19

Blossoming:
A Connect-the-Dots Approach
to Splines

by Lyle Ramshaw

June 21, 1987

dlilgliltiall

Systems Research Center
130 Lvtton Avenue
Palo Alto, California 94301

Systems Research Center

DEC'’s business and technology objectives require a strong research program. The Systems
Research Center and two other corporate research laboratories are committed to filling that
need.

SRC opened its doors in 1984. We are still making plans and building foundations for our
long-term mission, which is to design, build, and use new digital systems five to ten years
before they become commonplace. We aim to advance both the state of knowledge and the
state of the art.

SRC will create and use real systems in order to investigate their properties. Interesting
systems are too complex to be evaluated purely in the abstract. Our strategy is to build pro-
totypes, use them as daily tools, and feed the experience back into the design of better tools
and the development of more relevant theories. Most of the major advances in information
systems have come through this strategy, including time-sharing, the ArpaNet, and
distributed personal computing.

During the next several years SRC will explore high-performance personal computing,
distributed computing, communications, databases, programming environments, system-building
tools, design automation, specification technology, and tightly coupled multiprocessors.

SRC will also do work of a more formal and mathematical flavor; some of us will be con-
structing theories, developing algorithms, and proving theorems as well as designing systems
and writing programs. Some of our work will be in established fields of theoretical computer
science, such as the analysis of algorithms, computational geometry, and logics of program-
ming. We also expect to explore new ground motivated by problems that arise in our
systems research.

DEC is committed to open research. The Company values the improved understanding that
comes with widespread exposure and testing of new ideas within the research community.
SRC will therefore freely report results in conferences, in professional journals, and in our
research report series. We will seek users for our prototype systems among those with
whom we have common research interests, and we will encourage collaboration with
university researchers.

Robert W. Taylor, Director

Blossoming: A Connect-the-Dots Approach to Splines

Lyle Ramshaw

June 21, 1987

L L 0 % 7 (0 /. 7 /,’j/ " _,"/7// 7% N N \\\?\‘
77 7% 7 7 7 7 \ NN
v A= ; % . % {2
Z Z ’ 7 7 N
Y % % % RN
4 7 7 / 3
% %, 7 . 7 IR
= - 7 / 7 N
1 5 , Y | . / X
s A M / Q
i N Nsm, Wy / Q
% 17 7 RN A S 7 RN
LN S, |) Sy 7 NN
o /; %, S e e Ef(y - //Z N
R 7 e A v SRS ISSSIgAN N\
e) = L Vi N I
g 2 & ‘:: /’f

7 b 7 - \ NS
/ 7 Z é ““,a %j P X Z §\\§

a y 9 | A A
> 7 // N N \\\
A 7 / S y N INY
~ 7 \ g 777 AN

" .,\ 7 Q , A 2 4 2 A A R 3
Sy N N
7 "" / / //72/ 7 ///Z, 3 ///7 ;,//; /7 :’f’" \\\§1 is
0 R AR/ AN
) //////// v ey R
i D) PO | SNSIRS
< 4 N \\\\\\:

Figure 9.7, on page 56, is reprinted with permission from page 28 of Catastrophe
Theory and its Applications by Tim Poston and Ian Stewart, published by Pitman
of London in 1978.

©Digital Equipment Corporation 1987

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing, or
republishing for any other purpose shall require a license with payment of fee to the
Systems Research Center. All rights reserved.

Author’s Abstract

The standard explanations of the theory underlying Bézier and B-spline curves
and surfaces aren’t as simple as they should be. They have beautiful figures, and
those figures clearly illustrate the geometry of the associated algorithms. But the
labels on the points in the figures are a disaster! In particular, there is no easy way
to tell, from the labels, what geometric relationships hold among the labeled points.
This paper proposes a new labeling scheme, based in large part on the work of Paul
de Faget de Casteljau.

The key idea behind this new labeling scheme is a classical mathematical prin-
ciple: a polynomial in a single variable of degree n is essentially equivalent to a
symmetric polynomial in n variables that is linear in each variable separately. For
example, a quadratic form on a vector space is essentially equivalent to a symmet-
ric bilinear form on that vector space. We christen this principle the Blossoming
Principle, and we refer to the bilinear form as the blossom of the quadratic form.
The advantage of blossoming is that bilinear maps are simpler than quadratic maps.
When even bilinear maps aren’t simple enough, we can use the tensor-product con-
struction to convert the bilinear blossom into a linear blossom, defined on a space
of tensors.

The Bézier curves and surfaces that are used in computer-aided geometric de-
sign are polynomial functions from a parameter space to an object space. By apply-
ing the Blossoming Principle to them, we can transform each such function into its
blossom, which is a symmetric, multiaffine function. The blossom of a polynomial
curve or surface provides lucid labels both for its Bézier points and for all of the
intermediate points that arise during the de Casteljau Algorithm.

Furthermore, as de Casteljau discovered, the blossoming technology extends to
handle spline curves with parametric continuity quite neatly. The blossom of such
a spline curve provides lucid labels both for its de Boor points and for all of the
intermediate points that arise during the de Boor Algorithm. Spline curves with
geometric continuity and spline surfaces with triangular patches present unsolved
labeling challenges, however.

Capsule Review

A Bézier curve is a parametric polynomial curve. For example, the parametric
equations z = 4¢3 4 3t2 —6t+5 and y = t3 — 4t2 + 2t — 1 define a cubic Bézier curve in
the z-y plane. A spline curve is a curve consisting of a sequence of segments of Bézier
curves, where consecutive segments are constrained to meet at joints with some
degree of continuity. Spline curves and the analogous spline surfaces are commonly
used in computer aided design to model curved shapes ranging from typographic
fonts to automobile bodies.

This paper presents a new perspective on Bézier and spline curves, based on
a one-to-one correspondence between univariate polynomials of degree k and sym-
metric k-variate polynomials of degree 1 in each variable. (For example, the cubic
polynomial F(t) = 4t3 + 3t? — 6t + 5, which defines the z coordinate as a function of
the parameter t in the curve mentioned earlier, is given by F(t) = f(t,t,t), where
f(u,v,w) = 4uvw + uv + uw + vw — 2u — 2v — 2w + 5.) Using this perspective, the
author derives the standard constructions for Béziers and splines in a manner that
gives perspicuous labels to the points arising at all the steps of these constructions,
and discusses the conditions that govern the degree of continuity achieved at the
joints of splines. He also explores a variety of related topics, including characteriza-
tion of lower-degree Bézier curves as degenerate higher-degree curves, approximation
of higher-degree Bézier curves by lower-degree curves, and extensions of the theory
from curves to surfaces, from parametric continuity to geometric continuity, and
from parametric polynomial functions to parametric rational functions. A number
of tantalizing open questions remain concerning these extensions.

The text is intended to be self-contained, requiring no previous study of the
theory of splines, and it succeeds in this goal. The key ideas are carefully introduced,
examined from multiple points of view, and illustrated with numerous figures and
examples. The text does, however, demand of the reader a certain ability to deal
comfortably with mathematical abstactions—the quality that my college math pro-
fessors referred to as “mathematical maturity.” Less mathematically inclined read-
ers may prefer to study the author’s shorter paper [1] on splines, which presents a
subset of the results given here and is less demanding mathematically. The reader
who puts forth the necessary effort in studying the present text will be not only
rewarded with considerable insight into the theory of Béziers and splines, but also
treated to a variety of interesting mathematical sidelights, such as an unusual proof
of the theorem that the medians of a triangle trisect each other and a discussion of
Zeeman’s “umbilic bracelet” (characterizing the set of cubics with three real roots).

Jim Saxe

(1] Lyle Ramshaw. “Béziers and B-splines as multiaffine maps.” To appear in
Theoretical Foundations of Computer Graphics and CAD, the proceedings of
a NATO International Advanced Study Institute in Lucca, Italy during July,
1987. Springer-Verlag (1987).

Contents

A

B

Introduction
1 Some intriguing labels

The Three Principles

2 The Blossoming Principle C e e
3 The blossoms of Béziers e .
4 The Tensoring Principle e e e
5 The Homogenizing Principle
6

The de Casteljau technique for specifying curves

Perspectives on Blossoming

L

......

7 The algorithmic view of a blossom’s n arguments . .

8 The differential view of a blossom’s n arguments
9 The algebraic view of a blossom’s n arguments

Adjusting the Degree

10 Degree raising C e e
11 Degreelowering
12 Bipolynomial surfaces e e e -
13 Degree splitting and degree joining

Spline Curves

14 On blossoms and joints
15 The blossoms of splinecurves
16 Overloading the notation for a spline blossom
17 The trellis of a spline curve e

18 The blossoms of B-splines

19 Raising the degree of a spline curve
20 Geometric continuity for splinecurves

Spline Surfaces

21 Joints between polynomial surfaces
22 Spline surfaces with rectangular patches
23 Spline surfaces with triangular patches

The Rational Case

24 On choosing scale factors

25 Controlling and joining rational curves .

26 Multiprojectivity in the weak sense

Acknowledgments
References
Index

Index of Notations

D]

.............

D

Part A: Introduction

This is a mathematical paper that presents, in seven parts, a novel approach to
the study of spline curves and surfaces. One important benefit of the new approach
is a distinctive scheme for labeling the points in diagrams of splines. The primary
intent of this introductory Part A is to give the reader a taste of the glories of that
labeling scheme.

1. Some intriguing labels

One of the basic problems in computer-aided geometric design is the mathe-
matical modeling of smooth shapes. A popular approach to this problem involves
the use of piecewise parametric polynomial functions, which are called splines. Each
of the three adjectives “piecewise,” “parametric,” and “polynomial” reflects a choice
of strategy.

The choice of a piecewise approach means that different regions of the smooth
curve or surface being modeled are specified by different systems of equations. This
is convenient because it allows for local flexibility: one region of the shape can be
adjusted without affecting distant regions. In order to guarantee the smoothness
of a piecewise model, appropriate constraints must be placed on adjacent pairs of
regions so as to achieve a smooth joint between one region and the next.

Parametric methods are modeling methods that describe a shape in terms of
auxiliary parameters. For example, the formula F(t) := (cos(t),sin(t)) is a para-
metric description of the unit circle in the plane, with t as the parameter.* The
other popular class of modeling methods is $mplicit methods. The unit circle is
described implicitly by the equation G(z,y) = 1, where G(z,y) := z? + y?. The
choice between parametric and implicit methods arises because the primordial ob-
Jects of mathematics are functions rather than shapes. Suppose that we want to
model a p-dimensional shape S sitting in a ¢-dimensional surrounding space Q. In
parametric methods, we invent an auxiliary parameter space P of dimension p and
we model the shape S as the range S := F(P) of a function F: P — Q. In implicit
methods, on the other hand, we invent an auxiliary space R of dimension r := q—p
and we model the shape S as the inverse image S := G~!(2), under some function
G:Q — R, of some chosen point z in R. Both schemes involve specifying the shape
S as more than just a set. In parametric methods, each point x on the shape S has
an associated parameter value F~!(x), while, in implicit methods, each point y not
on the shape S has an associated value G(y). Parametric and implicit methods are
both useful and important, but this paper is concerned exclusively with parametric
methods.

A function F: P — Q is called a polynomial function of degree n if each coor-
dinate of the result point F(u) in @ can be expressed as a polynomial of degree
n in the coordinates of the argument point u in P. (Throughout this paper, we
shall interpret the phrase “of degree n” to mean “of degree n or less,” a concept

* We shall use the relation symbol “:=” in equations that are being used to define
the symbol on the left-hand side. By contrast, equations written with the standard
equality symbol “=" assert a relationship between quantities defined elsewhere.

2 INTRODUCTION 1.1

that is often described by the phrase “of order n + 1.”) Since polynomials of low
degree are easy to evaluate and to differentiate, the class of polyomial functions of
degree n is one obvious choice to use when building models of smooth shapes, and
it is the one on which we shall focus in this paper. Rational functions of degree
n are another reasonable choice, which we shall discuss briefly in Part G. Various
classes of transcendental functions could also be used; for example, the function
F(t) := (cos(t),sin(t)) mentioned above is a transcendental parametric model of
the unit circle. By the way, the unit circle also has quadratic rational parametric
models, such as F(t) := ((1 - t?)/(1 +t?),2t/(1+t?)). But, as we shall see shortly,
the unit circle has no polynomial parametric model of any finite degree.

To reiterate, our overall plan is to model smooth shapes as the ranges of piece-
wise polynomial functions. For the rest of Section 1, we shall restrict ourselves,
for simplicity, to the case of smooth curves, and we shall choose the real num-
bers P := R to be the parameter space. That is, we shall build spline curves by
assembling segments F([s,t]) of n-ic polynomial curves F:R — Q. We begin by
considering a single curve segment in isolation.

What if n, the degree bound, is one? If F:R — Q is a polynomial curve
of degree one, a segment F([s,t]) is a line segment. The obvious way to specify
such a segment F([s,t]) is by giving its endpoints F(s) and F (t) as points in the
object space Q. Every choice of two endpoints determines a corresponding function
F uniquely, and in a geometrically intuitive and numerically stable manner. (If it
happens that F(s) = F(t), the associated function F will be of degree zero, that
is, constant, as well as being of degree one.) If we know the endpoints F(s) and
F(t), we can compute any other point F(u) for u in [s,t] by performing a linear
interpolation.

The parametric polynomial curves F: R — Q of degree two are more interesting.
First, since the acceleration vector F"'(u) is constant, we observe that the curve F
must lie in a plane in Q. Everyone knows that the plane curves that can be described
implicitly by a polynomial of degree two are precisely the conic sections. Indeed,
any conic section lying in any plane in the object space @ can be described implicitly
by using ¢ — 2 linear polynomials to determine the plane and then one quadratic
polynomial to determine the conic. But we are interested in parametric modeling
methods, and it turns out that only parabolas can be parameterized with quadratic
polynomials. If each coordinate of the point F(u) is given by a polynomial in u,
then the curve F must go off to infinity in precisely one direction (or its opposite)
as u — +oo. Thus, ellipses are out because they don’t go to infinity at all, while
hyperbolas are out because they go to infinity in more than one direction.

What is a good way to specify an arc F([s,t]) of a parabola F: R — Q7 Fig. 1.1
shows one technique, in which the segment F([0, 1]) is determined by specifying three
points in Q, called the Bézier points of the parabolic arc F([0,1]): the starting point
F(0), the point where the starting and ending tangents intersect, and the ending
point F(1). In Fig. 1.1, these three Bézier points are labeled f(0,0), f(0,1), and
£(1,1). If we want to compute the point F(t) for ¢ in [0,1] from the three Bézier
points, we can do so by performing three linear interpolations as shown. First,
we interpolate between f(0,0) and f(0,1) to find f(0,t). Second, we interpolate

1.2 SOME INTRIGUING LABELS 3

f(0,1)

F(O) = f(oa 0)

/
/

/ F(1) = £(1, 1R)/ F(1) = f(1,1)

Fig. 1.1. The de Casteljau Algorithm for a quadratic Bézier curve

£(0,0,1) £(0,t,1) 7(0,1,1)

F(t) = f(¢,t,t)

f(0,0,¢) f(t,1,1)

F(l) = f(ls 1,1)

f(o!oi 0) = F(O)
Fig. 1.2. The de Casteljau Algorithm for a cubic Bézier curve

between f(0,1) and f(1,1) to find f(¢,1). Finally, we interpolate between f(0,t)
and f(t,1) to find F(t) = f(t,t). This algorithm for computing F(t) from the Bézier
points of the segment F([0,1]) is called the de Casteljau Algorithm. Bézier points
and the de Casteljau Algorithm are standard material; Bohm, Farin, and Kahmann
have written a fine survey of this area [5]. The function f: R2? — Q appearing in the
labels in Fig 1.1 is not standard, however; it is our first example of a blossom. In the
quadratic case, we can think of the blossom value f(u,v) as the point of intersection
of the tangent lines to the parabola at F(u) and F(v).

Fig. 1.2 shows a segment F([0,1]) of a polynomial cubic curve. The four points
labeled f(0,0,0), f(0,0,1), £(0,1,1), and f(1,1,1) are the four Bézier points of this
cubic segment. (The cubic F shown in Fig. 1.2 is degenerate in the sense that it lies
in a plane; a nondegenerate polynomial cubic is a twisted space curve, and the four
Bézier points of a segment of such a cubic would not be coplanar.) The remaining
points and lines are the result of using the de Casteljau Algorithm to compute the
point F(t) = f(t,t,t) by doing six linear interpolations, starting with the Bézier
points. The function f(u,v,w) appearing in the labels is the blossom of F. This
blossom f:R3 — Q is a symmetric function of three real arguments; that is, the
value f(u,v,w) doesn’t depend on the order of u, v, and w. Furthermore, the
blossom f is related to the curve F by the identity F(u) = f(u,u,u). Note that the
incidence structure of the points and lines in Fig. 1.2 is reflected in the labels: two

4 INTRODUCTION 1.3
9(6,6,6) (1 1 2) 9(1’212) 9(1,2,3)

9(4) 8, 6)
9(2,2,3)

9(2,3,3)

9(3,4,6)

9(3,4,4) 9(3,3,4) 9(2,3,4)
Fig. 1.3. The Bohm-Sablonniére Rules for a cubic spline curve

points lie on a common line in Fig. 1.2 if and only if two out of the three arguments
in their labels are the same. The distance ratios are also implied by the labels: for
example, the point f(t,t,1) lies t of the way from f(0,t,1) to f(1,¢,1). (Symmetry
implies that f(1,t,1) = f(¢,1,1).) More generally, whenever we vary one of the
arguments of f while holding the other two fixed, the value of f varies along a
straight line at a constant rate—in fancier language, the function f is triaffine.

In fact, the labels in Fig. 1.2 have so many nice properties that they capture
all of the structural information in the diagram. Suppose that we were told that
f was a symmetric, triaffine function and that the four outer vertices in Fig. 1.2
were the points £(0,0,0), f(0,0,1), f(0,1,1), and f(1,1,1). And suppose that
we wished to compute f(t,t,t). We would be able to reconstruct Fig. 1.2 from
this information, even if we had never heard of Bézier points or the de Casteljau
Algorithm. We would linearly interpolate between the four outer points, taken in
pairs, to compute the three points that have one ¢ in their labels. A second stage
of interpolations, taking these three points in pairs, would give us the two points
f(0,t,t) and f(t,t,1). A third stage would use a single interpolation would give us
the desired point f(t,t,t) = F(t).

Labels this good are worthy of study. Our first major goal in this paper is to
construct the blossom f of an n-ic polynomial curve or surface and to explore the
connection between this blossom and the Bézier-de Casteljau theory of polynomial
curves and surfaces. The other major goal is to investigate the extent to which the
same ideas can be extended to parametric curves or surfaces with more than one
polynomial piece, that is, to splines.

Fig. 1.3 shows a spline curve G defined on the interval [0,6] and composed of
five pieces. The curve G(u) follows one polynomial cubic for u in [0, 1}, then switches
over to a different polynomial cubic for u in [1,2], and so on for [2,3], (3,4], and
[4,6]. (The fifth parameter interval is twice as long as the rest; in general, parameter
intervals can have arbitrary lengths.) The joints between each adjacent pair of cubics

1.4 SOME INTRIGUING LABELS 5
9(6,6,6) 9(1,2,26) 0119 3)

g(4a 6, 6)

9(2,2.6,2.6)

9(0,0,0)

4(2.6,2.6,2.6)} 19(2,2.6,3)

9(2.6,2.6,3

9(3. 4, 6)

9(2.6,3,4) °9(2,3,4)

Fig. 1.4. The de Boor Algorithm for a cubic spline curve

have C? continuity; that is, no jump is allowed in position, velocity, or acceleration,
although a jump in jerk is permitted. (Jerk is a name from the automobile industry
for the third derivative of position with respect to time.) But the behavior at the
endpoints u = 0 and u = 6 is entirely unconstrained. This state of affairs is described
in the trade by saying that the knot sequence of G is (0,0,0,0,1,2,3,4,6,6,6, 6). As
before, the labeling function g(u, v, w) is a symmetric function of three arguments,
related to the spline G by the identity G(u) = g(u,u,u). Furthermore, the function
g behaves triaffinely. For example, as u varies from 2 to 6, the point 9(u,3,4)
moves at a constant rate along the line segment joining ¢(2,3,4) to g(6,3,4). The
outermost points in this diagram have labels of the form g(r,s,t) where (r,s,t) is
a triple of consecutive knots. They are precisely the de Boor points by which the
spline G is controlied in the standard theory [5]. Furthermore, for each pair (s, t) of
consecutive knots, the Bézier points of the cubic polynomial segment G([s, t]) are the
points g(s, s, 8), g(8,8,t), g(s,t,t), and g(¢t,t,t). Thus, the multiaffine labels help to
clarify the relationship between the de Boor points of a spline curve and the Bézier
points of its segments, a relationship first explored by Bohm [3] and Sablonniére [37].
(The initial and final knots O and 6 are repeated four times, instead of only three,
because even the position of G(u) is allowed to jump discontinuously as u moves
through O or 6. This four-fold repetition means that there are two different de Boor
points labeled ¢(0,0,0); the first of them gives lim, 1o G(u), while the second gives
limy o G(u). Only the second is shown in Fig. 1.3.)

A word of warning: since G(u) is a cubic spline curve rather than a single
polynomial cubic, the function g in Fig. 1.3 can’t be as simple as the f in Fig. 1.2.
The extra complexity shows up in the fact that g(u, v, w) is well-defined only when
its three arguments are fairly close together—in particular, when they don’t skip
over any knots. For example, the value g(u,3,4) is well-defined only for u between
2 and 6.

Fig. 1.4 shows the same spline curve G as in Fig. 1.3, but with the auxiliary

68 INTRODUCTION 1.4

points and lines that we would draw to compute G(2.6) = ¢(2.6,2.6,2.6). Starting
from the de Boor points, we construct new points that have more and more copies of
2.6 among their g-arguments by performing linear interpolations between previously
constructed points. This algorithm for evaluating a spline curve is called the de
Boor Algorithm [5].* With these labels on the points, the de Boor Algorithm seems
like a fairly obvious extension of the de Casteljau Algorithm. Indeed, one of the
best reasons to use labels based on blossoms is the clarification that they bring to
parametrically continuous spline curves.

Where did blossoming come from, and who deserves the credit? We shall close
this introduction by considering those historical questions briefly.

As applied to a single polynomial function, blossoming is a standard mathe-
matical tool in every respect except for the name “blossoming,” which I coined for
this paper. For example, mathematicians have known for some time that there is
a unique symmetric, bilinear form associated with any quadratic form on a vector
space (28, 32]. That theorem is precisely the homogeneous, degree two case of blos-
soming. Furthermore, there is nothing tricky about transferring that result to the
nonhomogeneous, degree n case, which is the case that is needed to transiorm a
polynomial curve such as the F of Figs. 1.1 or 1.2 into its multiaffine blossom f.

Paul de Faget de Casteljau was the first to apply blossoming to the polynomial
curves and surfaces used in computer-aided geometric design. He also gets the credit
for discovering that the blossoming technology extends very neatly to parametrically
continuous spline curves, as described in his 1984 notes entitled “Formes & Péles,”
that is, shapes specified by poles [14]. A pole, in de Casteljau’s terminology, is a point
such as £(0,0,1) or g(2,3,4), that is, a value of a blossom. Someone familiar with de
Casteljau’s work wouldn’t have found anything new in this introduction, except for
the terminology and notation that I developed while independently stumbling upon
the same ideas. But many of the techniques and results in the subsequent sections,
such as the use of the symmetric variant of the tensor-product construction, appear
for the first time in these pages (to the best of my knowledge).

Carl de Boor and Klaus Hollig have been approaching blossoming in their recent
work on B-splines. In the traditional theory, B-splines are defined by means of a
formula involving divided differences. From this formula, one proves a recurrence
relation. And from the recurrence relation, one derives the de Boor Algorithm. In
their paper “B-Splines Without Divided Differences,” de Boor and Hollig showed
that one can take the recurrence relation as basic [13]. In this paper, we shall explore
the remaining possibility, taking the de Boor Algorithm as basic and deriving the
recurrence relation and the divided-difference formula from it. One consequence
of this change of perspective is that primal and dual are reversed. In the work
of de Boor and Hollig, B-splines are primal objects, and their duals are called the
dual functionals, written A;,4+1. In this paper, the same objects that de Boor
and Hollig refer to as dual functionals appear as a primal objects, in particular,

* Comparing our Fig. 1.4 with the corresponding Fig. 18 in the survey paper 5],
it is amazing how well their figure is able to communicate the de Boor Algorithm
under the severe handicap that its points are just labeled “d’ ”

1.4 SOME INTRIGUING LABELS 7

as the n-contravariant tensors A;n+1 = tit1°*fitn. B-splines are the duals of
these n-contravariant tensors, that is, they are n-covariant tensors, as described in
Remark 18.13.

In a fuzzier sense, the large body of work on algorithms for knot insertion was
also moving in the general direction of blossoming. A spline curve, like the G(u)
in Fig. 1.4, is a function; the de Boor Algorithm provides a way to evaluate that
function, that is, to evaluate blossom values of the form g(u, u,u), whose arguments
are all equal. Knot-insertion algorithms took a step closer to blossoming by widening
the scope of discourse to include blossom values g(u, v, w) whose arguments are not
equal. In particular, one way to compute the blossom value g(u,v,w) is to use a
knot-insertion algorithm to insert u, v, and w as knots (assuming that u, v, and
w are close enough together to make g(u,v,w) well-defined). On the other hand,
knot-insertion algorithms also took a step away from blossoming by working with
sequences of knots and sequences of control points, hence foolishly and needlessly
giving up on the concept of the spline as a function. Blossoming is what results
when we take the spline G(u) = g(u,u,u) and allow ourselves to evaluate it, as a
function, on n-tuples of parameter values (u,v,w) whose components are not all
equal.

Part B: The Three Principles

The theory behind the intriguing labels of Section 1 depends upon three classical
mathematical principles, which we shall review and customize for our purposes in
this part. The Blossoming Principle is the first of these, fairly easy to understand
and yet very powerful. The Tensoring Principle comes next; it is technically more
sophisticated, and its payoff is not as dramatic. But, once we have invested the
necessary effort, it will reward us with valuable algebraic insights into polynomial
curves and surfaces. Third is the Homogenizing Principle, which is both simple and
familiar; it comes into play when differentiation is involved. While investigating
these three principles, we shall also study the relationships between them and the
standard techniques that are used for controlling polynomial curves and surfaces in
computer-aided geometric design.

2. The Blossoming Principle

The Blossoming Principle is the core idea behind these new labelings. It allows
us to replace a function of high degree in one variable by an equivalent function of
degree one but with lots of variables.

Consider the cubic polynomial F(t) = 7t3+6t? — 3t +5. Suppose that we want
to construct a trivariate polynomial f(u,v,w) of the form

f(y,v,w) = riuvw + rauv + rauw + ryvw + rsu +rev + rrw + g

that satisfies the identity f(t,t,t) = F(t); in other words, we want the main diagonal
of f(u,v,w) to agree with F. To achieve this correspondence, we must have ry =17,
ra+rs+ry =6, r5 +re +rr = —3, and rg = 5. We can determine f uniquely if we
also demand that f(u,v,w) be a symmetric function of its three arguments. This
symmetry condition forces us to make r; = r3 = rq and rs = rg = ry, resulting in
the unique choice

f(u,v,w) := Tuvw + 2uv + 2uw + 2vw —u — v —w+3.

This argument can be generalized quite a bit; but first, a question of nomen-
clature. What shall we call a polynomial, such as the f above, that has degree one
in each of its variables separately? The name “multilinear” pops to mind, but there
is the problem that the word “linear” often implies “homogeneous” as well as “of
degree one.” (A polynomial is homogeneous of degree n when all of its terms have
total degree precisely n; in particular, f would have to have r; = rg =-:- =rg =0
in order to be multilinear in the homogeneous sense.) To avoid confusion, we shall
use the word “affine” instead of “linear” when we mean “of degree one, but not
necessarily homogeneous.” In particular, we shall say that f is multiaffine.

In fact, there are two parallel worlds in which mathematics of this flavor can
be done: the linear world and the affine world. The linear world consists of linear
spaces (also called vector spaces) and homogeneous linear maps between them. The
natural notion of a polynomial map in this world demands that the polynomials in-
volved also be homogeneous. The less familiar affine world consists of affine spaces
and affine maps between them. An affine space is like a linear space except that no

2 THE BLOSSOMING PRINCIPLE 9

point has been distinguished as the origin. An affine map is of degree one, but it
is not necessarily homogeneous; indeed, since affine spaces don’t have distinguished
origins, it doesn’t really make sense to ask whether an affine map is homogeneous or
not. Similarly, in the affine world, the natural notion of polynomial maps does not
demand that they be homogeneous. In this paper, we shall focus on the affine world
more than most mathematicians typically do, because it is the home of the para-
metric polynomial curves and surfaces that are used in computer-aided geometric
design. If F: P — Q is such a curve or surface, note that neither the parameter space
P nor the object space Q has a distinguished origin, and note that the polynomials
involved in defining F are generally not homogeneous.

With this nomenclature, we can describe the phenomenon exemplified by F
and f quite concisely: if F(t) is any cubic polynomial, there exists a unique sym-
metric triaffine polynomial f(u,v,w) that agrees with F on the diagonal, that is,
that satisfies the identity f(t,,t) = F(t). Going backwards from f to F is even
easier: if f(u,v,w) is triaffine, the formula F(t) := f(t,t,t) always defines a cubic
polynomial F, whether or not f is symmetric, and without any need to manipulate
coefficients. Thus, univariate cubic polynomials and symmetric triaffine polynomials
are equivalent concepts; they are just different forms of the same underlying math-
ematical object. That doesn’t mean, however, that they are equally easy to work
with in specific situations. We shall find that, in many cases, the symmetric triaffine
version reveals the underlying structure more clearly than does the cubic version of
the same abstract entity. Based on the intuition that the structure bound up in F
is unrolled and revealed in f, we shall refer to the process of deriving f from F as
blossoming, and we shall refer to f as the multiaffine blossom of F. (You may or
may not like the name “blossoming,” but I certainly feel that some name should be
chosen. Mathematicians seem mysteriously content to refer to f as “the symmetric
triaffine function that corresponds to F,” where the sense of the correspondence
must be inferred from the context. I prefer the phrase “the blossom of F)

Any function defined by polynomials can be blossomed. For computer graphics
applications, we shall extend our blossoming expertise in two ways. First, we shall
generalize from degree three to degree n. Second, we shall deal with functions from
one multidimensional affine space to another, rather than with functions from the
reals to the reals. We begin by stating some definitions.

Let P be a parameter space and Q be an object space, both affine spaces over
the real numbers R. Addition and scalar multiplication aren’t defined as separate
operations in an affine space. Instead, there is a single operation of “taking an affine
combination”: given two points u and v in an affine space and any real number r,
there is a well-defined point (1—r)u+r v, which we can think of as “r of the way from
u tov.” A function F: P — Q is called affine if it preserves affine combinations,
that is, if the identity F((1-r)u+rv) = (1-r)F(u)+rF(v) holds. We shall call a
function f: P® — Q of n arguments multiaffine or n-affine if it is an affine function
of each argument when the others are held fixed.

The concept of affineness makes perfect sense even for infinite-dimensional
spaces P and @, but we won’t need that generality in this paper. In the finite-
dimensional case, affine maps are precisely those that can be represented by poly-

10 THE THREE PRINCIPLES 2.1

nomials of degree one. (Following our convention, the phrase “of degree one” here
means “of degree one or less.”) For example, if we choose Cartesian coordinate sys-
tems for the finite-dimensional affine spaces P and Q, a map F: P — Q is affine if and
only if each coordinate of the result point F(u) can be written as a polynomial of de-
gree one in the coordinates of the argument point u. For a multiaffine function f, the
total degree of the polynomial that represents a coordinate of the point f (agy...,up)
might be as high as n; but each term of that polynomial will include at most one
of the coordinates of any particular argument u,. For example, if f :P? 5 Qis
a biaffine function whose arguments lie in the plane P of points u = (u,v), then
the polynomials that give the coordinates of f(u1,u2) = f({u1,v1),{u2,v2)) could
include terms of the form aujus or bujvs. But a term of the form cu;v; would
imply non-affine dependence of f(u;,uz) on u;.

If P and Q are finite-dimensional affine spaces, a function F: P — Q is called
polynomial of degree n if, when we choose Cartesian coordinate systems for P and
Q, each coordinate of the point F(u) can be written as a polynomial of degree n
in the coordinates of the argument point u. This condition is independent of the
choice of the coordinate systems in P and Q. The special names polynomial curve
and polynomial surface are used for polynomial functions F: P — Q whose domains
P have dimensions one and two, respectively.

Proposition 2.1: The Blossoming Principle (affine variant). If P and Q are
finite-dimensional affine spaces, then polynomial functions F: P — Q of degree n are
equivalent to symmetric, n-affine maps f: P* — Q. In particular, given a function
of either type, a unique function of the other type exists that satisfies the identity
F(u) = f(u,u,...,u). We shall call { the multiaffine blossom of F and F the
diagonal of f.

Proof. Since there is no interaction between the different coordinates of the points in
the object space Q, it suffices to consider each coordinate separately, or equivalently,
to consider the case in which @ is the real numbers R.

Let p be the dimensionality of the parameter space P. Choose a Cartesian
coordinate system for P, and let u = (ul,...,uf) denote the coordinates of the
point u in P in this coordinate system. We are using superscripts to enumerate the
p dimensions of P in order to leave subscripts free to enumerate the n arguments of
the blossom f.

By our definitions, the map F: P — R is a polynomial function of degree n if
and only if the quantity F(u) is given by a polynomial of total degree no greater
than n in the variables u! through u?. A term of this polynomial has the form

Tr := r(ut)*r (u?)*2 ... (uP)*e
for some real coefficient r and for some nonnegative integer exponents k; satisfying
E§=1 k; < n. Similarly, the function f: P" — R is n-affine if and only if we can

express the value f(v1,v3,...,Vn) as a polynomial in the np variables v{ whose
general term has the form

(v2)"

1

Tj =r

n
1=

P

1,

2.3 THE BLOSSOMING PRINCIPLE 11

where each e;; is either 0 or 1 and we have E,‘ e;; < 1 for each fixed 1.

Suppose that we are given F and we want to construct f satisfying f(u, ..., u) =
F(u). Note that the term Ty will contribute to T» when we substitute u for each
of the v, if and only if e = k; for each 5. If we let | denote the difference

l:i=n-3% 5 kj, the number of terms T that contribute to the particular term T

is given by the multinomial coefficient (ks n k ,). If we want f to be symmetric,

our only choice is to split up each term T into (ks n k, ,) symmetric terms Ty in f
with equal coefficients.

Going the other way, suppose that we are given f, whose terms Ty satisfy
Z,- éi; < 1 by assumption. When we substitute u for each of the v;, the total
degree of the result will be 3.3 5 €j < n. Hence, the identity F(u) := f(u,...,u)
will define a unique polynomial function of degree n or less. O

Corollary 2.2. If P and Q are finite-dimensional affine spaces, a symmetric n-affine
map f: P™ — Q is completely determined by its values on the main diagonal of pPn,
that is, by the values of the form f(u,u,...,u). O

The Blossoming Principle has a linear-world variant also: starting with a poly-
nomial function F that is homogeneous gives a blossom f that is multilinear instead
of just multiaffine. The only difference in the proof is that we always have [= 0 in
the homogeneous case. The particular case n = 2 and Q = R of the linear variant
is quite a famous theorem: it states that quadratic forms on a vector space are
equivalent to symmetric bilinear forms |28, 32].

Our proof of the Blossoming Principle worked with explicit coordinate systems
throughout. There are proofs that depend less on explicit coordinates, but they
tend to obscure the essential simplicity of the Blossoming Principle. For example,
consider a quadratic polynomial function F(u) in the affine world. The associated
biaffine blossom f(u,,u;) can be defined without any reference to coordinates by
means of the formula

+
4F(“'—,“’-) — F(u;) - F(uy)
2)
which is called the polarization identity [19, 29, 33]. For general degree n, the

analog of this formula, which we shall prove in Section 4, has an inclusion-exclusion
structure:

f(ul,uz) =

f(uy,uy,...,u,) = 1 Z (—)""‘k”F(i—Zug). (2.3)

n!
5§C{1,2,...,n} i€ES

Two comments about this formula before we proceed. First, the corresponding
formula in the linear world can be made a little simpler, because the factor of
k™ outside F cancels against the 1/k in the argument when F is known to be
homogeneous of degree n. Second, it may seem a bit dicey to allow S = @ in the
summation, since the argument of F in the S = @ term is the indeterminate form

12 THE THREE PRINCIPLES 3

0/0. When n > 0, the indeterminacy in the argument of F doesn’t matter, because
that value of F is multiplied by 0" = 0. In the special case n = 0, the indeterminacy
doesn’t matter for a different reason: F is constant. Indeed, if we tried to avoid the
indeterminacy by explicitly demanding S # @ in the summation, we would cause
the formula to fail for the case n = 0.

While Eq. (2.3) is coordinate-free, it is rather complicated. Furthermore, a
proof of the Blossoming Principle based on this formula still has to chose a coor-
dinate system for P in order to prove that the right-hand side does indeed define
a multiaffine map. In fact, there is no hope of our avoiding coordinates entirely,
since our definition of a polynomial function involved coordinates. More abstract
texts manage to avoid coordinates by turning the Blossoming Principle from a the-
orem into a definition: they define a “polynomial function” to be the diagonal of a
multiaffine function. The argument above is then used to show that, in the finite-
dimensional case, these “polynomial functions” are precisely the functions that are
given by polynomials when expanded in coordinates.

Restriction 2.4. From now on, all affine and linear spaces mentioned in this paper
are implicitly assumed to be finite-dimensional. The exploration of the infinite-
dimensional situation is left as a challenge for the reader (and for the author).

The contrast between our proof of Prop. 2.1, which was based on choosing
coordinates, and the coordinate-free Eq. (2.3) is a phenomenon that will come up
again in Part D. One way to compute a blossom is to choose coordinate systems for
all of the spaces involved, and then manipulate coefficients. This technique involves
making lots of choices and defining lots of symbols. But, if the right coordinate
systems are chosen, the actual arithmetic involved tends to be quite simple: just
multiplying or dividing each coefficient by a factorial or two. We shall refer to this
technique as coordinate-based. The alternative coordinate-free technique searches
for a single formula that expresses an arbitrary value of the desired blossom as an
affine combination of values of something known. The formulas that result from the
coordinate-free technique are conceptually simpler, in the sense that they give the
whole solution in one equation. But the combinatorics and arithmetic involved in
them tend to be much more sophisticated. In the instance we have just seen, the
coordinate-free approach may also seem more expensive, since the sum in Eq. (2.3)
involves 2™ terms. On the other hand, note that the number of terms is independent
of p = dim(P); thus, the same coordinate-free formula works for curves, for surfaces,
or forp > 3.

3. The blossoms of Béziers

Parametric polynomial curves and surfaces are basic objects in computer-aided
geometric design, and the affine variant of the Blossoming Principle applies to them
directly. In this section, we shall relate blossoms to the Bézier-de Casteljau theory
of curves and surfaces.

Before starting on curves, which are the easiest case, we shall pause to institute
a new notational convention. A polynomial curve is a polynomial function F: L — @
whose domain L is a one-dimensional affine space, that is, an affine line. So far,

3.1 THE BLOSSOMS OF BEZIERS 13

we have been ignoring the distinction between a point of the domain space L and
a real number. For example, in Section 1, we wrote F(1) where we meant, more
precisely, “the result of applying F to the point in L whose coordinate, in some
chosen coordinate system for L, is the real scalar 1.” While it might seem pedantic
to object to this practice, it turns out that a little pedantry now will pay off when
we consider tensors in Section 4. In general, if P is an affine space for which we have
chosen some Cartesian coordinate system, we shall use angle brackets to denote a
point u in P given in terms of coordinates u = (ul,...,u?). For the particular case
of the affine line L, let us adopt the abbreviation £ := (t) for the point in L whose
coordinate is the scalar t. Under this convention, the expression 2 + 3 denotes the
scalar 5; the expression (2+3)/2 denotes the point in L midway between the points 2
and 3, which can also be written 2.5; and the expression 2+3 is not well-formed, since
it denotes a non-affine combination of points. To make this convention retroactive,
we would have to go back and add lots of bars to Section 1. In particular, each
argument to F, f, or g in the labels of Figs. 1.1 through 1.4 should have a bar over
it.

Let F: L — Q be a polynomial curve of degree n, and let f: L™ — Q be its
blossom; that is, f is the unique symmetric, n-affine map that satisfies F(a) =
f(4,4,...,a), where @ denotes an arbitrary point in L. Suppose that we choose a
reference segment [5,%] C L, and consider the value f(i,, i3,..., @pn). We can write
the first argument point @, of f as an affine combination of the points 5 and 7 as

follows:
iy = t—uy 5+ u; — 8 i
1= \t—¢ t—-s8)~

(This formula simplifies somewhat in the particular case of the reference segment
[0,1]; we get & = (1 — u1)0 + u;I. But it goes against the grain of the affine
approach to single out any particular reference segment.) Since f is affine in its first
argument, it preserves affine combinations; therefore,

t—uy u; —

)f(a,ﬁ,,...,ﬁ..)+ (-

f(ﬁl)ﬁzs'“aﬁn =()f(t_,ﬁz,...,ﬁn).

8
t—s —8
The next step is conceptually straightforward, although notationally somewhat
clumsy: we want to simultaneously expand all n of the argument points @; through

i, as affine combinations of 5 and . The resulting sum has 2" terms:

R I 1 (C =)1 (€= ORI

InJ=0 iel jieJ
10J={1,3,...,n} HI 171

(3.1)
Note that we have taken advantage of the symmetry of f in order to put all of
the 8’s before all of the #’s in the arguments to f. The interesting thing about
Eq. (3.1) is that it expresses every value of f in terms of just the n+1 special values
whose arguments consist entirely of &’s and £’s. Thus, a symmetric n-affine function
f:L™ — Q is completely determined once we know the particular values f(s,...,9),

14 THE THREE PRINCIPLES 3.3

f(5,...,51%),..., f(t,...,t) as points in Q. Furthermore, there are no constraints
on these special values: if xo through x,, are any n + 1 points in @, the formula

fEnnm)= S II (t‘“') Il (“tf_‘:) X1

INnJ=0 sel
1vJ={1,2,...,n}

defines a symmetric n-affine function f: L™ — Q that satisfies

f(5...,5%,...,F)=x
N, s e, e/
n—k k

This proves the following.
Proposition 3.2. Let [5,%] be a reference segment in the affine line L. The formula

f(5,...,8¢...,t)=xk
e eV

for k in {0, n] provides a one-to-one correspondence between symmetric, multiaffine
functions f: L™ — Q and (n + 1)-tuples (Xo,...,X,) of points in Q. O

Proposition 3.3: Bézier curve segments. The formula in Prop. 3.2 also pro-
vides a one-to-one correspondence between polynomial curves F: L — Q of degree n
and (n + 1)-tuples (Xo, . ..,X,) of points in Q, where the f in Prop. 3.2 denotes the
blossom of F. Moreover, the points xj, are precisely the Bézier points by which the
curve segment F([5,1]) is controlled in the standard theory.

Proof. The first claim follows at once from Prop. 3.2 and the Blossoming Principle.
As for the connection with the Bézier theory, the Bézier n-ic curve F(u) is most
often defined by using the Bernstein basis polynomials [5] to blend together the
Bézier points xo through x,,:

ro= % (3) (= 97 (42 s

In our theory, the curve F(@) is the diagonal f(4,...,%) of its blossom. If we
substitute u for each of the u; in Eq. (3.1), we find that

F(ﬁ)=f(ﬁ,---,ﬁ)=0£”<:)(i::)n_k(:)f(s_,w_,_vj)

Comparing these two formulas for F(#) completes the proof. O

It is interesting to note that the convex-hull property of the Bézier scheme for
curves carries over from a curve F to its blossom f. The standard Bézier theory
tells us that the point F(&) will be within the convex hull of the Bézier points of
the segment F([3,f]) as long as @ is in {5,f]. More generally, the blossom value
f(@1,...,8,) will also be in that convex hull as long as all of the &; are in [,%].

3.4 THE BLOSSOMS OF BEZIERS 15

o1l

Fig. 3.4 The de Casteljau Algorithm for a quadratic Bézier surface

We can begin to develop a geometric intuition for the behavior of blossoms from
Prop. 3.3. Consider a quadratic polynomial curve in the plane, that is, a parabola F.
For any s and ¢, we know from Prop. 3.3 that the three Bézier points of the parabolic
segment F([5,1]) are the blossom values f(3,3), f(3,%), and f(,). Hence, the point
f(3,%) must be the intersection of the tangents to the parabola F(@) at u = s and
u = ¢, as shown (without the bars) in Fig. 1.1. As a consequence, the range of the
blossom f is precisely the parabola itself together with its exterior. Given any point
X exterior to the parabola, we can compute the unique 5 and £ with the property
that x = f(5,f) by finding the two tangents to the parabola that pass through x.
This type of geometric intuition is a valuable adjunct to the algebraic techniques
that we used in proving the Blossoming Principle. As a sample of the algebraic
approach, note that the blossom f of the standard parabola F(@) := (u,u?) is given
by £(3,8) = ((u + v)/2, uv).

Surfaces aren’t much harder than curves. Recall that a polynomial surface is
simply a polynomial function F: P — Q whose domain P is two-dimensional. The
blossom of a surface F is a symmetric, multiaffine function f: P" — Q. Fig. 3.4
shows an application of the de Casteljau Algorithm computing a point on a quadratic
surface from the six Bézier points of that surface. The surface F itself, which is not
shown, is the locus of all points of the form f (u,u) as u varies over the parameter
plane P. The image under F of the domain triangle Arst is a triangular surface
patch with vertices f(r,r), f(s,s), and f(t,t) and with parabolic edge curves. (De-
generacies are even harder to avoid for surfaces than for curves; since a quadratic
surface F has six Bézier points, we would need five dimensions to draw one that is
nondegenerate.)

Proposition 3.5. Let Arst be a reference triangle in the two-dimensional affine
space P. A symmetric, n-affine function f: P* — Q is completely determined by
its values on argument bags (that is, multisets) that consist entirely of r’s, 8’s, and
t’s. In particular, the formula

f(r,...,r,8,...,8,t,...,t) = x4 (3.6)
e iV

$ J k

16 THE THREE PRINCIPLES 3.8

provides a one-to-one correspondence between symmetric, n-affine functions f and
triangular arrays of ("'.:2) points (x,jx) in Q, where 1, j, and k are nonnegative
integers that sum to n.

Proof. In our discussion of curves, we used the two endpoints of the reference
segment [5,%] as an affine frame for L. (A frame for an affine space is the affine
analog of a basis for a linear space.) Analogously, we shall use the three vertices
r, 8, and t of the reference triangle to form an affine frame for the plane P. Every
point u in P can be written uniquely as an affine combination of the points in the
frame, in the form
u = fr(u)r + Bs(u)s + Be(u)t.

The real coefficients 8, (u), As(u), and B¢ (u) in this expansion are called the barycen-
tric coordinates of the point u, and they sum to 1.

Let f: P® — Q be a symmetric, n-affine function. If we expand the first argu-
ment u; of f in terms of r, 8, and t, we deduce that f(uy,...,u,) is equal to

Be(uy)f(r,uz,...,u,) + Ba(1)f(8,1z,...,un) + Be(u1)f(t, uz,. .., us).

