reactivity" = "Active" or "Dormant"
"NormalLooks", "ExcitedLooks", "DormantLooks" : IconLooks.T

The following applies to all the menu items:
"NormalMenuLooks", "ExcitedMenuLooks": IconLooks.T.

 (text looks)
where "State" is a list of menu items terminated by '\n', each with format: "event '\t'
looks", where "event" is the event generated when that item is selected, and "looks" is the
string which appears in the menu.

Pulldowns can be grouped. Menus in the same group can be pulled down by rolling
the mouse over them, after the first down-click.

A.6 Scroll Bars
A scroll bar maintains four numeric quantities; a low and high

bound, and a low and high range, in the relation lowBound ≤ lowRange
≤ highRange ≤ highBound. The relative size of the ranges with respect to the bounds
determines the size of a visible cursor which the user can "thumb" along a bar. The user
can also click on the bar on either side of the cursor to "page", click two buttons on either
side of the bar to "scroll", and click two buttons on either side of the scroll buttons to
move the cursor to the "top" and "bottom" of the admissible range. Although a standard
interpretation has just been given for the admissible user actions, the events generated by
those actions are uninterpreted, and can be defined to have different meanings.

"Kind" = "ScrollBar"
"ToLowEvent", "StepDownEvent", "SlideDownEvent", "ThumbEvent",

"SlideUpEvent", "StepUpEvent", "ToHighEvent": Text.T
"Reactivity" = "Active", "Dormant" or "Passive"
"Axis" = "Hor" or "Ver"
"LowBound", "LowRange", "HighRange", "HighBound": Text.T

(actually integers)
"ScrollBgLooks", "SliderSlotLooks", "SliderThumbLooks"

"ScrollJumpOffLooks", "ScrollJumpOnLooks",
"ScrollStepOffLooks", "ScrollStepOnLooks" : IconLooks.T

where the "Jump" and "Step" looks describe the bitmaps used for the "to low" and "step
down" buttons in their north-pointing orientation.

Page 29

A.7 Browsers
A browser is used to select from a variable-size (possibly large) set

of items. Only a subset of the items is visible, and a scroll bar is used to
access the rest of them. In "Single Selection" mode, items are selected
by clicking and dragging; the up-transition determines the selected
item. In "Multiple Selection" mode, items are toggled between the
selected and unselected state by clicking on them or sweeping over
them. An option-click "between" two items, inserts all the currently selected items
between those items, rearranging the list. A browser has the following description:

"Kind" = "Browser"
"State" : Text.T
"SelectionMode" = "Single" or "Multiple"
"Reactivity" = "Active", "Dormant", "ReadOnly" or "Passive"
"TextLooks" plus the scrollbar looks: IconLooks.T;

where "State is a list of menu items terminated by '\n', each with format: "['+' | '-'] looks
'\t' upevent '\t' dnevent". If the first character is a '+' the item is selected; if it is a '-' the
item is non-selected; if it is something else it is considered part of "looks" and the item is
non-selected. "looks" is the string which appears in the browser, "upevent" is the event
generated when that items is deselected, and "dnevent" is the event generated when that
item is selected.
The following property is defined for the GetProperty method:

"Selection" : Text.T
this is a list of looks fields, separated by '\n', one for each currently selected item (at most
one in single selection mode).

A.8 Fatbits
A fatbits interactor maintains a magnified display of bits. The bits

themselves are not maintained by the interactor, so it can be used for
textures, cursors, bitmaps, etc.

"Kind" = "Fatbits"
"FatbitSize" : Text.T (a cardinal, in pixel units)
"HorSize", "VerSize" : Text.T (cardinals, in fatbits units)
"PressEvent", "DragEvent", "ReleaseEvent" : Text.T
"Reactivity" = "Active", "Dormant" or "Passive"
"BackgroundLooks", "BgTintLooks", "FgTintLooks" : IconLooks.T

where "PressEvent" is generated when one fatbit is activated by a down click,
"DragEvent" is generated when one fatbit is activated by dragging, and "ReleaseEvent" is
generate on the up click. The coordinate of the fatbits is passed as the "eventValue" (a
RefPoint) to the procedures registered for those events.

The following properties are defined for the SetProperty method:
"Bitmap" : RefBitmap (paint a fatbits from a bitmap, using the fg and bg tints)
"Fg" : RefPoint (set a fatbits point to the foreground tint)
"Bg" : RefPoint (set a fatbits point to the background tint)
"Paint" = "Fg" or "Bg" (paint the entire fatbits in fg or bg tint)
"Transform" = "TumbleW", "TumbleE", "TumbleN", "TumbleS",

"RotateCW", "RotateCCW", "FlipH" or "FlipV"
(perform a transformation)

Page 30

A.9 Text Areas
A text area is an editable region of text.

"Kind" = "TextArea"
"Event" : Text.T ("something changed" event)
"State" : Text.T (the entire text in the text area)
"Reactivity" = "Active", "Dormant", "ReadOnly" or "Passive"
"TextLooks" : IconLooks.T

The following properties are are recognized by SetProperty:
"FocusOn" : RefTime (grab the focus)
"SelectAll" : RefTime (select the entire text)

A.10 Text Ports
A text port is a text area with a scroll bar.

"Kind" = "TextPort"
"Event" : Text.T ("something changed" event)
"State" : Text.T (the entire text in the text port)
"Reactivity" = "Active", "Dormant", "ReadOnly" or "Passive"
the text looks plus the scrollbar looks : IconLooks.T

SetProperty recognizes the text area properties.

A.11 Text Lines
A text line is a text area showing a single line of text.