If we similarly expand each of the other arguments of f, we arrive at a sum for
f(uy,...,u,) that has 3" terms:

Z Hﬂ,(u.-)Hﬂ.(u,-) H Be(ur)f(x,...,r,8,...,8,t,...,t). (3.7)

1,J,K any i€l JeJ kEK
plrt'ition of H (71 (K|
{1,3,...,n}

This formula expresses every value of f in terms of the (";”) special values in

which all of the arguments of f are either r’s, 8’s, or t’s. Furthermore, there are no
constraints on these ("';2) special values, since the formula

faay,...un)i= 3. []Be(ud) IT Ba(ws) TT Be(we)ximyanx

1,J,K any <€l J€d kEK
partition of
{1,3,...,n}

defines a symmetric, n-affine function whose special values satisfy Eq. (3.6). O

Proposition 3.8: Bézier triangular surface patches. If F:P —+ Q isa polyno-
mial surface of degree n and Arst is a reference triangle in the parameter plane P,
then the Bézier points by which the triangular surface patch F(Arst) is controlled
in the standard theory are precisely the blossom values

f(r,...,r,8,...,8,t,...,t).
N’ N, s’ v et
i 5 k

Proof. When all of the arguments of the blossom f(uy,...,u,) are equal, the 3"
terms in Sum (3.7) collapse down as follows:

f(a,...,u) = E (i;k)ﬂ,(u)‘ﬂ,(u)"ﬂt(u)"f(r,..'.,r,s,...,s,t,...,t).

s+3+k=n p 5 k

4.1 THE TENSORING PRINCIPLE 17

Comparing this formula with the standard expansion of a Bézier surface in terms of
its Bézier points [5] completes the proof. O

The case where the domain space P has arbitrary dimension p is completely
analogous, although it is such a notational challenge that we won’t bother to go
through it in detail. One begins by choosing a reference p-simplex [ro,r1,...,1p),
whose vertices provide an affine frame for P. A polynomial function F: P — Q then
has (”:") Bézier points, each of which is the result of choosing, with replacement, n
points from among the p+ 1 simplex vertices and evaluating the blossom f on those
n points. Every value of the blossom can be expressed as an affine combination of
these Bézier points by means of a sum that involves (p+ 1)™ terms.

4. The Tensoring Principle

Blossoming is quite a useful trick; this was suggested by the figures in Section 1
and will be borne out in more detail in what follows. But there are some problems
with blossoming as we know it so far. To begin with, there is a notational hassle:
we had to resort to horizontal braces in order to write down the kth Bézier point

f(3,...,58,t,...,1)
N, s Nttt

n—k k

of an n-ic curve F: L — Q as a value of the blossom f. It would be more convenient
if the arguments to a blossom were multiplied, to form a product, rather than con-
catenated, to form a sequence. Then we could write the kth Bézier point something
like “f(8"~**)" using exponential notation. It turns out that there is another
important principle of mathematics, called the tensor-product construction, that
can be used to convert an old-style, multiaffine blossom [into a new-style, affine
blossom f®, whose argument is a product of n points. More precisely, an affine
blossom takes an n-tensor as its argument, where a point is a 1-tensor. Our goal
in this section is to apply the tensor-product construction to convert our blossoms
from multiaffine maps to affine maps, thus reaping both notational and conceptual
benefits.

Warning 4.1. Tensoring is not as hard as most people think, but it is harder than
blossoming—it demands some tolerance for abstraction. If you get confused in the
next couple of sections, there are two things that you might try. One is to jump to
Section 7, and then to Sections 14 and following, treating expressions of the form
f®(uy---u,) as the author’s funny way of writing the blossom value f(ay,...,u,).
Another alternative is to give up on this paper and switch to the Reader’s Digest
version [35], in which I describe blossoming as clearly as I could in twenty pages,
with no tensors.

More formally, the goal of our tensoring work is as follows: Given an affine space
P and a degree n, we want to construct an affine space P®n called the n-th symmet-
ric tensor power of P. The interesting property of the tensor power space P®" is that
symmetric, multiaffine maps f: P* — Q (such as old-style blossoms) are equivalent
to affine maps f®: P®" — Q (new-style blossoms). In particular, the correspon-
dence between f and f® is reflected in the identity f (ag,...,un) = f®(uy---u,),

18 THE THREE PRINCIPLES 4.1

where, on the right-hand side, we are using the tensor product operation to build
up an n-tensor in P®" out of points, which are 1-tensors in P = pPeL,

Different variants of tensoring show up in different places in mathematics. In
each case, the effect of the tensor-product construction is to replace multilinearity
with simple linearity, at the price of complicating the domain space. In linear alge-
bra, for example, an asymmetric, linear variant of the tensor-product construction
is used to replace a bilinear map whose domain is a Cartesian product V x W of
linear spaces with a linear map whose domain is the tensor product V@ W.

The variant of tensoring that we need is symmetric and affine, instead of asym-
metric and linear. The affine versus linear issue doesn’t make much difference, but
the symmetry condition in our variant simplifies things in important ways. First,
it means that we will be computing the tensor powers P®" of a single space P,
rather than the tensor products of different spaces. Second, the product operation
that builds n-tensors in P®" out of points in P = P®! in the symmetric case is
commutative. Therefore, we will use simple multiplication, rather than the more
standard “®”, to denote that product, writing an n-tensor as uy - -+ up, rather than
asu;®- - -@u,. Third, in the symmetric case, all of the tensors on a space P, under
addition, scalar multiplication, and tensor product, form an algebra that is isomor-
phic to a very familiar algebra: the algebra of polynomials in p + 1 independent
variables, where p = dim(P). See, for example, Prop. 8.1 in Chapter XVI of the
second edition of Lang’s Algebra [34]. We will take advantage of this isomorphism
by using certain spaces of formal polynomials as the raw material out of which we
will build our tensor power spaces.

Warning: “Tensor-product surfaces” in computer-aided geometric design have
“tensor” in their name because of an application of the more common, asymmetric
variant of the Tensoring Principle. In Section 12, we will finally get around to
considering tensor-product surfaces and to studying the relationship between that
variant of the Tensoring Principle and the symmetric variant that we are about to
develop and apply.

It’s time for some mathematics. We know that the tensor power space P®"
should include elements that correspond to the products of n points in P. One way
to build such a space is to treat the points in P as formal symbols and to allow
ourselves to multiply them formally. If we do precisely that, we end up with a
technique that applies, not to symmetric, multiaffine maps, but rather to arbitrary
symmetric maps.

Let S be any set, let @ be an affine space, and let h: S" — @ be an arbi-
trary symmetric function. For each element s of S, we shall invent a brand-new
formal variable, written X,. An X-polynomial on S is a polynomial in these new
X-variables. Let X|[S] denote the algebra consisting of all X-polynomials on S
(with coefficients in the real numbers R). There are as many X-variables as there
are points in S, possibly infinitely many; but any particular X-polynomial @ in
X([S] can only involve a finite number of the X-variables.

One simple type of X-polynomial is an X-monomial of degree n, that is, an
expression of the form X,, - -+ X, , where the s; are elements of S. Since the function
h is symmetric, we can, in some sense, evaluate h at such a monomial. To be more

4.2 THE TENSORING PRINCIPLE 19

precise, we can define a new function hx whose arguments are X-monomials by
means of the formula hx(X,, ---X,,) := h(s1,...,8,). It is convenient to extend
the domain of this new function hx to include affine combinations of X-monomials
as well. For example, if n = 2, we would like equations such as

X} XoXe\ _ hx(X?) | hx(X.X:) _ h(r,r) h(s,t)
hx(7+2)_2+2_2+2

to hold.

In order to be a legal argument to this extended function hy, an X-polynomial
® must be homogeneous of degree n. In addition, since the range Q of A is only
an affine space, the coefficients of ® must sum to 1. To help formalize this lat-
ter restriction, let us, just for the purposes of this paper, refer to the sum of the
coefficients of an X-polynomial ® as its flavor, written Flav(®); the latter restric-
tion is then Flav(®) = 1. Note that we could characterize the flavor functional
Flav: XS] — R more abstractly as the unique algebra isomorphism with the prop-
erty that Flav(X,) = 1 for all points 8 in S. Let X*[S] denote the affine sub-
space of the algebra X[S] consisting of all polynomials that are k-homogeneous and
c-flavored. Then, the domain of our extended function hx is the affine space X 2[S]-

We can summarize the results of the last few paragraphs as the following easy
proposition.

Proposition 4.2: The X-Polynomial Construction. If S is any set and @ is
any affine space, symmetric functions h: S — Q are equivalent to affine functions
hx: XS] — Q. In particular, given a function of either type, a unique function of
the other type exists that satisfies the identity h(sy,...,8,) = hx(X,, -+ X,,). O

The X-Polynomial Construction is a (rather trivial) tool for analyzing sym-
metric functions whose values lie in an affine space. Since an old-style, multiaffine
blossom f: P* — Q is such a function, we can apply the X -Polynomial Construction
to f to obtain a corresponding affine map fx: X?[P] — Q. Unfortunately, we can’t
always go backward: if we start with an arbitrary affine map hy: X ?[P) — Q, the
symmetric function h: P* — Q that corresponds to hx under the X-Polynomial
Construction probably won’t be multiaffine, and hence won’t be a blossom. For
example, suppose that P is the affine line L, and consider an affine property of
L, such as 1 = (0 + 2)/2. In order to make h: L" — Q be multiaffine, the map
hx:XT[L] — Q would have to map the X-polynomial X;® to the point in Q
halfway between hx(Xy®) and hx(X;®), where & denotes any X-polynomial in
XpPYL). Since hx is affine, we are guaranteed that

hx(Xg®) '2F hx(X3®) _ hx((xo_-;xz_) <I>))

But there is no particular relationship, in the X-Polynomial Construction, between
(X5 + X3)/2 and X;. Indeed, Xj, X1, and X; are just three different formal
variables out of the uncountable collection Xp of formal variables. Intuitively, the
X-Polynomial Construction doesn’t handle blossoms properly because it ignores the

20 THE THREE PRINCIPLES 4.2

affine structure of the parameter space P. More formally, the affine space X7'{P)] is
too big to serve as the tensor power space P®".

To get a better sense of where we stand, let us rephrase our blossom-based
analysis of polynomial curves in Prop. 3.2 using the affine function fx instead of
the blossom f itself, even though we already know that the domain XT'[P] of fx is
not the tensor power space for which we are searching. In particular, let f: L™ — Q
be the blossom of an n-ic polynomial curve, and let fx: X7[L] — Q be the affine
function that corresponds to f under the X-Polynomial Construction. In proving
Prop. 3.2, we expressed an arbitrary blossom value f(&y,...,%,) = fx(Xa, - - Xa,)
as an affine combination of the Bézier points fx (X7~ *X l’-‘), where [3,1] is a reference
segment in L and k is in [0,n]. Converting to the use of fx throughout, our proof
of Prop. 3.2 looks like this:

e (G ER CED)
o, 2 BED))
() et

In.l—o

> (=

1VI={1,3,...,n} s€I
InJ=0

Of this three-step derivation, the second step is simple algebra and the third step
is justified because fx is affine. The first step is the subtle one. We are allowed to
replace the factor Xg, in the argument to fx by the X-binomial

(tt—s)X”L(u‘ s)X’

only because the multiaffineness of f implies that fx has special properties. Once
again, we have run across the problem that the X-Polynomial Construction ignores
the affine structure of P. Our next task is to fix that problem.

There are two ways to impose on the X-variables the affine structure of their
subscripts, and hence to shrink the space X7'|P] down to something that can serve
as the nth tensor power of P. The simplest approach is to choose, once and for all,
an affine frame [ro,...,r,] for P and then to restrict ourselves to using only the
p + 1 distinguished X-variables X,, through X;,. Since the points ro through r,
form a frame, there are no affine relationships among them, so there is no need to
impose any affine structure on the corresponding frame variables Xy, through Xr .
In this approach, instead of writing X, for u in P, we must first expand u as an
affine combination of the frame points, say u = fo(u)ro + - - - + fp(u)ry, and then
write instead the corresponding affine combination of the frame variables. We can
define a map p: Xp — X}[ro,...,rp] that rewrites an arbitrary X-variable in terms
of the frame variables by the formula

P(Xu) = Bo(u)Xr, + -+ + Bp(u) Xr,.

4.3 THE TENSORING PRINCIPLE ' 21

If @ is any X-polynomial on P, we can apply p to each X-variable in & separately
to rewrite ® completely in terms of the frame variables. We shall refer to the
resulting map p: X[P] — X|[ro,...,rp] as the normal-form map associated with the
affine frame [ro,...,r,] for P. Note that the normal form p(®) has the same degree
and the same flavor as ®; furthermore, if ® is homogeneous, then p(®) will be
homogeneous also. Using p, we can summarize this first approach to tensor powers
as follows: Symmetric, multiaffine maps f: P* — Q are equivalent to affine maps
fx:Xp[ro,...,rp) = Q. Given a map of either type, a unique map of the other
type exists that satisfies f(uy,...,u,) = fx(p(Xu, - -+ Xu,))-

One problem with this first approach is the need to apply the normal-form
map p as part of the fundamental correspondence. But a more severe problem is
the dependence of the entire approach on the choice of a particular affine frame for
P. Note that the very definition of the tensor power space itself, X?[ro,...,r,], is
dependent on the frame. Such a frame dependence would be particularly clumsy
when we started working with splines, since we will often want to use a different
frame for each piece into which the parameter space P is partitioned. Therefore, we
shall adopt a more high-powered, second approach to tensor powers, one in which we
shrink the space XT'{P] down by defining an equivalence relation on X-polynomials.

The key idea behind this second approach comes from considering the rela-
tion on X-polynomials determined by the equation p(®;) = p(®;). The map p
depends upon a choice of an affine frame for P, of course. But the truth or falsity
of the relation p(®;) = p(®;) is independent of the frame. We shall say that @,
and P, are affinely equivalent, written ®; ~ ®,, if the equation p(®;) = p(®;)
holds in one frame, and hence in all frames. We will use square brackets to denote
equivalence classes with respect to affine equivalence; that is, [®] denotes the set
of all X-polynomials that are affinely equivalent to ®. Note that, if &; ~ ®3 and
¥y ~ ¥y, then u®; + v¥; ~ u®P; + v¥y, and also @, ¥; ~ $;¥;. Therefore, we can
take linear combinations of equivalence classes or multiply equivalence classes and
get well-defined results.

Let X[P] denote the set of all affine equivalence classes of X-polynomials in
X[P]. Under addition, scalar multiplication, and polynomial multiplication, this
set becomes an algebra, which is called the symmetric tensor algebra of P [34].
The elements of this algebra are called tensors on P; that is, a tensor on P is an
affine equivalence class [®] of X-polynomials on P. The multiplication operation on
tensors [®] - [¥] := [®¥] is called the tensor product.

If [ro,...,rp] is any affine frame for P, we can use the associated normal-form
map p to choose a canonical representative out of each equivalence class, that is, to
choose a normal form for any tensor. In particular, the normal form of the tensor [®]
is the X-polynomial p(®). In fact, this correspondence is an algebra isomorphism
between the tensor algebra X[P] and the polynomial algebra X|ro, ..., Ty, a fact
that is worth remembering.

Proposition 4.3. Let [ro,...,r,]| be any affine frame for P, and let p be the asso-
ciated normal-form map. Then, the correspondence [®] — p(®) is an isomorphism
between the symmetric tensor algebra X [P] of P and the algebra X|[ro,...,r,]| of
polynomials in the p + 1 independent variables Xy, through X,,. O

22 THE THREE PRINCIPLES 4.4

Corollary 4.4. The symmetric tensor algebra X [P] is a unique factorization do-
main. O

A tensor [®| on P is called homogeneous of degree n, or n-homogeneous, or
simply an n-tensor, if the affine equivalence class [®| contains some X-polynomial
that is n-homogeneous. The X-polynomial & itself may not be homogeneous. For
example, over the line L, the tensor [®] where ® = X3X; + X5 + X3 — 2Xj is
2-homogeneous, since X5 + X5 ~ 2Xy implies & ~ X3gX;. Extending the concept
of flavor from X-polynomials to tensors is easier: all of the X-polynomials in an
affine equivalence class [®] must have the same flavor, and we shall refer to that
common value as the flavor of the tensor [®]. Let X *[P] denote the affine subspace
of the tensor algebra X [P] consisting of all c-flavored k-tensors on P. We shall use
X7[P] as our model of the nth symmetric tensor power P®" of P. That is, we will
define P®" := X|P] to be the affine space consisting of all 1-flavored n-tensors.
If we choose any affine frame for P, the correspondence of Prop. 4.3 will give an
isomorphism between X*[P| and XPro,...,rp]. Thus, our second approach to
tensor powers gets the same answer as the first approach did; but it does so in a
frame-independent way.

Tensors on P that are homogeneous of degree one are particularly simple; in
fact, a 1-flavored 1-tensor on P is essentially the same thing as a point in P. To
see this, note that every X-polynomial ® in X}[P] is simply an affine combination
of X-variables. If we take the corresponding affine combination of the subscripts
of those variables, we get a point u in P with the property that ® ~ Xu. Thus,
every equivalence class in X}[P] has the form {X,) for a unique point u in P,
and the first tensor power P®! = Y}{P] of P is actually isomorphic to P under the
correspondence [X,] — u. By an abuse of notation, we shall use this correspondence
to identify P®! with P. This identification allows us to reinterpret the tensor-
product operation as a multiplication on the points of P; that is, if u and v are
points in P, and hence also 1-flavored 1-tensors on P, their product uv is the
1-flavored 2-tensor [XuXv].

It is at this point that we earn the reward for our earlier pedantic insistence on
distinguishing between points @ in the affine line L and scalars u in the coefficient
field R. Note that the expression 23, being the product of two points in L, is a
1-flavored 2-tensor on L. If we weren’t distinguishing between points and scalars,
we would have to use a special symbol to denote the tensor product operation on
points in L or else we would risk confusing the tensor product 2 -3 = 23 of the
points 2 and 3 with the normal product 2 - 3 = 6 of the scalars 2 and 3.

For n > 2, n-tensors are a little more subtle. For example, every product of
n points u; - - - u, is a 1-flavored n-tensor; but not every 1-flavored n-tensor can be
written as the product of n points. As we shall study in Section 9, the n-tensors that
can be factored into a product of 1-tensors are called simple, while the rest are called
compound—and compound n-tensors do exist for n > 2. While not every n-tensor
is simple, the simple n-tensors do span the tensor power space Pe®® = XP[P];
this follows from the obvious fact that every X-polynomial in X7{P] is an affine
combination of X-monomials of degree n.

4.7 THE TENSORING PRINCIPLE 23

Proposition 4.5: The Tensoring Principle, symmetric affine variant. Let
P and Q be finite-dimensional affine spaces, and let P®" = XI[P] be the nth
symmetric tensor power of P. Symmetric, n-affine maps f: P® — Q are equivalent
to affine maps f®: P®™ — Q. In particular, given a map of either type, a unique map
of the other type exists that satisfies the identity f(uy,...,u,) = f®(u;---u,).

Proof. Suppose that we start with a symmetric, multiaffine map f: P* — Q. The
X-Polynomial Construction gives us an affine map fx: X?[P] — Q that satisfies
f(uy,...,us) = fx(Xu, -+ Xu,.). Since f is multiaffine, the map fx will have the
additional property that, if two X-polynomials ®; and ®; in X[P] are affinely
equivalent, then fx(®;) = fx(®;). Hence, we can define a map f®: X*|P] — Q by
the formula f®([®]) := fx(®). It follows that f®(u;---u,) = f&([Xy, - Xu,]) =
fx(Xu, : -+ Xu,) = f(u1,...,u,). The map f® is affine because fx is affine. Fi-
nally, the map f® is unique because the correspondence with f determines the
values of f® on all simple 1-flavored n-tensors, and those simple tensors span the
domain of f®.

The same procedure works in reverse. Suppose that we start with an affine
map f®: X]*[P] —» Q. We can define an affine map fx: X?[P] — Q by the formula
fx(®) := f®([®]). The X-Polynomial Construction then gives us a symmetric
map f:P" — Q that satisfies f(uy,...,u,) = fx(Xu, - Xu,) = f®(u;---u,).
The map f will be multiaffine because fx is constant on affine equivalence classes.
Finally, the correspondence with f® determines every value of f, and hence the map
f is certainly unique. O

Corollary 4.6. An affine map f®: P®* — Q is completely determined by its values
on the n-tensors u™ that are perfect nth powers of points in P.

Proof. This follows at once from the Tensoring Principle and Cor. 2.2. O

If F: P —» Q is a polynomial map of degree n, we now have two different
blossoms for F: a symmetric, multiaffine map f: P" — Q that satisfies F(u) =
f(u,...,u) and an affine map f®:P®" — Q that satisfies F(u) = f®(u”). We
shall distinguish between these two blossoms by calling f the multiaffine blossom
while calling f® the affine blossom. As a first step in understanding how these
blossoms relate to each other, the following proposition considers their ranges.

Proposition 4.7. Let F: P — Q be an n-ic polynomial function, let f: P* — Q be
the multiaffine blossom of F, and let f®: P®™ — Q be the affine blossom of F. Also,
let the set B in Q consist of the Bézier points of F with respect to some reference
simplex in P. Finally, let Span(S) denote the affine span of a subset S of Q. Then,
we have

Span(Range(F')) = Span(B) = Span(Range(f)) = Range(f®).

Proof. Since we can express F(u) as an affine combination of the Bézier points,
we have Range(F) C Span(B). Since each Bézier point is a value of the multi-
affine blossom, we have B C Range(f). Finally, the fundamental correspondence
f(uy,...,u,) = f®(u;---u,) shows that Range(f) C Range(f®). Putting these

24 THE THREE PRINCIPLES 4.8

facts together, we have
Span(Range(F)) C Span(B) C Span(Range(f)) C Span(Range(f®)).

Since f? is an affine map, its range is already a flat (that is, an affine subspace), so
Span(Range(f®)) = Range(f®). We will be done if we can show that Range(f®) C
Span(Range(F)).

To show this, it is enough to show that f®(u;---u,) is in Span(Range(F))
whenever the u; are points in P, since the simple n-tensors u, - - - u,, span the domain
P®" of f® That is, it is enough to show that f(ui,...,u,) is in Span(Range(F)).
This is demonstrated in an explicit way by Eq. (2.3),

f(ul,ug,...,u,.)=$) (—)""’k"F(%Zu;), (2.3)

§C{1,2,...,n} i€s
k=|S|
which actually expresses the blossom value f(uy,...,u,) as an affine combination

of values of F. There is only one difficulty: we didn’t prove Eq. (2.3)—we only
stated it. We can prove Eq. (2.3) by proving the following equality between tensors:

u,...u,‘:% >)""‘k"(Zu) . (4.8)

$ES

Eq. (2.3) follows from Eq. (4.8) by applying f® to both sides.

Proving Eq. (4.8) is a straightforward exercise. Working on the right-hand
side, we first cancel the k™ in the numerator and denominator, and then apply the
Multinomial Theorem to expand the nth power, getting

1 B :
3 o w0 e
SCc{1,...,n} Nn+-+ia=n

2>0=>¢€S

Interchanging the order of summation, we have

1 : -
n! > (J)uJl ceup Yo ()L
J1t-tin=n sc{1,...,n}
2i>0=>3€S
If there is any ¢ such that j; = 0, the inner sum will give zero, since we can pair off
sets S that do and don’t contain s. In order for all of the j; to be positive, they must
all be 1, which forces S = {1,...,n}, so the right-hand side simplifies to uy : - -,
and we are done. O

Turning from ranges to domains, the domain of the affine blossom f @ is the
tensor power space P®", which is a rather complicated thing. Whenever we want
to know something about that space, however, we can choose an affine frame for P
and then use the isomorphism of Prop. 4.3 to convert our question about P®" into
a question about X-polynomials. For example, suppose that we wanted to know the
dimension of the tensor power space P®".

5.1 THE HOMOGENIZING PRINCIPLE 25

Proposition 4.9. If P is a p-dimensional affine space, the nth symmetric tensor
power P®" of P s an affine space of dimension ("i”) -1.

Proof. Choose an affine frame [r,...,r,] for P. The normal-form correspondence
of Prop. 4.3 then provides an isomorphism [®] — p(®) between the nth tensor power
P®" = XP[P] of P and the space Xp[ro,...,r,] of 1-flavored X-polynomials that
are n-homogeneous in the frame variables X,, through Xr,. The latter space has
an obvious affine frame consisting of the (":P) different X-monomials of the form

Xko X.’.c: where 3°°_, k; = n. The dimension of the space X][ro,...,r,], and
hence also the dimension of P®", is just one less than the number of points in this
frame. O

Two closing remarks: First, the Tensoring Principle is frequently applied in
mathematical areas where a duality is present. In such areas, tensors come in three
varieties: the purely primal ones, which are called contravariant, the purely dual
ones, which are called covariant, and the impure ones, which are called mized. (See
Dodson and Poston {18] for the sad story of how the primal concept got the name
“contravariant.”) In this paper, we are dealing exclusively with points and other
primal objects—there is no duality in sight. In particular, all of our tensors are
contravariant; normally, we won’t bother to mention this fact. Second, Prop. 4.5
deals with the symmetric affine variant of the Tensoring Principle. Before we are
done, we will find good uses for four different variants: symmetric and asymmetric,
affine and linear. It is worth noting that there is a fifth variant, which we won’t
have any use for in this paper: the antisymmetric or alternating linear variant.
This variant arises in the study of multilinear functions f (e1,...,€en) that change
sign whenever any two arguments are interchanged.

5. The Homogenizing Principle

So far, we have been working in the affine world. That is appropriate, since
we started out trying to understand the nonhomogeneous polynomial curves and
surfaces that are used in computer-aided geometric design. But we won’t be able to
stay in the affine world forever: the derivative F/ of a polynomial curve F: L — Q
has values that are vectors on Q, rather than points in Q, and the set of all vectors
on Q forms a linear space rather than an affine space. To prepare for such forays
into the linear world, we shall devote this section to our third (and last) important
mathematical principle, the Homogenizing Principle, which converts from the affine
world to the linear world at the price of adding one more dimension to the spaces
involved. With all three principles at our disposal, we will be able to consider any
polynomial map F in six different guises, as shown in Fig. 5.1.

The Homogenizing Principle is quite common, both in mathematics and in
computer-aided geometric design. For example, the usual way of representing affine
transformations of 3-space in computer-aided geometric design is to use 4-by-4 ma-
trices whose last column is the unit vector (0,0,0,1). Converting an affine map
between 3-spaces into a restricted type of linear map between 4-spaces is a typical
application of the Homogenizing Principle.

The first step on the road to the Homogenizing Principle is to linearize the

26 THE THREE PRINCIPLES 5.1

Polynomial map Homogeneous polynomial map
F:P-—)Q F*:P*-—*Q*
polynomial of degree n homogeneous polynomial of degree n
flavor-exponentiating
Blossoming
Multiaffine blossom Multilinear blossom
fiPr—Q fa: (Pe)™ = Qx
symmetric, multiaffine symmetric, multilinear
flavor-multiplicative
Tensoring
Affine blossom Linear blossom
f@:Pen . Q f8:P" — Qu
affine linear
flavor-preserving

N A

Homogenizing
Fig. 5.1 The six guises of a polynomial map

affine spaces involved, that is, to imbed them as hyperplanes in linear spaces of one
higher dimension. It turns out that we already did this as part of our work on the
Tensoring Principle. Given an affine space P, we constructed the tensor algebra
X[P]. In this algebra, consider the set X}[P] of all 1-tensors of all flavors. This
set X}[P] is a linear space, which we shall henceforth abbreviate as P« and refer
to as the linearization of P. (Comment for nit-pickers: The origin of the linear
space Py is the zero tensor [0] on P, which we include in the set of 1-tensors X} [P]
by convention, even though the degree of the zero polynomial is not well-defined.
More precisely, we make the convention that the zero polynomial is homogeneous
of degree k for every k.) We shall also define P, := X}[P] to be the affine space
consisting of all c-flavored 1-tensors on P, for any real number c. The spaces P, are
parallel hyperplanes in the linearization Px of P. Since we are identifying points
in P with 1-flavored 1-tensors on P, the space P = P, itself is a hyperplane in its
linearization Pk.

The hyperplane parallel to P that goes through the origin of Pk is Py, the set
of all O-flavored 1-tensors on P. Note that Py is actually a linear space, since sums
or scalar multiples of 0-flavored tensors are O-flavored. The elements of Py are called
vectors on P, or, more precisely, free vectors on P. Note that the difference { = v—u
of two points in P is a vector on P, since the difference of two 1-flavored 1-tensors
is a O-flavored 1-tensor. The freedom in the term “free vector” is the freedom to
slide the arrow from one place to another in P, as long as its length and direction
are preserved; that is, if £ = v — u, then we also have § = (v + 1) — (u + 1) for any
vector n on P.

The common types of coordinate systems on an affine space P extend easily
to coordinate systems on its linearization P«. The two cases of interest to us are

5.2 THE HOMOGENIZING PRINCIPLE 27

Cartesian coordinate systems and barycentric coordinate systems.

To form a Cartesian coordinate system for an affine space P, we choose an
origin point 0 in P and a basis of vectors 6y, ..., 6, for the linear space P,. Then,
each point u in P can be expressed uniquely in the form

w= () ok 3w,

=1

Note that the 1-tensors {0,6;,...,5,} are linearly independent, when viewed as
elements of the linearization Px. Hence, we can get a coordinate system on P
by using those p + 1 tensors as a basis. The effect of doing so is to extend the
coordinate system from P to P« by adding one new coordinate that measures flavor.
In particular, an arbitrary 1-tensor e in Py can be expressed uniquely in the form

»
e=(el,...,eP;¢% = elo + Ze‘b},

where ¢° = Flav(e). In order to follow the convention that is standard in computer-
aided geometric design, we shall write the flavor coordinate e last inside the angle
brackets, even though it is numbered zero.

Barycentric coordinate systems are even easier to extend. A barycentric coor-
dinate system for the affine space P begins with an affine frame [ro,...,r,] for P.
Each point u in P can be written uniquely as an affine combination of the frame
points, with the barycentric coordinates as the coefficients:

P P
u=(u’,...,uP) = E u'r;, where E u =1
=0 =0

To extend such a coordinate system to the linearization P« of P, we just drop the
restriction about the coordinates summing to 1. That is, using the same frame
points r; as a linear basis for Ps, an arbitrary 1-tensor e in P« can be expressed

uniquely in the form
P

e=(e%...,ef) = Ze‘r;.
+=0

The flavor of the 1-tensor e is given by the sum Flav(e) = }_F

coordinates.
The Homogenizing Principle comes in many variants. The simplest variant is
the one that converts an affine map into a linear map.

=o€ ' of its barycentric

Proposition 5.2: The Homogenizing Principle, linear variant. If P and Q
are finite-dimensional affine spaces and P« and Q« are their linearizations, affine
maps h: P — Q are equivalent to flavor-preserving linear maps hx: P« — Q«. That
is, given a map of either type, a unique map of the other type exists that satisfies
the identity h(u) = h«(u) for all points u in P.

28 THE THREE PRINCIPLES 5.2

Proof. One direction is trivial: If h«: P« — Qx is linear, then the restriction of h«
to the hyperplane P in Px will be an affine map h: P — Qx. If hx is also flavor-
preserving, it must map 1-flavored tensors to 1-flavored tensors, so we will have
h(P) € Q.

In the reverse direction, suppose that h: P — Q is affine, and let [ro,...,rp]
be an affine frame for P. The points r; of the frame, interpreted as 1-tensors in
Ps, form a linear basis for Px. Hence, the p + 1 conditions h«(r;) := h(r;) serve to
uniquely define a linear map hx: P« — Qx. The restriction of hx to P will agree
with A on P because both maps are affine and they agree on an affine frame for P.
Furthermore, the map hx preserves the flavor of each basis element r;, since both
r; and h«(r;) = h(r;) are 1-flavored; since h« is linear, it must preserve flavors in
general. O

If we apply Prop. 5.2 to the affine blossom f®: P®" — Q of a polynomial map
F:P — Q, we can convert that affine blossom into the linear blossom of F, which
is a flavor-preserving linear map f$: P2" — Q«, as shown in the lower-right box in
Fig. 5.1. The intuitive idea is that, while the affine blossom f® demands a 1-flavored
n-tensor on P as its argument and returns a 1-flavored 1-tensor on @ as its result,
the linear blossom f@ will accept an n-tensor on P of any flavor as its argument,
and will return as its result a 1-tensor on Q of that same flavor.

Strictly speaking, there are three different ways to interpret the expression pP2",
which is used in Fig. 5.1 to denote the domain of the linear blossom f®, Fortunately,
the three interpretations give canonically isomorphic results. The simplest choice
is to interpret P®" as X[P], the set of all n-tensors of any flavor on P. That
was the interpretation that we assumed in the last paragraph. When we apply
Prop. 5.2 to the affine blossom f®, however, the domain space of the resulting
linear blossom fP is actually (P®")«, which, by our definitions, is the iterated
tensor space (P®")s = (XP[P])x = Xi[X{(P]]. The distinction arises here because
we have chosen a particular linear space, constructed in a particular way, to be the
linearization Pk of an affine space P. If we were being more abstract, we would define
a linearization of P to be a triple (W, h,) where W is a linear space, h: P — W
is a one-to-one affine map, and o:W — R is a linear flavor functional, satisfying
h(P) = ¢~1(1). It is straightforward to check that all linearizations W of a space P
are canonically isomorphic. In particular, the two linearizations P®"™ and (P®")«
of P®" are isomorphic.

The third choice is to interpret the expression P®™ to mean (Px)®", that
is, the nth linear symmetric tensor power of the linearization of P. This is the
interpretation that arises when using the linear variant of the Tensoring Principle
to move down from the middle-right to the lower-right box in Fig. 5.1. We haven’t
studied how to compute tensor powers in the linear world, but, if we did, we would
find that the space (P«)®" is also a linearization of the affine symmetric tensor
power P®" Thus, all three ways of parsing the domain of the linear blossom give
the same result.

Exercise 5.3: The Tensoring Principle, symmetric linear variant. Develop
the theory of symmetric tensor powers in the linear world by substituting linear
notions for affine ones in the theory of Section 4, while removing any notion of

5.5 THE HOMOGENIZING PRINCIPLE 29

flavor. Let W be a linear space. For each element w of W, let Yy be a formal
variable, and let Y [W] be the resulting algebra of Y-polynomials. Define what it
means for two Y-polynomials to be linearly equivalent, and let Y [W| be the resulting
algebra of equivalence classes. Prove that symmetric, multilinear maps with domain
W?" are equivalent to linear maps with domain W&" .= y"[W].

There are other variants of the Homogenizing Principle that can move us from
the affine world to the linear world at either the middle or the top level of Fig. 5.1.
In each case, the homogenized map in the linear world has a property related to fla-
vor whose effect is to guarantee that 1-flavored arguments are carried to 1-flavored
results. The multilinear blossom fs:(P«)" — Qx of F is flavor-multiplicative,
meaning that Flav(f«(es,...,e,)) = [1/-, Flav(e;). The homogeneous polynomial
form Fx: Px — Q« of the polynomial map F is flavor-ezponentiating, meaning that
Flav(F«(e)) = (Flav(e))".

Exercise 5.4. If P is an affine space, show that the two spaces (P")+ and (P¢)"
are quite different. Hence, the parentheses used above in describing the domain
(Px)" of the multilinear blossom f« cannot be omitted.

We can get a more concrete perspective on our three principles by watching
them in action on an explicit polynomial map, given in terms of coordinates. In
particular, let us write down all six guises of the cubic polynomial curve F: L — Q,
sitting in a 3-space Q, that is given in Cartesian coordinates for L and Q by F(@) =
F((w)) = (X(u), Y (u), Z(u)) where

X(u):=7Tu®+6u? — 3u+4
Y(u):=1u®+3u? + 9u-5 (5.5)
Z(u) :=2u® — 3u® +12u — 8.

Moving down the left column of Fig. 5.1, the multiaffine blossom f: L3 — Q
of F will be the map f(&1,@3,s) = (z(u1,u3,us), y(u1, ua,us), z(u1, uz, us)) given
by

z(u1,us, us) := Tusugus + 2ujus + 2usus + 2ugus — lu; — lug — lug + 4
y(ul,uz,us) := lujugug + lujug + lujug + lugug + 3uy + 3ug +3ug — 5
z(uy,us, u3) := 2ujugug — lujug — lujug — lugug + 4uy + 4ug + 4dug — 8.

In general, as we saw in Section 2, blossoming a curve takes a term of the form cu*
in a polynomial of degree n and turns it into (',:) terms, each with coefficient ¢/ (:) .
Continuing down the left column of Fig. 5.1, we next want to write a formula for
the affine blossom f®. In order to do so, we must first choose a coordinate system for
the third tensor power L®3 of the affine line L. Let § = 1 — 0 denote the unit vector
on L. In this context, the natural coordinate system to use for L®3 is the one that
expresses a 1-flavored 3-tensor e in the form e = (a,b,c) = a6 + 6620 + ¢603 + 03.
We can convert any tensor e in L®3 into this coordinate system by making use of
the formula & = ué + 0; for example, the product @,#,is of three points becomes

Ujtiqgtlig = u1u3u353 + (ulug + ujug + uzu3)52(_) + (u1 + uq + u3)5(.)2 + 03.

30 THE THREE PRINCIPLES 5.6

Comparing this expansion to our formula for the multiaffine blossom f, we deduce
that the affine blossom f® is given by f®(e) = (z®(e),y®(¢), 2®(e)), where

z®(ab® + b620 + c60? +0%) :=Ta +2b - 1c + 4
y®(ab® + 5620+ c60* + 0°) :==1la+ 16+ 3c— 5
z® (a6 + b6%0 + ¢60% + 0%) := 2a — 1b + 4c — 8.

The trick of rewriting a tensor on L in terms of the basis {§,0} for L« is a
generalization of Prop. 4.3 that is worth remembering. Recall that, in Prop. 4.3,
we chose an affine frame [ry,...,r,] for P and then rewrote any tensor [®] on P
as an X-polynomial p(®) in the corresponding frame variables X,, through X, .
Instead of starting with an affine frame for P, we could start, more generally, with
any linear basis {bg,...,b,} for P«. In this more general setting, we don’t get
X-polynomials any more, because there are no X-variables associated with 1-tensors
on P that aren’t 1-flavored. But, if we treat the 1-tensors bg through b, themselves as
variables, it is still the case that every tensor e on P has a normal form S(e) that is a
polynomial in the variables by through 4,. This normal form correspondence 3 is an
algebra isomorphism between the tensor algebra X [P] and the algebra R[bo, ..., by)
of polynomials in the variables by through b, over the reals. The one thing to be
careful about in this more general context is computing the flavor of a normal-
form polynomial 8(e) in R[bo,...,b,]. So far, the flavor of any polynomial has been
simply the sum of its coefficients, which corresponds to replacing each of its variables
by 1 and then evaluating. To compute the flavor of a polynomial in Rbo,...,b,),
however, we replace each variable b; by the flavor of the corresponding tensor b; and
then evaluate; this guarantees that Flav(8(e)) = Flav(e).

Proposition 5.8. Let {bo,...,bp} be any linear basis for the linearization P« of an
affine space P, and let B be the associated normal-form map, which rewrites each
1-tensor in some expression for a tensor e on P as a linear combination of the basis
tensors by through b,. The normal-form map B is an algebra isomorphism between
the symmetric tensor algebra X [P] of P and the algebra Rlby, ..., b,] of polynomials
in the p + 1 independent variables by through b,. O

The bases {bg,...,by} that are useful in practice tend to have elements b; that
are either points or vectors, that is, 1-tensors of flavor either 1 or 0. As we saw
earlier, a barycentric coordinate system for P corresponds to a basis for P« that
contains only points, while a Cartesian coordinate system for P corresponds to a
basis for P« that contains one point and all the rest vectors. We shall refer to these
types of bases for P« in the future as barycentric bases and Cartesian bases.

We return to the study of the explicit cubic curve F: L — Q. In order to deal
with the right-hand column in Fig. 5.1, we must extend our coordinate systems for
L and Q to their linearizations L« and Q«. We shall do so by following our standard
recipe for Cartesian bases: adding a flavor coordinate at the end. That is, we shall
write a 1-tensor in L« as (u;r) = u§ + r0, where r is its flavor, and we shall write
a 1-tensor in Q« as (z,y, z; w), where w is the flavor. Note that we have & = (u; 1)
and § = (1;0). With these conventions, we can construct the homogenized form F«

5.8 THE HOMOGENIZING PRINCIPLE 31

of F as follows: Fx({u;r)) = (X«(u;r),Ye(u;r), Zx(u;r); Wa(u;r)) where
Xe(u;r) :=Tud + 6ulr — 3ur? 4 4¢8
Ya(u;r) := 1u® + 3u?r + Qur? — 5¢°
Zx(u;r) = 2u® — 3u’r + 12ur? — 8¢
Wi (u;r) := 0u® + 0u’r + Our? + 1r5.

(5.7)

We first set the output flavor W« (u;r) to be the constant 1. Then, we homogenize
all four output coordinates by adding as many factors of the input flavor r to each
term as necessary in order to bring that term up to total degree 3.

The multilinear blossom f« is constructed analogously. We have f(e;, ez, €s) =
(ze(e1,e2,e3), yx (€1, €2, €3), 24 (€1, €2, €3); wx (€1, €3, €3)) where e; = (u;;r;) for 1 in
(1,3] and the four functions z«, y«, z«, and wx are given respectively by the rows
of the table

Tujugug + 2ujusrsg + 2usraus + 2riugug — luyrarg — lrjugrs — lryraug + 4ryrars
lujugug + luyuzrs + luyraug + Iryugug + 3uyrars + 3rjugrg + 3ryraug — S5ryrars
2ujugug — lujugrs — luyraus — lryugug + 4uyrerg + 4r1usrs + 4riraus — 8ryrarg
Oujugus + Oujuzrg + Ouyraug + Oryugug + Ougrarg + Oryusrg + Orgraus + lryrars

Our last challenge is to write a formula for the linear blossom f®. To construct
the requisite coordinate system for L®3, we shall use the normal-form map S for

tensors on L associated with the basis {§,0} of Lx: e = (a,b,c;d) where f(e) =
ab® + 5620 + ¢50% + d0®. Using this coordinate system, we find that f&(e) =

(z2(e), ¥P (e), 22 (e); wP (e)), where
z$ (ab® + 620 + ¢60% + d0®) :=Ta + 2b — 1c+ 4d
v (a6® + 620 + c60% + d0®) := 1a + 1b + 3¢ — 5d
z$ (a6® + 66?0 + c60% + d0°) := 2a — 1b+ 4c — 8d
w (ab® + b620 + ¢60% + d0°) := 0a + 0b + Oc + 1d.

(5.8)

Note how the matrix of coefficients of F' changes as we apply the various prin-
ciples. Blossoming takes the column of coefficients of u* and divides it up into
(:) equal parts. Tensoring eliminates the duplicate columns that blossoming intro-
duced, by building in the symmetry condition. Homogenizing adds one more row,
whose coefficients have a special unit form.

One advantage of the homogenized approach is that it allows us to interpret
the columns of coefficients as geometric objects. In our original formula for F in
Eq. (5.5), the constant column (4, —5, —8) was obviously the point F(0) in Q. But,
even though the other columns also had three components, they weren’t points in
any obvious sense. Jumping to the linear blossom in Eq. (5.8), we find that its
four 4-element columns of coefficients, from left to right, are just the following four
1-tensors on Q: f®(6%), f2(620), f&(60%), and f&(0%). The first three are vec-
tors on Q, since they are O-flavored, while the fourth is a point in Q. If we rescale

32 THE THREE PRINCIPLES 6

the argument tensor §*0"* by (2) , We arrive at a geometric interpretation for the
columns of coefficients of the homogeneous polynomial map Fx in Eq. (5.7). Com-
paring Eq. (5.7) to the original function F in Eq. (5.5), we conclude the following.

Proposition 5.9: The Power Basis for curves. Let L be the affine line, and let
§ be the unit vector on L. The n-tensors (})0"~*5* for k in [0, n| form a linear basis,
called the power basis, for the space L®™. The coefficients of u* in the formulas for
the coordinates of the point F(u) on a polynomial curve F: L — Q of degree n are
precisely the non-flavor coordinates of the 1-tensor f& ((',:) 0”"‘5"). |

Thus, specifying a polynomial curve F by giving the coordinates of F(&) as
polynomials in u corresponds to specifying the linear blossom f& by giving the
images of the tensors in the power basis. The Bézier technique for specifying a
polynomial curve isn’t very different; it just uses a different basis, as the following
restatement of Prop. 3.3 tells us.

Proposition 5.10: Bézier Bases for curves. Let [5,1] be a reference interval
in the affine line L. Then, the n-tensors 8”~*t* for k in [0,n] form a linear basis,
called a Bézier basis, for the space L®". The images of the Bézier basis tensors
under the linear blossom f® are precisely the Bézier points of the curve segment
F([51]). O

One important difference between the power basis and a Bézier basis is that
all of the n-tensors in the Bézier basis are 1-flavored. Hence, a Bézier basis for
L?" is also an affine frame for L®". Because of this property, we shall sometimes
say Bézier frame instead of Bézier basis. This also explains why the Bézier points
f®(3"*t*) of a curve are values of the affine blossom f®, as well as being values
of the linear blossom f2.

These insights all generalize from curves to surfaces quite straightforwardly. Let
P be an affine 2-space, and let (u,v) be a Cartesian coordinate system on P. Let o
denote the point (0,0), let &, denote the unit vector on P in the u direction, and let
5, denote the unit vector in the v direction; then, (u,v) = o+ ub, + vé,. The power
basis for the space P®™ is the set of tensors of the form (‘; L) 8u6Jo*, where i, 7,
and k are nonnegative integers that sum to n. If F: P — Q is a polynomial surface
of degree n, the coefficients of u*v? in the formulas for the coordinates of the point
F({u,v)) are precisely the non-flavor coordinates of the tensor f® ((‘.;.'k)&‘;&g'o").

Alternatively, as described in Prop. 3.8, the Bézier basis for P®™ consists of the
tensors r’s’t*, where Arst is a reference triangle for P.

6. The de Casteljau technique for specifying curves

By means of blossoming, tensoring, and homogenizing, we have found that
specifying a polyonomial curve F: L — Q of degree n is the same thing as specifying
its linear blossom, which is a flavor-preserving linear function f&: L®" — Q«. The
obvious way to specify a linear function is to give its values on a basis for its
domain. Using the power basis {(})6"~*0*} for the domain L®", we just learned,
corresponds to the elementary approach of specifying the curve F by giving the
coordinates of the point F(&) as polynomials in u. Using a Bézier basis {5"~*{*}

6.1 THE DE CASTELJAU TECHNIQUE FOR SPECIFYING CURVES 33

for L™ corresponds to specifying the curve F by giving the Bézier points of the
segment F((3,Z]). But any other basis for L®™ would do just as well. In this section,
we shall investigate a class of bases that might be called de Casteljau bases, because
they will enable us to specify a curve by specifying a collection of blossom values
(poles, in de Casteljau’s terminology (14]) of a fairly general form. As in the case of
a Bézier basis, the n-tensors in a de Casteljau basis are always 1-flavored. Thus, a
de Casteljau basis can also be viewed as an affine frame for L®"™ and, in that role,
will be called a de Casteljau frame.