When the text overflows, buttons for horizontal scrolling
become visible. A text line intercepts carriage returns so that they are not inserted into the
text, and are interpreted as "completion events" (meaning "do it").

"Kind" = "TextLine"
"Event" : Text.T ("something changed" event)
"CompletionEvent" : Text.T (on carriage return)
"State" : Text.T (the entire text in the text line)
"Reactivity" = "Active", "Dormant", "ReadOnly" or "Passive"
 "LftArrowHeadLooks", "LftArrowTailLooks" plus the text looks:

 IconLooks.T
The "Arrow" looks are the bitmaps used for scroll buttons in their left-pointing versions.
SetProperty recognizes the text area properties.

A.12 Numeric Areas
A numeric area is a text line maintaining a numeric quantity between

two bounds. The numeric value can be modified by editing, or by clicking
"increment" and "decrement" buttons. Legal strings are numeric strings, "infinity",
"+infinity" and "-infinity". Unrecognized strings are ignored, and the numeric value is
unchanged. The strings are parsed and checked for legality and in-boundness when typing
carriage return, or when clicking the increment and decrement buttons.

"Kind" = "NumericArea"
"Event" : Text.T ("something changed" event)
"CompletionEvent" : Text.T (on carriage return)
"State" : Text.T (the integer)
"LowBound", "HighBound" : Text.T (the integer bounds)
"Reactivity" = "Active", "Dormant", "ReadOnly" or "Passive"
"IncDecButtons" = "Yes" or "No" (increment/decrement butt. visible)
"NumIncOffLooks", "NumIncOnLooks", "NumDecOffLooks",

Page 31

"NumDecOnLooks" plus the text line looks : IconLooks.T
SetProperty recognizes the text area properties.

A.13 Transcripts
A transcript is a text line (input) and a text port

(output) packaged to provide a typescript with
editable history.

"Kind" = "Transcript"
"Event" : Text.T (input area modified)
"CompletionEvent" : Text.T (cr in the input area)
"InState" : Text.T (the entire text in the input area)
"OutState" : Text.T (the entire text in the output area)
"Reactivity" = "Active", "Dormant", "ReadOnly" or "Passive"
the text port and the text line looks: IconLooks.T

GetProperty recognizes the following property, extracting the contents of the input area
and resetting it to empty.

"State" : Text.T
SetProperty recognizes the following property, appending a text to the end of the output
area.

"State" : Text.T

A.14 Generic Interactors
A "generic" VBT interactor can host an arbitrary VBT. This way, arbitrary

VBT's can be embedded into dialogs without having to make them into full
interactors.

"Kind" = "Generic"
The following property is defined for SetProperty:

"VBT" : VBT.T (turn the generic vbt into a specific vbt)

Page 32

References

[Apple 83] Apple Computer Inc. MacDraw, program documentation.

[Apple 85] Apple Computer Inc. Inside Macintosh, Addison-Wesley, 1985.

[Buxton 80] W.A.S.Buxton, R.Sniderman: Iteration in the design of the human-computer interface.
Proc. of the 13th Annual Meeting, Human Factors Association of Canada. 1980, pp. 72-81.

[Cardelli 85] L.Cardelli, R.Pike: Squeak: a language for communicating with mice, Twelfth ACM
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 85).

[Green 86] M.Green: A survey of three dialogue models, ACM Transactions on Graphics, Vol. 5, no. 3,
July 1986, pp 244-275.

[Jacob 86] R.J.K.Jacob: A specification language for direct-manipulation user interfaces, A C M
Transactions on Graphics, Vol 5, no 4, October 1986, pp. 283-317.

[Hullot 86] J-M.Hullot: SOS Interface, Proc. of the 3rd Workshop on Object Oriented Programming,
Paris, France, Jan. 1986.

[Hullot 87] Interface Builder, a program distributed by ExperTelligence, 559 San Ysidro Road, Santa
Barbara, CA. March 1987.

[Manasse 87] M.S.Manasse, G.Nelson: The Trestle window system. Digital Equipment Corporation,
Systems Research Center, Research Report (to appear).

[McJones 87] P.McJones, G.Swart: Evolving the Unix system interface to support multi-threaded
programs, Digital Equipment Corporation, Systems Research Center, Research Report (to appear).

[Myers 86] B.A.Myers, W.A.S.Buxton: Creating highly interactive and graphical user interfaces by
demonstration, Computer Graphics Vol.20, no. 4, August 1986, pp 249-258.

[Pfaff 83] G.Pfaff, Ed.: User interface management systems, Springer-Verlag, New York, 1985.

[Rovner 85] P.Rovner, R.Levin, J.Wick: On extending Modula-2 for building large, integrated systems,
Digital Equipment Corporation, Systems Research Center, Technical Report no. 3, January 1985.

[Scheifler 86] R.W.Scheifler, J.Gettys: The X window system, ACM Transactions on Graphics, Vol. 5, no.
2, April 1986, pp. 79-109.

[Schneiderman 83] B.Schneiderman: Direct manipulation: a step beyond programming languages,
IEEE Computer, Vol 16, no. 8. Aug. 1983. pp. 57-69.

[Schulert 85] A.H.Schulert, G.T.Rogers, J.A.Hamilton: ADM - a dialog manager, Proc. of the conference
on Human Factors in Computing Systems, San Francisco, April 14-18, 1985.

[Smith 83] D.C.Smith, C.Irby, R.Kimball, W.Verplank, E.Harslem: Designing the Star user interface,
Byte 7, 4, April 1982, pp 242-282.

[Thacker 87] C.Thacker, L.Stewart: Firefly: a multiprocessor workstation, Proc of the Second
International Conference on Architectural Support for Programming Languages and Operating
Systems, Palo Alto, CA, October 1987 (to appear).