Let (F1,...,72n) be a reference sequence of 2n points in the parameter space
L. For k in [0,n], let ex denote the 1-flavored n-tensor ex = Fryy -+ Fiyn on L;
that is, each ey is the tensor product of n consecutive points #; from the sequence
(F1,...,72n). The idea behind de Casteljau frames is to use the n + 1 tensors ¢
for k in [0,n] as an affine frame for L®". Note that the Bézier frame with reference
interval [3,%] is a special case of a de Casteljau frame in which the first n points of
the reference sequence, 7; through #,, are all equal to 5 and the last n points, 4
through #;,,, are all equal to . Of course, not all reference sequences are legal; we
have to put some constraints on the points #; in order to guarantee that the tensors
e will be affinely independent, and will hence form a frame.

Lemma 6.1: de Casteljau frames. Let (F1,...,7an) be a reference sequence of
2n points in the affine line L. Then, the n-tensors ey := Fk+1'" " Frin for k in [0, n)]
form an affine frame for the tensor power space L®" if and only if we have T F Pogi
for1<i<j<n.

Proof. (Note that the stated condition does hold in the case of a Bézier frame, since
ri =8 rayi =t ands<t.)

We shall tackle the easier half of the proof first. Suppose that r; = ro4 for
some ¢ and j with 1 < { < 7 < n. We must show that the n-tensors ej for k in
[0,n] fail to be affinely independent. In fact, we shall show that there is an affine
dependence among the 5 —1+2 tensors {e;_1,..., e;}. If we let ¢ denote the common
value of r; and r,,, we can write out the tensors e;_; through e; as the rows of a
parallelogram with constant columns:

i fin d Ti+1 ... Ty
Fit1 9 541 -0 Fagicr G
g 41 ... Pagi—1 ¢ Frts—1
Fi+r ... Fnyic1 ¢ Prti—1 Fnij

Note that each row includes all of the points ;41 through 7,.;_; as factors. In
addition, each row also includes at least one §. Therefore, every row has the form

Uyl §F41 0 Tnyio

for some points @, through @,_;. But, as we vary #, through @;_, in L, the resulting
tensors all lie in an affine flat of dimension (j —) in L®". Since the rows above
denote 7 — ¢ + 2 tensors that all lie in that flat, they must be affinely dependent.

34 THE THREE PRINCIPLES 6.3

In the other direction, suppose that r; # rp4i for 1 < ¢ < 5 < n. We must show
that the tensors e are affinely independent as elements of L®", or, equivalently,
that they are linearly independent as elements of the linearization L®". To test
this latter condition, we shall expand the tensors ej into coordinates in terms of a
known basis for L®™ and then evaluate a determinant. As our known basis, we will
use the tensors 0" ~*6! for I in [0, n], where § denotes the unit vector on L—that is,
the tensors of the power basis, but without the binomial coefficient scaling factor.

Expanding the tensor ey in terms of this known basis, we have '

e =Try1 " Thin = H (0 + re4:6)
1<i<n

sn—lgcl
= > oirke1,e o5 Then)O" TS,
0<i<n

where o; denotes the /th elementary symmetric function

o1(ugy...,Up) = Z Hu;.

I1Cc{1,...,n} s€Il
H|=1
Therefore, the tensors e; will be independent if and only if det(M) # 0 where
M = (my,;) is the (n + 1)-by-(n + 1) matrix given by mi = oi(Tk+1y--->Tk+n) for
k and [in {0, n].

To compute det(M), we shall use the same trick that is frequently used to
compute the Vandermonde determinant. Since g;(rk41,.-.,Tk+n) is a homogeneous
polynomial of degree ! in the variables r;, the quantity det(M) must be given by a
homogeneous polynomial of degree (";’1) in the variables r;. On the other hand, we
already know ("'2"1) distinct linear factors of det(M), since we know, from the first
half of this proof, that det(M) = O whenever r; = ro4; for 1 < ¢ < j < n. Hence,

we must have

det(M)=w] (rasi—rj) (6.2)

1<i<5<n

for some real constant w. To determine w, consider the coefficient of the term
T = [lici<n r:_:::+1. In the right-hand-side of Eq. (6.2), the coefficient of T is
clearly 1, since we must choose the r,; term out of each binomial factor. In
det(M), the only way to get the term T is to go down the main diagonal of M,
taking the term 7,11 - - - rn4x from each my, = 0k(Tk+1,- - -, Tk+n); hence, we again
get a coefficient of 1, showing that w = 1. We conclude that the ex can be dependent
only if at least one of the equalities r; = r,4; holds. O

Corollary 6.3: The de Casteljau technique for curves. Let r1, ..., r2n be
real numbers satisfying the condition that rj # rn4 for1 <i < j< n. Polynomial
curves F: L — Q of degree n are in one-to-one correspondence with (n + 1)-tuples
(Xo,...,Xn) of points in Q under the correspondence f(Fx+1,.. -, k+n) = X for k
in [0,n], where f denotes the multiaffine blossom of F. O

In the de Casteljau technique, the curve F is controlled by specifying the points
£8(ex) = f(Fk+1,- - »Fk+n), which, following de Casteljau, we shall call poles. When

6.4 THE DE CASTELJAU TECHNIQUE FOR SPECIFYING CURVES 35

we study spline curves in Section 15, we will find that specifying curve segments by
giving their poles with respect to reference sequences that are substrings of the knot
sequence will make it easy to assemble those segments into a spline curve. In the
context of spline curves, however, these poles have another name; they are known
as the de Boor points of the spline curve [5].

Challenge 6.4. Is the Tensoring Principle worth it? By using the Tensoring Prin-
ciple in this section, we were able to reduce the study of de Casteljau frames to a
straightforward problem in linear algebra: testing linear independence. As we shall
find in Section 15, this means that we have already finished the hardest part of our
development of the theory of spline curves. On the other hand, it took us quite a bit
of work to construct the tensor power space L®". Contrast the tensoring approach
with more standard developments of the de Boor theory of spline curves.

Part C: Perspectives on Blossoming

What do the n different arguments to a blossom mean? Can we think of the
blossom value f(iy,...,1) as the result of evaluating the n-ic curve F(&) at n
different times? In the next three sections, we shall study this question from three
perspectives: algorithmic, differential, and algebraic.

7. The algorithmic view of a blossom’s n arguments

From an algorithmic perspective, the meaning of the original time parameter
@ of a curve F(@) is a choice of interpolation ratio. Given the Bézier points of
the curve segment F([3,f]) and given the ratio of the lengths of the line segments
into which the point @ divides the segment [3,f], the de Casteljau Algorithm tells
us how to construct the point F(@) = f(4,...,4) by performing n stages of linear
interpolations with that ratio.

It makes perfect sense, however, to use different ratios for the different stages
of the de Casteljau Algorithm. If we use the ratio corresponding to #; during the
ith stage, the point that we end up constructing is precisely the blossom value
f(@1,...,1,). In more detail, the ith stage produces, as output, all of the blossom
values whose argument bags consist of the ¢ points @, through 4;, filled out with some
collection of (n — 1) copies of either 5 or {. Switching from the multiaffine blossom f
to the affine blossom F® in order to avoid horizontal braces, the ith stage computes
the point f® (& ---@;8"~*~*t*) for k in [0,n — 5] by using the recurrence

fO(ay---ug" k) = (7.1)

(E__“;) 18(@y - G gniRHIERy 4 (_B) £ (- G;_ 3"tk ERHL
t— s t—s
to interpolate between two adjacent outputs of the previous stage. For example, the
left half of Fig. 7.2 shows the construction of the point f(4,3,2) = f(2,3,4) from
the Bézier points of a cubic segment F([0,8]) by interpolating with the ratios 2/3,
1/2, and 1/3, in that order.

~ The symmetry of the blossom f implies that using the same bag of ratios in
a different order will result in the same final point, even though the intermediate
points and lines will be different. For example, the right half of Fig. 7.2 uses the
ratios in the order 1/3, 2/3, and 1/2. Thus, the algorithmic way to interpret the n
arguments of a curve’s blossom is that each of them provides the ratio to use during
one of the n stages of the de Casteljau Algorithm.

This insight works just as well for surfaces as it does for curves. If F: P — Q
is a polynomial surface, any point u in P specifies a two-dimensional interpolation
ratio. That is, the location of u with respect to the vertices of the reference triangle
for P gives a way of choosing a corresponding point in the plane determined by any
three points. Given the Bézier points of F, the de Casteljau Algorithm performs n
stages of these two-dimensional interpolations in order to construct the point F(u).
Once again, it makes perfect sense to use different interpolation ratios during the
different stages, and the final result does not depend on the order we choose. Ronald
N. Goldman gets the credit for realizing that two-dimensional interpolation stages
with different ratios commute with each other [25].

7.3 THE ALGORITHMIC VIEW 37

Fig. 7.2. Different ratios in different stages of the de Casteljau Algorithm

The same insight also applies to curves controlled with the de Casteljau tech-
nique of Section 6, in which poles are specified instead of Bézier points. Recall that,
in that technique, an n-ic curve F is controlled by specifying the blossom values
f(Fr+1,...,7k4n) for k in [0, n], where (71,...,72,) is a sequence of 2n points in L
satisfying the nondegeneracy conditions r; # r,4, for 1 < ¢ < 5 < n. The output of
the sth stage of the de Casteljau Algorithm in this case is the collection of blossom
values f(@1,..., %, Frtit1,...,Fk+n) for kin [0,n —). The sth stage produces this
output by using the formula

f(ﬁl,...,ﬁ", Fk+,‘+1,... ’Flc+n) = (73)
(Th4+n+1 — Ug

) f(ﬁli' ‘e 1ai—lafk+l‘1- . '1Fk+n) +
Thtn+1l = Tk4i

Uy — Thys _ _ _ _
()f(01,...,u.'_l,rk+;+1,...,fk+n+1)
Tk+n+1 — Tk

to interpolate between two adjacent outputs of the previous stage. Just as in the
Bézier case, each blossom argument #; controls the interpolations that happen dur-
ing one stage, and the arguments can be used in any order without altering the final
result. We shall refer to the algorithm embodied in Eq. (7.3) as the Generalized de
Casteljau Algorithm, to distinguish it from the special case in Eq. (7.1). When the
Generalized de Casteljau Algorithm arises in the context of spline curves, however,
we shall follow standard practice by referring to it as the de Boor Algorithm [5].

Note that the different interpolations that make up the sth stage of the Gen-
eralized de Casteljau Algorithm involve different ratios. In particular, the kth in-
terpolation of the sth stage is controlled by the location of #; with respect to the
interval [Fk+,', Fk+n+1]°

Note also that the nondegeneracy conditions on the 7; are exactly what is
needed to guarantee that none of the ("'2"1) denominators that arise when applying
Eq. (7.3) is zero. This observation provides an alternative proof of Lemma 6.1
that is computationally easier than our determinant-based proof in Section 6. If

38 PERSPECTIVES ON BLOSSOMING 7.4

f(F1, Fa2,73) f(Fa,F3,74) f(F3, 74, 75) f(F4,Fs5,76)
Y4 — Uy U, —r rs — U1 U —r2 re — Uy U, —r3
re —T1 rq — 711 rs — 12 s — rg e — I3 e — 13
f(@1,72,73) f(81, 73, %4) (81,74, F5)
T4 — Uz Uz — 12 s — Uz Uz — 73
rq — T2 T4 — T2 g — 13 rs — 13
f(81,82,7s) f(@1, 82, 4)
T4 — U3 uz —r3
rq — T3 rq— 13
f(al)ﬁ21a3)

Fig. 7.4. The Generalized de Casteljau Algorithm when n =3

r; # tagi for 1 < ¢ < j < n, Eq. (7.3) with the f’s omitted shows that every
simple n-tensor @, - -- #,, can be expressed as an affine combination of the tensors
€k = Tk+1- - Fk+n for k in [0,n]. Since the simple n-tensors span all of L®", that is
enough to conclude that the {e;} form an affine frame for L®". The determinant-
based proof in Section 6 is conceptually simpler, however, in the sense that it attacks
a problem in linear algebra with the standard techniques of linear algebra, without
recourse to an auxiliary algorithm.

Fig. 7.4 shows the computation scheme of the Generalized de Casteljau Algo-
rithm in the particular case n = 3 in the form of a triangular array of blossom values.
The four blossom values across the top are the poles of a cubic polynomial curve
F with respect to a reference sequence (71,...,7s). The points in lower rows are
computed as affine combinations of their two ancestors with the indicated weights,
as Eq. (7.3) specifies. It is not at all obvious, from looking at this computation
scheme, that it computes a function f(@, @iz, #is) that is symmetric.

Just as the de Casteljau Algorithm can help us to understand blossoms, we
can also use blossoms to help understand the de Casteljau Algorithm. For example,
let F be a cubic curve, and suppose that we have used the de Casteljau Algorithm
to construct the point F(4) = f(9,9,v) for some ¥ in [0, 1] from the Bézier points
of the segment F([0,1]). In the process of doing so, we will also have constructed
the points f(0,0, %) and f(0, ¥,). One of the important properties of the Bézier-de
Casteljau theory is that the four points f(0,0,0), f(0,0,%), f(0,9,9), and f(¥,9,%)
are, in fact, the Bézier points of the initial segment F([0,%]) of F([0,1]). Viewed
algorithmically, this corresponds to the fact that two quite different construction
processes always give the same result: For any @ in [0, 6], one way to compute F (&)
starts with the Bézier points of the entire curve segment F([0,1]) and uses the de

7.6 THE ALGORITHMIC VIEW 39

Fig. 7.5. Repeated subdivision of a cubic curve

Casteljau Algorithm with ratio 0 : u : 1. Alternatively, we could start with the four
purported Bézier points of the initial subsegment F ([0,]) and use the de Casteljau
Algorithm with ratio 0 : u : v. Thinking algorithmically, it isn’t very clear why
these two computations should produce the same answer. But, once we understand
about blossoms, we can draw Fig. 7.5, which clarifies the situation.

Exercise 7.6. There are two intersections of line segments in Fig. 7.5 that are not
labeled as blossom values. Convince yourself that those two intersections arise only
because the four Bézier points of the segment F([0,1]) are coplanar, causing the
resulting cubic F to be degenerate. In fact, those two intersections are drawn in
Fig. 7.5 so as to suggest that one of the lines is above the other in each case. If the
first three Bézier points of F are assumed to lie in the plane of the paper, where
should the fourth Bézier point f(I,1,1) be placed with respect to the plane of the
paper to result in the crossings as drawn?

Exercise 7.7. Consider quadratic polynomial curves, that is, parabolas. Note that
the reference sequence (1,0, 3,2) of length 4 satisfies the nondegeneracy conditions
of the de Casteljau technique with n = 2. Hence, we can specify a parabola F

40 PERSPECTIVES ON BLOSSOMING 8.1

uniquely by giving arbitrary values to the three poles f(1,0), f(0,3), and £(3,2).
Sketch an example. Construct the blossom value f(1,2) from the three given poles
in two different ways. What does this have to do with the well-known fact that the
centroid of a triangle is two-thirds of the way from any vertex to the midpoint of
the opposite side?

8. The differential view of a blossom’s n arguments

Recall that, for a quadratic curve F(&), the blossom value f(3,%) is simply the
intersection of the tangent lines to the parabola F(i) at u = s and at u =¢. For a
second perspective on the meaning of the n arguments of a blossom, we would like
to generalize this observation. In order to do so, we must study how differentiating
interacts with blossoming. This is one area where the Homogenizing Principle is
quite helpful.

As a warmup, let F: L — Q be a cubic polynomial curve. One possible correct
formula for the derivative F/(@) in terms of the blossom f is

F'(8) = 3(f(@F T, 8,9) - /(3,8,3)). (8.1)
Since f is affine in its first argument, there are lots of other ways to write this,
including F'(@) = f(u + 3, 4,8)— f(,d,8) and F'(@) = 3(f(v+ 1,4,8) - f(,4,8))
for any v in L. Note that, when we subtract one point from another point in an
affine space such as Q, the result of the subtraction is a vector, not a point. Recall
from Section 5 that, associated with any affine space Q, there is a linear space Qg of
vectors on Q; the spaces Qo and Q = Q; are parallel hyperplanes in the linearization
Qx of Q. The derivative of a curve F is a vector-valued map F': L — Qo.

The easiest way to prove Eq. (8.1) is to invoke more of the technology of Sec-
tion 5. We learned in that section that a polynomial curve F: L — Q of degree
n is equivalent to a flavor-preserving linear map f2:L®%" — Q« under the corre-
spondence F(@) = f&(a"). In particular, we can consider the curve F to be the
composition of two functions: the nth-power map ¢: L — L®", which takes a point
@ to the 1-flavored n-tensor ©(@) := @" on L, followed by the linear map &, Since
linear maps commute with differentiation, we conclude that F/(@) = f&(¢'(8)).
The derivative of ¢ is easy to compute using the Power Rule:

da
=Y — an — aan—1 _
o'(a) = =t

where § denotes the unit vector on L. Therefore, we have F'(@) = f&(na"~16) =
nf@(a"~16). To translate this answer back from the linear blossom ® to the
multilinear blossom f«, we have to resort to a horizontal brace:

F'(@) = nf«(6,8,...,8).
N’
n—1
In order to translate back to the affine world, we must choose some way of writing
the vector § as a difference of points. If we choose the substitution § := u + 1 — 4,
we get F'(a) = n(f@(u+1a""1) - f&(a")), or equivalently,
F'(a) = n(f(u+1,4,...,8) - {(g,...,8),
Nt i’ s’

n—1 n

na" 16,

8.3 THE DIFFERENTIAL VIEW 41

which is the generalization of Eq. (8.1) to arbitrary degrees n.

The good news is that differentiating is quite easy in the linear world: just
substitute the unit vector § for one of the copies of the argument point @. The bad
news is the annoying factor of n. That factor of n arises because, when we follow the
curve F (i), we vary all n of the arguments of the multiaffine blossom f (%,...,8) in
parallel. Suppose that we held all but one argument of f fixed at & while we varied
that single argument. The resulting function G(%) := f(5,4,... , @) is affine, and
its (constant) first derivative is precisely f® (u™~16), without the factor of n. The
effect, to first order, of varying all n arguments in parallel is to cause the resulting
point to move n times faster.

By repeating the argument above, we can compute derivatives of any order.
The falling factorial power notation is helpful in this context: let nf denote the
product n(n —1)-:-(n — k+1).

Proposition 8.2. Let F:L — Q be an n-ic polynomial curve, and let f2.0%" o
Q@x be the linear blossom of F. The kth derivative of F is given by the formula

F®) (@) = nkf@(a"~*s*). O

Note that this formula gives the correct answer when k = 0, since n2 = 1. For
k > n, the factor of nk takes the right-hand side to 0, which is also correct. If we
want to replace the linear blossom f® on the right-hand side with the multiaffine
blossom f, we can just replace each factor of § by an equivalent difference of points,
such as u + 1 — a. This leads to the formula

FB)(g) = nk Z (k) (—)""'f(y+ 1,...,u+1,8,...,8),

o<i<k M —

5 n—g

which expresses the kth derivative of F as a kth difference of values of the multiaffine
blossom f. If we are interested in the endpoint derivatives F(*)(5) of the curve
segment F([,Z]), we could use the substitution 6 := (£ — 3)/(t — 8) instead, which
leads to the well-known formula

k
ro@ = 5 (B) s ush D) (8.3)
(t - s)k Og_:sk 7 ‘n\:;_« ‘;_4
for an endpoint derivative as a kth difference of the Bézier points.

Prop. 8.2 gives us another way to prove Prop. 5.9, which related the coefficients
of the polynomials that define a curve F(@) to the effect of the linear blossom f®
on the tensors in the power basis for L®". From the theory of Taylor series, we
know that the coefficient of u* in the polynomial expansion for F(u) is the vector
F(%)(0)/k!. Applying Prop. 8.2, we can rewrite that quantity as (nk/k!) f2 (0" —*6*),
which is precisely the image of the kth element (:) 0"~*6* of the power basis under
the linear blossom f2.

In order to state the analogous formulas for surfaces, we have to agree on a
notation for the derivatives of a function F: P — Q whose domain is 2-dimensional.

42 PERSPECTIVES ON BLOSSOMING 8.4

If u is a point in P, let dFy: Po — Qo, given by

F(u+ h€) — F(u)

h)
denote the linear map that approximates the local behavior of F to first order near
u. This map is variously called either the dertvative of F at u or the differential
of F at u. The quantity dF,(¢) is also frequently written D¢F(u) and, in those
contexts, it is called the directional derivative of F in the £ direction at the point u.
Which notation one uses doesn’t make much difference; we will arbitrarily choose
the former for now. The kth derivative of F at the point u is a symmetric k-linear
map d*Fy:(Ps)* — Qo, and a value of this map is written d*Fy(¢y,..., &) for
vectors ¢; on P. In the directional derivative notation, this same quantity would
be written Dy, --- D¢, F(u). To specialize these general notions to the particular
case of curves, the convention is to use the unique unit vector § on L for every
direction &; that arises. Thus, for a curve F: L — Q, we have F/(@i) = dFy(6) and
F¥) (@) = d*Fy(6,...,6).

Proposition 8.4: Derivatives in terms of blossoms. Let F:P — Q be a
polynomial function of degree n, and let f&: P®™ — Qu« be the linear blossom of F'.
The kth derivative of F is given by

d*Fo(é1,. .., &) = nEf@(u"%¢ .- &). O

One conclusion that we can draw from these formulas is that the more that we
want to know about the behavior of a function F near a point, the more arguments to
its multiaffine blossom we must be willing to vary away from that point. Computing
a kth derivative of F at the point u involves varying k of the blossom arguments
away from u. If we fix all of the blossom arguments at u, our knowledge of F is
restricted to zeroth order, that is, to the value F(u) itself. If we can vary all n of the
blossom arguments, we can compute F to nth order, that is, we know F completely.

At this point, one must be careful to avoid falling into a tempting trap. Let’s
think about an n-ic polynomial curve F: L — Q for simplicity. Let G: L — Q be the
unique polynomial curve of degree k that agrees with F to kth order at the point
7; the curves F and G are said to osculate to kth order at 7. We can construct G
by truncating the Taylor series of F':

dFy(§) = }lx_x.%

G@@)=FF)+F(F)u—r)+---+ E—;:!(—F)—(u —r)k.

It would be wonderfully simple if the k-affine blossom g of G could be obtained
simply by fixing n — k of the arguments of the n-affine blossom f of F at the point
F—that is, if the formula

9(81,...,85) = f(B1,..., 0k, F,...,F)
Nt s’
n—k

held. Unfortunately, that formula does not hold, except in the trivial cases k = 0
and k = n. One way to see that it couldn’t hold is to consider the case k = 1 and

8.5 THE DIFFERENTIAL VIEW 43

Gi(3)

Fig. 8.5. Two affine maps that osculate a parabola

n =2, when we are approximating a parabola F(i) by an affine function G, (&) for
t near 7. If the formula above were true, the point f(5,%) would be both G¢(3) and
also G(t), that is, both the image of & under the best affine approximation to F at
t and also the image of under the best affine approximation to F at 5. In reality,
however, as shown in Fig. 8.5, the two points G¢(3) and G,4(f) do not coincide;
instead, we have G¢(5) = 2f(5,f) — f({,%), while G4(f) = 2f(5,) — f(5,8). The
source of the problem is the annoying factor of n£ in Prop. 8.2.

To determine the relationship that really does hold between the blossoms of F
and G, we shall translate from multiaffine blossoms to linear blossoms. In that lan-
guage, the tempting falsehood in the last paragraph states that g&(e) = f@(eF"~*)
for any tensor e in Lf". The truth is that there is a bijective flavor-preserving linear
map m: L$* — L®* with the property that 92(e) = f&(m(e)F*=*); but the map
m is not the identity. To compute the map m, let us use the tensors &§*7*~* for s
in [0,k] as a basis for L§*. From Prop. 8.2, we know that GU)(F) = kigP (57 %%).
Similarly for F, we know that F()(7) = nif®(5°7"~*). Since G osculates F to kth
order at ¥, these two quantities are equal. Hence, we conclude that

o k—s nt fon—s nt izk—$) zn—
o267 = 0y = 12 ((Jpoeh—) rt)

Let m: LE* — LE* be the linear map whose action on the basis tensors is given by
m(6°F*%) := (nt/ki)6°F*¥—%; by the linearity of the linear blossoms f® and ¢®, we
may conclude that g@ () = f@(m(e)7"~*) for all e in L.

All of this theory works perfectly well for surfaces as well as for curves. The
surface G of degree k that osculates a surface F: P — Q of degree n to kth order
near a point r is abstractly defined by truncating the Taylor series:

d*Fe(u-r,...,u—r)
k!)

By the same reasoning as above, using Prop. 8.4 this time, we can conclude that
there is a flavor-preserving linear bijection m: P®* — P®* with the property that
92(e) = f&(m(e)r™*) for all k-tensors e on P. If the two vectors £ and n are
a basis of Py, the effect of m on a basis tensor £'nirk¥—3-7 of P®* is given by
m{ginieb=i~1) i= (nEH k) ghppkeies

G(u) = F(r)+dFe(u—1)+---+

44 PERSPECTIVES ON BLOSSOMING 8.7

Proposition 8.8. If F: P — Q is an n-ic polynomial function, the unique polyno-
mial function G: P — @Q of degree k that osculates F to kth order at the point r
in P is given by the formula @ (e) := f@(m(e)r"~*), where m: P2*¥ — P®* is the
invertible flavor-preserving linear map determined as follows. Let {6,,...,6,} be a
basis of Py. Then, the set of k-tensors of the form 6;" cen 5;”r'°“ form a basis for
P,?", where 1 := {1 + ++ - + 1,. The matrix of the map m with respect to this basis
is diagonal, and the entries on the diagonal are determined by

: e mig .
m(6y -+ 6yt T = 8y e St D

Note that the primary source of complexity in Prop. 8.6 was the annoying
factors that arise when differentiating; indeed, the sole effect of the map m is to
undo the damage caused by those factors. It is often more convenient to wash out
the effects of the annoying factors by thinking about osculating flats (that is, affine
subspaces) instead of osculating curves or surfaces. Define Oscy F(r), the flat that
osculates F' to kth order at r, to be the affine span of the range of G, where G is the
curve or surface of degree k that osculates F' to kth order at r. For a nondegenerate
curve F, the flats Oscy F(F) will have dimension k. In particular, the flat Osc; F(F)
is the tangent line to F at 7, while the flat Oscz F(F) is the osculating plane of F
at ¥, the plane containing the point F() and spanned by the vectors F'(F) and
F"(7). For a nondegenerate surface F, the flat Osc, F(r) is a tangent plane, while
the flat Osc, F(r) is an affine 5-space containing the point F(r) and spanned by the
five vectors dFe(£), dFc(n), d*Fe(€,€), d*Fe(€,n), and d?Fi(n,n), where {£,n} is
a basis for P,.

The relation between osculating flats and blossoms can be computed as fol-
lows. If G is the k-ic function that osculates F' to kth order at r, the definition
of osculating flats says that Oscy F(r) = Span(Range(G)). Prop. 4.7 tells us that
Span(Range(G)) = Range(¢®); thus, the flat Oscy F(r) is precisely the locus of the
points g¥(e) as e ranges over all 1-flavored k-tensors on P. From Prop. 8.6, we learn
that g@(e) = f&(m(e)r"~*). Since m is a flavor-preserving bijection, we conclude
that Oscy, F(r) is also precisely the locus of f@ (er"~*) as e varies over P®*. Notice
how dealing with osculating flats, rather than curves or surfaces, washes out the
effects of the annoying factors.

Translating back into multiaffine blossoms, we conclude that the range of the
k-affine map

(ay,...,ax) — f(uy,...,9,r,...,1)
n—k
lies inside of Osc, F(r), and also spans it. The “lying inside” part is particularly
important.

Proposition 8.7. If a point r in P occurs m times among the arguments of a
value f(uy,...,u,) of the n-affine blossom f, then that blossom value lies in the
flat Oscp_m F(r). O

This concept of osculating flats leads to a very natural differential perspective
on the meaning of the n arguments of a multiaffine blossom. For example, let

8.8 THE DIFFERENTIAL VIEW 45

F:L — Q be a nondegenerate polynomial cubic curve, and hence a space curve; and
let 7, 5, and ¢ be distinct points in L. The blossom value f(F,,) is the unique point
that lies in the intersection of the three osculating planes Osc; F(F), Oscs F(3), and
Oscy F(t). The value f(5,5,1) is the intersection of the tangent line Osc, F(5) with
the osculating plane Oscy F(f). More generally, for any nondegenerate polynomial
curve or surface F', we can determine the blossom value f(uy,...,u,) uniquely by
intersecting the osculating flats corresponding to all of the distinct points r that
occur in the argument bag {u,,...,u,}.

This differential intuition is so simple that one might be tempted to use it to
define blossoms, instead of manipulating the coefficients of polynomials as we did
in Section 2. Unfortunately, that idea runs into trouble if the polynomial curve or
surface is degenerate, that is, if its Bézier points are not affinely independent. For
example, if F is a polynomial cubic curve that happens to lie in a plane (that is,
has zero torsion), all of its osculating planes Oscy F (1) are coincident, and hence we
can’t use their intersections to define the blossom values f(7,3,%).

Note that the osculating flats of surfaces interact with each other somewhat
more subtly than do the osculating flats of curves. For example, let F(u) be a
nondegenerate quadratic polynomial surface. Since F has six Bézier points, the
affine span of the range of F is a 5-flat. The blossom value f(u,V) is the intersection
of the two tangent planes Osc, F(u) and Osc; F(v). The subtle point is that we
would expect two planes in a 5-flat to be skew; since these two planes intersect
in the point f(u,v), they aren’t in general position. As the degree of the surface
goes up, these coincidences get worse. A nondegenerate cubic surface F lies in a
9-flat. For each point u, the flat Oscz F(u) has dimension 5. Three 5-flats in general
position in a 9-space don’t come close to intersecting; but any three 5-flats of the
form Oscy F(u), Oscs F(v), and Oscs F(w) do intersect, at the point f(u,v,w).

Working with osculating flats instead of osculating functions is one way to wash
out the effects of the annoying factors. But there is another important context where
the annoying factors aren’t a problem. In particular, if we compare the behaviors
of two different functions of the same degree, then the annoying factors cancel out,
because they are the same on both sides.

Proposition 8.8. If F: P — Q and G: P — Q are two polynomial functions of the
same degree n, then F and G agree to kth order at r in P if and only if the identity

fO(uy---uer™*) = g®(uy - - uprn)

holds, that is, if and only if the blossoms f and g agree on all argument bags that
include at least n — k copies of r.

Proof. Suppose first that the blossoms do agree as specified. We can rephrase this
as the claim that f&(er"—*) = ¢@(exr"—*) for all simple, 1-flavored k-tensors e on
P. Since those tensors span all of P®*, we deduce that the same equality holds
for every k-tensor e on P. Note that, in fact, it would have been enough to have
assumed that f®(u*r"—*) = g®(u*r"-*) for all points u in P, since the k-tensors
u® that are perfect kth powers also span P®*, by Cor. 4.6.

46 PERSPECTIVES ON BLOSSOMING 9

Let d* Fe(€1,. .., &) be a value of the ith derivative of F at r, for ¢ in [0, k]. By
Prop. 8.4, we have d*Fe(£1,...,§) = ntf@(r"—*¢,--- &), and similarly for G. We
can deduce that these derivatives agree by letting the k-tensor e above assume the
value e 1= £; -+ &irF—%.

Conversely, suppose that F and G agree to kth order at r, and let {4,,..., 6p}
be a basis for Pyp. The k-tensors of the form ¢ := 6j, ---§;r*~* for i in [0,]
form a basis for P®*. Furthermore, by Prop. 8.4 again, we have f(cr™%) =
(1/n%)d* Fe(8;,, - . ., 5;), and similarly for G. If the sth derivatives of F and G agree,
then it follows that f&(cx”~*) = g®(cr"*) for all ¢ in the basis, hence for all ¢ in
P2, and hence, in particular, for all ¢ of the form ¢ =u;---ux. O

Prop. 8.8 will be the starting point in Section 14 for our investigation of spline
curves via the blossoming technology.

9. The algebraic view of a blossom’s n arguments

Our third perspective on the meaning of a blossom’s n arguments is a trivial
observation with important consequences: the n arguments of a blossom value are
the n factors of a simple n-tensor. This observation exploits the Tensoring Principle
to give a clearer understanding of the geometric relationships between a polynomial
function and its multiaffine blossom. Note that the range of the polynomial function
F itself is the curve or surface that we started with, while the range of F’s multiaffine
blossom f is the set of points for which we have good labels. So far, f has provided
us with labels for all of the important points, such as Bézier points and poles. But
there are points that f doesn’t label.

The Tensoring Principle tells us that a polynomial map F: P — Q is equivalent
to an affine map f®: P®" — @, and an affine map is a pretty simple thing. Instead
of trying to understand the geometry of F(u) = f®(u") and its multiaffine blossom
f(ag,...,u,) = f®(u;---u,) in the object space Q, it is a better idea to study
the geometry of the corresponding argument n-tensors u”™ and u; :--u, back in the
tensor power space P®". The geometry in P®" is independent of F. Furthermore,
since the map f® is affine, it can affect that geometry only in two fairly simple
ways. First, the map f® may fail to be surjective (onto). Prop 4.7 tells us that the
range of f® is precisely the flat in Q that forms the affine span of the range of F, or
equivalently, the affine span of the Bézier points of F with respect to some reference
simplex in P. This range flat f®(P®") might be smaller than Q. But however big
it is, it contains all of the points of interest for the study of F. By studying the
geometry of P®", we can avoid being distracted by the irrelevant points in Q that
don’t lie in f®(P®"). Second, the map f® may fail to be injective (one-to-one).
This happens precisely when the Bézier points of F' are not affinely independent,
causing the map f® to collapse its domain P®" down to a range flat f ®(P®") of
smaller dimension. This type of degeneracy makes it particularly attractive to study
the geometry back in P®" rather than in Q, where things have collapsed on top of
each other.

To study the geometry of P®", we shall invoke Prop. 5.6. Let {bo,...,bp} be
a linear basis for the linearization P of P, and let 8 be the associated normal-
form map. Prop. 5.6 tells us that 8 is an algebra isomorphism between X[P] and

9 THE ALGEBRAIC VIEW 47

Rlbo,...,bp]. Thus, questions about the structure of the space P®"® = XP[P] can
be translated, using f§, into questions about 1-flavored n-homogeneous polynomials
in R[bo,...,bp]. The question that interests us at the moment is whether or not a
tensor e in P®" can be written as a product of n points e = u; - --u,,, since those
are the tensors that correspond under f® to points that have multiaffine labels.

If e is a tensor in P®", the normal-form polynomial 8(e) is 1-flavored and
n-homogeneous. In order for a factorization e = u;...u, to exist, the poly-
nomial f(e) must factor as the product B(e) = B(uy)---B(u,) of n 1-flavored
1-homogeneous polynomials 8(u,). In fact, it is enough that 8(e) split in any way
into n linear factors. It is a standard algebraic result that any factor of a homo-
geneous polynomial must be homogeneous, so the homogeneity of the factors is
guaranteed. As for their flavor, since the product is 1-flavored, we can always push
scalars around so that each factor is also 1-flavored. Thus, an n-tensor e on P can
be written as a product of n points if and only if its normal-form polynomial f(e)
splits into linear factors.

This notion of “splits into linear factors” is important enough that it has a
name. An n-tensor e on P (of any flavor) is called simple if it can be factored into a
product of 1-tensors; otherwise, it is called compound. (The term “decomposable”
is sometimes used instead of “simple.”) We started out building the tensor power
space P®" by multiplying points together; the tensors that result directly from this
multiplication are the simple ones. The compound ones are the ones that have to
be thrown in as well in order to make P®" into an affine space.

For example, consider the 2-flavored 2-tensor e on the line L given by e :=
0% + 212, and use the Cartesian basis {0,5} for L+. Converting to normal form, we
have

B(e) = 0% + (0O + 26)(0 + 126)
= 20% + 1406 + 2452
= 2(0 + 35)(0 + 46).

Since f(e) splits, the tensor e is simple; in fact, ¢ = 234. For an example in the
other direction, note that the tensor ¢ = 0% + 62 is already in normal form. Since
B(c) = ¢ does not split (over the real numbers), the tensor ¢ is compound.

In the rest of this section, we shall try to develop some intuition for the geometry
of the set of simple tensors sitting in P®" for small values of n and p := dim(P).
We begin by reviewing the case of quadratic curves, where n = 2 and p = 1.

The second tensor power L®? of the affine line L consists of homogeneous
quadratic polynomials in two variables with one flavor constraint. If we use the
Cartesian basis {0,6} for L«, a tensor e in L®? has the normal form S(e) = 02 +
b0 + c62 for some constants b and ¢, where the flavor constraint is embodied in the
fact that the coefficient of 0% is 1. We can use the pair (b, c) as a Cartesian coordinate
system on the plane L®2?. The factoring properties of the tensor e depend upon the
sign of the discriminant Discg(e) = b — 4c. (The subscript of 8 warns us that
the value of the discriminant, although not the sign of that value, depends upon
the chosen basis for Lx.) If Discg(e) = b2 — 4c = 0, then e is a perfect square
e = @ = (0 + u6)® = 0% + 2ub8 + u383. Let D denote the set of such tensors

48 PERSPECTIVES ON BLOSSOMING 9.1

Fig. 9.1. An affine picture of the space L®? of 2-tensors on L

(“D” for double root). Note that D forms a parabola D(&) := (2u,u?) in the plane
L®3 as shown in Fig. 9.1. If Discg(e) > 0, then e has two distinct real roots:
e = 4t = 0% + (u + v)06 + uvé? for u # v. Let R denote the set of such tensors
(4 + v,uv) (“R” for real roots); R is the exterior of D. Finally, if Discg(e) < O,
then e doesn’t factor over the reals. Call the set of such tensors C (for compound
tensors); C is the interior of D.

If we enlarged our coefficient field from the real numbers to the complexes,
then the tensors in C would also factor, with a pair of complex conjugate roots.
For example, the 2-tensor (0,1) = 0% + §2 in C, which is compound over the reals,
splits into (0+16)(0 — ¢5) over the complexes. Indeed, every n-tensor on L for every
n would then be simple, since the complex numbers are algebraically closed. But
the real numbers are the natural coefficients to use in computer graphics, so we
shall stick with them. Moving to the complexes would only eliminate the problem
of compound tensors for curves, anyway. For surfaces, as we will see later on, most
tensors are compound even over the complex numbers.

One difficulty with our current picture of the space L®? is that some of the
interesting things are happening out at infinity, where they are hard to see. With a
little work, we can get a finite picture of all of the simple 2-tensors on L, that is, of
RUD. Indeed, some readers may have already realized that, viewed projectively, the
set RU D is a Mobius strip. We shall derive this fact in slow and careful algebraic
detail in the next few paragraphs. The advantage of our plodding derivation is that

9.1 THE ALGEBRAIC VIEW 49

a closely analogous method will then suffice to compute a finite picture of the simple
3-tensors on L—a picture that is less well-known. The first step on our plodding
road is to invoke projective geometry to explain what it means for things to be
happening “at infinity.”

Consider the linearization L®? of L®2. This linearization is a 3-space consisting
of the tensors (b,¢; a) = a0?+b05+c62, where we are writing the flavor-coordinate a
last out of habit. The basic idea of projective geometry is to treat the lines through
the origin of LE? as the “points” of a new space: a projective plane. Most of the lines
through the origin of L®? contain precisely one point of each flavor; in particular,
the same line that contains the point (b,c;a) also contains (b/a,c/a;1) whenever
a # 0. Such lines model “finite points” in the projective plane. The other lines
consist entirely of points that are O-flavored. Such lines model “points at infinity.”
We can study things that happen everywhere in L®?, including “at infinity,” by
studying a neighborhood of the origin in the homogeneous linear space L33,

Carrying out this plan, we find that the factoring properties of a tensor e =
(b,c;a) in the 3-space L2? depend upon the homogenized form of the discriminant
Discg(e) := b — 4ac. The set D of tensors with a double root is described by the
equation Discg(e) = 0, and forms a double cone with elliptical cross section, centered
around the line @ = ¢, b = 0. The set R of tensors with two distinct real roots has
Discg(e) > 0, and forms the exterior of this cone, while the set C of compound
tensors has Discg(e) < O and forms the interior of the cone.

The second step on our plodding road involves using some type of projection to
reduce this 3-dimensional picture down to a 2-dimensional one. Projection, in this
context, merely means restricting our attention to some 2-dimensional surface in
the 3-space L®? that cuts all (or most) of the lines through the origin in one point
(or a small number of points). The most obvious surface to project down onto is a
plane. If we pick any plane A in L®? not containing the origin, most lines through
the origin will intersect A in a unique point. The lines that don’t intersect A form a
plane through the origin parallel to A. In projective language, those lines are viewed
as “points at infinity,” which, together, make up the “line at infinity.” The problem
with such projections is that every plane through the origin of L®? intersects the
exterior R of the cone, and hence includes some lines of simple tensors. Since we
want to get a single, finite picture of all of the simple tensors, we can’t afford to
miss such a line. For example, if we picked the plane A := L®?, this projection
would take us right back to Fig. 9.1, where we started, in which the entire “line at
infinity” consists of simple tensors.

Instead of projecting onto a plane, we shall project onto an infinite cylinder, as
in the Mercator projection used in map-making. The advantage of this choice is that
only one line through the origin escapes intersecting our chosen surface: the axis of
the cylinder. We can choose things so that this line consists of compound tensors,
which we don’t mind ignoring. One disadvantage of using a cylinder is that each line
through the origin that does intersect the cylinder does so twice, in an antipodal
pair of points. In order to achieve our final picture, we will have to identify the two
points in such an antipodal pair.

To make the geometry of the cylindrical projection simpler, it is helpful to

50 PERSPECTIVES ON BLOSSOMING 9.2

§=0 . ' f=nx §=2x
Fig. 9.2. A projective picture of the space L®? of 2-tensors on L

convert to a new Cartesian coordinate system for L®%. In particular, let z := b,
y:=c—a, and z := ¢+ a. In the (z,y,2) coordinate system, the discriminant has
the simpler form Discg(e) = z? + y? — 2?. The cone D determined by the equation
Discg(e) = O now has circular cross sections, an apex angle of 90 degrees, and is
centered around the z-axis. If we imagine a copy of the earth centered at the origin
of L®? and with its poles on the z-axis, the cone D intersects that earth along the
parallels of 45 degrees north and south latitude.

We now project LE? onto the cylinder of radius 1 about the z axis; that is, we
restrict our attention to tensors (z,y, z) that satisfy z? + y* = 1. Fix an angle 0,
let u := cos @ and v := sin§, and consider the set of tensors £y = {{cos#,sin¥,z) |
z € R}, which is a generating line of the cylinder. The line £¢ corresponds to a
particular meridian of longitude in the Mercator analogy. For tensors e in £y, we
have Disc(e) = 1 — z%. Hence, the line ¢ intersects D in the points (cosf,sin 0, +1)
and intersects R in the points (cosd,sind,z) for z in (—1,1). Fig. 9.2 shows the
cylinder unrolled onto the (8, z) plane. Remember that each line through the origin
of L®? intersects this cylinder in two antipodal points: one with § in [0,7) and
the other with # in [r,2x). Thus, the set of simple 2-tensors on L is, up to a
diffeomorphism, the shaded region in Fig. 9.2 with its left and right edges identified
as indicated by the arrows. That is, the simple 2-tensors RUD on L form a Mobius
strip with the perfect squares D as its single edge.

To understand cubic curves, we must study the geometry of L®%. Continuing
with the Cartesian basis {0,5} for Lx, a generic tensor ¢ in L®* has the normal-
form polynomial B(e) = 0% + 6025 + c062 + d6°, and the triple e = (b,c,d) forms
a Cartesian coordinate system on L®3. From a factorization point of view, the
tensors e in L®3 can be partitioned into four classes: T, the tensors with one triple

9.3 THE ALGEBRAIC VIEW 51

real root; D, the tensors with one double real root and onme single real root; R,
the tensors with three distinct real roots; and C, the compound tensors. (Viewed
over the complexes, the tensors in C' have one real root and one pair of conjugate
complex roots.) From the classical theory of cubic polynomials, we recall that the
discriminant of the polynomial 8(e) is given by

Discg(e) := b%c? — 4c® — 4b%d — 27d? + 18bed.

The set R contains the tensors whose discriminant is strictly positive; the set C
contains the tensors whose discriminant is strictly negative; and all of the tensors in
D UT have zero discriminant. Note that D U T constitutes the boundary between
R and C, since the discriminant varies smoothly. The set T, which forms part of
this boundary, consists of the perfect cubes T(#) = 4® = (3u,3u?,u3), and is hence
a twisted cubic curve lying in the 3-space L®3.

Fig. 9.3 is the analog, in the cubic case, of the parabolic picture in Fig. 9.1. Of
course, the space L®3 has three dimensions instead of two. Instead of attempting to
draw a perspective view, Fig. 9.3 shows four different cross sections, corresponding
to the planes b = -3, b =0, b = 3, and b = 6. If we put the ¢ axis vertically, as done
in Fig. 9.3, each cross section of the form b = 3 looks rather like an ocean wave,
with R as the water, C as the air, D as the water’s surface, and T as the cusp of the
wave. To plot any cross section of L®3, it is enough to compute the intersection of
the cutting plane with the boundary D U T, or equivalently, to compute all tensors
of the form 429 that lie in the cutting plane. In Cartesian coordinates, such a tensor
is given by: e = @26 = (0 + u6)?(0 + v6) = (2u + v,u? + 2uv,u?v). Cutting by a
plane of the form b = 3\ for some real constant X is particularly simple, since the
relation = 2u + v = 3 gives us a linear relation between u and v, which allows us
to express both ¢ and d as cubic polynomials in either u or v. That is, the curve in
which the boundary surface DU T meets the plane b = 3 is a polynomial cubic. In
fact, it is always an affine image of a semi-cubical parabola, with the cusp located
on T at the tensor AS.

Fig. 9.3 also illustrates another interesting point. A tensor of the form e = 3%f
in DUT must lie on the tangent line Osc, T'(5) to the cubic curve T'(@) at @ = 5, as
we can see by applying Prop. 8.7. Therefore, the boundary surface DUT is actually
a ruled surface, with the tangent lines to the curve T(@) as its generators. The four
circled points in Fig. 9.3 indicate the intersections of the tangent line Oscy T'(1) with
the four drawn cross sections.

This first picture of the geometry of the simple tensors surrounding a cubic
curve has the same problem that our first picture had in the quadratic case: lots
of the interesting behavior is out at infinity. By following in the footsteps of E. C.
Zeeman, we can obtain a finite picture of all of the simple 3-tensors on L, that is,
an analog to the Mébius strip of Fig. 9.2 for cubics. Zeeman invented this finite
picture for use in catastrophe theory, and he christened it the umbilic bracelet [39).

The first step is to projectivize. Instead of considering the affine 3-space L®3,
we consider lines through the origin of the linear 4-space L®3. The factorization
properties of a 3-tensor e = (b,c,d; a) = a0® + 5026 + c062 + d6* are determined by

52 PERSPECTIVES ON BLOSSOMING - 9.3

Fig. 9.3. Four affine cross sections through the space L®*

9.4 THE ALGEBRAIC VIEW 53

the homogenized form of the cubic discriminant:
Discg(e) := b%c? — 4ac® — 4b3d — 27a%d® + 18abed.

The next step to take isn’t so clear, however. We shall simply follow Zeeman,
treating his ideas like rabbits pulled from hats. Zeeman’s own presentation of the
umbilic bracelet in [39] is better motivated, at the price of invoking the machinery
of group actions.

Zeeman first changes to a new (u,v,z,y) Cartesian coordinate system for L®3
by the following rules: u := (a —c)/4, v := (d - b)/4, z :== (3a+c)/4, and y :=
(—3d — b)/4. A little algebra reveals that, in terms of these new coordinates, the
discriminant Discg(e) is given by

4(27(u? +03)? — 18(u? + v?) (2 + y?) — (2? + y?)? + Buz® + 24vz?y — 24uzy? — 8vy?).

Note that, if u = v = 0, then Discg(e) = (—4)(z? + y?)2. Thus, the lines through
the origin of Lf’s that lie in the plane u = v = 0 all consist of tensors with negative
discriminant, which are hence compound. Since we are searching for a finite picture
of the simple tensors, we can safely ignore the plane u = v = 0. Every tensor
(u,v,z,y) that does not satisfy u = v = 0 has two scalar multiplies that satisfy
u? + v? = 1. We shall project LP® onto the set of tensors satisfying u? + v? = 1,
which is a solid torus: the Cartesian product of the unit circle in the (u,v) plane
with the entire (z,y) plane.

Fix an angle 0, let u := cosd and v := siné, and consider the factorization
structure of the 3-tensors in the plane Ay = {(cosd,sind,z,y) | z,y € R}. For
tensors e in Ay, we have

Discg(e) = 4(27-18(z* +y*) — (z? +y?)* +(82° — 2424?) cos 0+ (242°y — 8y®) sin 9).

The equation Discg(e) = 0 is a quartic equation in z and y whose solution is some
algebraic plane curve of degree 4. In fact, that curve turns out to be a hypocycloid
with three cusps. In words, mark a point on a circle of radius 1; roll that circle
around the inside of a circle of radius 3 centered at the origin of Ag; and then rotate
the hypocycloid traced by the marked point so that one of its cusps makes an angle
of /3 with the z-axis. The result is the curve Discg(e) = 0. To verify this claim
without drowning in a sea of trigonometric identities, it is helpful to introduce a
complex variable z := z + ty and to view the plane Ay as a copy of the complex
numbers. The hypocycloid in question is then given parametrically by the formula

2 1= /3 (267 4 ¢~) (9.4)

for in [0,27). The equations u + iv = €*® and z + iy = z allow us to express the
discriminant of e in Ay as follows: Discg(e) := 4R(27 — 1822 — (22)? + 823¢~*),
where R denotes the real part and z denotes the complex conjugate of z. If we
plug in the 2 from Eq. (9.4), it is straightforward algebra to check that Discs(e) =
4R(8(e3¥ — e~39P) — 4(e%% — ¢~%¥)) = 0. This verifies that all tensors on the
hypocycloid have zero discriminant. To see that no other tensors in the plane A4

54 PERSPECTIVES ON BLOSSOMING 9.5

Fig. 9.5. The plane A,

could also have zero discriminant, consider rotating a line in the plane so that
it remains tangent to the hypocycloid. Counting multiplicities, this rotating line
always intersects the hypocycloid a total of four times. In general, the point of
tangency is a double intersection and the two crossings of the other two sides are
each single intersections. When the point of tangency coincides with a cusp, that
intersection has multiplicity 3 and the midpoint of the opposite side provides the
fourth. Since the discriminant is a polynomial of degree 4, the curve that it implicitly
defines can’t intersect any line more than 4 times; therefore, the hypocycloid must
account for all of the solutions of Discg(e) = O in the plane A,.

We can now deduce the factorization properties of all of the tensors in the
plane Ay, as shown in Fig. 9.5. Since the origin (cosd,sin #,0,0) has discriminant
4 .27 = 108, which is positive, all the tensors inside the hypocycloid belong to R,
while the ones outside belong to C. The tensors on the hypocycloid itself belong to
DuUT. Comparing with Fig. 9.3, it is geometrically clear that the three cusps are
in T while the rest of the hypocycloid is in D. To verify this algebraically, we first
verify by trigonometry that the tensor 4(cos(r/3)0 — sin(r/3)5)3, when expressed
in (u,v,z,y) coordinates, is given by (cosr,sinr,3cos(r/3),3sin(r/3)). Since the
three cusps in A4 correspond to the three values r =8, 7 = 8 + 2x, and 7 = 0 + 4,
we conclude that the three cusps are perfect cubes, and hence lie in T. No other
points of the hypocycloid can lie in T because the cubic curve T can intersect the
plane Ay in at most three points.

To achieve the finite picture of R U D U T that we have been searching for, it
only remains to assemble the planes Ay for different . Fig. 9.6 shows a picture of
the relevant portion of (0,z,y) space. Just as in the quadratic case, we restrict ¢
to the interval [0, 7) in order to get only one point from each antipodal pair. As 4
varies over this interval, the hypocycloid rotates one sixth of a turn. The plane Aq

9.8 THE ALGEBRAIC VIEW 55

Fig. 9.6. A projective picture of the space L®3

is identified with A, as indicated by the letters. Note that this identification does
not destroy orientability in the cubic case, although it did in the quadratic case; the
reason is that negating all four axes of L®? is orientation preserving, while negating
all three axes of L®? is not. If we didn’t care at all about compound tensors, we
could bend the screw of simple tensors in Fig. 9.6 around, giving it an extra half-
twist so as to bring the two identified faces Ao and A, together. If we choose the
correct sign for the extra half-twist, the resulting solid is the umbslic bracelet shown
in Fig. 9.7.

Remark 9.8. In catastrophe theory, it is important not to identify two cubics
that differ in sign, since this would confuse maxima and minima. Hence, instead of
dealing with lines through the origin of L®®, Zeeman deals with rays leaving the
origin. He allows in Fig. 9.6 to vary over [0, 2r) instead of just [0,7) and he then
identifies Ao with A3, without any extra twisting. The resulting bracelet looks the
same either way, however. Recent work by Jorge Stolfi suggests that computational
geometry may be another area where it is better to keep the antipodal rays as
separate objects, rather than to identify them, because this enables the construction
of an oriented version of projective geometry [38).

Surfaces work out differently from curves in two respects. First, there are so
many dimensions involved for even a quadratic surface that we won’t waste any
effort trying to visualize the simple tensors geometrically; instead, we will stick to
algebra. The second difference also involves dimensionality. When studying curves,
we found that the simple 1-flavored n-tensors on L formed an n-dimensional subset
of the n-dimensional space L®". Thus, not all tensors were simple, but there were as
many dimensions of simple tensors as there were of tensors in general. For surfaces,
that is no longer true. All of the 1-flavored n-tensors on a plane P form the space
P®", which has dimension ("}?) — 1 = n(n + 3)/2, by Prop. 4.9. But each simple
1-flavored n-tensor can be written as the product € = u;---u, of n points in P;
hence, there can’t be more than 2n dimensions’ worth of them. This discrepancy in
dimension corresponds to the fact that homogeneous polynomials in three variables

56 PERSPECTIVES ON BLOSSOMING 9.9

Fig. 9.7. The umbilic bracelet, as carved in maple by Tim Poston

generally don’t split into linear factors, even over the complex numbers.

For example, consider quadratic surfaces. The study of quadratic surfaces is the
study of P®3, where P is an affine plane. Prop. 4.9 tells us that P®? has dimension
five. If we pick a basis {b;,b3,bs} for Pk, the normal form B(e) of a tensor e in
P2? will be a homogeneous quadratic polynomial in the three variables b;. It is
technically convenient to pick a Cartesian basis, say {0, £,n}, where o is a point in
P and ¢ and n are vectors on P. With respect to this basis, we have

B(e) = uo? + v€? + wn? + zén + yon + 20§,

where u = Flav(e). Thus, the 6-tuple (v,w,z,y,z;u) forms a Cartesian coordinate
system on P2®? and P®? is the subspace u = 1. A tensor e in P®? is simple if
it factors into, say, ¢ = (@10 + b1€ + c1n)(az0 + b2€ + can). Though there are
six coefficients in this factored form, there are only five degrees of freedom in the
product, since multiplying the first factor by A and the second by 1/ doesn’t affect
the result. Thus, the six coefficients of a general 2-tensor e must satisfy some identity
in order for there to be any hope that e splits, even over the complex numbers. That
identity turns out to be

uz® + vy? + w2’ — duvw — Tyz =0, (9.9)

as the reader can easily verify.

9.10 THE ALGEBRAIC VIEW 57

Challenge 9.10. A general 3-tensor e on P has the normal form
q0° +ro’€ + s0’n + to£? + uoén + von? + we? + 2620 + y&n? + 2n°,
with 10 coefficients, of which the first is the flavor ¢ = Flav(e). The simple 3-tensors
(@10 + b1€ + c1n)(az0 + ba€ + c2n)(aso + bs€ + csn)

form a 7-dimensional subset of the space P®?; there are 9 coefficients, but 2 of the
degrees of freedom just move scalars around among the three factors. This implies
that there are 3 dimensions’ worth of constraints that must hold on the coefficients
g through z in order for the tensor e to have any hope of splitting into linear factors,
over any coefficient field. Find a basis for the ideal of polynomials in Rlq,..., 2]
that are zero on all simple 3-tensors. (Resultants or Grobner bases might help.)

Part D: Adjusting the Degree

In most of our work so far, we have taken the degree n of our curves and
surfaces to be a manifest constant; the exception was our study of osculating curves
and surfaces in Section 8. There are various situations where it is useful to adjust
the degree, however. Raising the degree means viewing a function F of degree n as a
degenerate example of a function of some degree m > n. Lowering the degree means
approximating a function of degree n by a function of degree m for some m < n.
After we introduce bipolynomial surfaces, we will also study degree splitting and
degree joining.

10. Degree raising

A parabola F is a polynomial curve of degree two, so it has a biaffine blossom
f(@,©). But, if we like, we can also consider F(4) to be a degenerate example of a
cubic polynomial curve G(&) = F(&). The cubic G has a triaffine blossom 9(4, v, w).
We know that F(#) = f(&, &) = g(4, &, &), of course; but it is interesting to ask what
other relationships hold between the two blossoms f and g.

It turns out to be easy to express g in terms of f: we have

o(0,0,0) = L@+ I@0)+ £(5,8)
To prove this claim, it is enough to note that the right-hand side is a symmetric,
triaffine function whose diagonal agrees with F = G. For an arbitrary degree n and
an arbitrary parameter space P, we have

1 n+1 R
g(uy,.... Uns1) = Y fag,. . B 80ga), (10.1)
=1

where the hat over the argument u; indicates that that argument is omitted.

Both of the functions f and g that appear in Eq. (10.1) are multiaffine blossoms
of F. Similarly, F also has two different homogeneous forms F« and G+, two different
affine blossoms f® and ¢g®, two different multilinear blossoms f« and g«, and two
different linear blossoms f2 and ¢g@. In each case, one results from viewing F as
having degree n, while the other results from viewing F as a degenerate function of
degree n + 1. To distinguish between the various blossoms of the single function F,
when confusion might arise, we shall prefix the word “blossom” with the relevant
degree. Thus, we shall call f the multiaffine n-blossom of F, while g is the multiaffine
(n+1)-blossom, and so forth. Note that, of the six guises of a polynomial map shown
in Fig. 5.1, the polynomial map itself, in the upper-left corner, is the only one where
there is any chance of confusion about the intended degree.

To translate Eq. (10.1) into the world of tensors, we need to introduce an
operator D on tensors that might be called total tensor differentiation. To begin
with, let D: X[P] — X[P) be the linear operator that takes an X-polynomial ¢ on

P into the polynomial
o

u€epP

10.2 DEGREE RAISING 59

For example, we have

N
1) =200, 20D _yp1 450

If ® and ¥ in X[P] are affinely equivalent, then D(®) and D(¥) will also be equiv-
alent; hence, the operator D is also well-defined as a linear map D: X[P] — X[P]
on tensors. In addition to being linear, the map D has the property D(ab) =
aD(b)+ D(a)b; such maps are called derivations. In fact, D is the unique derivation
of the tensor algebra that maps each 1-tensor into its flavor: for e in X,![P], we have
D(e) = Flav(e). More generally, if e is a k-tensor, then Flav(D(e)) = k Flav(e).

Proposition 10.2. Let F: P — Q be an n-ic polynomial function, let f® be the
linear n-blossom of F, and let g© be the linear (n + 1)-blossom of F, that is, the
linear blossom of the map G: P — Q that results from viewing F as a degenerate
instance of a function of degree n + 1. The functions f@ and ¢® are related by
the identity g@ () = f&(D(e)/(n + 1)), where the operator D denotes total tensor
differentiation.

Proof. The map e — D(e)/(n + 1) is a flavor-preserving linear map from P&("+1)
to P2 that takes u"*! s u”. Thus, the composition e — f& (D(e)/(n+1)) is

a flavor-preserving linear map from P® (n+1) ¢ Q+x that takes u*+! — F(u). By
Cor. 4.8, the only such map is g§, so we must have gP(e) = 2(D(e)/(n + 1)) for
alle. O

Prop. 10.2 allows us to answer many questions in a straightforward way. For
example, if F is a parabola, what is a formula in terms of the 2-blossom f of F
for the point g(0,1,2), where g is the 3-blossom of F? We compute as follows:
9(0,1,2) = g®(012) = /@ (D(012)/3) = £®((OT + 02 + 12)/3) = ((5,1) + £(5,%) +
f(1,2))/3. In some contexts, it might be better to have a formula for ¢(012) as
an affine combination of the Bézier points of F with respect to some reference
interval, perhaps [0,1]. If so, we can apply the normal-form operator 8 associated
with the corresponding barycentric basis for L+, the basis {0,1} in this case. Since
B(2) = 21 — 0, we find that

9(0,1,2) = Z LI+ 2ng, 1) - 10,0)

In other contexts, we might want a formula that labels the point g(J, 1, 2) as a single
value of the 2-blossom f. That is a trickier question, since such a formula will exist
only if the 2-tensor D(012) is simple. We shall return to that question later on.
Prop. 10.2 also gives us an easy proof of the standard degree-raising formula
for Bézier curves. Suppose that we would like to compute, from the Bézier points
of an n-ic curve segment F([3,]), the Bézier points of that same curve segment
viewed as a degenerate curve of degree n + 1. If f is the n-blossom of F and ¢ is

60 ADJUSTING THE DEGREE 10.3

f(§1 g, §)=g(§: 5,8, 5)

Fig. 10.3. Raising the degree of a cubic curve
the (n + 1)-blossom, we have, for 0 < ¢ <n+1,

g®(@ e+t = fB(D(5E" 1) /(n + 1))
_ e (is"-lt‘"““' +(n+1- i)a‘f"-")
=/ n+1

1
n+1

J s—13yn—(s—
=n+1f®(§ lt (1))+(1_

) o=,

Fig. 10.3 shows an example in which a cubic curve is viewed as a degenerate quartic.

We can also use Prop. 10.2 in the reverse direction, to figure out a formula
in terms of the (n + 1)-blossom g for a point that we already know in terms of
the n-blossom f. For example, in the case n = 2, suppose that we would like a
formula in terms of the 3-blossom g for the point f(0,1). We should expect to make
some arbitrary choices in the process of producing such a formula, because of the
degeneracy of g. From Prop. 10.2, we are searching for a 3-tensor ¢ on L with the
property that D(e)/3 = 01. We can find a particular solution to this inhomogeneous
differential equation by a little experimentation: the 3-tensor e := (30?1 — 0%)/2 =
0%1.5 happens to work. To get an arbitrary solution of the differential equation, we
can add to e any solution ¢ of the homogeneous equation D(c) = 0. To determine
the solutions of the homogeneous equation, recall that the curve G is a degenerate
cubic, with the degeneracy that G(3)(@) = 0. By Prop. 8.2, this is equivalent to
saying that g®(6%) = 0. Since gP(¢) = f2(D(e)/3) and F is unconstrained, it
had better be the case that D(6%) = 0; and, indeed, that is easy to verify. In
fact, the kernel of the linear map D is precisely the set of scalar multiples of § 8.
Thus, we have f(0,1) = ¢®(0%1.5 + wé®) for any scalar w. The value w = 0
gives f(0,1) = ¢(0,0,1.5), while the value w = —1/2 gives the symmetric formula
£(0,1) = 9(=05, 1, 1).

This argument involved a particular case of an important general pattern: a
derivative constraint on a polynomial curve or surface F: P — @ corresponds to a
linear subspace of the nth tensor power space P2®" on which the linear blossom of
F is required to be zero. As a second example of this general pattern, note that a
cubic polynomial surface has ten Bézier points while a quadratic surface has only six.
What are the four constraints on the Bézier points of a cubic surface that, if they
are satisfied, imply that the surface is actually quadratic? Let G: P — Q denote the

10.3 DEGREE RAISING 61

surface, and let Arst be a reference triangle in P. The surface G will be quadratic as
well as cubic if its third derivative vanishes identically, that is, if 4G (&3, €2, £3) = 0.
To interpret this identity as constraints on the Bézier points of G, let a :=r — t,
B :=8—r, and 7 := t —8 be the three sides of the reference triangle viewed as vectors
on P. Any two of the three vectors a, 8, and v form a basis for the space P, of
vectors on P. If we pick, for example, a and 8, we can conclude that the constraints
on the Bézier points of G are given by g2 (a®) = g®(a?8) = ¢® (aB?) = g2(8%) =o.
The constraint g@ (a®) corresponds to the demand that the G([t,r]) edge curve of
the triangular surface patch G(Arst) be a quadratic curve, and similarly for the
constraint ¢ (8%) = 0 and the G(|r,s]) edge curve. The bad thing about these four
constraints as a whole is a lack of symmetry; while the four tensors a®, a8, af?
and 8% do form a basis of the constraint space, they aren’t a symmetric basis. A
little linear algebra reveals that one symmetric basis consists of the three simple
tensors a®, #%, and 4%, and the compound tensor

e=2r% + 28% + 2t3 — 3r%s — 3r?t — 382t — 38%r — 3t%r — 3t2s + 12rst.

The structure of e is easier to understand if we arrange its coefficients in a triangular
array:

+2r
—3ris — 3r3t
—3rs? + 12rst — 3rt?
+28% — 383t — 3st? + 2t

The fact that g@ (¢) must be zero in order for G to be a quadratic gives us an affine
relationship on the ten Bézier points of G: if we let V := (¢(r,r,r) + ¢(8,8,8) +
g9(t,t,t))/3 denote the centroid of the three vertex Bézier points, C := g(r,s,t)
denote the central Bézier point, and O denote the centroid of the remaining six
Bézier points, the relation g (¢)/6 = 0 becomes 2C — 30 +V = 0, or, equivalently,
O is located two-thirds of the way from V' towards C. That constraint, together
with the demands that the three edge curves of the patch G(Arst) be quadratic
curves, is enough to guarantee that G will be a quadratic surface.

Let us return now to the question that we postponed earlier. Let F be a
parabola with the 2-blossom f and the 3-blossom g. Is the point ¢(D,1,2) in the
range of f, or not? As we learned in Section 9, this depends upon whether the
tensor D(012) is simple or compound. Using the Cartesian basis {0, 5} for L«, we
have

D(013)/3 =

01+02+ 12 _ 30% + 606 + 262
3 - 3 '
Using the Quadratic Formula, we find that this 2-tensor does factor:

N ~ 1 ~ 1 —
D(012)= {0+ {1+ ——) 5) (0+ (1 - —) 5) =5 0.423 1.577.
o) = o+ (1+ 5 v
This time, we were lucky: we were able to factor the 2-tensor D(e) over the reals.
The following proposition reveals that, in fact, there was no luck involved.

62 ADJUSTING THE DEGREE 10.4

Proposition 10.4. Let D: L?("“) — L2" denote the total differentiation opera-
tor for tensors on an affine line L, where the coefficient field is the real numbers R.
For all n, if a is a simple (n + 1)-tensor, then D(a) will be a simple n-tensor. But
the converse fails in a strong way: for n > 4, there exist simple n-tensors b with the
property that every tensor a satisfying D(a) = b is compound.

Proof. (The result in Prop. 10.4 is quite sensitive to the coefficient field; as we
observed in Section 9, all n-tensors on the line L are simple if we adopt the complex
numbers as our coefficient field.)

Let a be a simple (n + 1)-tensor on L, and let’s ignore the trivial case a = 0;
we want to show that D(a) is a simple n-tensor. If a is not O-flavored, then a can
be written in the form @ = wiiy + - - in+1, a8 a scalar multiple of a product of points
@; in P. If a is O-flavored, however, then some of its factors are vectors rather than
points. Let ! be the largest integer such that &' divides a. Then, we have

a=wiy - ﬁk5"+l—k = w5n+1—k H (6 + u;a)
1<i<k

for some real constants u; and nonzero scalar w, where k := n+1—/[. Since D(§) =0,
we have, in terms of these constants,

D(@)=ws™ 1 Y= [(0+us9).
1<i<k 1<5€<n
J#s
We can make things look more familiar by performing the change of variables 0 := Y
and § := —1. This change of variables carries the tensor a into the monic univariate
polynomial A(Y’) of degree k in the variable Y given by

AQY) = (=) ke JT (Y - w).

1<s<k

Note that the numbers u; are precisely the roots of A(Y). Furthermore, the same
change of variables carries D(a) into A’(Y). Thus, we are left with the following
problem: if a polynomial A(Y) of degree k has all real roots, does its derivative
A'(Y) also have all real roots, or might some of the roots of A'(Y’) be complex? By
Rolle’s Theorem, the function A’(Y) must have at least one real root in the interval
between any two distinct roots of A(Y). If the k roots of A(Y') are all distinct, this
is enough to conclude that A/(Y') has a full set of k — 1 real roots. A polynomial
A(Y) with multiple roots is the limit of a sequence of polynomials with clusters
of closely-spaced distinct roots. Therefore, its derivative A’(Y) is the limit of a
sequence of polynomials with all real roots, and hence A’(Y) itself must have all
real roots. We conclude that D(a) is simple whenever a is simple.

We can use the same change of variables to investigate the converse question.
Let b be a nonzero simple n-tensor on L; in fact, we shall choose b to be 1-flavored,
so that b = @y ---d, = [[;(0 — u:6). After the change of variables 0:=Y and
§ := —1, we are left with the monic univariate polynomial B(Y) whose roots are

10.5 DEGREE RAISING 63

Fig. 10.5. The graph of the function y = [J(Y +2)(Y + 1)(Y — 1)(Y — 2)dY

the u;. An (n + 1)-tensor e will satisfy D(a) = b if and only if the polynomial
A(Y) that results from the change of variables satisfies A'(Y) = B(Y), that is,
if and only if A(Y) is an integral of B(Y). If [B(Y) represents one integral of
B(Y), the other integrals all differ by some constant: A(Y) = [B(Y) + C for some
constant C of integration. Thus, we are left with the following problem: do there
exist polynomials B(Y') with all real roots but with the property that none of their
integrals have all real roots? Such polynomials do indeed exist for n > 4; one quartic
example is B(Y) = (Y +2)(Y +1)(Y —1)(Y — 2), whose integral [B(Y) is shown in
Fig. 10.5. No matter how we shift the z-axis up or down, we can’t make it intersect
[B(Y) more than three times. Translating this example back into the blossoming
world, we deduce that the value f(—2,—1,1,2) of the multiaffine 4-blossom f of a
nondegenerate quartic F can’t be labeled as a value g(i;,...,is) of the multiaffine
5-blossom g of F. O

We can arrive at a more interesting quartic example by letting the pairs of
roots {1,2} and {—1, -2} coalesce to form two double roots, located, say, at s and
at t. The resulting polynomial, B(Y) = (Y — s)?(Y —t)? also has the property that
no vertical shift of its integral [B(Y') has more than three real roots. Hence, the
point f(8,35,%,1), which is the middle of the five Bézier points of the quartic segment
F([s,%]), is one of the points that has no label of the form g(4,,.. ., Gs).

Raising the degree of a polynomial curve gives us one more dimension’s worth
of labels, but Prop. 10.4 shows that the set of points for which we have at least
one label never grows as a result of degree raising and, in fact, generally shrinks.
Surfaces work out rather differently: there is no inclusion relationship in either
direction, in general, between the points that can be labeled before the degree is
raised and those that can be labeled after. Furthermore, this result continues to

64 ADJUSTING THE DEGREE 10.5

hold even if we adopt the complex numbers as the coefficient field.

Our first example will show that, by raising the degree of a polynomial surface,
it may be possible to label points that couldn’t be labeled formerly. Let F: P — @
be a nondegenerate quadratic surface (lying in some 5-flat), let f be its 2-blossom,
let g be its 3-blossom, and consider the central Bézier point ¢(r,s,t), where Arst is
a reference triangle for P. By Prop. 10.2, we have g(r,s,t) = f®((rs +rt + st)/3).
In order for this point to lie in the range of f, we would have to be able to factor
the polynomial

rs +rt + st
3
into two linear factors. This is not possible, as we can determine simply by plugging
the coefficients of this polynomial into the discriminant-like polynomial in Eq. (9.9).

Our second example will show that raising the degree of a polynomial surface
may also result in having no labels for a point that formerly did have a label. Let
F: P — Q be a nondegenerate cubic polynomial surface, let f be its 3-blossom, let
g be its 4-blossom, and consider the point f(r,s,t). We shall prove that the point
f(x,s,t) is not in the range of g. To prove this, we must consider all 4-tensors e on
P that satisfy D(e) = 4rst and show that none of them is simple. The proof is not
too difficult, but it takes awhile.

Before we begin the proof in earnest, let us count the degrees of freedom to
check the plausibility of the result. From Prop. 4.9, we know that the tensor power
space P®* has dimension (g) —1 = 14. In this 14-dimensional affine space, the simple
tensors e form a subset of dimension 8, since there are two degrees of freedom in
each of the four points that are factors of e = ujususuy. The set of 4-tensors e that
satisfy D(e) = 4rst is an affine subspace of dimension 5, since a 4-tensor a satisfies
D(a) = 0 if and only if a is a linear combination of the five tensors £*4, £°n, ..., n*,
where £ and n are a basis for Py. In general, we wouldn’t expect a 5-flat to intersect
a subset of dimension 8 if they are both lying in a space of dimension 14. Thus, it
is plausible that these two sets of tensors are actually disjoint, as we claimed above.

The straightforward way to prove disjointness would begin by characterizing the
set of simple 4-tensors on P algebraically, giving 6 dimensions’ worth of constraints
on their coordinates. Unfortunately, I don’t know how to do that in practice even
for simple 3-tensors on P, much less simple 4-tensors; see Challenge 9.10. Since the
straightforward attack is not available, we shall resort to an ad hoc method that
Andrew Odlyzko suggested to me.

Let e be a 4-tensor that satisfies D(e) = 4rst; we want to show that e cannot be
simple. As a first step, it is convenient to change from the barycentric {r,s,t} basis
for P4 to a Cartesian basis, since that will simplify the behavior of the operator D.
One obvious Cartesian basis is {r,t —r,s — r}; but we shall make a somewhat more
symmetric choice, as shown in Fig. 10.6. Let q := (r + s + t)/3 be the centroid of
Arst, let o := q — 8, and let § := q — t; we shall use the basis {q,a,d}. Note
that r = q + a + f. In terms of this basis, the condition D(e) = 4rst becomes
D(e) = 4(q-+ a+ B)(a - a)(a — B) = 4(a® — a(o® + aB + %) + aB(a -+). Since
D(q) =1 but D(a) = D(B) = 0, we find upon integrating that we must have

e=q* - 2q*(a® + af + B%) + 4qaf(a + B) + Z(a, B),

10.6 DEGREE RAISING 65

8 t
Fig. 10.6. Two different bases for P

where Z(a,8) = Yi_, zia*~*8" is the constant of integration. We are left with the
task of showing that no such 4-tensor e is simple.

If e were simple, its four factors would be points in P, which could be ex-
pressed in the form (q + a;a + b;8) for scalars a; and b;, with ¢ in [1,4]. Note
that, if we substitute # = 0 in the polynomial e(q, a, 3), we are left with the poly-
nomial e¢(q,a,0) = q* — 2q%a? + z,a*. Since this polynomial only involves q to
even powers, we deduce that the four numbers {a;, a3,as,24} must have the form
{+a,—a,+c,—c} for some a and c. Similarly, by substituting @ = 0, we deduce
that the four numbers {b;, b3, b3, b4} must have the form {+b, —b,+d, —d} for some
b and d.

At first blush, it might seem that the numbering of the a; and the numbering
of the b; could be related in 4! = 24 different ways. A little thought shows that
there are only two really different possibilities. In Case I, the sign-reversed pairs of
a’s line up with the sign-reversed pairs of b’s, leading to the factorization

e = (q+aa+5p)(q - ax - b)(q + ca + df)(q - ca — df).

In Case II, the sign-reversed pairs do not line up, leading to the form

e =(q+ aa+b8)(q — aa — dB)(q + ca + dB)(q — ca — bg).

We can rule out Case I right away: any such polynomial can’t involve any terms
with q to the first power, but our e includes both 4qa®8 and 4qaf®. Thus, only
Case II remains as an active possibility.

Of the 15 coefficients of ¢(q,a, 8), we know the values of 10 of them, while the
remaining 5 are the unknown constants of integration z;. Each of the 10 known
coefficients gives us an equation that relates the four quantities a, b, ¢, and d. Of
these 10 equations, 5 turn out to be non-trivial:

a? + ¢? = 2 from the q2a? term;

b* + d® = 2 from the q28? term;

(a +¢)(b+ d) = 2 from the q?af term;
(a+c)(a —c)(b — d) = 4 from the qa?g term;
(a — ¢)(b+ d)(b ~ d) = 4 from the qaS? term.

66 ADJUSTING THE DEGREE 11.1

The last two of these relations imply that (a + c¢) = (b + d). In combination with
the third relation, this implies that (a + ¢)?> = 2. Since the first relation tells us
that a2 + ¢ = 2, we deduce that 2ac = 0. Hence, the two numbers a and c are 0
and ++/2 in some order. Similarly, the two numbers b and d must be 0 and +/2.
But this implies that (a + c){a — ¢)(b — d) must be £2/2, while the fourth relation
states that it should be 4 instead. This contradiction completes the proof that no
4-tensor e satisfying D(e) = 4rst can be simple.

11. Degree lowering

In the last section, we studied in some detail what happens when an n-ic is
viewed as a degenerate case of an (n + 1)-ic. In this section, we shall study a more
general problem: how can we view an n-ic as an m-ic? If m > n, this involves
raising the degree by m — n. If m < n, it involves lowering the degree by n — m.
Of course, we can’t lower the degree in general without changing the function. If
F is an n-ic function, lowering the degree of F to m means approximating F in
some sense by an m-ic function G. The sense of approximation that we will use is
osculation at a fixed point. That is, we shall choose a point r in the domain space
P, and we shall choose G to be the unique m-ic function that osculates F to mth
order at r. Note that, even in the degree raising case, where m > n, it is still true
that the output m-ic function G osculates the input n-ic function F to mth order
at r. When m > n, however, we have G = F, independent of the location of r.

The problems of degree raising and degree lowering can be tackled with either
the coordinate-based or the coordinate-free approach. As it happens, we have al-
ready studied these problems from the coordinate-based approach, arriving at the
answer described in Prop. 8.6. The following proposition restates that answer in a
more symmetric fashion.

Proposition 11.1: Coordinate-based raising or lowering. Let F: P — Q be
an n-ic map, let r be a point in P, and let {6;,...,6,} be a basis for P,. The m-ic
map G: P — Q that osculates F to mth order at r is given by the formula

mig,?(6{‘ .. .5;;:1-"‘-*' =nt fg(g;'t .. ,5;,1.»—:')’

where § = §y + --- + i, and i lies in [0, m].

Proof. Prop. 8.4 tells us that the left-hand and right-hand sides are corresponding
values of the sth derivatives of F and G at r. Note that, if m > n, the formula
correctly specifies that the sth derivative of G should be identically zero whenever
t>n 0O

In the coordinate-free approach, degree raising and degree lowering come out
quite differently. The coordinate-free approach to degree raising is an easy gener-
alization of Eq. (10.1), but the coordinate-free approach to degree lowering is more
complicated.

Proposition 11.2: Coordinate-free raising. Let F: P — Q be an n-ic map, and
let m > n. The m-ic map G: P — Q that results from viewing F as a degenerate

11.6 DEGREE LOWERING 67

m-ic Is given by

0®(ar Um) = > f®(l’[u.~). (11.3)

Proof. Eq. (11.3) clearly defines a symmetric m-affine function g with the correct
diagonal values. Alternatively, we could derive Eq. (11.3) by applying the total
tensor differentiation operator D of Prop. 10.2 repeatedly, a total of m times. O

Proposition 11.4: Coordinate-free lowering. Let F: P — Q be an n-ic map,
and let m < n. The m-ic map G: P — Q that osculates F to mth order at the point
r in P is given by

I
9%y -u,) = (:;) zcuz: }(—)km f®<rk+'il;'llu¢), (11.5)
F=m 1]

where | := n — m denotes the amount by which the degree is being lowered.

Proof. Suppose that we begin with an m-ic map G and that we produce a degenerate
map F of degree n by raising the degree of G by I. For such an F, the m-ic map
that osculates F' to mth order at r is just the map G that we started with, and it
doesn’t depend on r. Let us first check that Eq. (11.5) gives the correct answer in
this special case. The blossom f of the degree-raised F will be given in terms of the
blossom g of G by Eq. (11.3), but with the pairs (f,g) and (n,m) interchanged. To
avoid confusion, let us write out the interchanged version:

fe(uy---u,) = v Z g‘”(l‘[u;). (11.6)

n
) I1c{1,...n} €T

If we substitute Eq. (11.6) in for each occurrence of f® in Eq. (11.5), we should get
massive cancellation, leading to the tautology ¢®(u; - -u,) = ¢®(u, - “Up).
To verify that this does happen, let I' C {1,...,m}, let k' :== m — |I’|, and

consider the term
T:= g“’(r" I1 u.-).
iel
When we substitute Eq. (11.6) into Eq. (11.5), what multiple of T do we end up

with? The term corresponding to I C {1,...,m} and k = m — |I| in Eq. (11.5) will
contribute a multiple of T precisely when I D I’. In particular, such an I-term will

contribute
l k+1
Ye__°
(=) k+l(k')T

since, when we apply Eq. (11.6) to the term f®(rk+ [L;c; 1), we have to choose
which k' out of the k + [factors of r to keep. The number of sets I that satisfy

68 ADJUSTING THE DEGREE 12

I'cIrc{,...,m}and have size [I| =m — k is (';'c') Therefore, the coefficient of
T in the final result is given by the binomial coefficient sum

Ol ()

0<k<k’

If k' = 0, which implies I' = {1,...,m}, this sum evaluates to 1 trivially; that case
gives us the desired right-hand side g®(u;---u,,). If ¥’ > 0, the sum evaluates to
0 by straightforward binomial-coefficientology, which is left as an exercise. Thus,
Eq. (11.5) does produce the correct answer when the F on the right-hand side was
generated by degree raising.

To handle the general case, let F be any n-ic map, and let G be the m-ic map
that osculates F to mth order at r. If we raise the degree of G by I, we get an
n-ic map H that also osculates F' to mth order at r. We have just verified that, if
we apply Eq. (11.5) to H, rather than F, we do get back G. But note that every
blossom application on the right-hand side of Eq. (11.5) involves r as an argument
at least [times. Since H and F agree to mth order at r, we can apply Prop. 8.8 to
deduce that their blossoms h and f will agree on all argument bags that include at
least ! copies of r. Hence, applying Eq. (11.5) to F will also return G, as claimed. O

By the way, if we know that the n-ic map F is actually of degree m as well as
being of degree n, we can simplify Eq. (11.5) somewhat. Note that, in this case,
the point r is a free parameter: it doesn’t matter where we decide to approximate
F with an m-ic since F itself is an m-ic. We can reduce the number of terms in
Eq. (11.5) by choosing an appropriate value of the free parameter r. For example,
if we choose r := u,, we get, after a little algebra, a formula with only 2™~ terms
instead of 2™ terms:

n =)+ k+i
¢®(uy -+) = (m> Ic{; NG +(1)(k+l— N ro(ut [Tw), (107)

sel

k=m—|I|

where | := n — m is, once again, the amount of lowering. (A technical point: in the
special case m = 0, this trick of setting r := u; doesn’t work, because there is no
such thing as u,.)

12. Bipolynomial surfaces

The graphics community recognizes two different types of surfaces defined by
polynomials, and we have been focusing entirely on one of those two types so far.
In this section, we shall redress that imbalance.

Let F:R x R — Q be a polynomial function defined on the two-dimensional
parameter space R x R. By definition, this means that each coordinate of the point
F(u,v) is given by a polynomial in the two real variables u and v. There are two
different types of degree bound that we could put on these coordinate polynomials.
In a tensor product surface of degree (m;n), the coordinates of F(u,v) are required
to have degree no higher than m in the variable u and degree no higher than n in
the variable v separately. In a triangular patch surface of degree n, the coordinates

12 BIPOLYNOMIAL SURFACES 69

of F(u,v) are required to have total degree no higher than n in the variables u and
v jointly.

The phrases “tensor product surface” and “triangular patch surface” are the
current standard names in computer-aided geometric design for these two types
of surfaces [5]. In this paper, however, we shall uncover good reasons why both
of those names are poor choices. Fortunately, in the latter case, we have already
become comfortable with a better name: a “triangular patch surface” of degree
n is precisely what we have been calling simply a polynomial surface of degree n.
That is, if we place a bound on the total degree of the coordinates of F(u,v), the
resulting condition is independent of the choice of affine frame for the domain space
P = R X R, and we can reinterpret F' as a polynomial function F({u,v)) = F(u)
defined on a two-dimensional affine space P.

In “tensor product surfaces” of degree (m;n), on the other hand, we place
separate bounds on the degrees of the coordinates of F(u,v) in u and in v. The
resulting condition on F does depend on the product structure of the domain R x R.
For any fixed v, the map u — F(u,v) is a polynomial function of degree m; for any
fixed u, the map v ~ F(u,v) is & polynomial function of degree n. Thus, it is
quite natural to refer to F itself as a bipolynomial function of degree (m; n), in
particular, a bipolynomial surface. We shall use that name as our replacement for
“tensor product surface.” Note that, when both degrees m and n happen to be 3,
it is already standard practice to refer to the resulting surface as a bicubic, so the
name “bipolynomial” shouldn’t sound too strange.

Note that every polynomial surface of degree n is also a bipolynomial surface
of degree (n;n). Similarly, every bipolynomial surface of degree (m;n) is also a
polynomial surface of degree m + n. Thus, the distinction between the two types of
surfaces arises only when we enforce some bound on the degree.

Blossoming, tensoring, and homogenizing all apply to bipolynomial functions
F:UXV — Q of degree (m; n) pretty much the same way that they did to polynomial
functions. In the remainder of this section, we shall sketch that development briefly,
concentrating on the differences between the polynomial and bipolynomial theories.
For brevity, we shall discuss only the case where both of the domain spaces U and
V are affine lines. The theory works perfectly well when U and V have dimension
greater than one, but those cases don’t come up often in computer-aided geometric
design. If there were need, we could also generalize the results below to apply to
tripolynomial functions F: U x V x W — Q, or, more generally, to multipolynomial
functions F:[], U; — Q.

A bipolynomial surface F': U xV — Q of degree (m; n) can be viewed, in Curried
fashion, as a higher-order function F:U — (V — Q), that is, as an m-ic curve of
n-ic curves. More precisely, let Poly™(V, Q) denote the set of all polynomial curves
G:V — Q of degree n, turned into an affine space by taking affine combinations
pointwise. Note that, if V and Q are finite-dimensional, then Poly™(V,Q) will be
finite-dimensional also, so we aren’t violating our prohibition against infinitely many
dimensions. Saying that F is “an m-ic curve of n-ic curves” is really saying that we
can view F as an m-ic function F: U — Poly™(V, Q). Vice versa, we could also view
F as an n-ic function F:V — Poly™(U,Q). This Curried point of view is worth

70 ADJUSTING THE DEGREE 12.1

Bipolynomial map Homogeneous bipolynomial map
F:UxV —-Q Fe:Usx X Vi — Qx
bipoly. of degree (m;n) homogeneous bipoly. of degree (m;n)
flavor-biexponentiating
Blossoming
Multiaffine blossom Multilinear blossom
fUmX VRS Q fur (Us)™ x (Vi)™ = Qu
(m; n)-symmetric (m; n)-symmetric
(m + n)-affine (m + n)-linear
flavor-multiplicative
Tensoring
Affine blossom Linear blossom
fe:Uem Vet »Q U™ QVE™ - Qx
affine linear
flavor-preserving

N

Homogenizing
Fig. 12.1. The six guises of a bipolynomial map

keeping in mind, since it can often be used to reduce a bipolynomial problem to a
combination of two polynomial problems.

Fig. 12.1 provides an overview of how our three principles transform a bipoly-
nomial surface, analogous to the overview in Fig. 5.1 of the transformations of a
polynomial function. Given a function of any one of the six types, there exist unique
functions of the other five types that correspond. We shall begin our whirlwind tour
by moving down the left column. But before we do so, there is a notational ques-
tion to address. In this paper, we have chosen to distinguish between a point f in
the affine line L and a scalar r in the coefficient field R. Now that there are two
different affine lines U and V involved, we have to invent some new notation to
distinguish points in U from points in V. We shall use slanted bars: if r is a scalar,
let #, read “r-in,” denote the point with coordinate r in the line U, and let #, read
“r-out,” denote the point with coordinate r in the line V.. Thus, a typical point on
the surface F will be written F(4,9).

The multiaffine blossom of a bipolynomial surface F:U x V' — Q of degree
(m;n) is a multiaffine function f:U™ X V" — Q that is symmetric in its first
m arguments, symmetric in its last n arguments, and satisfies the correspondence
identity F(4,9) = f(%,...,u;9,...,9). We shall abbreviate this type of symmetry
condition by saying that f is (m;n)-symmetric. And we shall use a semicolon instead
of a comma to help separate the first m arguments of f from its last n arguments.
A variant of the Blossoming Principle tells us that every bipolynomial surface has
a unique multiaffine blossom; this variant can be proved either from scratch or by
viewing F in Curried fashion and applying Prop. 2.1 twice.

12.2 BIPOLYNOMIAL SURFACES 71

Don’t get confused between the multiaffine blossoms of the two common types of
surfaces. The multiaffine blossom of a bipolynomial surface F: U x V — Q of degree
(m;n) takes, as arguments, m points in U and n points in V. If we think in terms
of coordinates, that is an ordered pair of sequences of real numbers. The multiaffine
blossom of a polynomial surface F: P — Q of degree n takes, as arguments, n points
in the plane P. If we think in terms of coordinates, that is a sequence of ordered
pairs of real numbers.

The Bézier theory of a bipolynomial surface starts by choosing reference inter-
vals [p,§] for U and [#,$] for V. Each of the first m arguments of f can then be
expressed as an affine combination of p and §, while each of the last n arguments
is an affine combination of ¥ and §. If we express all m + n arguments of f in this
way and then invoke the multiaffineness of f, we get a formula that expresses the
blossom value f(i,...,%m;01,...,0,) as a sum of 2™+" terms, each of which is
some coefficient times a Bézier point of the rectangular surface patch F([p, ¢] x [, §]),
where the Bézier points are the (m 4 1)(n + 1) blossom values

f(p, Y N TN 1 NS N R)|
h,——/h\/—/w
m—s [y n—y k)

for ¢ in [0, m] and 5 in [0, n].

The de Casteljau Algorithm for a bipolynomial surface F computes the blossom
value f(iiy,...,%m;¥1,...,90,) by performing m + n stages of linear interpolations,
starting with the Bézier points. Each blossom argument provides the interpolation
ratio for one of those stages, and the arguments can be used in any order. Fig. 12.2
shows an example of a bipolynomial surface patch of degree (2;1) defined on the
rectangle [0, 3] x [0, 3], along with all of the construction lines that might be used
when locating the point F(1,2) = f(i,1;%).

We can also generalize from using Bézier frames to using de Casteljau frames.
Let (p1,...,P2m) be a reference sequence of 2m points in U that satisfies the con-
dition py4¢ # p; for 1 < ¢ < j < m and, similarly, let (7y,...,¥:,) be a sequence of
2n points in V that satisfies the condition r,4; # r; for 1 < ¢ < j < n. Then, the
bipolynomial surface F' can be uniquely specified by arbitrarily specifying its poles,
which are the blossom values f(Pi41,...,Pi+m;Fj+1,---,¥j+n) for ¢ in [0,m] and 5
in [0, n].

Moving down the left-hand column of Fig. 12.1, we next come to the affine
blossom f®. We shall begin the construction of the affine blossom f® by view-
ing the multiaffine blossom f in a Curried fashion. Letting the U-arguments vary
first, and then the V-arguments, we can turn f into a symmetric, m-affine func-
tion g:U™ — SMA(V",Q), where SMA(V™, Q) is the affine space consisting of all
symmetric, multiaffine functions from V™ to Q. Applying the Tensoring Principle
from Prop. 4.5, we can convert g into an affine function ¢®: U®™ — SMA(V",Q).
Switching things around and letting the V -arguments vary first, we can view ¢® as a
symmetric, n-affine function A: V" — Affine(U®™ Q). Applying Prop. 4.5 again, we
get an affine function h®:V®" — Affine(U®™,Q). Switching back to non-Curried
form, we have converted f into a biaffine function f®®:U®™ x V®n _, Q, which
satisfies the identity f(i1,...,%m;01,...,05) = fO®(Uy - gy, 0y -+ 0p).

72 ADIJUSTING THE DEGREE 12.3

N£B3,3:4)

% s

Fig. 12.2. The de Casteljau Algorithm for a bipolynomial surface of degree (2;1)

We need a new variant of the Tensoring Principle in order to finish the job, to
turn the biaffine function f®i® into an affine function f®. The problem is that the
biaffine function f®:® is not symmetric; indeed, its two arguments have different
types, so it doesn’t even make sense to ask whether it is symmetric. Hence, we need
an asymmetric variant of tensoring.

Exercise 12.3: The Tensoring Principle, asymmetric affine variant. If S
and T are affine spaces, construct a space S®T with the property that biaffine maps
g with domain S x T are equivalent to affine maps ¢® with domain S ® T under
the correspondence g(s,t) = ¢g®(s ® t), where the mapping (s,t) — s ® t is a fixed
biaffine mapping from S x T to S®T. Hint: Consider XY -polynomials in the formal
variables X, for s in S and Y; for t in T. Choosing affine frames for S and T', define
the normal form of an XY -polynomial, and define when two XY -polynomials are
affinely equivalent. One model for S®T is then the space of affine equivalence classes
of 1-flavored XY -polynomials that are (1;1)-homogeneous, that is, homogeneous of
degree one in the X-variables and also homogeneous of degree one in the Y -variables.
In this model, we have s ® t := [X,Y;].

12.3 BIPOLYNOMIAL SURFACES 73

Some comments on Ex. 12.3. First, the reason for using two different formal
symbols X and Y is to allow for the case S = T, that is, to enable the construction
of S® S. Note that we must distinguish between 8; ® 8; = [X,,Y,,] and 82 ® 8; =
[Xs,Ys,] in the case § = T, since there is no guarantee that g(s;,8;) = g(s2,8;).
This lack of commutativity also explains why we don’t use simple multiplication
“8182” to denote the tensor product of elements in the asymmetric variant. Warning:
with our conventions, the spaces S ® S and S®? are not the same; symmetry is
implied in the latter case, but not in the former.

Second, the hint in Ex. 12.3 is phrased so as to emphasize the parallels with the
construction of the symmetric tensor power space P®". For the asymmetric tensor
product S ® T of two spaces, the only formal polynomials that are really used are
(1; 1)-homogeneous, so it wouldn’t be hard to do without polynomials entirely. If one
does choose to use formal polynomials, however, there are interesting connections
with yet another variant of the tensor-product construction: the tensor product
of algebras. In particular, the algebra of XY -polynomials is actually the tensor
product X[S]|® Y [T] of the algebras X[S] and Y [T]. If we form equivalence classes
by rewriting both X-variables and Y-variables in a normal form, the result is the
tensor product XS] ® Y[T] of the algebras X[S] and Y[T|, whose elements are
tensors on (S;T). The tensor product S ® T consists of the 1-flavored (1;1)-tensors
on (S;T).

Our motivation for Ex. 12.3 was that we had transformed the (m;n)-ic surface
F:UxV — Q@ in Fig. 12.1 into an asymmetric biaffine function f®®:J®m xy ®n _,
Q. Applying Ex. 12.3 finishes the job, converting f®® into the affine blossom of
F, which is the affine function f®:U®™ @ V®" — Q that satisfies the identity
f(B1, .. @im; 01,00, 00) = fE(Ug -+ iy ® 6y -+ - 0,). Actually, if we apply Ex. 12.3
in the most straightforward way, setting S := U®™ and T := V®", we end up with
an iterated tensor space as the domain. An equivalent but simpler method is to set
S :=U and T :=V and then to consider U®™ ® V' ®" as consisting of the 1-flavored
(m; n)-tensors on (U; V). Note that the algebra X [U]® Y[V] of all tensors on (U;V)
is a commutative algebra: if a; ® b, is a (ky;/;)-tensor on (U;V') and a3 ® b; is a
(k2;13)-tensor on (U; V'), then their product is (a1 ®b;)(a3®b3) = aja;®bby, which
is a (ky + k3;1y + l3)-tensor on (U;V). The only noncommutative multiplication in
sight is the one that takes a tensor on U and a tensor and V and turns that pair into
a tensor on (U;V'). That noncommutative operation on elements is the one that we
are writing with “®”.

The asymmetric tensor product operation on spaces that corresponds to the big
“®” in the domain U®™ @V ®" of the affine blossom is the instance of tensoring that
gave bipolynomial surfaces the name “tensor product surfaces.” Note that, from our
point of view, there is nothing about bipolynomial surfaces that connects them more
intimately than polynomial surfaces to the concept of the tensor product. The only
difference is that, in the bipolynomial case, one of the tensor products involved in
building the domain U®™ @ V®" of the affine blossom is asymmetric, while, in the
polynomial case, all of the tensor products involved in building P®" are symmetric.
This observation suggests that the name “tensor-product surfaces” is a poor choice.

The right-hand column in Fig. 12.1 demands only a few remarks. The ho-

74 ADJUSTING THE DEGREE 12.5

mogenized bipolynomial map Fx is called flavor-biexponentiating, meaning that
Flav(Fs(a,b)) = (Flav(a))™ (Flav(b))". The domain of the linear blossom f¢ is
most simply thought of as the set of all (m;n)-tensors on (U;V) of any flavor.
That precise set doesn’t have an abstract name by our conventions; but there are
several abstractly-named sets that are canonically isomorphic to that set. One is
(U®™ ® V®n),, the linearization of the domain U®™ ® V®" of the affine blos-
som. Another is U®™ ® V,®", in which the big “®” denotes the asymmetric tensor
product of linear spaces in the linear world, the same variant of the tensor-product
construction that arises in textbooks on linear algebra.

Exercise 12.4. Let S and T be affine spaces of dimensions s and t and let W
and Z be linear spaces of dimensions w and z. Verify the following four formulas
(one of which is just Prop. 4.9): dim(S ® T) = st + s + ¢t; dim(S®") = ("";") -1
dim(W ® Z) = wz; and dim(W®") = (¥*7~1).

Just as in the polynomial case, one advantage of the homogenized blossoms is
that we can compute derivatives by replacing some of the points among the blossom
arguments with vectors. If we let x4 denote the unit vector on U and v denote the
unit vector on V', we have

ak a‘F\ N\ oKk f®(am—k k on—1 1 (125)

30 3ol (&,9) = mEntfR (U™ u® @ 6" '1). .
The falling-factorial coefficients are once again annoying, but we can wash out their
effects if we consider osculating flats: the osculating flat Oscy,; F (i, ¥) is precisely the
locus of the points f®(e(4™ % ® 6”~!)) as e varies over all 1-flavored (k;[)-tensors
on (U;V), that is, as e varies over U®* @ V'®. This implies that, if & appears
p times among the arguments to f and ¢ appears ¢ times, the resulting blossom
value must lie in the flat Oscp—p;n—q F(%,9). For a nondegenerate bipolynomial
surface F, this differential perspective allows us to compute the blossom value
f(%1,...,%m;01,...,9,) by intersecting the osculating flats corresponding to all
distinct pairs (%, 9;).

The last topic that we will tackle for bipolynomial surfaces is the geometry
of a surface and its multiaffine blossom. As in the case of polynomial curves and
surfaces, the best way to study this question is to back up through the affine blossom
and to study instead the geometry of its domain space U®™ @ V®". Tensors in
this space of the form 4™ ® ¢™ correspond to points on the surface F; let us call
such tensors perfect (m;n)th powers. Simple tensors, that is, tensors of the form
1y - Uy @ ¥y + - - Uy, correspond to points for which we have multiaffine labels.

Things get non-trivial as soon as the total degree m + n exceeds one; consider
the case m = n = 1. A bipolynomial surface F of degree (1;1) is actually itself
biaffine. Hence, F is equal to its multiaffine (1;1)-blossom f: F(%,9) = f(u; 9). For
simplicity, let use choose [f), 1] and [(), 1] as our reference segments in U and V. The
surface patch F([0,1] x [0, i]) has the four Bézier points f(0;0), f(0; 1), £(1;0), and
f(1;1). If those four points are affinely independent, the resulting surface F will be
a hyperbolic paraboloid sitting in a 3-space, with the two families of lines f(4; -)
and f(-;9) as its generators.

13 DEGREE SPLITTING AND DEGREE JOINING 75

This is precisely the geometry that is revealed by a study of the domain U®! ®
V@1 = U ®V of the affine blossom f®. Choosing the Cartesian bases {0, u} for Ux
and {0 v} for Vi, a general (1;1)-tensor e on (U;V) has the normal form

e=a0®é+bb®v+cu®é+dp®u,

where a = Flav(e). The set U ® V' consists of the 1-flavored (1;1)-tensors, and is
hence 3-dimensional, with (b,c,d) as a Cartesian coordinate system. The simple
tensors in U ® V' are the products ¢ ® ¢ of one point in each space and, in the case
m = n = 1, every simple tensor is also a perfect (1;1)th power. The normal form
P(e) of the simple tensor e = 4 ® ¢ is given by (4 ® ¢) = (0 + up) ® (0 + vv) =
(4,v,uv). A tensor e = (b,¢,d) in U ® V will factor in this form only if d = be; it
is this equation that generates the curved sha.pe of the hyperbohc paraboloid. One
example of a compound tensor in U ® V is given by (0®0+1®1)/2. Since the two
Bézier points f(0;0) and f(1;1) both lie on the paraboloid, but the line connecting
them is not one of the generating lines, the midpoint of that line does not lie on the
paraboloid.

13. Degree splitting and degree joining

The theory of bipolynomial surfaces gives rise to two new problems like degree
raising, where we can study the relationship between two different blossoms of the
same function. First, we can view a polynomial surface of degree n as a degenerate
case of a bipolynomial surface of degree (n;n). We shall call this adjustment of
the degree degree splitting. Second, we can view a bipolynomial surface of degree
(k;1) as a degenerate case of a polynomial surface of degree k + I. We shall call
this adjustment degree joining. In this section, we shall derive formulas for degree
splitting and degree joining, using both the coordinate-based and the coordinate-free
approaches.

We shall begin by reconsidering degree raising and degree lowering, but for the
particular case of surfaces. Let P = U x V be a parameter plane with a product
structure, and let F: P — Q be a polynomial or bipolynomial surface. For any
nonnegative integers ¢ and j, we can imagine computing the (1; 7)th derivative

3 9

of F as a function of the position (u,v). If F is a polynomial surface of degree n,
this derivative will be identically zero whenever ¢ + 7 > n. If F is a bipolynomial
surface of degree (k;!), this derivative will be identically zero when either ¢ > k
or 7 > l. If we associate the (1;7)th derivative of F with the lattice point (s, 7)
in some plane A, we can think of each type of surface as a geometric figure in A.
The possibly-nonzero derivatives of an n-ic polynomial surface form an isoceles right
triangle T, in A, while the possibly-nonzero derivatives of a (k;!)-ic bipolynomial
surface form a rectangle Ry,;. The processes of degree raising and degree lowering
move around the borders of these A-figures.

To begin with, consider an n-ic polynomial surface F', whose A-figure is the
triangle T,,. Raising the degree of F corresponds to moving the hypotenuse of this

76 ADJUSTING THE DEGREE 13.1

triangle outward to form T,, for m > n, choosing the output m-ic surface G to
be degenerate in the sense that all of its derivatives in the strip T, \ T, are zero.
Lowering the degree of F corresponds to moving the hypotenuse inward to form
Ty for m < n. In the process, we are forced to replace F by a simpler surface G,
which osculates F to mth order at a chosen point r, but whose derivatives in the
strip Ty, \ T'm are zero rather than matching those of F. The formulas in Section 11
tell us how to raise or lower the degree of a polynomial surface, using either the
coordinate-based or the coordinate-free approach.

Bipolynomial surfaces F of degree (k;!) have two different degrees, each of
which can be raised or lowered. Raising one of the degrees moves one edge of the
rectangle Ry, away from the origin, while lowering that degree pulls that edge back
towards the origin. The formulas in Section 11 can also be used to raise or lower
either degree of a bipolynomial surface: while we work on one group of variables,
the other group just comes along for the ride.

Thus, the formulas in Section 11 suffice for performing any adjustment to the
degree of a surface that preserves the shape of the A-figure; they can take any trian-
gle to any triangle, or any rectangle to any rectangle. It also makes sense, however,
to convert back and forth between triangles and rectangles, that is, to osculate a
polynomial surface with a bipolynomial surface or vice versa. The same rules apply:
Points in the output A-figure that weren’t in the input A-figure correspond to new
derivatives that we choose to set equal to zero. If any of these exist, they are a
source of degeneracy in the output surface. Points in the input A-figure that aren’t
in the output A-figure reflect behavior of the input that is of too high an order to be
captured in the output. If any of these exist, the output will only osculate, rather
than equal, the input.

Degree splitting is the transformation T, — Rj;, which osculates a polyno-
mial surface with a bipolynomial one. Degree joining is the reverse transformation
Ry — T,. The following proposition describes degree splitting and joining from
the coordinate-based approach.

Proposition 13.1: Coordinate-based splitting or joining. Let P =U xV be
an affine plane with a product structure; let r = (r,,r,) be a point in P; let u and
v denote the unit vectors on U and V; let F: P — Q be a polynomial surface of
degree n; and let G:U x V — Q be a bipolynomial surface of degree (k;1). Consider
the formula
At £9 (uiyixn=iY) = Kl g (u'3h " @ 17).

If this formula holds for s < k and j < I, then G is the (k;1)-ic surface that osculates
F to order (k;l) at r. If the formula holds for i + j < n, then F is the n-ic surface
that osculates G to order n at r.

Proof. By Prop. 8.4 and Eq. 12.5 respectively, the left-hand and right-hand sides of
that formula express the (i; 7)th derivatives of F and G atr. O

The coordinate-free approach is more complicated, and we shall therefore adopt
a multi-step strategy. Note that a general degree joining of the form Ri; — T, can
be achieved in two steps: Ry,; — Tk+i — Ta. In the reverse direction, we can achieve
a general splitting T,, — Ry, in three steps: Ty, + Rp;n + Ri;n — Riy. Since we

13.3 DEGREE SPLITTING AND DEGREE JOINING 77

already know how to raise and lower degrees, it suffices for us to study the particular
adjustments Ry, — Tky and T, — Rp,,. Of course, if we build the formula for
a general degree adjustment by using a multi-step strategy like one of these, the
formula that results will probably be more complicated than necessary. But such
strategies do provide, at least in principle, a way of building up any adjustment of
the degree of a surface.

The particular adjustments Rx; — Tk4; and T, — R, both have simple
coordinate-free formulas. In the first case, we sum over (k;:') partitions; in the
second case, we sum over n! permutations.

Proposition 13.2: Coordinate-free joining. Let F:U x V — Q be a bipolyno-
mial surface of degree (k;l), let f be the multiaffine (k;!)-blossom of F, and let g
be the multiaffine (k + l)-blossom of F, that is, the multiaffine blossom of the map
G that results from viewing F as a degenerate polynomial surface of degree k + I.
The (k + I)-blossom g is given, in terms of the (k;1)-blossom f, by the formula:

1 Ay ’
9((“1,01),---,(uk+l,vk+x)) = —(—k}l_) Z fs(‘léljui®Jl;IJ”j)- s
1uJ=I?i’,:?k+z}
U|=k, |J|=t

Proposition 13.3: Coordinate-free splitting. Let F: P — Q be a polynomial
surface of degree n, and suppose that the parameter plane P has a product struc-
ture P = U x V. Let S, denote the symmetric group on n letters, the set of all
permutations of the set {1,...,n}. The (n;n)-blossom g of F is given, in terms of
the n-blossom f, by the formula:

. . , 1 Z
g(“l)---’un;vla"-avn)z ;;'!' f((“lsvar(l))’“-)(un,vr(u)))' o
XES,

Part E: Spline Curves

It is time for a major change in focus. We have seen so far that blossoms are a
useful tool for working with polynomial curves and surfaces. But a single polynomial
curve or surface isn’t a very complicated thing no matter how you think about it.
The real power of the blossoming technology becomes apparent only when it is used
to analyze splines. In particular, as de Casteljau discovered [14], blossoming extends
to parametrically continuous spline curves with surprising ease and elegance.

14. On blossoms and joints

One comment before we begin: mathematicians generally think of a spline as
a real-valued function, while we will be thinking of splines as taking values in an
arbitrary affine object space Q. At some level, there isn’t much difference between
these two approaches. In particular, a function F(u) is a spline in our sense if and
only if each coordinate of F(u) is a spline in the mathematician’s sense. For our
purposes, there are two advantages to dealing with a general object space Q rather
than restricting ourselves to the real numbers R. First, we are then dealing more
directly with the objects of interest in computer-aided geometric design. Second,
it is easier to draw informative figures when the object space @ has at least two
dimensions. An n-ic polynomial curve is degenerate whenever the affine span of its
range is a flat of dimension less than n. An n-ic polynomial curve F: L — R, with
values in a one-dimensional object space, is so degenerate that it is impossible to
draw reasonable pictures of it. Instead, one must resort to alternative strategies
such as drawing the graph of F, which is the polynomial curve G: L — R? given by
G(u) = (u, F(u)).

Let L be the affine line, and let @ be an arbitrary affine object space. We shall
suppose that the line L has been partitioned into intervals by a certain increasing
sequence of points {Z;}, which can be finite, infinite, or bi-infinite. For each ¢, we
shall also suppose that we are given a certain polynomial map Fi: L — Q of degree
no greater than n. We can assemble an n-ic spline curve F out of the given n-ic
curves F; by specifying that F(@) := F;(@) whenever t; < u < t;4;. If the curves
F;_; and F; happen to agree at the point Z;, it is natural to specify that the spline
F should also share that common value; but if F;_; and F; do not agree at ;, we
shall consider F(f;) to be indeterminate. Note that, from a formal point of view,
a spline curve is the same thing as a piecewise polynomial curve. The difference is
that, when dealing with spline curves, we usually enforce some sort of continuity
conditions at the joints between adjacent segments.

If F:(f,5) — Q and G:(5,t) — Q are polynomial curves defined on adjacent
intervals in P, there are two different types of continuity constraints that we could
impose on the joint at 3 between F and G. This joint is called parametrically
continuous of order k, or C* continuous, if the zeroth through kth derivatives of
F and G agree at 3, that is, if the spline curve formed by combining F and G is
C* continuous over the entire interval (¥,f). Parametric continuity is the simplest
notion of continuity, and it is the natural notion to use in situations where the
parameterizations of the curves are important as well as their shapes.

14.1 ON BLOSSOMS AND JOINTS 79

In many cases in computer-aided geometric design, however, only the shapes
are important. In such cases, we can use a more liberal notion of continuity. The
joint at 5 between F and G is called geometrically continuous of order k or G*
continuous (or visually continuous of order k or VC* continuous) if F and G can
be reparameterized in a neighborhood of 5 in such a way that the reparameter-
ized curves join with C* continuity [15]. (One technical detail is that only regular
reparameterizations should be allowed, that is, reparameterizations that are locally
invertible.) Allowing reparameterization leads to a more purely geometric notion of
continuity. For example, G! continuity for a curve means continuity of slope, while
C! means continuity of velocity; G? means continuity of curvature, while C? means
continuity of acceleration. (Lest the reader be seduced by the apparent pattern, it
is important to note that there are more than two choices of continuity conditions
for order three and above. Parametric, C® continuity is continuity of jerk, that
is, continuity of the third vector derivative of position with respect to time. The
reparameterization allowed in geometric continuity makes G* continuity a weaker
condition than C®. But continuity of torsion is an even weaker condition than G3, as
Bohm points out in a recent paper [4].) Geometric continuity is an interesting area.
Unfortunately, as we shall discuss in Section 20, I haven’t been able to figure out a
good way to handle geometric continuity with the blossoming technology. For now,
we shall restrict ourselves to spline curves with parametric continuity constraints.

Parametric continuity and blossoming were made for each other. In particular,
Prop. 8.8 tells us that the two n-ic curves F':(¥,8) — Q and G:(5,f) — Q join with
C* continuity at 5 if and only if the blossoms f and g agree on all argument bags
that include at least n — k copies of 3, that is, if and only if f®(a; .- axs"~*) =
9® (6, --- uxd™*). Thus, each new order of parametric continuity means that one
more blossom argument can be varied without destroying the agreement between
the blossoms of the joining curves. If F and G meet with only C° continuity, we
can’t vary any of the arguments away from & without destroying agreement; all
we know is that F(8) = f®(s") = ¢®(s") = G(3). If F and G meet with C"
continuity, so that they are actually identical, we can vary all n arguments to the
blossoms without destroying agreement.

Fig. 14.1 shows examples of joining cubic segments with various orders of con-
tinuity. Note that, when the joint between F and G has C* continuity, we have
fE(Fiti5n 7)) = g®(F*t75"~*~7) whenever i + j < k. The points given as values
of both f and g by these equalities form a de Casteljau Diagram with k shells, which
is indicated in Fig. 14.1 in bold. We can interpret this diagram in three different
ways: either it extrapolates forward from the last k + 1 Bézier points of F([F,5])
to tell us where the first k + 1 Bézier points of G([5,%]) must be; or, vice versa, it
extrapolates backwards from G to F; or, more symmetrically, it constrains both the
last k + 1 Bézier points of F([F,5]) and the first k + 1 Bézier points of G([5,]) so
as to guarantee C* continuity at the joint.

Spline aficianados have a different way of measuring the smoothness of the
joint between two curves [8]. Rather than counting the number of derivatives of the
Joining curves that are guaranteed to agree, they count the number of derivatives,
from the nth on down, that are allowed to disagree. In particular, suppose that

80 SPLINE CURVES 14.1

Fig. 14.1. Two cubic curves joining with C°, C!, C?, and C® continuity

the n-ic curves F:(7,5) — Q and G:(5,f) — Q have a C* joint at the point 3.
The parameter value § at which the joint occurs is called a knot, and the number
m := n—k of derivatives that are allowed to be discontinuous as we pass through the
knot is called the multiplicity of the knot. This convention works out well because
a knot of multiplicity m behaves very much like the limit of a cluster of m closely
spaced single knots that have coalesced. Rephrasing Prop. 8.8, we observe that the
multiplicity of a knot is precisely the number of blossom arguments that must be
kept fixed at that knot in order to guarantee that the blossoms of the two joining
curves will agree.

These conventions about knot multiplicities allow us to specify all of the bound-
ary conditions of a spline curve by means of one sequence of points {Z;}, called the
knot sequence, which consists of all of the knots repeated according to their multi-
plicities and sorted into non-decreasing order. If the common value #;+; = ;42 =
-+« = t;1m is a knot of multiplicity m, then the curve F;: (%;,4+1) — Q is required
to join the curve Fiim: (fitm,ti+m+1) — @ at that knot with C™~™ continuity. In
this way, a knot sequence {Z;} specifies both the locations and the smoothness levels
of the joints allowed in a spline curve.

The knot sequence is just what we need to understand the extent to which the
blossoms of two segments of a spline curve are guaranteed to agree. In particular,
we can show that the argument bags on which lots of blossoms must agree are the
bags that contain substrings of the knot sequence.

Let {#;} be the knot sequence of an n-ic spline curve F(i). For each i such that
t; < ti41, the behavior of F(&) for @ in (Z;,#;+1) determines an n-ic polynomial curve
F;(@), and that curve has an n-blossom f;(#1,..., #,). For simplicity at first, let us
suppose that there are no multiple knots. Consider the values of the various blossoms
when applied to an argument bag of the form B = {f;41,... 541, Bi41,---,8n}
Since the bag B includes the simple knot %;;, the blossoms f; and f;,; must agree

14.2 ON BLOSSOMS AND JOINTS 81

on B. Since B also includes #;;2, the blossoms f;1; and f;y3 must agree on B.
We deduce that, in fact, all of the blossoms from f; through f;,; must agree on
B. Furthermore, this conclusion still holds even if we allow some or all of the {
simple knots #;,, through #;,; to coalesce into knots of higher multiplicity. For
example, if ¢;1; = #,;; is a double knot, then there is no segment Fi41 and no
associated blossom f;;. But the adjacent blossoms f; and f;,; must still agree on

the argument bag B because it includes two copies of the double knot ¢, = #;,,.
This sort of reasoning demonstrates the following.

Proposition 14.2. Let the nonempty interval (f;,#;,,) be the domain of one seg-
ment of a spline curve F with knot sequence {t;}, and let the nonempty interval
(tj;t;41) be the domain of a later segment. The blossoms fi and f; of these two
segments must agree on any argument bag that includes all of the intervening knots
as often as their multiplicity, that is, on any bag that includes {f;41,...,1;} as a
sub-bag. All of the blossoms of intermediate segments, if any, will also agree with
fi and f; on such argument bags. O

To take full advantage of this proposition, let us extend our notation by allowing
ourselves to write sets of indices as well as single indices as subscripts on f. If we
know that all of the blossoms f; for ¢ in the nonempty set S must return the same
value on the particular argument bag {u;,...,4,}, we shall denote that common
value by the term fs(#%1,...,%,). In particular, a common value of f; and [i
as guaranteed by Prop. 14.2 would be denoted O, LU TETRNNE I PRI /1
The rules for manipulating with these new fs terms are pretty straightforward. For
example, if we know the points f5(Z, @3, ..., %.) and fr(§,ds,..., is) and if the sets
S and T are not disjoint, we can linearly interpolate (or extrapolate, as necessary)
to compute the point fsnr(Z, 43,...,#,) for any z.

One minor problem with the fs notation is that our indexing scheme for the
segments of a spline is rather complex. The curve segment F; is the one that the
spline curve follows from the knot #; until the knot tit1, if these two knots are
distinct. If 2; = #;, 1, there is no segment F;, and hence we really shouldn’t include ¢
in the set S of an fs term. To avoid having to worry about which indices are valid,
we shall extend our notation once again by allowing ourselves to write f1, where I is
an interval in the domain space L. In particular, we define the term f1(@y,...,8,)
to denote fs(@y,...,%,) where S := {¢ | (£,%;+1) N I # 0}. In order to write down
a term of the form f;(@;,...,4,), we must be able to show that the various f; for
i in this set S will agree on the argument bag {81,...,8,}, of course. In a term of
the form f;(@,,...,#,), we shall refer to I as the validity interval.

The result of Prop. 14.2 looks particularly simple when written in terms of
validity intervals. It tells us that the term f ey CGirs oo b, 85541, .., 8y) 8
well-defined whenever its validity interval is nonempty, that is, whenever f; < tit1-
This result sets the stage for the multiaffine view of the de Boor theory of spline
curves, which we tackle next.

82 SPLINE CURVES 15.2

15. The blossoms of spline curves

What are the cases in which Prop. 14.2 is pushed as far as it can go? That is,
what are the argument bags on which the widest range of segment blossoms must
agree? The extreme case occurs when j =1 + n, in the terms

ftipnen) Bid1s oo s ign)-

Note that there are no free arguments @ left in this term. What we have is a single
argument bag on which n + 1 adjacent blossoms are known to agree. Let’s call
the agreed-upon value a pole of the spline F, since, as we will see shortly, it is a
pole in the sense of the de Casteljau technique of Section 6 for the n + 1 segments
of the spline F that do agree. (If there are multiple knots involved, some of the
n + 1 blossoms that agree on a pole may have degenerated into nonexistence.) An
amazingly simple thing happens at this point in the theory of spline curves—be
warned that this doesn’t work for spline surfaces: the poles form a basis for the
space of all spline curves with {f;} as their knot sequence. That is, not only can we
compute the poles from the spline curve; we can also go backward and compute a
unique corresponding spline curve from arbitrarily specified values for the poles.

Proposition 15.1. Let n be a nonnegative integer and let {t;} be a knot sequence
in the affine line L that doesn’t include any knots of multiplicity greater than n+1.
Then, spline curves F: L — Q of degree n with the knot sequence {t;} are in one-
to-one correspondence with sequences of points {x;} in Q by means of the formula

X = f(& Epngr) Eit 1o o s Bitn).

Proof. Given a spline curve F: L — Q with the knot sequence {Z;}, Prop. 14.2
shows that the poles x; are well-defined, as long as each validity interval (,#i+n41)
is nonempty. This validity interval must be nonempty because otherwise the value
t; would be a knot of multiplicity at least n + 2.

The reverse direction is harder. Let {x;} be an arbitrary sequence of points in
Q, and let (fx,fx+1) be a nonempty interval in the knot sequence. Our first task
is to construct the curve segment Fj that the spline will follow during the interval
(txsTk+1)- To do so, consider the 2n knots centered around that interval, that is,
the knots in the sequence (fx—n+1,---;lk+n). We want to build a de Casteljau
frame based on this reference sequence. To do so, we must verify the nondegeneracy
conditions 7; # s for 1 <4 < j < n, as specified in Lemma 6.1, where ¥; =
tk—_n+i. In this case, that is easy to do: the first n points in the reference sequence
are all at most #x, while the last n points are all at least k41, and we have tx < tk41-
Therefore, by the de Casteljau technique of Cor. 6.3, we deduce that we can specify
a unique n-ic curve F(@) by arbitrarily specifying its poles, that is, the blossom
values fk(t—k—n+l, o ,fk), fk({k—n+2; .o ,fk+1), ey fk(fk+1, o ,t_k.’.,.). We choose
to specify Fi(%) by the conditions

fe(Eists--stizn) =% foriin [k —n,k]. (15.2)

15.2 THE BLOSSOMS OF SPLINE CURVES 83

Suppose that we have used this technique to determine Fi(%) for each k with
tx < tk+1. As a consequence, for any fixed 1, it will be the case that x; =
fe(Fig1,...,titn) for all k in [i,¢ + n] that satisfy £y < fx4+;. That same collec-
tion of indices k can also be described as those for which (Z,fx+1) N (£, Eigni1) is
nonempty. Hence, by the definition of the f; notation, we will have

X = f(f-' ,{i+n+l)({‘.+l’ e)t—l'+ﬂ)'

There is one thing left to verify: we must show that the resulting polynomial
curves Fy really do fit together to form a spline with the appropriate continuity.
Suppose that ;13 = -+ = £;4m is a knot of multiplicity exactly m, so that ; < #;;,
and #;1m < titm+1. We want to show that the curve F; joins the curve F;.,, at
that knot with C"~™ continuity. If m = n+ 1, which is the largest multiplicity that
the hypotheses allow, we interpret C~! continuity to mean that there is no relation
between F; and F,,,,, so there is nothing to prove. Therefore, let us assume that
m < n, and let [denote the level of continuity ! := n — m. By Prop. 8.8, showing C*
continuity at the joint is equivalent to showing that the blossoms f; and f; . agree
on all argument bags that include at least m copies of the knot, which, in symbols,
is the identity

fillivrs ooy Eipmytin, ooy 8) = figm Eit1r- s Fikms B1ye e, @),

We know something about the blossoms f; and f;;m already, from Eq. (15.2).
In particular, we know that fi(f;11,...,;4n) =X, for j in [§ — n,], and we know
that fiym(ti+1,...,%4n) = X; for 7 in [{ — [,§ + m)]. Putting these facts together,
we deduce that fi(Zj11,...,84n) = fixm(Ei+1,...,E54n) for 5 in [§ — 1,5]. More
pictorially, we know that f; and f;,,. agree on the rows of the parallelogram

ticipr Licgr o b G . titm
ticivs ..t tipr ... tigm Litmsr
t-i t:s'+l t:s'+m t:i+m+1 t:i+m+l—1 _
Ltr oo titm Litm+1 oo Bipmi—1 bitmd

We can finish off the proof by cutting the middle m columns out of this parallelo-
gram, collapsing the two remaining triangles to form a smaller parallelogram, and
then applying Cor. 6.3 once again, as follows.

Let g denote the symmetric, multiaffine function of [arguments that results
from fixing m of the arguments of f; at the value of the knot, that is,

g(ﬁl, v ,ﬁ;) = f.‘(t_.'_H,. .o ,t_,'+m,t_11,. .. ,ﬁ;),

and let h be the corresponding restriction of f; 1. The fact that f; and f;,,. agree
on the rows of the parallelogram above implies that g and h have the same poles
with respect to the reference sequence (Bicit1s-- sty Litm+1y - - -y Litm1), Which
consists of the [knots that precede Z;,, concatenated with the ! knots that follow

ti+m. Furthermore, this reference sequence satisfies the nondegeneracy condition of

84 SPLINE CURVES 15.4

9(3,3)(8,6,8) 90,3 (1,2,2.6)
90,3)(0,1,2))

93,8 (4,8, 8)

9(5,1(0,0,0)

9(2,8)(3,4,8)

Lemma 6.1 because each left-half element is at most #;, each right-half element is at
least #; m+1, and we have #; < #,+1 = {;4m < titm+1. Thus, we may conclude by
Cor. 6.3 that g and h are identical. This implies that the blossoms f; and f; . agree
on all argument bags that include m copies of the knot ;1 = t;4m. By Prop. 8.8,
we conclude that F; and F;m do join with C* continuity at that knot. O

Our next task is to demonstrate that the spline-controlling technique based on
poles in Prop. 15.1 is just the standard de Boor technique in a new guise. One
warning: many authors use the variable n to denote the order of a spline curve,
while we have been using (and will continue to use) n to denote the bound on the
degree instead. For example, a cubic spline has degree 3 (or less), but has order 4.
For our purposes, the degree is a more important concept than the order, since the
degree counts the number of arguments of the blossom.

Proposition 15.3. The poles X; = f(g, #.\ny,)(Ei+15---,i4n) of an n-ic spline
curve F are precisely the de Boor points by which that spline curve is controlled in
the standard theory. Furthermore, the validity interval (Z;,%;+n41) of the pole x; is
precisely the region of the parameter space L over which x; influences the value of
the spline curve; that is, the pole x; influences the spline segments Fi(&) precisely
for k in [¢,§ + n].

Proof. We shall prove this by writing down the multiaffine labels for all of the
points that occur in the de Boor Algorithm. If you are reading for concepts rather
than details, you might want to skip this proof. But you should take a moment to
study the labels in Fig. 15.4, which shows an example of the de Boor Algorithm
computing the point G(2.6) on a cubic spline curve G, whose knot sequence is
6,6,06,0,1,2,3,4,8,6,6,8).

The de Boor Algorithm [11] defines a spline F (&) of degree n on the knot
sequence {Z,;} given a sequence of de Boor points {y;} by setting F(&@) := aL"“](ﬁ)

15.5 THE BLOSSOMS OF SPLINE CURVES 85

where k is chosen so that x < @ < fx4+1 and the functions an 'H](ﬁ) are defined by

(@) = { (tign-yi1 = w)ally(8) + (u =)ol ()

, ifj>o0.
bLitn—j+1 — U

The correspondence with the multiaffine point of view is given by the identity
TP _ _ .
AR CYES SN CTPRIN A)}

For 5 = 0, de Boor points y; = agll(ﬁ) themselves are the same as the poles
x" = f(?‘,{‘.‘.".’.])(t‘.’-l L t.'+n)o

For j > 0, the formula that computes aE’. +1l (@) by interpolating between aE’.](ﬁ)
(4]

and ¢;’', (#) corresponds to computing

fg}.' J.'+n-,'+1)({"+1 “bign—; @)

by interpolating between
fg‘ Fitnes+a) (t_t'+1 v t—t'+n—jfi+n-j+l @’ _1)

and
® FEoryeenlos . gd=1
f({‘_l,{‘+n_’.+l)(t|£+l titn—j @’)

The latter two points share all but one argument; the varying argument is titn—j+1
in the former case and Z; in the latter case. We can turn this varying argument into a
Jth copy of @ by interpolating with the ratio ¢; : @ : titn—j+1, just as the § > O case
of the a&’ +1](ﬁ) recurrence tells us to do. The result of this interpolation receives,
as validity interval, the intersection of the validity intervals of the two input points,
just as it should.

For j = n, we get a£"+l](ﬂ) = [540) (8- - -, 8) = Fi(@) for all 5. If we then
choose k so that @ lies in (Zx,Zx+1), we have aL"H](ﬁ) = Fi(8) = F(a).

To verify the claim about the validity interval of the pole x;, we can prove
by induction on j that the point x; = f Eipmsr) Eit1s- - o, tign) affects the values
af“](ﬁ) precisely for k in [f,5 + j]. In particular, x; affects Fy(@) = ai"“l(ﬁ)
precisely for k in [f,5 + n]. This means that the spline F(&) is affected precisely for
@ in the validity interval (£;,#;41pn41). O

Project 15.5. Pick a computer scientist at your table who doesn’t know anything
about splines. Explain the de Boor technique for specifying polynomial spline curves
to that lucky person, drawing all your figures on one paper napkin. Don’t limit your
presentation to cubics, and don’t assume uniform knot spacing.

86 SPLINE CURVES 16

16. Overloading the notation for a spline blossom

When working with the blossom f of a spline curve F, it is irritating to have to
keep writing the validity intervals as subscripts on f all the time. Indeed, the labels
in Figs. 1.3 and 1.4 were spline blossom values without validity intervals. The way to
avoid writing the subscripts is to invent a scheme for deducing the proper subscript
from the points in the bag of arguments. Note that the notation for the spline curve
F itself involves just such a deduction scheme. To interpret the term F(&), we first
deduce the proper 1 by determining which domain interval (%;,¢,4+1) contains the
argument @; then we evaluate F;(#). We shall refer to the adoption of a scheme for
deducing the proper subscript as overloading. The non-overloaded notation F;(i)
is more powerful, since it allows us to evaluate any segment of the spline at any
point, even points where @ < £; or @ > #;;;. But the overloaded notation F(&) is
more convenient. Achieving the same convenience by overloading the notation for
the spline blossom f is rather delicate, because there are n arguments instead of
just one.

Starting at the beginning, note that we can’t possibly make overloading work
when n = 0, since the blossom f doesn’t have any arguments to examine. Indeed, in
the case n = 0, the validity intervals convey just the right information. A de Boor
point of a zeroth degree spline curve (a “constant spline”) F(i) has a label of the
form f(, z.,,)(), and we have F(&) = f(, z,,,)() whenever @ is in (&,2;11).

When n = 1, each affine segment F;(@) of the spline is equal to its blossom
f:(@), so we can overload the spline blossom in the same way that we overload the
spline itself. The only problems arise at knots of multiplicity at least 2.

When n > 2, there are two reasonable conventions that one could adopt, which
we shall refer to as tame and wild overloading. In each case, the heart of the conven-
tion is a rule for deciding, given a bag of arguments {i,}, which parameter intervals
(%i,%:+1) should be candidates for use when assigning a value to the blossom expres-
sion f(@,...,8,). Given a rule for candidacy, a blossom expression f(@y,...,)
is well-defined if and only if there is at least one candidate interval and all of the
values fz, v ,)(81,...,1n) for candidate intervals (2, %i+1) agree.

In tame overloading, the interval (;,%;4,) is a candidate for use when defining
f(@1,...,4,) whenever the closed intervals [#;,;+1] and [min{i,}, max{@,}| inter-
sect. For example, if the knot sequence {Z;} is the integers ¢; := ¢, there are three
candidate intervals for the term f(0.5,2) under tame overloading: (0,1), (1,2), and
(2,3). Appealing to Prop. 14.2, we can deduce that the expression f(@1,...,4n) is
well-defined under tame overloading if and only if every knot in the closed interval
[min{a,}, max{4,}| is included in the bag {ii;} at least as often as it is a knot. In
the example above, the term f(0.5,2) is not well-defined, because the simple knot
1 doesn’t appear as an argument; but the term f(0.5,1,2) would be well-defined.

In wild overloading, there are two cases. If the blossom arguments @, are not all
equal, then the interval (£;,#;}1) is a candidate for defining the term f(i, ..., i,)
only when the open intervals (f;,#;+1) and (min{#;}, max{@,}) intersect. If all of
the @&, are equal, the interval (#;,%;1) is a candidate whenever the common value
of the @,’s lies in [Z;,%;41]. With the integers as the knots once again, only the two
intervals (0,1) and (1I,2) are candidates for use when assigning a value to the term

17 THE TRELLIS OF A SPLINE CURVE 87

£(0.5,2) under wild overloading. Both of these intervals would also be candidates
in the case of f(I,1), but the interval (1,2) would be the only candidate for f(1,2).
Appealing once again to Prop. 14.2, we deduce that the expression f(&y,...,G,) is
well-defined under wild overloading if and only if either min{&,} < max{&,} and
every knot in the interval (min{#,}, max{#,}) is included among the @, at least as
often as it is a knot; or min{#;} = max{#,} and the multiplicity of that common
value as a knot does not exceed n. For example, if we adopt the knot sequence
{t:} where ¢t; := |/2], in which each integer is a double knot, then f(0.5,1,1,2) is
well-defined under wild overloading, even though it would not be well-defined under
tame overloading.

The power of wild overloading is quite helpful, as we can see by comparing the
labels in Fig. 1.4 to those in Fig. 15.4 (remembering that the labels in Fig. 1.4 are
missing the bars over their arguments). Note that the label ¢(0,1,1) in Fig. 1.4 is
not well-defined under tame overloading, since 0 appears only once as an argument,
while O appears four times as a knot. Indeed, the presence of one 0 among the
arguments of g tells us that g(0,1,1) should lie in the osculating plane Oscs G(0).
But G (&) is not even C? at u = 0; hence, it has two different osculating planes there,
one associated with small positive u and the other with small negative u. The wild
overloading convention makes ¢(0,1, 1) well-defined by choosing the positive plane,
on the grounds that the other argument values are all nonnegative and at least
one of them is positive. More generally, the term f®(1”77#]) is a well-defined
reference to the jth Bézier point of the n-ic segment F([f;,%;+1]) in almost every
case, under wild overloading. The lone exception is the term f®(f") when ; is a
knot of multiplicity exceeding n. The label ¢(0,0,0) in Fig. 1.4 is an example of
this exception; it isn’t well-defined even under wild overloading, just as G(0) isn’t
well-defined.

But the power of wild overloading can lead to confusion in some cases. Consider
f(1,2) is well-defined under wild overloading, with the value f,5(1,2). Similarly,
the term f(2,3) is well-defined, with the value f(3,3)(2,3). Furthermore, the terms
f(1,2) and f(2,3) have all but one argument in common. We might be tempted to
compute f(Z,2) for 1 < z < 3 by interpolating between f(I,2) and (2,3). But the
validity intervals of f(I,2) and f(2,3) are disjoint; hence we have no right to do so.
Such apparent failures of multiaffineness can’t happen under tame overloading. In
particular, suppose that f(Z,#s,...,8,) and f(§,G2,...,4,) are both well-defined
under tame overloading. Then, for any z between z and y, the term f(Z, @3,...,8,)
will also be well-defined under tame overloading, and the latter point can be found
by interpolating between the two former points.

17. The trellis of a spline curve

In this section, we shall pause to reap the rewards of our labors by looking
at some pictures of spline curves. Let the latter part of the Roman alphabet from
p through z denote a portion of the knot sequence of a parametrically continuous
spline curve F of degree n. The figures below will be drawn as if the knots were
equally spaced, since that makes it easier to detect visual patterns; but we will refer

88 SPLINE CURVES 17.2

vw
LY
v uv
uu
u
tu
t tt
8t
Fig. 17.1. An affine trellis Fig. 17.2. A quadratic trellis

to the knots as i, ¥, and the like, rather than 2, 3, and the like, in order to emphasize
that arbitrary knot spacings are possible.

For the first batch of figures, suppose that we are particularly interested in the
behavior of the curve F over the two adjacent intervals (¢, %) and (#,¥). Figs. 17.1
through 17.6 depict the neighborhood of those two segments of F for degrees n = 1
through n = 6. In each case, the points are labeled with a string of letters, with the
special-purpose convention that, for example, “tuvv” means f(;)(Z, &,9,7). That
is, we leave off the symbol f, the parentheses, the commas, and the bars, and we
deduce the validity intervals by the use of an overloading convention—the tame
convention will suffice if we assume that there are no multiple knots.

In each case, the points whose labels consist entirely of t’s and u’s are the Bézier
points of the segment F(z q)([#, §]), and those whose labels consist entirely of u’s and
v’s are the Bézier points of F(g,0)([#,7]). If u is a simple knot, as is the case in the
figures, we have C™~! continuity at @. The bold lines in each diagram show the.
de Casteljau Diagram of order n — 1 that geometrically demonstrates this level of
continuity. Note that the points of this de Casteljau Diagram are precisely those
whose labels are drawn from the set {t,u,v}. Each of them contains at least one u,
reflecting the fact that this diagram lies in the osculating flat Osc,_1 F(&).

The diagram in Fig. 17.3 for a cubic spline is well-known, although not with
these labels. It is important to realize that this type of diagram is associated with
every cubic spline curve, whether we used the de Boor theory to draw that spline or
not. For example, consider the classical case of C? interpolating cubic spline curves.
In this scheme, the designer chooses the locations of the joints f(&,4, &), f(¥,9,),
and the like, while the knots @, ©, and the like are chosen by some other rule—
perhaps equally spaced or with spacing proportional to the chord length between
the corresponding joints. Given this data, we must solve a system of linear equations
over the entire spline curve in order to compute the geometry shown in Fig. 17.3.

17.4 THE TRELLIS OF A SPLINE CURVE 89

tuv

Fig. 17.3. A cubic trellis

(We must also choose some end conditions, in order to give us as many equations
as unknowns in this linear system.) In a scheme based on cubic B-splines, the
designer chooses the de Boor points f(3,%,%), f(f,&,?), and the like, and the rest
of the geometry shown in Fig. 17.3 is computed locally from them. But the same
geometry exists in both cases. The only difference between the two schemes is which
points and parameters are chosen as the input from which everything else must be
calculated.

Two interesting new phenomena arise in the quartic case, shown in Fig. 17.4.
First, this is lowest degree for which the de Boor points of the curve are not part of
the de Casteljau Diagrams that enforce continuity at the joints. As the degree goes
up, the de Casteljau Diagrams move in more and more, getting further and further
away from the de Boor points and the control polygon that connects them. The
second interesting thing that happens when n = 4 is exemplified by the point uuvv:
it is the first point we have seen that lies at an intersection that looks like an X
rather than a Y. This means that there are two different ways to compute the point
uuvv by linear interpolation from other points: we can interpolate between tuuv and
uuvw or between tuvv and uvvw. It is not immediately obvious, geometrically, why
these two interpolations always give the same answer; but the blossoming technology
makes it clear that they do.

There wasn’t enough space to label all of the points in the diagram for n = 5 in

90 SPLINE CURVES 17.6

uvwx

tuvv

tuuv 72737373

ttuv

Fig. 17.4. A quartic trellis

Fig. 17.5. The new phenomenon that arises here is pairs of line segments that cross
in the digram without a dot at the crossing: for example, a little above the middle,
the pair of lines tuvv* and tuuv*. Such crossings only arise because our figures are
degenerate, by virtue of being drawn in a plane. If the de Boor points in Fig. 17.5
were in general position, such pairs of lines would be skew.

Fig. 17.6 shows the case n = 6. The pictures become harder to interpret
around n = 6 because of the number of near-coincidences that start to arise. For
example, just above the Bézier point uuuvvv are two points quite close together.
Of that pair, the one on the de Casteljau Diagram is tuvvvv, while the other one is
uuuuvw. The major new structural phenomenon that occurs for n = 6 takes place
at the midpoint of the outermost shell of the bold de Casteljau diagram, at the point
ttuuvy. This point can be computed by interpolating between other points in three
different ways, corresponding to the three line segments in the interior of which it
lies: [sttuuv,ttuuvw], [sttuvy, ttuvvw], and [stuuvy, tuuvvw).

17.6 THE TRELLIS OF A SPLINE CURVE 91

Fig. 17.5. A quintic trellis

92

stuvwx e

stuvww <

stuvvw «

stuuvw «

sttuvw «

sstuvw ¢

rstuvw ¢

SPLINE CURVES 17.6
tuvwxy
tuvwxx,,
‘ Juuvwxy
” - uvvwxy
ttuvwx, T
5 ° o \\ uvwwsxy

\§\\§ JLowxxy
\~ vowxyz
’ iy
0 § LIWXXYZ

dvwxyyz
dvwxyzz

dvwxyza

qopqrst
yppqrst
apqqrst
ok pqrrst

¢ ppgrsst

pqrm
)?/’ paratu

F/qqrstu

Q ‘ . //
\ - o //// qrrstu
t v *‘y o- stu

Fig. 17.6. A sextic trellis

17.8 THE TRELLIS OF A SPLINE CURVE 93
f(01 2) =f(‘i’ 6)

1(0,0)=£(4,4)=f(8,8) f(2,2)=/(8,8)

3,49)=1(7,8 =
f3,4)=5(1,8) {33707 £(2,3)=1(8,7)
Fig. 17.7. A quadratic spline curve that is additively periodic

As these figures have shown, every spline curve has a framework of line segments
surrounding it and supporting it. Since this framework of sticks is covered with
blossoms, it is overwhelmingly tempting to refer to it as the trellis of the spline curve.
More technically, the vertices of the trellis are those blossom values f(41,...,4,)
that are well-defined under wild overloading and all of whose arguments #; are knots.
The line segments of the trellis consist of all blossom values that are well-defined
under wild overloading and all but one of whose arguments are knots. The algebraic
properties of the blossom provide a helpful guide to the geometric intricacies of the
trellis.*

One difficulty in drawing the trellis of a spline curve is knowing when to stop. In
Figs. 17.1 through 17.6, we drew all of the lines involved in determining the behavior
of the spline over the two adjacent segments F([t,]) and F([&,5]). We can avoid
the problem of knowing when to stop by considering a periodic spline, where we can
draw everything with a finite amount of work. There are two types of periodicity
that a spline can possess: additive and multiplicative. In the additive case, we have
F(u+ C) = F(u) and f;4p = t; + C for some positive real constant C and positive
integer M. Fig. 17.7 shows an example of a additively periodic quadratic spline in
Each de Casteljau Diagram around the cycle of a periodic spline has an associated
ratio. In Fig. 17.7, those ratios are 1, 2, and 1/2. In order for additive periodicity to
arise, the product of these ratios around the cycle must be precisely 1. There is no
reason why this product should take any particular value, however. If the product is
not 1, the result is a spline that is multiplicatively periodic: we have F(Cu) = F ()
and ;4 p = Ct; for a positive real C and a positive integer M. Fig. 17.8 shows an
example of a multiplicatively periodic quadratic spline in which C = 8, M = 3, and
the knot sequence is given by t; = 2°.

Whatever flavor of periodicity a spline possesses, the periodicity allows us to
draw the entire trellis of the spline in a finite diagram. Figs. 17.9 through 17.13 are
examples constructed as follows: I copied a closed control polygon with 12 vertices
from a paper by Robin Forrest [23]. I then constructed the additively periodic spline

* Without the blossom as a guide, one might resort to drawing less than the full
trellis; for example, Fig. 5 in Sablonniére’s paper [37] is a subset of the quintic trellis
shown in our Fig. 17.5.

94 SPLINE CURVES 17.14

f(1,2)=£(8,16)
(8,8
f(2,2)

Fig. 17.8 A quadratic spline curve that is multiplicatively periodic

curves of degrees 2 through 6 with equally spaced knots determined by those 12 de
Boor points. It isn’t really relevant to this paper, but Fig. 17.14 shows what happens
as the degree gets higher; it shows the splines of degree 2% based on the same control
polygon for i in [0,8]. All of the curves for degrees 512 and up are located within
the small dot at the centroid of the 12 control vertices. Finite Fourier transforms
are a good tool for studying the process of convergence to the centroid.

17.14

THE TRELLIS OF A SPLINE CURVE

!

[

Fig. 17.9. The trellis of a periodic quadratic spline curve

95

96

SPLINE CURVES

Fig. 17.10. The trellis of a periodic cubic spline curve

17.14

17.14

THE TRELLIS OF A SPLINE CURVE

Fig. 17.11. The trellis of a periodic quartic spline curve

a7

17.14

98

Fig. 17.12. The trellis of a periodic quintic spline curve

99

17.14

spline curve

sextic

Fig. 17.13. The trellis of a periodic

100 SPLINE CURVES 17.14

0l

Fig. 17.14. The spline curves of degrees 2* for 1 in [0, 9)

18.2 THE BLOSSOMS OF B-SPLINES 101

18. The blossoms of B-splines

In the standard theory, a Bézier curve is the result of blending together its
Bézier points using the Bernstein basis polynomials as the weights. Analogously, a
spline curve is the result of blending together its de Boor points using B-splines as
the weights. Our blossoming technology led us to the de Boor Algorithm, which is
a way of computing a spline curve from its de Boor points. Hence, we already know
about B-splines in a sense. But the connections between what we know so far and
the standard explanations of B-splines are a bit subtle. In the standard theory 8],
B-splines are defined either by a recurrence [10] or by a formula involving divided
differences [9]. Spline curves are then defined as linear combinations of B-splines.
Finally, it is shown that spline curves can be computed using the de Boor Algorithm
[11]. In this section, we shall reverse that process. We shall define B-splines to be
the weighting functions that result from the de Boor Algorithm. Then, we shall
prove that those B-splines satisfy the recurrence and the divided-difference formula.

Let L be the affine line, let {#;} be a knot sequence in L, let F:L — Q
be an n-ic spline curve with {#;} as its knot sequence, and let {x,} where x, =
f(&F;4ns1) (541, -, Ej4n) be the sequence of de Boor points of F. The de Boor
Algorithm computes each point F(&) on the spline F as an affine combination of
the de Boor points. We define the real-valued spline functions B, (&) to be the
coefficients in this affine combination:

F(t_l) = Z B ',n+1(ﬁ) f({,',{j+n+1)({j+1’ ey t_j+,,,). (18.1)
]

These coefficient functions B;,,1(%) are called the normalized unsvariate B-splines
of order n+ 1 for the knot sequence {f;}; the notation N, (@) is also common.
The “+1” in the second subscript arises because we are using n to denote the degree
rather than the order.

We can compute B-splines by considering spline curves F: L — R, whose object
space is the real numbers. The de Boor points x,; = F& Eirmgn) @ity ey Egn) of
such a spline are themselves real numbers. From Eq. (18.1), we can see that the
B-spline B;,n41: L — R is simply the n-ic spline curve whose de Boor points x; in R
are all equal to O except for x,, which is 1. Using the Kronecker delta notation, we
can write this more compactly as x; = §;;. Therefore, we can compute the B-spline
Bj n+1 by applying the de Boor Algorithm, starting with the de Boor points x; = §;;.

One source of complexity in that computation is overloading. Note that both
the F (@) and the B; ,,1(4) in Eq. (18.1) are splines, that is, piecewise polynomials.
The pieces that make up F (&) are the polynomial curves Fy(#) for each k with
(tk,tk+1) nonempty. In a similar way, let us define Bjn+1,k(6) to be the n-ic
polynomial that the B-spline Bjn41(@) follows for @ in (Z,%x+1); we shall call
Bjn+1,k & B-polynomial. The non-overloaded version of Eq. (18.1) is

Fr(@) = Z Bjnt1,6(8) & £ 0ne0) Eitts -5 Eign), (18.2)
-

which expresses the polynomial curve F as a weighted sum of de Boor points, with
the B-polynomials as the weights. In particular, the B-polynomial value Bj, ,1,x(i)

102 SPLINE CURVES 18.4

gives the influence of the jth de Boor point on the value of the kth spline segment at
the time @. If we blossom both sides of Eq. (18.2), we can generalize this observation
to bags of times {i;,...,@s} whose n components aren’t equal. We have

fi(@y,. .., 0,) = Z Bint1,k(B1s- - 8n) f(& 8 pnpn) E41s - s Eitn), (18.3)
)

where b; 41,5 denotes the blossom of the B-polynomial Bjn41,k.

Although the sums in Egs. (18.2) and (18.3) are formally infinite, only n + 1
of the terms are actually nonzero. From Prop. 15.3, we know that the jth de Boor
point influences the kth spline segment precisely for k in [7,7 + n]. Turning this
around, we deduce that the kth segment is influenced by the jth de Boor point
precisely for j in [k — n, k|. For j outside of [k — n, k], the B-polynomial Bj,n1,k(%)
is identically zero. (Throughout this section, the index j will always name a de
Boor point and the index k will always name a spline segment. Any value of j is
legitimate, but the only legal values of k are those whose domain intervals (£x,%k+1)
are nonempty.)

There is an interesting way to think about the evaluation of the segments Fj(i)
of a spline curve. For each k with (fx, {x+1) nonempty, we can compute the blossom
value fi(i@1,...,4,) by using the Generalized de Casteljau Algorithm starting with
the n + 1 poles of fi, which are precisely the de Boor points that influence fi, that
is, the points fi(Zj4+1,---,t4n) = X5 for j in [k — n,k]. We found in Section 7
that the resulting computation scheme is triangular, shown for the case n = 3
as the downward-pointing triangle in Fig. 7.4. Something interesting happens if
we consider fixing the blossom arguments {&;,..., %}, but varying k. Of course,
this is a pretty weird thing to do. Normally, we are interested in the value of
fx(@1,...,d,) only when the points @; are in the interval (Zx,r41), or at least close
to that interval. Indeed, if we hadn’t removed the overloading first, there wouldn’t
be any k around to vary: its value would be deduced by some overloading convention
from the arguments @;. But weird ideas sometimes pay off. What happens in this
case is that the triangular computation schemes for different values of k overlap in
large part, and can hence be assembled to form one long, diamond-celled lattice,
reminiscent of the old-fashioned, unsafe type of baby’s gate. Fig. 18.4 shows a chunk
of this lattice in the case n = 3. The de Boor points x; of the spline F form the
top row of the lattice. Each subsequent row is computed from the row above by
taking affine combinations controlled by one of the arguments @;, as specified in
the de Boor Algorithm. The bottom row gives the values y := fx(#1,...,@n) that
result from evaluating the blossom f; of each segment F) of the spline F on the
fixed argument bag {@1,...,8n}.

If there are multiple knots, this lattice will have triangular notches cut out of the
bottom of it, whose heights correspond to knot multiplicities. There are two ways
to see this. The naive way is to note that multiple knots would cause some of the
edge-labels in the full lattice of Fig. 18.4 to specify division by zero; those edges and
the points underneath them must be deleted. More formally, if fx+1 =+ = tk4m
is a knot of multiplicity m > 2, we have a computational triangle for fi and one

103

THE BLOSSOMS OF B-SPLINES

18.4

€ = Y usyM wyjlIo3[y 100¢ 3p 9y} Jo awrayos uorjeyndwiod Yy, ‘'8 ‘14

Anﬁw.mﬁ— .—,H&An.m.obv\ Anm.uw.ﬁuw?m_nhq Anmunm ..:l&?.m.v.mv.ﬁ Anm.uﬁ-:@:ﬂm,u&q Anﬂv.n#«:ﬁv?b.n.:\
SlN /S..: -9 9 -9 JIN /Jl& &lx -7 &-5 Y1 -9
93 — €n n.;l.bu a~|n§ n.:lcu vul.n: n3|mu nulnw- nﬁlvu Nulnﬁ na.lnu
T.ln ‘Zn .ﬁﬂl& A-.m.o.:K Rolu ‘Zn :va T..u.a.uv\ AOIQ ‘Zn :H&Aou.-hv\ ﬁvlu ‘Zn ..nﬁ&?w.n.:\ Anlu ‘Zn .AN& A-.u.n.mq Aum ‘Tp :H&Anh;hv\
\ /&la mTN /&1: JlN /Jl& »glN /e..& G —-N “-" :..N
N3|wﬂ 91— 2n N3|hﬂ V3 2n Neanlwu € —%n in — 92 23— 2n n3|v« I3 —2%n
T.m.c.“:mic;:x (9293 1p) (173 ?m.d:wv?u;b\ (r2¢s3¢1n) Cxea)s (5223 ¢1n) ("2 *8)f
N-9 /m»lwﬂ 6] IN /v/»lhu € |N Ml 92 2] IN /«glou 1-Nn 1-%
wﬂ|.~= :al.wn v»|.—3 .:..lhﬂ nﬁ.l.:w .—Slwﬁ Nwl.—: ~=|wﬂ .ﬂula: ,—3'#9
(82 ‘23¢99) (e#%2)s (+397¢9g) (*2*2)s (9g¢93 ‘vg) (4'c2)s (92v34e3) C8a)f (v3s2'2p) (*#'"3)y (5223 ¢13) (*#o8)f

104 SPLINE CURVES 18.5

for fi4+m, but the intervening index values correspond to empty domain intervals,
for which there are no corresponding functions or computational triangles. It is the
absence of the triangles for fi4+; through frim-1 that generates a triangular hole
of height m at the bottom of the lattice.

The nodes in the lattice in Fig. 18.4 are labeled to reflect a computation of
the blossom values fi(#iy,...,4,) for the arbitrary spline F. Fig. 18.5 shows the
same lattice, but with the node labels omitted. We can use this lattice to compute
B-polynomial values b ,41,x(%1,...,%,) in three different ways.

The first way uses the lattice top-down, the way that we developed it, exploiting
the observation that B-splines are just real-valued spline curves whose de Boor
points are all O except for a single 1. Choosing a fixed 7, we set the top-row nodes

X; by the rule x; := §,;; and then we compute successive rows, as in the de Boor
Algorithm. The output of this computation, on the bottom row, will be the values
Yi = bjnt1,k(81,...,18,) for all k with £ < fx4,. Intuitively, we have computed

the influence of our chosen jth de Boor point on all segments f) of the spline at the
fixed bag of times {i,,...,4y,}-

If we label each node in the lattice as we do this top-down computation, what
interpretation can we give to the labels? For each node, consider the monotonic
paths in the lattice that reach that node, starting from the chosen top-row node x;.
The label on each node will be precisely the sum, over all such paths, of the product
of the edge-weights along that path. In particular, suppose that we also choose a
fixed node yi on the bottom row, that is, a fixed segment of the spline. There will
be precisely (kfj) monotonic paths in the lattice from the chosen top-row node x;
to the chosen bottom-row node yi. The blossom value b; 41 x(%1,...,8%n) is just
the sum, over all such paths, of the products of the edge-weights along that path.
This constitutes a second way of using the lattice of Fig. 18.5 to compute values of
the B-polynomials.

The symmetry of that second approach between top and bottom suggests that
we could also use the lattice yet a third way: bottom-up. Choose a fixed k, with
tx < tk+1. Set the bottom-row nodes y; in the lattice by the rule y; := ;. Then,
compute values for nodes in successively higher rows, taking linear combinations
as specified by the edge weights. The resulting labels on the interior nodes of
the lattice will be quite different, under this bottom-up approach, than they were
under the top-down approach. Note, in particular, that the two weights involved
in one linear combination on the way down the lattice always sum to 1, making
that linear combination an affine combination. But the two weights involved in a
linear combination on the way up the lattice generally don’t sum to 1. What labels
will this bottom-up process give to the nodes in the top row? Since the notion of
weighted paths is symmetric, we deduce that the label on the jth top-row node will
be x; = b;n41,6(81,---,8n). Intuitively, the bottom-up approach chooses a spline
segment and computes how that segment is influenced by all de Boor points, while
the top-down approach chooses a de Boor point and computes how that de Boor
point influences all segments.

The bottom-up way of evaluating the lattice in Fig. 18.5 corresponds to one of
the two standard definitions for B-splines, the one based on a recurrence relation.

105

THE BLOSSOMS OF B-SPLINES

18.5

wyjlo3[y Ioog op ayy Sulf[zapun 3o199e[uolpeyndwod oy, ‘q'81 ‘81

94 sk YA €L zA
97 — 13 9 - 43 S — 9 71— 97 v — 92 -9 nu|¢ﬂ nﬂl.vu uﬂ|nu nulnu
Xgnv n:lhu 91— €n nalcu ¥3 — €n ”3|nu €2 — tn nﬁlvﬂ 22 — €n n3|nu
9 -9 $1—-4 Q-4 ¥ —9; -9 € — 9 € — 92 (2 £] -7 2—-6
N.:I.wu mul.n.: N*—lhn vulﬂa N3|09 nu|N= Nﬁlou Nﬂlna N3|v“ a~|ﬂ$
S2— 9 S - % L& I 1] v — L4 nulcu € — 9 -9 Nulwu 2 -7 -7
wﬁl..:w ﬂﬁlwu wull:v ~3|bﬂ n»|.~3 :a'@u Nu',:— ﬂa.lmﬂ ~u|~= aﬁl.vu
9x ¥x €x Zx Ix

106 SPLINE CURVES 18.8

The blossomed form of that recurrence relation is

by k() = 6jk

_ -y . Un~— ly _ _

bimt1k(B1s s in) = s——mbyn k(81 Gna) +

itn T %y
itnt1 — Un o

i1k (81505 Bnc1)-
ti+n+1 —ti41

If we set all of the @; equal to a common value @ and then use overloading to infer
the proper value of k from the value of #, we arrive at the standard version of the
B-spline recurrence {10].

Proposition 18.8. The normalized univariate B-splines Bj 1 for the knot se-
quence {i;}, which we defined in Eq. (18.1) as the weights with which the de Boor
points are blended together to form an n-ic spline curve, are given by the recurrence

= 1 ifae(t,tj+1)
B. o= { 1r%3+1
;,1(“) 0 otherwise
_ u—t; - ts —-u -
Bjp41(8) := ——2_B; (@) + —222 —— Bii1.(8). O
titn — 5 ti+n+1 — ti41

The bottom-up approach has an interesting feature: given a fixed knot sequence
{t;}, we can start off the bottom-up approach without knowing what the degree n
is. We first compute the linear B-splines based on the knot sequence {;}, then the
quadratic B-splines based on that knot sequence, and so on; we can stop whenever
we like. By contrast, we have to know the degree at the outset in order to use the
top-down approach.

Proposition 18.7. The normalized univariate B-splines Bj ,.1(#) for the knot
sequence {f;} can also be computed by the divided-difference formula

Bjn+1(8) = (tirn+1 = t5)[t5 - s tipnta} (- —u)}- (18.8)

Proof. First, we have to interpret the formula. The expression (- —u)% denotes that
function of z whose value is (z — u)™ when z > u and is zero otherwise, a so-called
truncated power function. Using an inequality-based form of the Kronecker delta,
we could also write that function as

z— (6z54)(z — u)™.

The expression [t;,...,t;4n+1] that precedes the truncated power function is an
instance of the divided-difference operator. If g: R — R is some function, the di-
vided difference [t,, .. .,t;4+n+1]9(z) is the coefficient of z"*! in the unique polyno-
mial of degree n + 1 that interpolates the function g at the n 4+ 2 sampling points
{tjs-..sti+n+1}. Divided differences have a beautiful theory, which Carl de Boor
lucidly explains in his book on splines [9]. We will hardly scratch the surface of that
theory in our verification of Eq. (18.8). To begin that verification, we shall remove
the overloading from Eq. (18.8) and then blossom the result.

18.11 THE BLOSSOMS OF B-SPLINES 107

The overloading in Eq. (18.8) comes from the fact that u is used both in the
power function (z—u)” and also to control the location at which that power function
gets truncated. To remove the overloading, let &x be some point in the interval
(tk,%k+1) for each k with ;. < fx4;. Then, we have

Bjn+1,k(8) = (ti4nt1 — t5)[ts, - tipns1] ("" = (8220,) (z - “)n)' (18.9)

It doesn’t matter which point 3x in the interval (fx,Zx4+1) we choose as the threshold
of truncation because the divided-difference operator only examines the values of its
functional argument at the knots ¢;. We can blossom both sides of Eq. (18.9) quite
easily; switching the constant factor (¢;4n+1 — t;) over to the left-hand side to save
space, we have

i - n
b””+l’k(ul’ SRTLLY) = [tj, - ,tj+n+1] (z = (‘ss?_u) H(z - “l)) . (18.10)
titnt1 — t5 =1

Having generalized Eq. (18.8) to form Eq. (18.10), we now begin to specialize
again. Instead of allowing an arbitrary argument bag {1,...,8,}, we claim that
it is enough to consider the particular argument bags E; := {f;11,...,fi4n} for
in [k — n,k]. The proof of this claim essentially repeats an argument that we used
in the proof of Prop. 15.1. Note first that both sides of Eq. (18.10) are symmetric,
multiaffine functions of the points i;; for this, we need to know only that the divided-
difference operator is linear. Fix any k with the property that f; < #;,, and
consider the reference sequence (tx—n41,...,fk+n). From Lemma 6.1, we know that
the n+1 simple n-tensors ¢; := ;41 -+ - ti4n for 1 in [k—n, k] form an affine frame for
the space L®". We conclude that it is enough to verify Eq. (18.10) for the argument
bags Ek-p, through Ex. This leaves us with the chore of proving

b fivtye. ks .
i1k (Eip +n) _ [t52- > tina] (2 (6220) [[(2 - ti)) (18.11)
titnt1 — t; =1

for all 1, 5, and k with Z; < {x4, and ¢ in [k — n, k].
Let’s work on the left-hand side of Eq. (18.11) first. If we substitute the argu-
ment bag E; = {#;11,...,ti4n} into Eq. (18.3), we get

fe(irtseestien) =D binirklEisn,. .., fign) fE Fime) ity s Eian).
i

Since k is in [f,§ + n], the left-hand side of this equation is actually the sth de
Boor point f(g, &, .. .)(t+1,..-,8i4n). Since the de Boor points are independent
variables, we conclude that the coefficients on the right-hand side must satisfy
bjn+1,k(fit1s---,titn) = &;. Thus, the left-hand side of Eq. (18.11) is given by
bij/(ti+n+1 — t5).

It remains to show that the right-hand side of Eq. (18.11) has the same value.
Recall that, if g: R — R is some function, the divided difference [t;,...,¢;4n+1]9(z)

108 SPLINE CURVES 18.13

is the coefficient of z"*! in the unique polynomial Z(z) of degree n + 1 that inter-
polates the function g at the n + 2 sampling points {tj,...,t;4n+1}. (Repeated
sampling points imply osculatory interpolation; that is, if some real number y oc-
curs more than once as a sampling point, say m times for m > 1, we demand that the
polynomial Z(z) osculate the function g(z) to (m — 1)st order at y. See Ex. 18.12.)
In Eq. (18.11), the function g(z) to be differenced is the truncated n-ic polynomial
9(2) := (820,)h(z) Where h(z) := [, (= — tips)-

All three indices s, 7, and k can now be thought of as specifying the positions
of significant events in the knot sequence:

(tig1,--->tien) : TOOtS Of h(Z)
(tj,---stj+n+1) : sampling points
«vostk | tk41,... : truncation threshold

If we sample g(z) at a root of h(z), we will get zero, regardless of the truncation
threshold. What happens if we sample g(z) at a knot that isn’t a root? Call
the knots t,, for m < { the pre-roots and the knots t,, for m > 1 + n the post-
roots. Since k is in [, + n}, the truncation definitely affects all of the pre-roots and
definitely doesn’t affect any of the post-roots. If j < ¢, all sampling points are either
roots or pre-roots. Hence, all samplings return zero, the interpolating polynomial
Z(z) is identically zero, and the coefficient of z"*! in Z(z) is zero. If j > 1, all
sampling points are either roots or post-roots. Hence, all samplings return h(z), the
interpolating polynomial Z(z) is equal to h(z), and the coefficient of z"*1 is again
zero, since h(z) is an n-ic. The only chance for a nonzero value on the right-hand
side of Eq. (18.11) is the case j = ¢. In this case, the interpolating polynomial
Z(z) must have all the roots of h(z) as roots and also the last pre-root t; as a root.
Therefore, up to a scalar multiple w, we have Z(z) = w(z - t;)h(z). To determine
the scalar w, we use the fact that Z and h must agree at the first post-root t; ny1.
This implies that w = 1/(t;4n4+1—t;). Since w is also the coefficient of z”** in Z(z),
we conclude that the right-hand side of Eq. (18.11) has the value &;;/(tj4n+1 —t;),
which agrees with the left-hand side. O

Exercise 18.12. Verify that the arguments in the last few paragraphs of the proof
of Prop. 18.7 remain valid even in the presence of muitiple knots.

Remark 18.13. I made the bold assertion, back in Section 4, that vector-space
duality would never arise in this paper. Well, hardly ever. The linear blossoms
bfn +1,k,+ of the B-polynomials are actually n-covariant tensors on L. In fact, for
each fixed k, the n-covariant tensors {b% ., , ,} for jin [k — n, k] form a basis for
the dual space (L®")* (sorry about the double use of “+”), which is the dual of the
basis for the linear space L®™ formed by the n-contravariant tensors {fi+1---Zitn}
for 1 in [k — n, k]. That is precisely what the equation

b2 ik (Eirrrtign) = 65

says. Perhaps dualizing should be added as a fourth principle, to supplement blos-
soming, tensoring, and homogenizing.

19.2 RAISING THE DEGREE OF A SPLINE CURVE 109

£(6,0, 1)

70,00 £(2,2,2)

16,51 /0,11)

7(6,1,2)

f(1,1,1)
7(1,1,2)
f(1,2,2)

£(0,0,0)! -

Fig. 19.2. The cubic trellis of the spline curve in Fig. 19.1

19. Raising the degree of a spline curve

Elaine Cohen, Tom Lyche, and Larry L. Schumaker recently published a paper
giving algorithms for raising the degree of a spline curve [6]. As another demon-
stration of blossoming technology, let’s go over one example from their paper. We
won’t be proving anything new in this section. Our goal instead is to get some feel
for the rather different perspective on such problems that blossoming provides.

Fig. 19.1 shows a cubic spline curve F, analogous to the curve shown in Fig. 2
of [6], with the knot sequence (0,0,0,0,1,2,2,2,2). The labels on the middle three
of the five de Boor points are well-defined under wild overloading; we shall trust to
context to disambiguate the first and last de Boor points f(0,0,0) and f(Z,2,2).
Fig. 19.2 shows the trellis of F, which includes the four Bézier points of each of its
two cubic segments.

The problem that Cohen, Lyche, and Schumaker pose is to view this curve F as
a degenerate case of a quartic spline. Now, the joint between F(5,1) and F(33) has
C? continuity. If we think of F as a cubic spline, this fact makes 1 a simple knot.

110 SPLINE CURVES 19.4

¢(0,0,0, 1)

9(6,0,0,0)

Fig. 19.4. The quartic trellis of the spline curve in Fig. 19.1

But, if we think of F as a quartic spline, we must make 1 a double knot. In general,
every knot has to increase in multiplicity by one when we raise the degree, since the
level of continuity of the corresponding joint remains unchanged. If we let G denote
F viewed as a quartic spline, the knot sequence of G is (0,0,0,0,0,1, 1,2,2,2,2,2).

In Eq. (10.1), we learned how the blossom g of any particular segment of G
could be computed from the corresponding blossom f:

fi(By, G2, 8s) + fi(@1, @a, 8a) + fi(1, Us, Ge) + fi(da, i3, Ui4)
i)

gk(ﬁl) ﬁz,ﬁs,ﬁ4) =
(19.3)
How does this equation interact with overloading? If g(u1, 42, #s, @4) is well-defined
under either the tame or the wild convention, the four f-terms in Eq. (19.3) will
also be well-defined under the same convention, since the multiplicity of every knot
goes down by one as we move from G to F. Therefore, Eq. (19.3) also holds for the
overloaded functions f and g, with the subscripts of k deleted. From this, we can
easily compute the points of the trellis of G as affine combinations of trellis points
of F. Fig. 19.4 shows the trellis of G in bold, superimposed on the trellis of F.
Of the ten trellis points of G, the expressions that we get for nine of them are
affine combinations of no more than two trellis points of F. In those nine cases, the
G trellis point lies somewhere on the F trellis. For example, we have

2f(6,',i)-:2f(6,i,i) _ 0.05.0).

9(06,0,1,1) =
The tenth case is more interesting:

It is easy enough to reduce these three f-terms to two in various ways. For ex-
ample, Fig. 19.4 shows ¢(0,1,1,2) as the midpoint of the line from f (0,1,2) to
f(1,1,1). Alternatively, it could have shown ¢(0,1,1,2) as the midpoint of the line
from f(0,1,1.5) to f(0.5,1,2).

20 GEOMETRIC CONTINUITY FOR SPLINE CURVES 111

If we want a single f-term that names the tenth trellis point ¢(0,1,1,2), we
can apply Prop. 10.4. It tells us that such an f-term will exist, and that the three
arguments of that f-term will be points in the intervals [0,1], [1,1], and [I,Z].
Computing those points corresponds to factoring the 3-tensor

_ 012 +2012+1%2
= n .

e

Using the basis {0, 6} for L«, we have

(6((‘) + 6) + 20(0 + 26) + (0 + 8)(0 + 25))
4

4]
il
)

H
et |

4

- 1 1 e
1{1+—=)(1-—=) ~11.7070.293.
(%) (%)

20. Geometric continuity for spline curves

As we mentioned back in Section 14, a joint between two polynomial curves is
called geometrically continuous of order k, or G* continuous, if the joining curves
can be reparameterized so as to meet with C* continuity [15]. Let 5 be the parameter
value corresponding to the joint. A reparameterization is a smooth (that is, a C*)
function h from a neighborhood of 5 in the affine line L to another neighborhood of 3
with the property that h(3) = 3. In order to guarantee that the reparameterization
does not change the order of continuity of the joint, we restrict ourselves to regular
reparameterizations, which are those with h’(3) # 0. (The derivative h'(3) is a vector
on L, of course, so the zero that we are comparing it with is the zero vector on L.)
We also want the alternative notions of time that h relates to agree about what is the
past and what is the future; that is, we want h to be orientation-preserving. Hence,
we actually enforce the sharper constraint A'(3) > 0. Every regular, orientation-
preserving reparameterization has a functional inverse, which is also regular and
orientation-preserving. Therefore, instead of reparameterizing both the incoming
and outgoing curves, it suffices to reparameterize one of them. We shall follow the
majority convention of reparameterizing the incoming curve. Be warned that some
sources adopt the opposite convention and reparameterize the outgoing curve (16},
with the result that their reparameterizations are the functional inverses of ours.

Let F:(7,8) — Q and G:(5,f) — Q be two n-ic polynomial curves, and suppose
that we are interested in the joint between F and G at 5. To test G* continuity, we
compare the derivatives up through order k of the reparameterized incoming curve
F o h to those of the outgoing curve G. Suppose that the Taylor series of h has the

form
(u—s)*

—)2
h(a)=s+ﬂ1(u—s)6+ﬂz(—%6+---+ﬂk—ra+--- ,

where 6 denotes the unit vector on L and §; is the scalar by which § must be
multiplied to give the sth derivative A(*}(5) of h at 5. Note that only the first k terms

(4(52 + 806 + 25’)

112 SPLINE CURVES 20

in this series matter when testing G* continuity. For k = 0, the condition of G°
continuity is the trivial relation F(3) = G(3), the same as C° continuity. For k =1,
we can use the Chain Rule of calculus to find that G'(5) = (F o h)'(8) = B F'(3).
For k > 1, we can use Faa di Bruno’s Formula [30], which is the higher-order analog
of the Chain Rule, to find that

k! . L
aW@= 2 D e A O}
AN k
0<i<k dytigt-tin=j (L el (et
1428+t hi=k
£1,82,...,8% 20

De Rose calls these equations the univariate Beta Constraints {15]. Here are the
first few of them:

G(8) = F(3) (BCo)
G'(5) = AL F'(3) (BC1)
G"(3) = B2F"(5) + B2 F'(3) (BC,)

GC)(5) = B3F®)(3) + 38,82 F"(3) + Bs F'(3). (BCs)

The curves F and G meet with G* continuity if and only if real constants #, through
B exist with 8; > O that satisfy Constraints (BCy) through (BC}). The numbers
B; are called shape parameters.

The first shape parameter f; is rather special. Consider the reparameterization
h(@) := 5 + B1(u — 8)6. Since h is an affine map, the reparameterized incoming
curve F o h will also be an n-ic polynomial curve. Indeed, the behavior of F o h
on the interval [h~!(),3] will correspond precisely to the behavior of F itself on
the interval [,3], the only difference being that the two domain intervals differ
in length by a factor of §;. But the length of the parametric interval on which
each spline segment is defined is already an arbitrary value in our framework, set
by the designer’s choice of the knot sequence. If we also let the designer specify
an arbitrary value for 8;, we would end up with two handles on the same degree
of freedom, which would be both pointless and confusing. To avoid this, we shall
restrict ourselves to the case §; = 1. The other reasonable choice would be to allow
B1 to assume different values at different joints but to restrict the placements of
the knots in such a way that each segment of the resulting spline curve is defined
over an interval of unit length. One problem with this alternative scheme is that
it makes it harder to study the limiting process in which two simple knots coalesce
to form a double knot. In the scheme that we are adopting, the knots can merge
smoothly. Indeed, if two simple knots coalesce, each corresponding to a joint with
G™1 continuity, the result is a double knot, corresponding to a joint with G™~2
continuity, whose associated reparameterization is the functional composition of the
reparameterizations of the coalescing knots. In the alternative scheme where f§, is
allowed to vary but all intervals on the parameter line must have unit length, the g,
value of the joint entering the disappearing segment tends to zero while the §; value
of the joint leaving that segment goes to infinity in such a way that the product of
these two §, values remains constant.

20.1 GEOMETRIC CONTINUITY FOR SPLINE CURVES 113

Fig. 20.1. Two parabolic segments that join with G? continuity

The shape parameters from #; on up really do give us the ability to form new
Joints. As an example, consider the two parabolas shown in Fig. 20.1, the curves
y=3—2z%/4 and z = 3 — y?/4. These two parabolas both go through the point
(2,2), and they both have slope —1 there. By symmetry, we deduce that they have
the same curvature there as well. Suppose that we form a quadratic polynomial
spline curve as follows. For u in (0, 1), we define Fo(&) = (2u,3 — u?), thus following
the parabola y = 3 — z? /4 from the point (0, 3) to the point (2,2). For @ in (1,2), we
define F;(#) = (4u — u? — 1,4 — 2u), thus following the parabola z = 3 — y? /4 from
the point (2,2) to the point (3,0). An easy computation shows that F}(I) = (2, —2)
and Fg'(1) = (0,-2), while F{(I) = (2,-2) and F}'(1) = (-2,0). Hence, from the
perspective of parametric continuity, the spline curve F is C! but not C? at & = I;
that is to say, 1 is a simple knot.

Since F' has curvature continuity at I, as we argued above by symmetry, we
would expect F to be G? continuous there. To verify that this is the case, we
substitute the derivatives above into the Beta Constraints. Constraint (BCy) holds
and Constraint (BC}) holds for 8; = 1, which is the only legitimate value for 8,
according to our convention. We can make (BC;) hold by choosing 8; = —1:

F{,(l) = <_210) = ﬂfF(;,(l) + ﬂZF(;(l) = (0)_2) - (2"—2)°

Thus, the spline F does have G? continuity at the point u = 1.

Note that the joint between Fo([0,1]) and Fy([1, 2]) is surrounded by three lines
that form a roman letter “A”, much like a de Casteljau Diagram with 2 shells, except
that the ratios of the lengths of the segments aren’t in the de Casteljau pattern. This
observation is valid in general. Starting from Eq. (8.3) and the Beta Constraints, it

114 SPLINE CURVES 20.3

Fig. 20.2. The A-frame surrounding a G? joint between cubic segments

is straightforward algebra to check that the two Bézier n-ic segments F:(7,5) — Q
and G:(5,t) — Q meet with G? continuity at 8 if and only if the last three Bézier
points of F([F,3]) and the first three Bézier points of G([3,1]) are coplanar and they
can be connected by lines to form an A-frame, as shown in Fig. 20.2, where the apex
of the “A” is a point added in the construction. The distance ratios o and A are
related to the knot values and the shape parameters by the formulas

_ t—s 1 _ ﬂz t—s 2
o=P—, end X—l_(n-—l)a(a+l)(s—r) '

In our special case of 8; = 1, these formulas simplify to

a=t—s and —1-—1= Pa (7)

s§—r A n—-1\oc+1

The joint between F and G has C? continuity when 83 = 0, and hence A = 1. In
this case, the joint is surrounded by an honest de Casteljau Diagram of order 2, in
which all three line segments are divided in the ratio 1 : 0. As we move A away from
1, we get joints that are G? continuous but not C? continuous. The example joint
between parabolas in Fig. 20.1 has A = 2.

The name “A-frame” is most appropriate in the case where) is some positive
constant. It is also possible to have G2 joints in which A = co or A < 0. In the
case A = oo, the legs of the “A” are parallel and the apex of the “A” has moved
off to the line at infinity; the name II-frame seems appropriate for this case. When
A < 0, the legs of the “A” point in towards the bottom, and we might call the result
a V-frame.

Exercise 20.3. Generalize the concept of an A-frame from k = 2 to arbitrary k.
More precisely, prove the following: for any k, G k continuity at the joint between
two n-ic curves is enforced by a diagram with the same points, lines, and incidence
structure as a de Casteljau Diagram with k shells, but with different distance ratios.
The distance ratios that arise for k > 3 are, unfortunately, rather complicated
functions of the shape parameters.

20.5 GEOMETRIC CONTINUITY FOR SPLINE CURVES 115

. \\,\ R R
..... fgg’b) f{\“):-'l}() {f;(:_l_,f)
et TN 7£(5,2)
VNI SoPUUNUNUESUUURUNUE FOUPRTURUESURRUPI ST SRR
//)f f{OJ}(I’ I)
N fon(L2)
AEHN
: N
é ,’ \
U SUUURUUNE SUUUUURY FUUTRER SO s AT \
i/ A\
e A\

Fig. 20.5. Attempts at labeling the vertices of an A-frame

Challenge 20.4. Figure out a comprehensible general form for those distance ra-
tios. Use this form to analyze the different ways that a G* joint can be “turned
inside out,” as the shape parameters are adjusted, by having portions of the enforc-
ing diagram pass through each other or through the hyperplane at infinity. While
you are at it, figure out good ways to control spline curves with G* joints for k > 3.

What happens if we study the A-frame in Fig. 20.1 from a blossoming point of
view? If fo and f; denote the blossoms of Fy and Fy, five of the six points in the
A-frame are easy to label as blossom values, as is done in Fig. 20.5. Note that f
and f; will agree on all argument bags that include a I, since the curves F, and
Fy join with C' continuity there. The big question is what to label the apex of the
A-frame.

Since fp is multiaffine, one possible label for the apex is fo(0,3). Symmetrically,
we could also label it f1(—1,2). The difficulty with these labels is that it isn’t obvious
where the new arguments 3 and —1 have come from. Note that the proper values
for these new arguments depend upon A, and hence upon the shape parameter S;.

From the point of view of understanding the structure of the spline curve F, it
would be much nicer to label the apex of the A-frame f(0,2), for some meaning of
the function symbol f. Note that the curvature continuity of F at the joint implies
that the tangent lines Osc, F(0) and Oscy F(2) to F at the points % = 0 and @ = 2
are not skew, as they might be if the joint at @ = 1 was only C!, but actually
intersect. By the differential perspective on the meaning of a blossom’s arguments,
we would like to label that intersection point f(0,2). If we use the same tangent-line
rule to determine the value of f(ii,%) for all @ and ¥ in [0, 2], the resulting function

116 SPLINE CURVES 20.6

will be rather complicated. If we have both u < 1 and v < 1 or both u > 1 and
v > 1, the value f(&,%) will behave in a biaffine manner as we vary u and v. But, if
we have u < 1 < v, the value f(&,%) responds to changes in u and v in a complex
manner, which depends upon the shape parameter f;.

Challenge 20.6. Find a simple and enlightening way to blossom a spline curve
that has geometric continuity. If your technique gives the apex of the A-frame in
Fig. 20.5 the label f(0,2), it should include an insightful study of the properties of
a non-multiaffine blossom, such as the resulting f.

Geometric continuity is more subtle than parametric continuity in many ways;
here are three to think about.

First, geometric joints have associated shape parameters. It is tempting to
try to use those new degrees of freedom to get more smoothness or more flexibility
out of spline curves of some given degree. Unfortunately, such schemes are fraught
with peril because of the nonlinear nature of the Beta Constraints. In order to
exploit the shape parameters to achieve some abstract goal, one would generally
have to determine their values by solving nonlinear equations—in the worst case,
a global system of nonlinear equations over the whole spline. The current success-
ful schemes for drawing spline curves with geometric continuity skirt this peril in
different ways. The various flavors of Beta-splines {1, 2, 26| avoid the nonlinearity
entirely by treating the shape parameters as dials that the designer can turn to
explore a wider universe of smooth shapes. Once the shape parameters have been
set by the designer, the problem of nonlinearity disappears. Gerald Farin suggested
a wonderfully simple technique for drawing G ? cubic splines, in which the designer
specifies the two middle Bézier points of each cubic segment [21]. With the notations
of Fig. 20.2, Farin’s insight was that the location of the joint w could be computed
from the locations of the four coplanar points p, q, r, and s by the equation

(r—w 2__ 3 _ (Aa) (a) _ (t-—q) S

=) =P EE)

The problem of nonlinearity shows up in Farin’s scheme as the restriction that the
points p and 8 must lie on the same side of the crossbar, the line joining q to r;
otherwise, the formula for ¢ demands taking the square root of a negative number.

A second interesting thing about geometric continuity is that it enables the
existence of knots with multiplicity zero. A knot of multiplicity m in an n-ic spline
is, in the geometric case, the parameter value of a joint that has G"~™ continuity,
with associated shape parameters §; through 8,_. It is perfectly possible to have
m = 0, that is, to have a G™ joint in an n-ic spline. In fact, the quadratic spline in
Fig. 20.5 is a case in point. It has 0 and 2 as triple knots, and it has 1 as a zero-fold
knot with 8; = —1.

It is even possible to have knots with negative multiplicity, since, in certain
degenerate situations, two n-ic curves can meet with G* continuity for some k > n
without being the same curve. Consideration of the Beta Constraints shows that
this can happen only when the n-ic curves being joined are degenerate in the sense
that they lie in a flat of dimension less than n, since the relations (BCpr41) through

20.7 GEOMETRIC CONTINUITY FOR SPLINE CURVES 117

Fig. 20.7. Two quadratic spline curves with G? joints

(BCy) will be linear dependencies among the derivatives. An extreme example is the
two n-ic plane curves F(u) := (u,u") and G(@) := (u+ u™,u"). These two curves
meet with G**~2 continuity at @ = 0, but not with G?*~1 continuity. To see this,
one can examine the Beta Constraints to find that the values 3 =-.- = f8,_, = 0,
Bn = n!, Bny1 = -+ = P3,_3 = 0 are the unique choices that will make (BCy)
through (BC3,_3) hold, but that no value of B85,_; will make (BC2p-1) hold.
The corresponding reparameterization is h(@) := u+ u®. This means that the
parameter value 0 where the curve segments F([—1,0]) and G([0, 1]) meet is a knot
of multiplicity 2 — n. Note that a knot of negative multiplicity, by enforcing a
degeneracy, reduces the number of control points needed, just as a knot of positive
multiplicity increases their number. We would need n + 1 control points to specify
a single polynomial n-ic segment H([—T, I]); but the two-segment spline formed out
of F([~1,0]) and G([0, 1]) needs only (n + 1) + (2 — n) = 3 control points.

For our third example of the mysteries of geometric continuity, consider the
five arcs of parabolas shown in the pentagram on the left in Fig. 20.7. Each joint
between one arc and the next is G? continuous, since it is surrounded by an A-frame
with ¢ =1 and A = 2¢ (corresponding to 8; = ¢—3), where ¢ := (1 +4/5)/2 denotes
the golden ratio. Therefore, suppose that a designer asked us to draw a quadratic
spline curve with the parameter interval [0,5], with 0 and 5 as triple knots, and
with each point in the set {I,2,3,4} a zero-fold knot with 8, = ¢ — 2. Zero-fold
knots don’t affect the number of control points, so we would expect such a spline
curve to need three control points, the same as a single parabolic segment. In fact,
every such spline curve F will have, as trellis, an affine transform of the pentagram
shown in Fig. 20.7; in particular, every such spline will satisfy F(0) = F(5). Thus,
it does indeed take three control points to specify an instance of such a spline, but
we couldn’t use the starting point and the ending point as two of those three control
points. The triangle on the right in Fig. 20.7 shows that the same phenomenon of
enforced circularity can arise with only three segments, if we are willing to allow
V-frames, that is, A < 0. Each joint between two parabolic arcs in that triangle is
G? witho =1, A = -2, and B2 = —3. The corresponding construction in a square
would have four IT-frames, each with & = 1, A = oo, and B2 = —2.

Part F: Spline Surfaces

Spline surfaces are considerably more subtle than spline curves. Blossoming
can give us a new perspective on the subtleties involved, but it doesn’t magically
make them go away. Because of those subtleties, we shall study spline surfaces with
a rather different strategy. Instead of trying to be general, we shall focus on two of
the simplest and most symmetric situations imaginable: patches that are squares
and patches that are equilateral triangles. In Section 22, when we deal with square
patches, we will end up succeeding in our quest for good labels. In Section 23, when
we tackle triangular patches, we will be left with the tantalizing possibility that
good labels of some as-yet-unknown structure might exist. Section 21 sets the stage
for those two investigations.

21. Joints between polynomial surfaces

Before one can construct a spline function F: P — @, one must partition the
parameter space P into regions. In the case of spline curves, the parameter space
P is the affine line L; since we presumably want our regions to be connected, the
only choice is to partition L into intervals. But the parameter space of a spline
surface is a plane, and there is a tremendous variety of ways to partition a plane
into connected regions. Since we will want the surface patches that are defined on
adjacent regions to join with at least C? continuity, the boundaries between adjacent
regions can’t be too chaotic. In particular, they had better be segments of algebraic
plane curves. But that still leaves plenty of freedom of choice.

In our first step away from generality and towards simplicity, we shall restrict
ourselves to the case where the parameter plane P is partitioned into convex poly-
gons. This means that the boundary between two adjacent regions in P is a line
segment.

We want the surface patches defined on adjacent regions in P to join with
some flavor of continuity. One could choose to enforce either a parametric or a
geometric continuity constraint. In our second step towards simplicity, we shall
restrict ourselves to the parametric case. That is, if A and B are two adjacent regions
in the partition of P, we shall demand that the polynomial surfaces Fa: 4 — Q and
Fg: B — Q agree to kth order at all points u along the boundary between A and
B, for some choice of k, without any reparameterization.

Taken together, these two simplifying assumptions have an interesting conse-
quence, when viewed from a blossoming point of view.

Proposition 21.1. Let A and B be two adjacent regions in the parameter plane
P that meet along the segment [8,t] of the line L in P, where 8 # t. Two n-ic
polynomial surfaces F4:A — Q and Fp:B — @ join with C* continuity along
the segment [8,t] if and only if their multiaffine blossoms f4 and [agree on all
argument bags that include at least (n — k) points anywhere along L.

Proof. By Prop. 8.8, F4 and Fp will agree to kth order at some point v in s, t] if
and only if their blossoms satisfy f&(u; ---urv™~*) = f8(u,---upv"~F). If this
identity holds for all v in the segment [s, t], it must also hold for v anywhere on the

21.1 JOINTS BETWEEN POLYNOMIAL SURFACES 119

entire line L, since f4 and fp are given by polynomials. Furthermore, suppose that
we fix u; through uy for a moment. The resulting function

v fra,py(Uy,..., Uk, V,...,V)
V/

n—k

is a polynomial curve of degree n — k defined on the line L. The blossom of this
curve can be computed either by the rule

{Vk+1,.. .,V,,} — fA(ul,...,uk,vk+1,...,v,,)

or by the same rule with fp replacing f4. Since blossoms are unique, we conclude
that f4(uy,...,u,Vit1,...,V,) must equal fp(uy,..., U, Vit1,-..,Vs), even if
Vi+1 through v, are different points along L. O

In this situation, the line L that separates the regions A and B is called a
knotline, and the number m := n — k is its multiplicity. We can restate Prop. 21.1
in these terms as follows: two polynomial surfaces of degree n meet with C*~™
continuity along a knotline L if and only if their blossoms agree on all argument
bags that include at least m points along L.

It is also worthwhile figuring out what the multiplicity of a knotline means in
terms of the locations of the Bézier points of the joining surface patches. In the case
of a C* joint between two curve segments, we found that the last k+ 1 Bézier points
of the entering segment F([,3]) were joined to the first k + 1 Bézier points of the
leaving segment G([,Z]) by a de Casteljau Diagram with k shells. Joints between
surface patches are analogous, but the analogy is rich enough that a few pictures
are in order. In particular, it will turn out that C* continuity between two n-ic
surface patches is guaranteed by n — k+ 1 overlapping two-dimensional de Casteljau
Diagrams, each with k shells. (A two-dimensional de Casteljau Diagram is one, like
the one shown in Fig. 3.4, that is constructed using two-dimensional interpolations;
it is each interpolation, not the diagram as a whole, that is two-dimensional.)

Before we can compute Bézier points for the joining patches, we must choose
a reference triangle for each of them. This choice was pretty obvious in the case
of curves: the domain of each curve segment was an interval, and we used that
same interval as the Bézier reference interval. If our surface patches are triangular,
it is similarly natural to choose the domain triangle of each patch as the Bézier
reference triangle for that patch. But domain regions that are polygons with more
than three vertices don’t present any such obvious choice. Fortunately, it isn’t hard
to convert from one reference triangle to another. Suppose that we are given the
Bézier points of an n-ic surface F with respect to the reference triangle Arst in P;
that is, we are given the triangle of blossom values f®(r*s’t*) for i + 5+ k = n. If
we apply the de Casteljau Algorithm for the point u in P, it produces for us the
tetrahedron of blossom values f®(r's’t*ut) for § + 5 + k + ! = n. The four faces of
this tetrahedron are the Bézier points of F with respect to each of the four reference
triangles Arst, Arsu, Artu, and Astu. By applying the de Casteljau Algorithm
three times, we could convert from the initial reference triangle Arst to an arbitrary
reference triangle Auvw.

120 SPLINE SURFACES 21.3

f{A,B} (p) 8, t)"‘“?

fazy(pitit)y / /7 —~Ffta,By(8,8,t) fla.By(q,t, t)
/ /) //,///- /f{A,B}(q, 8, t)
——ﬂm

fia,8)(p,8,8)—— —f1a,8)(t, t, t)
S/ /‘—'f{A,B} (S, t, t)

_——Ffa.p}(q,8,s)

fB (q1 q, t)

fia.B)(s,s,8)

fa(p,p,t) fs(q,q,s

fa(P,p,8)

fe(q,q,q)

fA (p) b p)

Fig. 21.2. The Bézier points of two cubic surfaces that join with C ! continuity

For the study of a knotline L, it is convenient to choose the reference triangles
of the two joining surface patches so that they share an edge that lies along L. Let A
be some region to the left of L in P and let B be some region to the right of L.
Suppose that we know the Bézier points of the surface patch F, with respect to
the reference triangle Apst and those of Fp with respect to Aqst, where 8 and t
are two points on L. If L is a knotline of multiplicity m, Prop. 21.1 tells us that
2 (p'a’s*t') = f§(p*a’s*t!) for k +1 > m. It is these points, on which the two
blossom agree, that form the constraint diagrams surrounding the joint.

For C° continuity, when m = n, the only blossom agreement is given by
f(s*t»—*) = f8(s*t"*); that is, the Bézier points that determine the edge curve
F4(L) must agree with the Bézier points of Fp(L).

For C! continuity, we can replace one of the copies of either s or t in the ar-
gument bag by either p or q without destroying agreement between the blossoms.
Fig. 21.2 depicts the case n = 3. Note that the joint curve is surrounded by n affine
images of the quadrilateral [p,s,q,t] in P formed by the two reference triangles.
These quadrilaterals can be thought of in three ways: they either extrapolate right-
ward from the rightmost two rows of Bézier points of F4(Apst) to compute the
leftmost two rows of Bézier points of Fp(Agst); or, vice versa, they extrapolate
from right to left; or, more symmetrically, they constrain the two rows of Bézier
points of both F4 and Fp that are nearest the knotline.

Raising the continuity to C? constrains the third row of Bézier points as well.
If n = 3, there are two points in each third row, constrained as shown in Fig. 21.3.
Note that this diagram includes two points, f(4,5}(P,q,8) and f(4, B}(P,q,t), that
are not Bézier points of either surface patch.

214 JOINTS BETWEEN POLYNOMIAL SURFACES 121

fta,8y(p, q, t) fia,B)(P,q,8)

fta.ny(p, D, t) f(a,8)(q,q,t)

fa.5)(p,p,) fia,my(a, q,8)

Fig. 21.3. The Bézier points of two cubic surfaces that join with C? continuity

For cubics, going all the way to C* continuity forces F4 and Fp to be identical;
see Fig. 21.4. The extreme Bézier point f4(p,p,p) of F4(Apst) is joined to the
extreme Bézier point fp(q,q,q) of Fp(Aqst) by a chain of three quadrilaterals,
each an affine image of [p,s,q,t]. The interior vertices along this chain are the
blossom values f(4,5}(P,P,q) and f(4,p5}(P,q,q). Fig. 21.4 is a two-dimensional
de Casteljau Diagram with three shells. It looks rather different from the analogous
diagram with two shells back in Fig. 3.4, but the difference is only skin deep. In
Fig. 3.4, the newly added point u lies inside the original reference triangle Arst,
so we are doing two-dimensional interpolation. In Fig. 21.4, say viewed from left
to right, the new point q lies outside the original triangle Apst, so we are doing
two-dimensional extrapolation. In the one-dimensional case, interpolation and ex-
trapolation look pretty much the same, since they both involve three points along a
line. In the two-dimensional case, the de Casteljau Algorithm is controlled by four
points in a plane, and quite different geometries are possible.

Returning to the C? case in Fig. 21.3, we can interpret that figure as two
overlapping instances of extrapolating de Casteljau Diagrams with two shells, one
consisting of all points with at least one s in their labels, the other consisting of all
points with at least one t. In general, as claimed above, C* continuity between n-ic
surface patches is enforced by n — k + 1 overlapping two-dimensional de Casteljau
Diagrams, each with k shells.

Now that we understand what a C* joint between two surface patches looks like,
the next step in building a spline surface is to choose a partition of the parameter
plane P into convex polygonal regions and to select multiplicities for the various
knotlines where those regions abut. Before starting that, we shall close this section
with some general remarks about overloading the notation for the blossom of a spline

122 SPLINE SURFACES 214

fia,83(P, fia.By(P,q,q)

f(4,8}(P,P,P) fta,83(q,q,q)

Fig. 21.4. The Bézier points of two cubic surfaces that join with C? continuity

surface.
So far, we have always indicated by means of an explicit subscript which region’s
blossom we meant to apply to a particular bag of argument points {u;,...,u}. The

expression f4(uj,...,u,) tells us to apply the blossom fa of the patch Fy, while
the expression f(4,p}(U1,...,Us) tells us to apply either f4 or fp and asserts that
the two results will be the same. Just as in the case of spline curves, an overloading
rule is a convention for determining the correct subscript from the locations of the
points u;. Let Hull(uy,...,u,) denote the closed convex hull of the points u;, and
let A denote the closure of the region A. Generalizing the case of curves, the tame
overloading convention considers a region A to be a candidate for defining the value
f(uy,...,u,) if and only if

AN Hull(uy,...,u,) # 0.

The term f(uy,...,uy,) is then well-defined under the tame overloading convention
if and only if all of the values f4(uy,...,u,) for all candidate regions A agree. The
natural generalization of wild overloading to the case of surfaces considers a region
A to be a candidate if and only if

dim (A4 N Hull(uy, . . .,u,)) = dim(Hull(uy,... ,U,)).

Deciding whether or not an overloaded term is well-defined can be a rather sub-
tle question for surfaces. For example, consider the situation in Fig. 21.5. Suppose
that we want to assemble a quadratic spline surface out of three patches, defined on
the three triangular regions A, B, and C. We require F4 and Fp to meet with C!
continuity along the line g8, and we require Fp and F¢ to meet with C 1 continuity

22 SPLINE SURFACES WITH RECTANGULAR PATCHES 123

¢

Fig. 21.5. A subtle geometry in the domain plane of a spline surface

along the line qt. But we don’t place any continuity constraint on the joint between
F,4 and F¢ along GF.

We should pause to verify that these constraints are actually honest. Note
that, if we had demanded C? continuity between A and B and also C? continuity
between B and C, then C? continuity between A and C would have been automatic;
for quadratics, C? continuity means equality, and equality is transitive. Thus, one
might worry that C' continuity across the (A4, B) joint and also across the (B,C)
joint might imply something about the (A4,C) joint. Here is an example to show
that the (A,C) joint can fail to be even C°. Let x, y, and z be three distinct
points in the object space Q. Define f4(r,r) := x, fo(r,r) := z, and let the other
five Bézier points of F4(Aqrs) and Fo(Agqtr), as well as all six Bézier points of
Fp(Aqst), be y. The (A, B) joint in the resulting spline surface is C! continuous
because C! continuity only depends on the two rows of Bézier points nearest the
Joint line and all those Bézier points have the common value y. Similarly, the
(B,C) joint is C! continuous. But the (A, C) joint is not even C° continuous, since
Fa(r) =x# z = Fc(r).

Consider the overloaded term f(u,v); is it well-defined? Since Hull(u,v) is the
line segment joining u to v, the two candidate regions are A and C, under either
tame or wild overloading. At first glance, it seems that there is no reason why the
equality f4(u,v) = fc(u,v) should hold, since there is no continuity constraint at
all on the joint between A and C. But note that the point v happens to lie on
the line that separates A from B. Since that line is a knotline of multiplicity one
and the argument bag {u,v} includes one point along that line, we deduce from
Prop. 21.1 that f4(u,v) = fp(u,v). Symmetrically, since u lies on the simple
knotline that separates B from C, we deduce that fz(u,v) = fc(u,v). Therefore,
fa(u,v) = fc(u,v); the overloaded term f(u,v) is well-defined, but for a rather
subtle reason.

22, Spline surfaces with rectangular patches

The two most symmetric ways to partition the parameter plane P into convex
polygons are to use congruent squares or congruent equilateral triangles. In this
section, we shall consider the case of squares.

Technically, the parameter plane P is just an affine space, so the concept of

124 SPLINE SURFACES 22.1

a square isn’t defined. What we shall really do is to divide P into a lattice of
congruent parallelograms. Having done so, it doesn’t hurt anything to choose two
adjacent sides of one of those parallelograms as orthonormal basis vectors, thus
giving P the structure of a Euclidean plane divided into squares. Doing so has the
advantage of making the symmetries more apparent.

We hope to associate a polynomial surface of degree N with each square in
such a way that the resulting patches fit together smoothly. To keep things as
symmetric as possible, we choose to enforce the same level of continuity across each
joint between two adjacent squares. What level of continuity should we demand? In
the case of curves, we can ask for C*~! continuity between two segments of degree
n and still leave sufficient flexibility. But for surfaces, it turns out that we can’t do
nearly that well; we can only get C* continuity for k some fraction of N.

To see why, let us first clarify our goals somewhat. The higher the level of
continuity that we demand, the fewer spline surfaces there will be. In computer-
aided geometric design, it is important that we stop while the splines still have
local flezibility. That is, we want to be able to change a small region of a design
without affecting the bulk of the surface. The spline surface techniques that are
most important in practice are those that achieve, for a given degree, the highest
possible continuity that still allows local flexibility.

Note that local flexibility is not as stringent a demand as local control. A
method of drawing splines has local control if each control point of the method
affects only a small region of the design. For example, consider C? cubic spline
curves with uniform knot spacing, say knots {;} at the integers t; := ¢. One method
of controlling such curves involves specifying their de Boor points. This method has
local control: moving the de Boor point f(."—"i,;.;-_z) (f— 1,1, i + 1) affects only the
four adjacent segments with domains (f — 2,7 — 1) through (1 + 1,5 + 2). Another
method of controlling the same curves involves specifying the locations of the joints.
This method does not have local control: moving one joint affects the entire spline
curve, although the effect dies off exponentially. Fig. 22.1 shows one example of
this. The straight line on top is the cubic spline that interpolates the joints (1,0),
while the spline curve in the middle is what results if we lift the joint at (0,0) up to
(0,1). (The de Boor points of the middle spline are at (1, V3(v/3 — 2)¥).) Despite
their lack of local control, interpolating cubic splines do have local flexibility. If we
want to make a local modification, we just have to remember, when we perturb a
joint by some vector £ in Qo, that we must also perturb its two neighbors by £/4.
The bottom spline curve in Fig. 22.1 shows what happens if we also lift the joints
at (+1,0) up to (+1,1). (The de Boor points of this spline are at (¢,36i0/2).) In
fact, local control and local flexibility are really properties of different things. Local
flexibility is a property of the spline space itself, while local control is a property of
a scheme for choosing one spline out of the space.

How high a level k of C* continuity can we demand at the joints between square
patches of degree N if we want to preserve local flexibility in the resulting surface?
To ask the same question a different way, how high a degree N is needed to allow
C* splines with square N-ic patches to be locally flexible? We shall first compute
a lower bound on N, and then show that that lower bound is actually the correct

22.3 SPLINE SURFACES WITH RECTANGULAR PATCHES 125

a

=

Fig. 22.1. Two different ways of perturbing a cubic spline curve

answer.

Proposition 22.2. Spline surfaces built by assembling square patches of degree N
with C* continuity at the joints can’t possibly have local flexibility if N < 2k + 1.
In the borderline case where N = 2k + 2, the resulting spline surfaces have at most
one control point’s worth of freedom per internal patch.

Proof. Let F: P — Q be a spline surface with square patches of degree N that join
with C* continuity. We first want to show that N < 2k+1 precludes local flexibility.

Imagine determining the square patches of F in raster-scan order, say from left
to right and from bottom to top. In this scan, suppose that we have just arrived
at the new patch F4, whose domain is the square region A shown in Fig. 22.3. We
can assume that the square patches Fg and Fp associated with the regions B and
D have already been determined. The demand for C* continuity between A and its
neighbors B and D constrains our choice of F4. We shall show that, if N < 2k + 1,
then F, is completely determined by Fg and Fp. Since every square patch in the
interior of the spline’s domain is just like F4, this is enough to prove that C* spline
surfaces for N < 2k + 1 can’t have local flexibility.

Suppose, then, that N < 2k + 1; we want to show that F, is completely
determined by Fg and Fp. Consider the Bézier points of F, with respect to the
reference triangle Axyz, which are the blossom values f@(x*y¥—4=337) for i + 5 <
N. Since F4 joins Fp with C* continuity along the knotline connecting x and Y,

126 SPLINE SURFACES 22.3

Fig. 22.3. Determining the next square patch of a spline surface

we deduce from Prop. 21.1 that f@(x‘yN—7727) = fg(x"yN“"jz") for 7 < k.
Similarly, we deduce that f&®(x'yN—*=7z7) = f8(x'y" —$=3g7) for i < k. But we
have ¢ + j < N < 2k + 1; hence, every Bézier point of F4 must satisfy either s < k
or 5 < k. Therefore, every Bézier point of Fju is determined.

Note, in fact, that some Bézier points of F4 are determined both by Fg and by
Fp. If Fp and Fp disagree about any such Bézier point, there won’t be any legal
choice of F. For example, this will certainly be the case if Fg and Fp don’t agree
with each other to kth order at the point y. But the possibility that Fu4 might be
over-constrained doesn’t affect the validity of our argument, because we are giving
only an upper bound on the amount of freedom in F4.

It remains to bound the amount of choice we have in determining Fj4 in the
borderline case when N = 2k+2. In this case, there will be precisely one Bézier point
of F4 that is not determined: f&(x**+1zF+1). Thus, a square-patch spline surface
of degree 2k + 2 with C* continuity has at most one point’s worth of freedom per
interior patch. O

The phrase “one point’s worth of freedom” is rather clumsy. In the future, we
shall say simply “one degree of freedom,” with the understanding that each degree
of freedom means the free choice of a point in the object space Q.

There is a trickier way to prove Prop. 22.2, due to C. de Boor and R. DeVore
[12], which we might call corner-sectioning. We shall discuss corner-sectioning both
because of its intrinsic interest and because we will want to use it in earnest when
discussing triangular-patch splines in Section 23.

Draw a line L that cuts off a corner of A, and let 7o through 73 be the points
where L crosses the boundaries of the squares B, A, and D, as shown in Fig. 22.3.
If we restrict the spline surface F' to the line L, we will get an N-ic spline curve
G: L — Q, a section of the surface F. Furthermore, if m := N — k is the multiplicity

224 SPLINE SURFACES WITH RECTANGULAR PATCHES 127

of each knotline, the knot sequence of G is given by

(I R T2 TR T T 2 T S T
N, v,) st et e, !
m m m m
A de Boor point of G has the form gz, 5., v, ,)(i+1,...,%i+N) Where {f;} is an

indexing of this knot sequence. Imagine choosing a substring of length N from the
knot sequence of G. If that substring includes the first occurrence of ¥y, then the
validity interval of the corresponding de Boor point will include the interval (7o, 7y).
Such a de Boor. point can be computed from the behavior of G over the interval
(Fo,¥1), and is hence determined by Fg. Similarly, if the substring of length N
includes the last occurrence of 7,, the validity interval of the corresponding de Boor
point will include (¥,,73) and hence that de Boor point will be determined by Fp.
If N <2k+1, and hence N > 2m — 1, there isn’t room to fit a substring of N
consecutive knots of G in between the first #; and the last 7;, so every de Boor point
of G that influences the segment G([F3,7s]) will be determined, either by Fg or by
Fp. Hence, the segment G([Fz,7s]) will be determined. Since this same argument
applies to any line L that cuts off a corner of A, we deduce that, when N < 2k +1,
the values of F4 throughout the triangle Axyz are determined by Fg and Fp. Since
F, is given by polynomials, this implies that all values of F4 are determined.

The same corner-sectioning idea can also be used to show that F, has only one
degree of freedom in the borderline case when N = 2k + 2, and hence N = 2m — 2.
In this case, there is exactly one substring of N knots of the spline curve G that fits
between the first ¥, and the last ;. This means that the section G has precisely
one de Boor point that is free to vary. Choose a point q in the interior of Axyz,
and consider the various corner-sectioning lines L that pass through q, which form
a double wedge with vertex q. The value F4(q) in Q is enough to determine the
one free de Boor point of the section G associated with each line L. Thus, the value
F4(q) determines all of the values of F4 in the double wedge, which is enough to
determine F4 completely.

As part of our quest for simplicity, we shall focus in this paper on the borderline
case in Prop. 22.2, in which the degree N = 2k + 2 is just high enough to avoid
precluding local flexibility. For notational convenience, let n be a nonnegative integer
and set N := 2n and k := n—1. The following proposition shows that locally flexible
square-patch spline surfaces with those borderline parameters really do exist, thus
demonstrating that the bound in Prop. 22.2 is tight.

Proposition 22.4. There is a method for drawing square-patch spline surfaces of
degree N = 2n with C™~! continuity that involves specifying one control point per
interior patch. (If n is odd, it is more natural to think of the control points as
associated with vertices rather than with patches.) In this method, each control
point influences (n + 1)? patches, which means that each patch is influenced by
(n + 1)2 control points.

Proof sketch. We shall describe this method by indicating how its blending functions
can be defined, where a blending function is the real-valued spline function that gives
the influence of a particular control point on the location of the eventual surface.

128 SPLINE SURFACES 22.4

In the base case n = 0, we want to put together square constant patches with
C~1! continuity, that is, with no continuity at all. It is easy to see how to do this
with one control point per patch: each control point specifies the value of the entire
associated patch. In particular, each blending function is identically equal to 1 on
one square and is 0 everywhere else; that is, each blending function is a translate of
the function

Bo(u) = { 1 ifue(0,1] x [0,1]
0 otherwise.
Note that all of the translates of By(u) together form a partition of unity (if we
don’t worry about what happens on the boundaries of the squares).

For larger values of n, we can produce blending functions by convolving By ()
with itself some number of times. If G and H are real-valued functions defined on
P, the convolution G * H is given by

(G * H)(u) == / /P F(v)G(u - v)dv.

Let B, (u) := (Bn—1 * Bo)(u) for n > 1. For example, B;(u) contains four nonzero
patches, each of which is a hyperbolic paraboloid:

uv ifue[0,1] x [0,1]
(2 —u)v ifue(1,2] x [0,1]

Bi(u) = B1((u,v)) = { u(2-v) ifue(0,1] x [1,2]
(2-u)(2-v) ifue (1,2] x [1,2]
0 otherwise.

It is easy to see that B, (u) will be nonzero precisely on the (n+1)? unit squares that
form the square [0, n] x [0, n]. It is also true, though we won’t verify it here, that each
convolution of Bo(u) with itself raises the degree by 2 and the level of continuity
by 1. Thus, the blending function B, (u) is a real-valued spline function with square
patches of degree 2n and with C™~! continuity. For even n, the maximum of B, (u)
is located at the center of a patch; for odd n, the maximum occurs at a vertex where
four patches join.

The convolution process preserves the property that the various translates of
B,(u) form a partition of unity. Hence, we can use those translates as blending
functions. We arrive at a method for controlling C"~! spline surfaces of degree 2n
with one control point per patch. In this method, each patch of the resulting surface
is influenced by (n + 1)? control points. O

A general polynomial surface of degree 2n has (*";?) = (n +1)(2n + 1) Bézier
points with respect to any reference triangle. The surface patches that arise in the
spline surfaces of Prop. 22.4 are influenced by only (n + 1)? control points. Hence,
there must be n(n + 1) constraints of some sort that hold for those surfaces. It
turns out that we can think of these constraints as constraints on their high-order
derivatives, as shown in the following lemmas.

If F: P — Q is a polynomial surface and £ is a vector on P, we can construct
a new surface whose values are vectors on Q by associating with each point u in P

22.7 SPLINE SURFACES WITH RECTANGULAR PATCHES 129

the derivative dFy({) = D¢F(u) of F in the £ direction at u. Since we are holding
the direction £ fixed while varying u, the notation of directional derivatives is more
natural here; we shall use the symbol D F to denote this derived surface.

Lemma 22.5. If F:P — Q and G: P — Q are two polynomial surfaces that meet
with C° continuity along a line L in P, and if € is a vector on P parallel to L, then
the derived surfaces D¢F and D¢G also meet with C° continuity along L.

Proof. If u is a point on L, we can compute D¢F(u) by evaluating F at u and at
points near u along L. Since F and G take on the same values everywhere along L,
we must get the same answers when we compute D¢ F(u) and D.G(u); hence, D¢ F
and DG also agree along L. O

Lemma 22.6. In the situation of Lemma 22.5, if F and G meet with C* continuity
along L, then the derived surfaces D¢ F and D¢G meet with C* continuity along L
also.

Proof. Let 1, through 5, be arbitrary vectors on P. If the surfaces F and G
meet with C* continuity along L, then the derived surfaces D, :--D, F and
D,, -+ D,,G must meet with C° continuity along L. If we differentiate one more
time, in the £ direction, Lemma 22.5 tells us that the resulting derived surfaces
D¢Dy, -+ Dy, F and D¢D,, --- D,, G will also meet with C° continuity along L.
Since the various directional derivatives commute with each other, this implies that
Dy, -+ Dy, D¢F and Dy, - -- Dy, D¢G meet with C° continuity. Since 1, through
1Nk were arbitrary, we conclude that D¢F and D¢G must meet with C* continuity
along L. O

Lemma 22.7. If F: P — Q and G: P — Q are two polynomial surfaces of degree
2n that meet with C™~! continuity along a line L, and if £ is a vector on P parallel

to L, then the derived surfaces (D¢)"t1F and (D¢)"t1G must be identical, that is,
they must agree everywhere.

Proof. If we apply Lemma 22.6 repeatedly, a total of n + 1 times, we can deduce
that the derived surfaces (D¢)"*! F and (D¢)"*!G must meet with C"~! continuity
along L. But these derived surfaces are polynomial surfaces of degree at most n —1;
if they agree at any point up through order n — 1, they must agree everywhere, that
is, they must be identical. O

Suppose, then, that we build a spline surface F with C™~! continuity out of
square patches F4 of degree 2n. Lemma 22.7 will apply to any two adjacent surface
patches. In particular, let £ be a horizontal vector on P and let 5 be a vertical
vector. All of the surface patches F4 for A in a single horizontal stripe must share
the same value of (D,)**1F,, while all of the patches F4 for A in any vertical
stripe must share the same value of (D¢)"*!F4. Thus, these high-order derivatives
of our surface patches are not locally flexible. We have to make a global choice for
each horizontal stripe of a single polynomial function of degree n — 1 that will give
(Dy)*+1F4 for all A in that stripe, and similarly for vertical stripes.

How shall we choose, for each stripe, what the derived surfaces shall be along
that stripe? Since we can’t vary this choice locally, the simplest course of ac-
tion, which we shall adopt, is not to vary it at all. In particular, we shall restrict

130 SPLINE SURFACES 22.7

ourselves to square surface patches F for which (D¢)"*!F4 and (Dy)"t1F4 are
both identically zero. In defense of this choice, we claim that the square patches
F4 used by the spline-drawing method of Prop. 22.4 do satisfy the constraints
(D¢)*+1F4 = (D,)"+!F4 = 0. To see why, note that it is enough to show that the
blending function B, (u) satisfies those constraints. And B,(u) must satisfy them
because it has compact support: if we move out along any stripe far enough, we
get to patches in By, (u) that are identically zero, and hence certainly have their
derivatives of all orders equal to zero.

This explains why each internal patch F, in one of the spline surfaces of
Prop. 22.4 has only (n+1)? degrees of freedom in it, instead of the (2n+1)(n+1) that
we would naively expect. The derived surface (D¢)™t1F4, being a surface of degree
n —1, has ("}') degrees of freedom in it, and the constraint (De)"t1F4 =0 elim-
inates that freedom. Considering the two directions of stripes, we have accounted
for all 2("'2H = n(n + 1) missing degrees of freedom.

Our decision to adopt the constraints (D¢)"+! F4 = (D,)"*!F4 = 0 has a very
important consequence: it means that we are actually building spline surfaces out of
bipolynomial patches of degree (n;n). In particular, let F4 be a polynomial surface
of degree 2n that satisfies the constraints (D¢)"+* F4 = (Dy)"t' F4 = 0. If we view
the parameter plane P of F4 as the product U x V' of two affine lines, one in the
¢ direction and the other in the n direction, the resulting function F:U XV — Q
will be bipolynomial of degree (n;n).

With this insight, we can generalize our results somewhat and also obviate a lot
of the earlier work in this section by defining bipolynomial spline surfaces as follows.
Let m and n be nonnegative integers. Let {3} and {{;} be two knot sequences,
located in the affine lines U and V respectively. We can form a bipolynomial spline
surface F: U X V — Q of degree (m;n) by assigning arbitrary values to the de Boor
points

Xij 1= f()‘,i,._,_,,._._l)x(t',-,t'j+,.+l)(bi+l)---a§€+m;tj+1v°"7tj+n)°

Note that these de Boor points have validity rectangles rather than validity intervals.
The patches of the resulting spline surface have domain rectangles of the form Ry, :=
(8K, 8k+1) X (fi,£141), where k and I are chosen so that 3 < 3x41 and £ < t141.
The patch defined on the rectangle Ry, is determined by the (m +1)(n+ 1) de Boor
points {x;;} for i in [k — m, k] and j in [l — n,l]. Two patches that are adjacent in
the U direction join with C™~" continuity, where r is the multiplicity of the knot
3; that divides them. Similarly, two patches adjacent in the V' direction join with
C™~" continuity, where r is the multiplicity of the dividing knot £;.

The availability of the concept of a bipolynomial surface makes square-patch
spline surfaces much easier to understand than they otherwise would be. Let us
recapitulate the developments in this section. If we assemble square patches of
polynomial surfaces together with continuity constraints on the joints, we found
that we perforce end up with global constraints relating the high-order derivatives
of various patches in the directions parallel to the edges of the squares. Since we
weren’t interested in modifying the surface globally, we chose to satisfy these global
constraints trivially, by demanding that the relevant derivatives be zero in every
patch. The critical fact is that precisely those derivative constraints are built into

23 SPLINE SURFACES WITH TRIANGULAR PATCHES 131

151 X W
n
A
fo—oY z
o U

Fig. 22.8. The domain A of one square patch of a spline surface

the very concept of a bipolynomial surface. Thus, a patch F4 of a square-patch
spline surface is not a general polynomial surface of degree 2n; but it is a general
bipolynomial surface of degree (n;n).

To be explicit, consider the case n = 1, in which each patch F, is a hyperbolic
paraboloid. We can view a hyperbolic paraboloid as an instance of a polynomial
surface of degree two, and blossom it in that way; let g: P> — Q be the resulting
2-blossom. The 2-blossom g of F, gives us six Bézier points with respect to any
reference triangle, but they have to satisfy certain constraints. For definiteness,
let us choose the reference triangle Axyz, as shown in Fig. 22.8. The constraint
D¢D¢Fyq = 0 corresponds to the condition g(y,y) - 29(y, 2) +9(2,z) = 0. Similarly,
the constraint D, D, F4 = 0 correponds to the condition g(y,y)—2¢(x,y)+9(x,x) =
0. The bipolynomial point of view neatly eliminates the redundancies and con-
straints. The (1;1)-blossom f of F, gives F, the four unconstrained Bézier points
f(%o;%0), f(t%o;91), f(%1;%), and f(%1;9;). Note, in fact, that the constrained
2-blossom g is precisely the result of applying degree-joining to the unconstrained
(1;1)-blossom f. Working with g instead of f makes things more complicated be-
cause the complex degree-adjusting formulas of Part D become relevant.

23. Spline surfaces with triangular patches

In this section, we shall study what happens if we attempt to build a spline
surface based on a partition of the parameter plane P into equilateral triangles. On
the positive side, we will find that we can get a higher level of continuity for the
same degree of surface. On the negative side, after we have figured out what the
resulting derivative constraints are, we won'’t find an analog of the bipolynomial the-
ory lying around, waiting to come to our rescue by having precisely those derivative
constraints built in.

Let N be the degree of the triangular surface patches. To keep things sym-
metric, we shall enforce the same C* continuity constraint on all the joints between
pairs of adjacent patches. Just as in the case of square patches, our first result
will warn us that setting the degree too low for a fixed continuity precludes local
flexibility. By the way, note that a triangular grid has twice as many regions as
vertices: each vertex is both the highest point in some upward-pointing triangle and
also the lowest point in some downward-pointing triangle.

Proposition 23.1. Spline surfaces built by assembling triangular patches of sur-

132 SPLINE SURFACES 23.2

Fig. 23.2. Determining the next two triangular patches of a spline surface

faces of degree N with C* continuity across the joints can’t possibly have local
flexibility if 2N < 3k + 1. In the borderline case where 2N = 3k + 2, the resulting
spline surfaces have at most one degree of freedom per internal vertex, that is, at
most one control point’s worth of freedom for every two internal patches.

Proof. Let F: P — Q be a spline surface with triangular patches of degree N that
join with C* continuity. Imagine determining the patches of F in pairs, where each
pair consists of an upward-pointing triangle and its left-hand downward-pointing
neighbor, and where we take the pairs in left-to-right, bottom-to-top raster-scan
order. In this scan, suppose that we have arrived at the pair of patches Fu and
Fg, shown in Fig. 23.2. We may assume that the patches F¢ and Fp have already
been determined. If F4 and Fp are completely determined by F¢, Fp, and the
continuity constraints across the three joints (D, 4), (A, B), and (B, C), then there
is no chance for local flexibility.

We can analyze whether or not F4 and Fp are determined in two different ways:
either by reasoning about Bézier points or by using the corner-sectioning technique
of de Boor and DeVore [12|. We shall use corner-sectioning, since it is easier.

Draw a line L that cuts off a corner of both A and B, and let 7o through ¥4 be
the points where L crosses knotlines as shown in Fig. 23.2. Restricting the surface
F to the line L gives an N-ic spline curve G, whose knot sequence has the form

(...,Fo,...,FO,FI,...,Fl,Fg,...,Fg,Fg,...,Fs,ﬂ,...,F4,...),
e, s’ N, ptsn? s, it e, pretret
m m m m m

where m := N — k is the multiplicity of each knotline. The inequality 2N < 3k +1
is equivalent to N > 3m — 1. If this holds, a substring of N knots that is far enough
to the right to avoid the leftmost copy of 71 will have to include the rightmost copy
of 73. Hence, every de Boor point of G that influences either of the two segments
G([Fy,73]) or G([Fa,7s]) will be determined, either by Fc or by Fp. Wiggling the
line L around a bit, we conclude that all of F4 and Fp will be determined.

In the borderline case where 2N = 3k+2, we have N = 3m—2. Thus, the spline
curve G will have precisely one free de Boor point. By rotating the line L about a

234 SPLINE SURFACES WITH TRIANGULAR PATCHES 133

fixed point q in Apsq, as in the discussion following Prop. 22.2, we conclude that
the patches F4 and Fp together have at most one degree of freedom in them. O

Exercise 23.3. Reprove Prop. 23.1 by explicit reasoning about the Bézier points
of F4 and Fp. This is harder than one might expect because there is no single
reference triangle that has two vertices on each of the three relevant knotlines. One
way to deal with this complication is to consider the entire tetrahedra of blossom
values 2 (s*t’p‘q™) and f2(s't?p'q™) for i + j + I + m = N, the faces of which
are triangular arrays of Bézier points. Note that

R P!q™) + £ (st piq™) = [(s°t7p! T q™) + £ (s't D q™)

whenever i +j5+1/+m = N — 1, since s+t = p + q; and the same holds for fz. The
constraint of C* continuity between F, and F, means that the values f8(s't’p'q™)
are determined for j+/ < k. Similarly, C* continuity between Fg and F; determines
the values fg (s't’p'q™) for j +m < k. Finally, C* continuity between F, and Fp
implies the equality f$(s*t’p'q™) = f@(s*t’p'q™) for I+ m < k. f 2N < 3k + 1,
show that these conditions are enough to determine both tetrahedra entirely. If
2N = 3k+2, show that there is precisely one degree of freedom in the two tetrahedra.

The bound in Prop. 23.1 suggests that using triangular patches will allow us
to have smoother surfaces for the same degree, since k is roughly 2N /3 instead of
roughly N/2. Continuing our policy of pursuing simplicity, we shall focus on the
borderline case where N :="3n + 1 and k := 2n for some nonnegative integer n.
The following proposition states that triangular-patch spline surfaces with these
borderline parameters do exist. The convolutions used in the proof are frequently
credited to M. A. Sabin with a 1977 reference [36], but they were also known, in
1971, to P. O. Frederickson [24].

Proposition 23.4. There is a method for drawing triangular-patch spline surfaces
of degree N = 3n+ 1 with C?" continuity that involves specifying one control point
per interior vertex. In this method, each patch is influenced by 3(n + 1)? control
points, while each control point influences 3(n + 1)? upward-pointing patches and
also 3(n + 1) downward-pointing ones.

Proof sketch. In the base case n = 0, we want to assemble affine patches with
C° continuity. It is easy to see how to do this with one control point per vertex:
define each patch by performing a two-dimensional linear interpolation between the
control points associated with its three corners. Let Bo(u) be the corresponding
blending function, which gives the influence of a specified control point. The graph
of Bo(u) is a pyramid of height 1 with a regular hexagon as its base. Note that, if
we translate one copy of this pyramid to each vertex in P, the resulting functions
form a partition of unity.

For larger values of n, we construct a blending function B,(u) by convolving
Bo(u) with itself n times. It is convenient to choose the distance scale in the plane P
so that the volume of the hexagonal pyramid is one, that is, so that ff, Bo(u)du =
1, which corresponds to making each equilateral triangle have area 1/2 and hence
side-length s, where s* = 4/3. If we do this, each blending function B, (u) defined by

134 SPLINE SURFACES 23.5

Fig. 23.5. A stripe in the domain plane of a triangular-patch spline surface

Bn(u) := (Bn_1 * Bo)(u) will have the property that its translates form a partition
of unity. It is easy to see that the function B,(u) will be nonzero precisely for u in
a regular hexagon of side-length (n + 1)s, which consists of 6(n + 1)? triangles, half
pointing up and the other half down. The harder part, which we omit, is to show
that each convolution with Bo(u) raises the degree of the blending function by 3
and raises the level of continuity of its joints by 2. After n such convolutions, the
function B,(u) has degree 3n + 1 and C?" continuity. Spline surfaces built using
the translates of By, (u) as the blending functions inherit these same properties. O

A general polynomial surface of degree 3n+1 has (3"2+ 3) Bézier points, while the

surface patches that arise in the splines of Prop. 23.4 are controlled by only 3(n+1)?
points. This means that the latter surface patches must satisfy (*";"°) —3(n+1)* =
3(";’1) constraints. Just as in the square-patch case, those constraints turn out to
involve the high-order derivatives of the surface.

Let F4 and Fg be two adjacent surface patches of a triangular-patch spline
surface, and let ¢ and n be vectors parallel to the edges of the triangles as shown
in Fig. 23.5. Consider the derived surfaces (D,)"*'F4 and (D,)"+'Fp. Since
F4 and Fg are of degree 3n + 1 and meet with C?" continuity, these derived sur-
faces are of degree 2n and meet with C™~! continuity. Therefore, we can apply
Lemma 22.7 to deduce that the doubly derived surfaces (D¢)"+1(D,)"*!F4 and
(D¢)"*1(D,)"*' Fp must be identical. Comparing Fp with Fc, where C is the
next region along the stripe, as shown in Fig. 23.5, we can apply the same argu-
ment with the roles of £ and 7 reversed to show that the doubly derived surfaces
(D)1 (Dy,)"+! Fp and (D¢)*+*(D,) 1 Fc are also identical. We conclude that
all of the triangular patches F, in any horizontal stripe of the spline surface must
share a single common value of the (n — 1)-ic function (D¢)"*!(Dyg)**!Fa. That
is, these high-order derivatives are not locally flexible.

The same arguments apply to the stripes in all three directions. Let o, 3, and
4 be vectors on P that are parallel to the three axes of the triangular grid; it is
convenient to arrange that a + 8+ v = 0. For any triangular-patch surface F, the
derived surface (Dq)"*!(Dg)"*!F4 is constant for triangles A in a stripe parallel
to the ~ axis; the derived surface (D,)"+!(D,)"*!F4 is constant along § stripes;
and (Dg)"*!(D,)"*!F, is constant along o stripes.

Just as in the square-patch case, we shall respond to the lack of local flexibility of
high-order derivatives by setting those derivatives to zero, once and for all. From now
on, when building triangular-patch splines, we restrict ourselves to patches F4 that

23.5 SPLINE SURFACES WITH TRIANGULAR PATCHES 135

satisfy (Da)"*'(Dp)**'Fa = (Da)"*(D4)"*1Fa = (Dp)"*'(D4)"+'F4 = 0.
Note that the patches that are generated by the method of Prop. 23.4 must satisfy
these constraints, because the blending function B, (u) used to build them includes
patches that are identically zero, far enough out in every stripe.

Each function (D¢)**!(D,)"*1F4, where £ and n are two of {a, 3,7}, has
degree n — 1, so setting it to zero gives up ("'2"1) degrees of freedom. If we can show
that the constraints arising from the three different choices of {€, n} are independent,
we will have accounted for all 3("'{1) degrees of freedom that are missing in a patch
drawn with the method of Prop. 23.4. To verify independence, it is easiest to think
about the tensor space P® (3n+1) " A constraint on the high-order derivatives of a
polynomial surface F: P — Q of degree 3n + 1 corresponds to a linear subspace
of P® (3n+1) 5n which the linear blossom f2 is required to be zero. Our three
constraints correspond to the three subspaces

{a"t1gm e |ee PPN,
{a"+17"+1e l e€ P,?("_l)}, and
{g 1" e| e PRTY).

These subspaces are certainly pairwise disjoint, since a tensor would have to have
degree at least 3n + 3 in order to have all three of a, 8, and 4 as factors n + 1 times
each. Furthermore, the subspace spanned by the first two together lies inside the
subspace {a"t'e | ¢ € P2?"}, which, by the same argument, is disjoint from the
third. Thus, the three constraints are independent.

We now come to the point where the analogy between the square-patch and
triangular-patch theories breaks down, at least with my current state of knowledge.
The derivative constraints that arose in the square-patch case implied that a square-
patch spline should be built, not from arbitrary surfaces of degree 2n, but rather
from bipolynomial surfaces of degree (n;n). In the triangular-patch case, it is once
again true that the surfaces involved are not arbitrary surfaces of degree 3n + 1.
But it isn’t so clear just what they are instead. In lieu of a better name, let us call
them triangular-patch surfaces. That is, let P be an affine parameter plane, let o,
8, and v be three vectors on P that satisfy a+ 8+~ = 0, and let n be a nonnegative
integer. We shall call a polynomial surface F of degree 3n + 1 a triangular-patch
surface if F satisfies the triangular-patch derivative constraints

(Da)n+l(Dp)n+lF = (Da)n+1(D1)n+lF = (Dp)"'H(D.,)"'HF =0.

Warning: Current standard nomenclature uses the term “triangular-patch sur-
face” to refer to what we are calling simply a polynomial surface, without any
constraints on the derivatives. Our unconventional definition has the advantage
that triangular-patch surfaces in our sense are actually the surfaces whose patches
appear in triangular-patch splines.

The stage is now set for the juiciest challenge of this challenge-laden paper.

Challenge 23.6. Find a natural way to blossom a triangular-patch surface F: P —
Q of degree 3n+1, that is, a way that builds in the appropriate derivative constraints.

136 SPLINE SURFACES 23.7

Restating this from the algorithmic perspective, suppose that we are given 3(n+ 1)?
control points at arbitrary places in Q. Find a way to construct the value F(u)
by performing 3n + 1 iterated stages of either one-dimensional or two-dimensional
linear interpolations whose ratios are determined somehow by the location of u in
P, starting with the control points. The resulting function F(u) must satisfy the
triangular-patch derivative constraints, but must be otherwise arbitrary.

Remark 23.7: Integrating tripolynomial spline flows. A cube viewed along
its main diagonal looks like a hexagon. This idea can be parlayed into a different way
of constructing triangular-patch spline surfaces, first exploited by de Boor and Hollig
in their boz splines (7], which might be useful in solving Challenge 23.6. Let us use
the term flow for a parametric function whose parameter space is 3-dimensional;
that is, “flow” is the third element in the sequence that starts with “curve” and
“surface.” By exploiting the theory of tripolynomial functions, it is easy to build
spline flows of degree 3n by assembling cubic cells cut out of tripolynomial flows of
degree (n;n;n) in such a way as to guarantee C"~! continuity across the squares
where two cubic cells abut. Let A,:U x V x W — R denote the blending function
that gives the influence of a particular control point in this method. The base-case
blending function Ao is identically equal to 1 on one cube in the 3-space U x V x W
and is O everywhere else, while A, for general n is the (n + 1)st convolutional
power of Ao. Suppose that we integrate Ao along each line parallel to the main
diagonal. As a function of the position of the line of integration, the graph of this
integral will be a hexagonal pyramid, just like Bo, the base-case blending function
in Prop. 23.4. Because convolution and integration commute, the same coincidence
holds for all degrees n. That is, the blending function B,, that we used in Prop. 23.4
to build our triangular-patch spline surfaces, which is the convolutional power of a
hexagonal pyramid, can be computed by taking the convolutional power A, of the
characteristic function of a cube and integrating it along lines parallel to the main
diagonal. This point of view might be a fruitful way to tackle Challenge 23.6.

Until a solution to Challenge 23.6 is discovered, our only option is to study
triangular-patch spline surfaces using the blossoms that we get by treating their
patches as degenerate cases of polynomial surfaces of degree 3n + 1. We should
expect the answers that we get via this poor man’s approach to be rather confusing.

To get a feeling for how bad this confusion is likely to be, suppose that we were
studying square-patch spline surfaces, but that we hadn’t invented the bipolynomial
theory. For definiteness, consider bicubic spline surfaces with square patches, using
the integers {i} and {7} as the knot sequences in both U and V. Let us focus on
the region A = [2,3] x [2,3] and the vertex r = (2,2) at its lower left corner, as
shown in Fig. 23.8. The control point C(r) associated with the vertex r is given by
C(r) = f5.2)x(6,i (1,2,3;1,2,3), where f denotes the blossom of F as a bicubic
spline. V\sithout ti’ne bipolynomial theory to draw upon, we would have had to
consider each patch of F' as a degenerate hexic surface. Let ga:P® — Q denote
the 6-blossom of the patch F,, while f4:U3 x V3 — Q is its (3;3)-blossom, and
let 8 := (3,2) and t := (2,3). We can express the control point C(r) as an affine

combination of the Bézier points g2 (r*s’t*) for i + 5 + k = 6 of F4(Arst); the

23.9 SPLINE SURFACES WITH TRIANGULAR PATCHES 137

Ly

i 2 3
Fig. 23.8. The domain of one patch of a square-patch spline surface

formula turns out to be
+593(r4t?) —209§(r®st?) +109%(r?s%t?)
C(r) = { —10g§(r5t) +40g%(r*st) —209%(r3s%t)
+95(r%) -10g%(x%s) +53(r's?)

Deriving this formula is a straightforward application of the degree-adjusting formu-
las from Part D, starting from the fact that C(r) = f41(1,2,3;1,2,3). Treating g4 as
known, we can produce a formula for f4 in terms of g4 by first using Prop. 13.3 to
split the degree of g4 from 6 to (6;6) and then using Eq. (11.7) twice to lower each
of the resulting degrees from 6 to 3 separately. Note that the control point C(r)
had a simple label in terms of f4, but its label in terms of g4 is both complicated
and mysterious. The upcoming formulas for the control points of triangular-patch
splines are also complicated and mysterious, presumably because they are stated
in terms of the wrong blossom, a blossom that doesn’t have the proper derivative
constraints built in.

Fig. 23.9 shows a vertex r of the domain grid of a triangular-patch spline F and
a region A := Arst adjacent to that vertex. In the method of Prop. 23.4, the patch
F4 is influenced by 3(n + 1)? control points. By computing the convolutions in
Prop. 23.4, we can determine the linear relations that give the patch F, in terms of
its control points. By inverting those relations, we can compute the control points in
terms of the patch. Let C(r) denote the control point associated with the vertex r.
The case n = 0 is trivial; we have C(r) = F(r).

For n = 1, the spline F has quartic patches. Let g4 be the 4-blossom of the
patch F4; we are using the letter “g” rather than “f” to remind ourselves that the
derivative constraints on F are not built into g. The control point C(r) can be
expressed as the following affine combination of the Bézier points of F4(Arst):

_rt
C(r)=g% (+2r3s +2r3t))
—2rig? +2r3st —2rit?

138 SPLINE SURFACES 23.10

\/w \/Vv
x Y u
A
\/
/\ /\

Fig. 23.9. The domain of one patch of a triangular-patch spline surface

Since F,4 is a triangular-patch surface, we must have
(Dr—-)z(Dr—t)zFA = 4!92,* ((r - 8)2(r - t)z) =0.

Therefore, we can get another equally valid formula by adding (r — 8)*(r — t)? to
the argument of gf:

—rig? +6rist —rit?
C(r)=g¢% —2rst —2rst?

Exercise 23.10. Continuing our study of the n = 1 case in Fig. 23.9, show that
the following is yet another valid formula for C(r):

C(r) = g(r,s)u,w) + g(r7t)v’x) - g(r’r’r’r)'

The function g here is the overloaded 4-blossom of the spline surface F. Note that
the 4-blossoms of all six patches shown in Fig. 23.9 will agree on all three argument
bags in this formula, since each bag includes two points on each of the three double
knotlines. This formula can be turned into a geometric construction for the point
C(r) as follows. The C? continuity constraint between A = Arst and Artu is
enforced by three two-dimensional de Casteljau Diagrams with two shells. The
central vertices of the outer shells of these three diagrams, going from t towards r,
are the points g(t,t,s,u), g(r,t,s,u), and g(r,r,s,u). If we draw a line from the
second of these to the third and extend it the same distance again, we end up at
g(r,w,s,u). The analogous constructions on three of the six edges radiating fromr
give the point g(r,s,u,w), while the other three edges give g(r,t,v,x). These two
points are opposite vertices in a parallelogram in Q whose other two vertices are the
surface point F(r) and the control point C(r).

The mysteries deepen when n = 2. If g4 is the 7-blossom of F4, the control

23.11 SPLINE SURFACES WITH TRIANGULAR PATCHES 139

point C(r) is given by

+57r*s® —99r4s?t —99r*st? +57rits
—-20rds* —215r2s%t +771r%s%*t? -—215r3st® —20ritt
2C(r) = 9% « +132r2sft —321r2s3t? —321rZs2t® +132r2stt
—36rsft? +275rs3t® —36rstt
—20s%t3 —2083t*

The solver of Challenge 23.6 will have the satisfaction of explaining why these mys-
terious coefficients are correct.

Exercise 23.11: Osculating a polynomial surface by a triangular-patch
surface. What should it mean to osculate an arbitrary polynomial surface F of
degree 3n + 1 by a triangular-patch surface G, also of degree 3n + 1, at a point
r in P? The triangular-patch derivative constraints tell us certain derivatives of
G that have to be zero, and hence can’t match the corresponding derivatives of F
at r. But which of the remaining derivatives should we choose to match? Let f
and g be the (3n + 1)-blossoms of F and G. Consider the tetrahedra of blossom
values {f2(r'a?f*~')} and {9®@(r*a’B*~+")} for i + j + k +1 = 3n + 1. The relation
a+ B+~ = 0 implies that

fE(ta?*pr) + fR (el BFH 1) + fR (e e’ fR) = 0

whenever ¢ + j + k + | = 3n, and similarly for ¢®. Since we want G to be a
triangular-patch surface, we must have g@ (r*a?#%~4') = 0 whenever any two of the
three indices 7, k, and [are both at least n+ 1. Show that G is uniquely determined
by the requirement that g9 (r'a’ 8%4') = f2(r‘a’#*y') whenever i+min(j, k,1) > n.
The surface G determined in this way seems to be the natural choice to called the
triangular-patch surface that osculates F at r.

Part G: The Rational Case

At the outset, we made three decisions about how we would model shapes: our
models were to be piecewise, parametric, and polynomial. There are some situations
in computer-aided geometric design where the restriction to polynomial curves and
surfaces is unpleasant. For example, circles are not polynomial curves. Of course,
they can be approximated arbitrarily well by polynomial splines; but it would be
simpler if such basic shapes could be handled exactly. A related difficulty is that
the class of polynomial curves is not closed under projective maps. Extending our
models to allow rational maps instead of just polynomial ones solves both of these
problems. In this concluding part, we will investigate how the blossoming technology
can be extended to the rational case.

24. On choosing scale factors

So far, we have studied blossoming in two worlds. In the affine world, we
blossomed a polynomial map into a multiaffine map, and then tensored to get an
affine map. In the linear world, we blossomed a homogeneous polynomial map into
a multilinear map, and then tensored to get a linear map. There is yet a third
world where blossoming can be applied: the projective world, which consists of
projective spaces and projective maps between them. Rational maps turn out to be
the natural notion of a “map of degree n” in the projective world. By analogy, we
expect that blossoming a rational map should produce a multiprojective map, and
then tensoring should give a projective map. Roughly speaking, that is what does
happen. But some subtle issues are involved, associated with choosing scale factors.
To clarify those issues, we shall start by investigating rational functions in the more
familiar context of maps between affine spaces.

If P and Q are affine spaces, a map R: P — Q@ is called rational if every
coordinate of the point R(u) is a rational function of the coordinates of u, that is,
a quotient of polynomials in the variables u* where u = (u!,...,u?). For example,
the formula S(&) := (u,1/u) defines a rational parametric curve S: L — A in the
plane A. In fact, the curve S is one parameterization of the standard rectangular
hyperbola, which is given implicitly by the equation zy = 1. A rational map between
affine spaces is undefined at an argument point u that causes the denominator of
some coordinate of R(u) to be zero. For example, S(0) is undefined. We don’t
permit the denominator of any coordinate of R to be identically zero; this restriction
guarantees that R(u) will be well-defined except for u in some set of measure zero
in P.

Computing the degree of a rational map is a bit tricky, as the example curve S
demonstrates. A hyperbola like S is surely a curve of degree 2; but the definition
S(@) := (u,1/u) doesn’t involve any polynomial of degree greater than 1. The
solution for this difficulty is to make the convention that all of the coordinates of
the point R(u) must be put over a common denominator before we compute the
degree. This rule forces us to rewrite the hyperbola S(i) in the equivalent form

s@=(%.1),

24.1 ON CHOOSING SCALE FACTORS 141

which is obviously quadratic.

Common denominators are not unique, so we have a choice to make at this
point. If we are trying to compute the degree of a rational map R, we should choose
a least common denominator, that is, a common denominator of minimum degree.
Even then, we will still have to choose a scalar factor: for example, we could equally

well have written 5
wu® w
S(@)=(—,—
(@) < wu ’ wu>
for any nonzero scalar w. If we are dealing with rational maps of degree n, but
the particular map R happens to be degenerate and have some smaller degree m,
it makes perfect sense to adopt a common denominator whose degree exceeds the
minimum possible by as much as n — m. For example, we could view the hyperbola
S as a degenerate rational cubic curve by writing it

5O = (S s

where (au + b) is an arbitrary linear factor.

Once we have made an explicit choice of a common denominator, there is no
reason to keep separate copies of that denominator in each coordinate of R. Instead,
it is more convenient to think of each numerator as a coordinate and the common
denominator as one additional coordinate. Recall, from Section 5, that the affine
object space Q sits as a hyperplane inside its linearization Q«, which consists of all
1-tensors on @ of all flavors. Let ¢: P — R denote the chosen common denominator
for the coordinates of the rational function R: P — Q, and consider the map F: P —
Qx defined by F(u) := ¢(u)R(u). Since c(u) is a common denominator, the map F is
a polynomial map. Furthermore, the rational map R is determined as the projection
(with center at the origin) of the polynomial map F onto the 1-flavored hyperplane
Q = Q), sitting in Q«. For example, if we choose the common denominator u for
the quadratic rational curve S(@) := (u,1/u) in the plane A, the corresponding
quadratic polynomial curve G: L — Ax is the parabola given by G(@) := (u?,1;u).
Projecting the parabola G down into the plane A in A« gives the hyperbola S.
Alternatively, if we decide on u(au+b) as the common denominator for S, we would
get the cubic polynomial curve H (&) := (u?(au+ b), (au + b); u(au + b)), which also
projects down onto S.

Proposition 24.1. Let P and Q be affine spaces. The equation F(u) = ¢(u)R(u)
provides a one-to-one correspondence between polynomial maps F: P — Q4 whose
flavor coordinates are not identically zero and pairs (R,c), where R:P — Q is a
rational map and c: P — R is a common denominator for the coordinates of R.

Proof. Suppose that we start with a pair (R, c). We already noted that the formula
F(u) := ¢(u) R(u) will define a polynomial map F: P — Qx, since c(u) is a common
denominator for all of the coordinates of R(u). Furthermore, the flavor coordinate
of this map F is given by Flav(F(u)) = c(u) and is hence nonzero, since the zero
polynomial is not a legitimate common denominator.

142 THE RATIONAL CASE 24.1

Conversely, given a polynomial map F, let c(u) := Flav(F(u)) be the flavor
coordinate of F, which, by assumption, is not the zero polynomial. For all points
u with c(u) # 0, the formula R(u) := F(u)/c(u) defines the value R(u) to be a
1-flavored 1-tensor on @, and hence a point in Q. Since each coordinate of R is
the quotient of a coordinate of F by ¢(u), the function R is rational, with c as a
common denominator for its coordinates. 0O

The stipulation, in Prop. 24.1, that the flavor coordinate of the polynomial
map F must not be identically zero arises because we have been considering rational
maps, so far, as maps between affine spaces. We can eliminate this restriction by
converting to the projective world. That conversion will also reduce the frequency of
cases where a value of a rational function is undefined, although it won’t eliminate
the problem of undefined values completely. We proceed as follows.

In Section 5, we saw that the Homogenizing Principle could be used to convert
a polynomial map M:P — Q of degree n into a flavor-exponentiating homoge-
neous polynomial map Mx: Px — Qx, also of degree n. More generally, suppose
that we apply the Homogenizing Principle to the polynomial map F:P — Q«
obtained from a rational map by Prop. 24.1, whose values F(u) are not neces-
sarily 1-flavored. The only effect of dropping the flavor constraint on F is that
we lose the corresponding flavor constraint on Fx. That is, the homogenized map
Fy: Pe — Qx will be an arbitrary homogeneous polynomial map of degree n, not
necessarily flavor-exponentiating. In the hyperbola example, the homogenized form
of G(&) = (u?,1;u) is Gx({u;v)) := (u?,v?;uv). The homogenized form Fx, just
like F itself, depends on the choice of common denominator. If we chose u(au + b)
as the common denominator for the hyperbola, we would get the cubic homogenized
form Hy((u;v)) := (u?(au + bv), v?(au + bv); uv(au + bv)).

The domain Px and codomain Qx of the homogenized map Fx are both linear
spaces. As we discussed in Section 9, the basic idea of projective geometry is to
treat the lines through the origin of a linear space as the “points” of a new space,
called a projective space. If e is a nonzero tensor in a linearized space P, we shall
use the expression [¢] := {we | w € R} to denote the line through the origin of
Py that contains e; the expression [0] is not defined. For example, the expression
[(u;v)] denotes a particular line through the origin of L«, and hence a “point” in
the projective line. For notational convenience, we shall omit the angle brackets
in the expression [¢] when the l-tensor e is given in explicit coordinates, writing
simply [u;v], for example, to denote that point in the projective line. (From now
on, we shall also elide the quotation marks around the word “point” when referring
to points in projective spaces.) The numbers inside these square brackets are called
homogeneous coordinates. They are defined only up to a common scalar multiple;
that is, it is the ratios between different homogeneous coordinates that are well-
defined, not the values of the coordinates individually.

Since the map F: is homogeneous, it carries a line [e] through the origin of
P, into the line [Fi(e)] through the origin of Q«. Let P denote the set of all
lines through the origin of P, which constitutes a projective space of dimension
p = dim(P), and similarly for Q«;. We can define a map Fiij: P« — Qs by
the equation Fix([e]) := [F«(e)] whenever the right-hand side is defined, that is,

24.1 ON CHOOSING SCALE FACTORS 143

whenever Fx(e) # 0. The map Fi4; is the projective analog of the rational map R; it
is a rational map between projective spaces, according to our upcoming definition.
Note that, since we ignore scalar multiples in the domain and codomain when we
build Fix), the map Fix) is independent of the choice of common denominator, that
is, of the scale factor that is built into Fx. The hyperbola in our continuing example,
when viewed as a quadratic rational map from the projective line to the projective
plane, is given by Gui([u;v]) = [u?,v?;uv]. Note that the map Hi given by
Hixi([u; v]) = [u?(au+bv), v} (au+bv); uv(au+bv)] is the same map as G4, although
G« and H« are differently scaled.

If e # O but Fy(e) = 0, then the line [e] is collapsed by F« into the origin of Q.
This is a more complete form of undefinedness than the ones we have considered so
far. It corresponds to a value of the argument u that makes all of the numerators
and the common denominator of R(u) simultaneously zero. Such cases will remain
undefined even in the projective world. The advantage of the projective world is
that only those cases have to be left undefined. By contrast, a rational map between
affine spaces is undefined whenever the common denominator is zero, regardless of
the values of the numerators.

To clarify the different types of undefinedness, consider the hyperbola example.
In the affine world, no matter what common denominator we choose, the hyperbola
S(u) := (u,1/u) will be undefined when u = 0. If we choose a common denominator
of more than the minimum degree, we may add more instances of undefinedness.
For example, using the denominator u(au + b) would make S(—b/a) undefined. In
the projective world, it is also the case that the frequency of undefinedness depends
upon the scale factor we choose. If we define Gix)([u; v]) := [u?, v?; uv] by using the
homogeneous quadratic map G«((u;v)) := (u?,v?; uv) that results from the common
denominator u, then G« will be defined everywhere. The relation G« ([0;1]) =
[0,1;0] tells us that the value S(0), viewed projectively, is the point at infinity in
the y direction. The relation G«i([1;0]) = [1,0;0] tells us that the projective form
of the hyperbola also passes through the point at infinity in the z direction, a point
we might refer to as S(35). Suppose, on the other hand, that we use the common
denominator u(au+5). We then get the function Hixj([u;v]) := [u?(au+bv), v?(au+
bv); uv(au+bv)], which agrees with G« almost everywhere. The value Hix([—b;a]),
however, is undefined; by using a scale factor of higher degree than necessary, we
have introduced an undefined case.

Even in the projective world, we can’t get rid of undefinedness completely—at
least, not for surfaces. Rational curves are a special case. The coordinates of a
rational curve are homogeneous bivariate polynomials, which behave essentially like
nonhomogeneous univariate polynomials. If a collection of such polynomials have a
common root, then they, in fact, have a common factor. If we remove all common
factors by choosing a polynomial form F« of minimum degree, the resulting rational
curve will be defined everywhere. But the coordinates of a rational surface are
homogeneous trivariate polynomials, which behave like nonhomogeneous bivariate
polynomials. The fact that a collection of such polynomials have a common root
does not come close to implying that they have a common factor. For example, the
polynomials u and v have the common root u = v = 0, but they have no common

144 THE RATIONAL CASE 24.3

factor. As a result, the rational map of degree one from the projective plane to
the projective line given by [u,v; w] — [u; v] is unavoidably undefined at the origin
[0,0;1].

Let P« and Qi be projective spaces, and let Fix): Px) — Q% be a function
defined almost everywhere. We shall call a nonzero homogeneous polynomial map
Fe: Py — Qx a scaled form of Fiu if the identity Fixi([e]) = [F«(e)] holds almost
everywhere. A map Fix) between projective spaces is called a rational map if some
scaled form Fy of Fi«| exists. The degree of the rational map Fiy), written deg(Fi«)),
is the minimum n with the property that Fix) has a scaled form Fx of degree n. The
analog of Prop. 24.1 in the projective world is the following easy proposition.

Proposition 24.2. Let P« and Q) be projective spaces. Every nonzero homo-
geneous polynomial map Fx: P« — Qx is a scaled form of a unique rational map
Fix): Pa)y — Qv1, which can be determined by the identity Fix([e]) = [Fx(e)]. On
the other hand, every rational map Fix) has an infinite number of scaled forms. If
we pick one scaled form Fi of minimum degree as the reference, a nonzero homo-
geneous polynomial map Gx: P« — Q« will be a scaled form of Fix if and only if
Gx(e) = W(e)Fx(e) for some homogeneous polynomial W: P+ — R. In particular,
the various scaled forms of minimum degree are scalar multiples of each other, and
they can be distinguished from scaled forms of more than the minimum degree by
the property that their coordinate polynomials have no nontrivial common factor. O

The easiest way to handle a rational map Fix) is to choose an explicit scaled
form Fi right at the outset. We can apply the linear-world variants of blossoming
and tensoring to this scaled form, with the results shown in the right-hand column
of Fig. 24.3: blossoming converts the scaled form F into a multilinear map f«, and
tensoring then gives us a linear map f2. Restricting these three maps to arguments
that are 1-flavored gives us the maps in the middle column of Fig. 24.3: a polynomial
map F, its multiaffine blossom f«, and its affine blossom f2. These six maps are the
six different scaled guises of a rational map. Note that the middle and right-hand
columns in Fig. 24.3 are almost identical to all of Fig. 5.1. The middle column of
Fig. 24.3 differs from the left-hand column of Fig. 5.1 only in that the codomains are
Q@+ instead of Q in each case. The right-hand column of Fig. 24.3 differs from the
right-hand column of Fig. 5.1 only in the lack of the constraints that the functions
in each box must carry 1-flavored arguments to 1-flavored results. The differences
between Fig. 24.3 and Fig. 5.1 form a consistent set, in the sense that the six scaled
guises of a rational map are in one-to-one correspondence: given a map of any one
of the six types, unique maps of the other five types exist that correspond.

The multiple dividing lines in the left half of Fig. 24.3 are warnings that some of
those correspondences are not one-to-one. As described in Prop. 24.2, moving from
a rational map Flx) in the upper-left box to some scaled guise in the middle or right-
hand column involves choosing a polynomial scale factor of degree n — deg(Fixi).
Even when deg(Fi«)) = n, there is a scalar scale factor to choose; the second thin
vertical line represents the choice of that scalar. The thick line separating the upper-
left box from all the rest represents the choice of the scaling polynomial modulo its
scalar part, which is a nontrivial choice only when deg(Fix) < n.

24.3 ON CHOOSING SCALE FACTORS 145

Rational map Polynomial map Homogeneous poly. map
Fix1: Py = Qi) F:P— Qx« Fe:Pe — Qu
rational of degree n polynomial of degree n homogeneous poly. of deg. n

Multiprojective blossom Multiaffine blossom Multilinear blossom

fr: (Ba1)”™ — Qe f:P™ — Qs fe: (Pe)™ — Qx
symmetric, multiprojective symmetric, multiaffine symmetric, multilinear
Projective blossom Affine blossom Linear blossom
@i P3N — Qui f®: PO — Q. f:PE™ - Q.
projective affine linear
Scaling

Fig. 24.3. The nine guises of a rational map

The lower-left box in Fig. 24.3 is the easier of the remaining two to deal with.
If P« and Q« are projective spaces, a map Hixj: Pu1 — Q) is called projective
if it has a linear scaled form H¢: Py — Q. That is, projective maps are precisely
rational maps of degree one. Ignoring scalar multiples in the domain and codomain
of the linear blossom f&:P®" — Qu gives us the projective blossom, which is a
projective map flf,: P[f,” — Qix1. The second thin line separating the lower-left box
from the six scaled guises warns that choosing a particular linear scaled form of the
projective blossom involves choosing a scalar scale factor.

To handle the remaining, middle-left box in Fig. 24.3, we must define the con-
cept of a multiprojective map. For our current purposes, the appropriate definition
is as follows: a map fi«): (P«;)™ — Qix is multiprojective if it has a multilinear scaled
form, that is, if a multilinear map f:(Ps)™ — Q« exists that satisfies the identity
f([ea, ..., [en]) = [fx(e1,...,en)] for almost all n-tuples (ey,...,e,). (Section 26
considers a weaker notion of multiprojectivity and studies how that notion relates
to the notion defined here.) To convert a multilinear blossom into a multiprojective
blossom, we ignore scalar multiples in all of the domain spaces and in the codomain
space. Choosing a particular multilinear scaled form for a multiprojective blossom
involves choosing a scalar scale factor; hence, there is a second thin line separating
the multiprojective blossom from the six scaled guises.

Applying blossoming and tensoring in the projective world corresponds to mov-
ing down the left-hand column of Fig. 24.3. Tensoring is a one-to-one correspon-
dence in the projective world, because the same scalar scale factor that we must
choose when going from the multiprojective box to the multilinear box is washed
out again when we move from the linear box to the projective box. But blossoming
1s not a one-to-one correspondence in the projective world. Moving from rational
to homogeneous-polynomial involves choosing a polynomial scale factor of degree

146 THE RATIONAL CASE 25

n — deg(Fix). Only the scalar part of this polynomial factor gets washed out again
when we return from multilinear to multiprojective; the thick line separating the
rational box from the multiprojective one represents the remaining choice.

Warning 24.4. The multiprojective n-blossom of a rational map Fix; between pro-
jective spaces is not unique when deg(Fix1) < n.

As an example of Warning 24.4, take the identity function Gix: Lix) — Lixj on
the projective line L, which is a rational map with deg(G) = 1, and consider it
as a degenerate case of a quadratic rational curve. Quadratic scaled forms G« for
Gs) have the form Gx({u;v)) := (u(au + bv); v(au + bv)) for scalars a and b, not
both zero. The bilinear blossom g« of G« is given by

uivg 4+ ugv Uvq + Uugv
9+ ((u1;v1), (uz; v2)) == <a“1“z+b 12 2 Ch PRt 1t) 21 +bvlvz>.

When we project this down to get a biprojective blossom gix| for Gi«i, we find that

ujvz + uav; ujvz + uavg
2 % 2

gisi([u; v1], [uz; va]) = [auxuz +b + bvlvz] .

On the diagonal, we have gui([u;v], [u;v]) = [u(au + bv); v(au + bv)] = [u;v], in-
dependent of the scalars a and b. But the off-diagonal values of the blossom gix
do depend on the choices of @ and b. This phenomenon may seem less mysterious
when considered in the affine world, where v = v; = vz = 1, and the corresponding

formulas are
u(au+b) au?+bu

Gri(u) =u = au+b au+bd
_ auyusz + b(u1 + ug)/2
g(un,ua) = — R V2 b

Note that g+)(0,1) = b/(a + 2b). Thus, the off-diagonal values of the biprojective
blossom gix) do depend on the ratio a : b, which is the part of the polynomial scale
factor au + bv that remains when scalar factors are ignored.

25. Controlling and joining rational curves

In brief, the moral of Section 24 was the following: the way to draw a rational
curve or surface in an affine space Q is to draw a polynomial curve or surface in
the linearization Q+ and then to project down onto the hyperplane Q = Q1. In this
section, we shall investigate a few of the consequences of this two-step approach.

To begin with, suppose that we want to draw a segment of a rational curve
Fuy: Lis) — Q) of degree n. One of the six guises of any scaled form Fx of Fly is
an n-ic polynomial map F: L — Q«. We shall focus on that guise, since a polynomial
curve of degree n is such a familiar object.

The obvious way to control the scaled form F is to specify its Bézier points with
respect to some reference interval [5,%] for L. The name Bézier tensor is probably
better in this context, since a Bézier point of F is a point in Qx, that is, a 1-tensor

25 CONTROLLING AND JOINING RATIONAL CURVES 147

on Q. When specifying a Bézier tensor e, it is common practice to adopt a rather
unusual, non-Cartesian coordinate system for the space Q«. Instead of specifying
the coordinates of e directly, we specify the coordinates of the point x in Q to which
e projects, which is called a Bézier point of the rational curve Fix), and we separately
specify the flavor w := Flav(e) of the Bézier tensor e, which, in this context, is called
its weight. For example, suppose that Q is a plane. We shall specify a Bézier tensor
e in the 3-space Q« by giving z, y, and w where e = (wz, wy; w); that is, the tensor e
projects to the Bézier point x = (z,y) in Q, and the weight of ¢ is w. The advantage
of this approach is that the designer generally prefers to think about the geometry
of Q rather than the geometry of Q«, and hence the projected coordinates z and
y are more relevant than the unprojected coordinates wz and wy. One difficulty
with using z, y, and w as coordinates on Qx is that tensors in Qy, that is, vectors
on @, don’t have well-defined coordinates. For example, there are no values of z,
v, and w that will make (wz,wy;w) = (1,3;0). This is not a crippling problem in
practice, however, since the weights of Bézier tensors are usually restricted to be
positive numbers.

Thus, we specify the rational curve segment Fix([5,f]) by giving its Bézier
points and their associated weights, which determines the Bézier tensors of the
scaled polynomial segment F([5,#]). From a blossoming point of view, the Bézier
tensors e; are the values e; := f®(5"*1*) in Q« for i in |0, n], and their projections
in @ (more precisely, in Q|4]) are the Bézier points x; := f8,(3m*t*). The weight
w; of the sth Bézier point is the scalar by which that point must be multiplied in
order to give the sth Bézier tensor: e; = w;x,. The rational curve Fy is given, after
projection into @, by

> (EDTTEE) e
0<i<n
—u\P—% fu_a\?t ’
X (DEDT(E) w

0<i<n

Fi(a) =

and its multiprojective blossom fi) is given by

> (%) (%) wm

! JIn{J=0 }iel jedJ
_ _ ul={1,....n
f[*](UI,...,un) = t—u; U, —s
X Il (——,_,) Il (4= Jwia
INJ=0 sel J€J

IuJ={1,...,n}

Going from a rational curve to its Bézier tensors involves choosing a scale factor,
as we discussed in Section 24. The scalar scale factor represented by the second thin
vertical line in Fig. 24.3 manifests itself in the fact that we can multiply all of
the weights w; of all of the Bézier tensors by a common scalar without affecting
the rational curve Fiy|. The polynomial scale factor represented by the thick black
line around the rational box in Fig. 24.3 arises only when a degeneracy of degree
is involved. When it arises, however, it affects the positions of the Bézier points
as well as their associated weights. This phenomenon is precisely the import of

148 THE RATIONAL CASE 25

Warning 24.4, and the example given their works here as well; perhaps that example
is worth reviewing. Suppose that we want to describe the z-axis of the plane Q under
the trivial parameterization Fix(#) = (u,0) as a degenerate case of a quadratic
rational curve, and suppose that we choose the standard reference interval [0,1]
for the parameter line L. The first and last Bézier points of Fi«i([0,1]) are clearly
determined: f41(0,0) = Fq(0) = (0,0) and fi4i(I,1) = Fiu(1) = (1,0). But the
location of the middle Bézier point along the z-axis and the weights of the three
Bézier tensors depend upon the common denominator (au + b) in the formula

Fia(3) = <u$1auu: bb)’ au0+ b> '

Choosing the denominator (au + b) results in the scaled parabola F(g) := (au® +
bu,0;au + b) in Q«, whose biaffine blossom is

f(@1,82) := <au1ug+b(u1;u2) ,0:a (“1'12"‘2> +b>.

Thus, the middle Bézier point will be located at fi+ (0, I) = (b/(a+ 2b),0), and the
weights of the three Bézier tensors will be b, b + a/2, and b + a.

There is another type of redundancy involved in the choice of the weights of the
Bézier tensors, if the details of the parameterization of the curve segment Fi([3,])
don’t matter to us. Note that there is a one-parameter family of projective maps
©: Lis) — Lix), from the projective line Lix to itself, that fix the two points 5 and &.
In particular, the map

(2)as + (322000

@) :=

PO = e (28

fixes 5 and f while taking the midpoint (5 + £)/2 to the point (a5 + bt)/(a +),
which can be anywhere in the interval (5,%), depending upon the ratio a : b. We can
think of the numbers a and b as the weights of the endpoints 5 and ¢ of the reference
interval, viewed as tensors in Ls rather than as points in L. If Fix is a rational
n-ic, then the composite map Gxi: & — Fixi((@)) will also be a rational n-ic, and
the segment G« ([5,%]) will be the same as Fix([5,]) except for the details of the
interior parameterization. The Bézier points of Gy will be the same as those of
Fix;, with the weights readjusted as follows:

g®(§n—if'i) — an—ibifa(gn—it-i).

There was no phenomenon ahalogous to this redundancy in the polynomial case,
since the only affine map from the line L to itself that preserves the endpoints of
the reference interval [3,%] is the identity.

The case of rational quadratic curves deserves some special attention, since
the rational quadratics are precisely the well-known conic sections. A segment of a
rational quadratic has three Bézier points, say X, y, and z, each with a corresponding
weight, say u, v, and w. Scaling all three weights by the same factor doesn’t change
anything. More generally, replacing the three weights by a’u, abv, and b%v fora # b

25.2 CONTROLLING AND JOINING RATIONAL CURVES 149

changes only the parameterization of the conic segment. Thus, the sole effect of
the weights on the shape of the segment is contained in the ratio v : \/uw. For
simplicity, let us assume that the weights are all positive (or all negative, it doesn’t
matter). If v> = uw, the conic segment is the parabolic arc whose Bézier points, in
the polynomial sense, are x, y, and z. If v2 > uw, we have an arc of a hyperbola;
if ¥? < uw, less than half of an ellipse. This behavior helps to Jjustify the name
“weight” for the flavor of a Bézier tensor, since increasing the weight v associated
with the apex y of the control triangle Axyz pulls the conic segment up towards
that apex. In fact, let m denote the midpoint of the base xz of the control triangle.
The parameter v/+/uw is projectively related to the point r where the conic segment
cuts the median line ym by the formula

If u and w have the same sign, but v has the opposite sign, we get the complements of
the segments above: a parabolic arc that includes the point at infinity, a hyperbolic
arc including both points at infinity, or more than half of an ellipse. When u and w
have opposite signs, the endpoints x and z are on different branches of a hyperbola
(and the conic does not intersect the median line, over the real numbers).

Given a fixed control triangle, it makes an interesting geometric problem of the
old school to compute the value of the parameter v//uw that gives the ellipse of
minimum eccentricity, as described in the following pair of exercises. Of course, ec-
centricity is not even an affine invariant, so both exercises end up having to compute
a ratio between distances in different directions.

Exercise 25.1. Let D be a diameter of an ellipse, and consider the chords of the
ellipse that are parallel to D. Show that the locus of the midpoints of these chords
is another diameter D’ of the ellipse, and show that the chords parallel to D’ have
their midpoints on D. The diameters D and D’ are called conjugate. The major
and minor axes of an ellipse form one pair of conjugate diameters, whose lengths are
unequal. Show that each ellipse has a unique pair of conjugate diameters that are
equal in length; the axes of the ellipse bisect the angles between this pair of conjugate
diameters. Let Axyz be a control triangle for a conic segment, and let m be the
midpoint of the base xz. Show that every ellipse tangent to xy at x and tangent to
Yz at z has a pair of conjugate diameters with one parallel to the base xz and the
other lying along the median line ym. Finally, show that the ellipse of this form
with minumum eccentricity is the one in which those two conjugate diameters have
equal length. See Fig. 25.2. Hint: Problem 54 in Heinrich Déorrie’s book 100 Great
Problems of Elementary Mathematics [20] considers the more general situation in
which the ellipses are constrained to circumscribe a quadrilateral. In our case, the
quadrilateral is degenerate: its four vertices, in order, are x, x, z, and z, while y is
the point of intersection of its two opposite zero-length sides.

Exercise 25.3. Algebra and geometry are both paths to the truth; show that the

150 THE RATIONAL CASE 25.3

Fig. 25.2. The ellipse of minimum eccentricity in the control triangle Axyz

ellipse of minimum eccentricity is characterized algebraically by the formula

v Iz — x|

2 2\’
wo 2(lly - x[* + Iz - 1)

A rational curve segment Fix([3,2]) of degree n for n > 3 has n + 1 Bézier
tensors, each with its own weight. Multiplying all of the weights by a common
scalar has no effect. Multiplying the weights by a sequence of scalars in geometric
progression changes the parameterization, but not the shape. The remaining n — 1
degrees of freedom in the weights actually give different shapes for Fix([5,%]).

The convex-hull property carries over to the rational case, as long as all of the
weights are positive. If we think of the scaled form F([3,%]) as a polynomial curve
in Q«, the points F (@) for @ in [5,f] must remain in the convex hull of the Bézier
tensors in Q. If all of the weights are positive, the projection in @ of this convex
hull will be the same as the convex hull in Q@ of the Bézier points, which are the
projections of the Bézier tensors.

The weight-based approach generalizes to rational surfaces of degree n or to
birational surfaces of degree (m;n) with no difficulty. We just draw a polynomial
or bipolynomial surface in the linearized space Q« by using weights to turn Bézier
points into Bézier tensors, and then project down into the actual object space Q.
For example, a quadratic rational surface has six Bézier tensors with respect to
any reference triangle Arst for its parameter plane. The six weight coordinates
correspond to one irrelevant uniform scalar factor, two degrees of freedom in the
choice of parameterization, and three degrees of freedom in the shape of the surface.
Again, the convex-hull property will continue to hold, as long as all of the weights
have the same sign.

In most cases, the weight-based approach is an effective compromise between
thinking of the affine geometry of the polynomial scaled form F in Q« versus thinking

25.3 CONTROLLING AND JOINING RATIONAL CURVES 151

of the projective geometry of the rational map Fix in @ C Q). The projection
operation that transforms the former into the latter is simple enough that much of
the structure that we analyzed in the polynomial case carries over to the rational
case essentially intact. For example, since the projection of an osculating flat is
the same as the flat that osculates the projection, we can apply the differential
perspective on the meaning of a blossom’s n arguments to compute a value of the
multiprojective blossom of a rational map by intersecting osculating flats.

Despite the power of the weight-based approach, some designers are so wedded
to the geometry of @ rather than that of Q« that they aren’t comfortable dealing
with the flavor components of the Bézier tensors directly, even if those components
are referred to as weights. Gerald Farin suggested an alternative approach for
the case of curves [22]. Suppose that the designer begins by specifying all of the
Bézier points x; := f (3™*t*), but none of the weights. At this point, we know
xo = f&(3"), and we know x; = f2,("~'f). The line connecting xo and x;
in Q«) must consist of all points of the form f[f]('é n=1g) for @ in L4, and the
correspondence 4 — f(f, (™~1a@) must be a projective map. But we don’t yet have
enough information to compute the value f2,(5"~'a) for any @ other than 5 and .
One way to supply the missing information is to specify the ratio wgy : w;, where
wo and w,; are the weights of the Bézier tensors e = woxo and €; = w;x;. Farin’s
alternative approach is to specify the blossom value f(f, (3"~'a) for some third
chosen value ¢ of @, perhaps § := (§+1%)/2. Once three values of the projective map
@ f[f] (s™~'a) are known, all other values can be computed by exploiting the fact
that projective maps preserve cross ratios; equivalently, the ratio wo : w; can be
computed. In a similar way, Farin suggests that the designer specify a third point
somewhere along the sth edge of the control polygon to be the value f[fl (sn—*gqt*-1),
for 1 in [1,n). Sliding this point along the edge between x;_; = f2,(3"~*f*) and
xi = f&(8"~*=1£*+1) corresponds to adjusting the ratio w;/w;_; over the interval
(0,00). Once all the ratios w;_; : w; are known for ¢ in [1,n], then all the weights
are known up to a uniform constant multiple, which doesn’t matter.

It is interesting to observe that Farin’s technique does not generalize gracefully
to surfaces. Let Fix) be a quadratic rational surface in Q; let F, with values in
Qx, be a quadratic polynomial scaled form of Fi«; let w(u,v) := Flav(f(u,v)) be
the biaffine blossom of the weight coordinate of the scaled form F; and let Arst
be a reference triangle in the parameter plane P. Consider the three Bézier points
fa(r,T), fii(r,8), and fix(r,t). Knowing those three points as points in Q is
enough to determine the plane {fixi(r,u) | u € P«)} as a whole, but we need
extra information to compute any particular point fi)(r,u), unless u € {r,s,t}.
In the weight-based approach, that extra information comes from the ratios of the
three corresponding weights w(r,r), w(r,s), and w(r,t). By analogy with Farin’s
technique for curves, the designer could also supply that information by specifying
the location of fi«(r,q), where q is a fixed point in Arst, perhaps q := (r+s+t)/3.
But we get into trouble if try to apply this same trick to all three of the triangles that
account for the first stage of the de Casteljau Algorithm. Specifying the location
of fixi(r,q) determines, among other things, the ratio w(r,s) : w(r,t); specifying

152 THE RATIONAL CASE 25.4

(1,1) = [1,1;1]

//%(1,0) = [1,0;1]

(Oa—1> = [0"‘2;2] (1,-1) = [1,—1; 1]

Fig. 25.4. A two-segment conic spline curve

the location of fixi(8,q) determines the ratio w(r,s) : w(s,t); and specifying the
location of fixi(t,q) determines w(r,t) : w(s,t). Hence, the locations of the three
points fi(r,q), fixi(8,q), and fis(t,q) are not independent. Once two of those
three points are chosen, the third is constrained to lie along a line, not just in a
plane.

There is one important area where the existence of the projection that takes
a polynomial thing into a rational thing makes life more complicated, by opening
up new possibilities: continuity conditions for rational splines. When deciding how
to assemble pieces of polynomial maps to form a polynomial spline, we considered
two different types of continuity constraints: parametric and geometric.- Geomet-
ric continuity was a more appropriate constraint, in many cases. But parametric
continuity was technically easier, since it interacted very neatly with blossoming.
In the rational case, there are four different types of continuity constraints, since
we can demand either parametric or geometric continuity either before or after the
projection has happened.

Let’s consider a simple case: assembling a two-segment conic spline in a plane
A. Suppose that, for @ in [—1,0], we have decided to follow the unit circle with its
standard rational parameterization. That is, in the 3-space Ax, we shall follow the
parabolic arc F([=T,0]), where F(&) := (1 — u?,2u;1+ u?). The biaffine blossom
f of F is given by f(@,) := (1 — uv,u+ v;1+ uv). When F and f are projected
down from Q« into Q, they become the quarter-circle Fixy([-1,0]) shown in Fig. 25.4
and its biprojective blossom fix. The three Bézier points of this quarter-circle are
f[*l(?ia :—I) = (0:_1), f[*l(:_l-)(-)) = (17_1>1 and fl*l((—)’()) = (1’0)a and the associ-
ated weights are 2, 1, and 1. (Plugging these values into the result of Ex. 25.3 shows
that a circle, with eccentricity zero, is indeed an ellipse of minimum eccentricity.)
Our task is to determine what conic segments G ([0, 1]) can follow Fixi([—1,0]).

To keep things simple, let us demand that the curves F and G join with C!
continuity at & = 0, even before they are projected from Ax into A. This require-
ment fixes the first two Bézier tensors of G([0,1]) at the values ¢(0,0) := (1,0; 1)
and ¢(0,1) := (1,1;1). We shall consider what various second-order continuity

25.4 CONTROLLING AND JOINING RATIONAL CURVES 153

conditions imply about the value of the third Bézier tensor g(I,1).

The strictest choice is to demand C? continuity before projection, which forces
the parabolas F and G to be equal, giving ¢(1,1I) = f(1,I) = (0,2;2). After
projection, the arc G«([0,1]) simply continues around the next quarter of the unit
circle. In this case, the joint between F and G in A« is surrounded by a de Casteljau
Diagram with two shells. This diagram gets distorted by the projection, however,
since the center vertex f(—1,1) = g(-1,1) = (2,0;0) of the outer shell happens to
be a vector on A, and hence projects to a point at infinity in Ag.

One possible weaker notion would be to demand G2 continuity before projec-
tion. From the theory in Section 20, we can calculate that this leads to the constraint
9(1,1) = (0,2+a;2), where the scalar a denotes the shape parameter f; at the joint.
In Ax, the joint between F and G is guarded by an A-frame with A = 2/(a + 2),
whose apex is located at ((¢ +4)/(a+2),—a/(a+2);a/(a+2)). When such a G is
projected down into A, the result is an arc of an ellipse that ends on the y-axis at
the point (0,1 + a/2).

We get weaker continuity constraints if we ask for continuity only after pro-
jection, instead of before. Suppose that we want the curves Fiy and G, after
projection, to join with C? continuity. That is, we will allow the planes containing
F and G in Ax to be tilted with respect to each other, hence precluding any chance
of second-order continuity before projection, as long as that tilt is washed out by the
projection down into A. A little algebra reveals that this constrains the third Bézier
tensor be of the form g(1,1) = (b,2;2 + b), where b is a parameter that measures
the amount of tilt.

The weakest of the four notions is to demand G? continuity after projection,
which is just curvature continuity of the resulting conic spline. In this case, the third
Bézier tensor g(1,1) := (b,2+a;2+b) is affected both by the shape parameter a and
by the tilt parameter b. After projection, the resulting conic segment G« ([0, 1]) will
end at the point g« (1,1) = (b/(2 + b),(2 + a)/(2 + b)), which could be anywhere
in the plane. Choosing b in the range (—1,00) gives arcs of ellipses that end with
z in (—1,1). Choosing b = —1 gives arcs of parabolas that end with z = —1; the
example drawn in Fig. 25.4 happens to have b = —1. Choosing b in (—2, —1) gives
arcs of hyperbolas that end with z in (—o0,—1). Choosing b in (—o00,—2) causes
the points gi4;(0,0) and g1+;(1,1) to be on opposite branches of a hyperbola, since
the third Bézier tensor g(1,1) then has a negative weight.

Whenever the tilt parameter b is nonzero, there is no A-frame in the space Ax,
since the tilt causes the tangent lines Oscy F(—1) and Oscy G(I) to be skew. The
corresponding lines after projection, which are Oscy Fie)(—1) and Oscy Gix(1), do
intersect, giving something that looks rather like an A-frame except that its apex
has two different weights associated with it.

The expedient approach to drawing a rational spline curve or a rational spline
surface in a space @ is to draw a polynomial spline curve or spline surface with
C* continuity in Q«, and then project it. But this approach is somewhat sloppy.
Even if the parameterization of the resulting rational spline is important to us,
C* continuity after projection would presumably be sufficient, rather than before
projection. If we are simply modeling a smooth shape, then G* continuity after

154 THE RATIONAL CASE 26

projection should be enough. The problem with these weaker notions of continuity
is that they don’t interact well with blossoming.

Challenge 25.5. Use the differential perspective on the meaning of a blossom’s n
arguments to define the blossom of a rational spline curve that has G k continuity
after projection. In particular, if h: Lix) X Lix) — A« is the blossom of the two-
segment conic spline in Fig. 25.4, the point in Ars) that forms the apex of the
apparent A-frame should be labeled (=1, 1), even if a nonzero tilt causes that point
to have two different weights. The resulting blossoms will fail to be multiprojective
for two different reasons: nonzero shape parameters, as in Challenge 20.6, and
nonzero tilts. Construct an enlightening theory of such blossoms.

Challenge 25.8. Develop useful techniques for controlling rational spline curves
and surfaces whose joints are G* continuous after projection.

26. Multiprojectivity in the weak sense

In Section 24, we defined multiprojectivity by saying that a map fixi: (Ps)" —
Q«) is multiprojective if it has a multilinear scaled form, that is, if there exists a mul-
tilinear map f: (Px)" — Q« with the property that the identity fix([e1],-.-,[ea]) =
[f«(e1,...,en)] holds for almost all n-tuples (ey,...,e,) in (Px)”. The analogy be-
tween the words “multiprojective” and either “multilinear” or “multiaffine” suggests
a definition along the following lines instead. A map fi« should be multiprojective
if the value fi1([e1],. .., [en]) is a projective function of each argument whenever all
of the other arguments are held fixed at arbitrary values. For example, for any fixed
values of [e;] through [e,], the map [e1] — fixi([e1],.- -, [en]) should be projective,
meaning that it should have a linear scaled form: a linear map g: P« — Q« that
makes the identity fi«i([e1],---,[en]) = [9(€1)] hold for almost all e;. The defini-
tion suggested by this analogy is more liberal than the definition that we gave in
Section 24, because the scaled form g is allowed to depend in an arbitrary way on
the fixed arguments [e3] through [e,]. In this section, we shall explore this weaker
notion of multiprojectivity, contrasting it with the stronger notion of Section 24.
Multiprojectivity in the strong sense is the interesting concept from the point of
view of practical applications in computer-aided geometric design. But there is in-
triguing mathematics involved in exploring the weak sense. The exploration of this
mathematics was joint work with my colleague James B. Saxe.

We shall concentrate on the simplest case of multiprojectivity: given a function
fis1: L) X Lix) = Lix), whose two arguments and result value all lie in the projective
line L), we shall ask whether fi«) is biprojective in either the weak or the strong
sense. For brevity, let us refer to a function, like fix, from the cross product of the
projective line with itself to the projective line, as a pairing. If fix1(z, y) is a pairing,
the maps z — fix(z,y) for fixed y and y — fix(z,y) for fixed z are called sections
of fis;. The basic intuitions behind the two types of biprojectivity are as follows: a
pairing is weakly biprojective if all of its sections are projective, that is, have linear
scaled forms; a pairing is strongly biprojective if it has a bilinear scaled form.

Much of the complexity of weak multiprojectivity comes from the handling of
undefined values. In Section 24, we adopted a particular approach towards unde-

26.1 MULTIPROJECTIVITY IN THE WEAK SENSE 155

finedness in projective and rational functions, which might be called the almost-
everywhere approach. In this approach, a projective function is considered to be
defined only almost everywhere, in the sense of integration theory. The values of
such a function can be changed arbitrarily on any set of measure zero without af-
fecting the identity of the function. As a result, the formula that relates a projective
function Fi4 to one of its scaled forms F is required to hold only almost everywhere;
that is, we require Fix)([e]) = [Fx(€)] only for almost all e. Unfortunately, if we follow
the almost-everywhere approach, it turns out that the concept of weak biprojectivity
is much weaker than one might think, as demonstrated by the monstrosity g« in
the upcoming Example 26.1.

We shall use z, y, and 2z to denote points in the line L, each of which is
given in homogeneous coordinates in the form z = [z;; o], where zo and z, are real
numbers, not both zero. From the affine-world point of view, we have z = z,/z,.
In the almost-everywhere approach, a pairing fixi(z,y) is weakly biprojective if and
only if, for each fixed y, there exist four constants a, b, c, and d, not all zero, such
that the equation fi«(z,y) = [az1 + bzo;cz1 + dzo| holds for almost all z, and
similarly with z and y interchanged. A pairing fi«(z,y) is strongly biprojective if
and only if there exist eight absolute constants a, b, ¢, d, p, q, 7, and s, not all zero,
such that the equation

f(z,y) = [aziy1 + bz1yo + cZoyr + dZoyo; PT1YL + 9Z1Y0 + rZoy + 8zoyo|

holds for almost all pairs (z, y).

Example 26.1. To construct this example, we assume the truth of the Contin-
uum Hypothesis and of the Axiom of Choice; in particular, we assume that the real
numbers can be well-ordered by the elements of {2, where {2 denotes the smallest
uncountable ordinal. If the real numbers can be so well-ordered, certainly the pro-
jective line Lix over the reals can be also. Pick such a well-ordering, and consider
the set S of all pairs (z,y) in Lixj X L with the property that the index of z is
less than the index of y. For each fixed y, the set of z values with (z,y) in S is
countable, and hence a set of measure zero in Lix;. On the other hand, for each
fixed z, the set of y values with (z,y) in S has a countable complement. Define a
pairing gi4) by the rules

1;1} if (z,y)isin S
g (z,y) == {{2;1% otl(lel':l)ise.

For each fixed z, we have gix1(z,y) = [1;1] for almost all y; for each fixed y, we have
91x1(z,y) = [2;1] for almost all z. Hence, in the almost-everywhere approach, g«
is weakly biprojective—in fact, weakly biconstant. But gi4) certainly isn’t strongly
biprojective; it isn’t even measurable, as a bivariate function.

The pairing g+) of Example 26.1 shows that, in the almost-everywhere ap-
proach, the notion of weak biprojectivity is too weak to be very interesting. We
could try to strengthen the notion by adding a second clause to the definition,
which would somehow constrain the behavior of the pairing fix1(z,y) as a function

156 THE RATIONAL CASE 26.1

of two variables. But, once we are forced to constrain fix(z,y) as a bivariate func-
tion, rather than just constraining its sections, strong biprojectivity becomes the
natural notion.

There is an entirely different approach to the problem of undefinedness in pro-
jective and rational functions, which we could have adopted in Section 24 instead of
the almost-everywhere approach; we shall call it the indeterminate-point approach.
In this approach, we invent a special point, called the sndeterminate point, and we
add it by fiat to every projective space. The formerly undefined symbol [0] is then
reinterpreted as naming the indeterminate point. With projective spaces augmented
in this way, we can demand that the relation Fix;([e]) = [Fx(€)] between a projective
map and its linear scaled form must hold for all e, without exception. In particular,
the case e = 0 demands that Fi4([0]) = [0]; that is, a projective map Fix: Fx) — Q¥
must take the indeterminate point of its domain Py to the indeterminate point of
its codomain Qixj. For e # 0, the relation Fix([¢]) = [F«(e)] demands that Fix) carry
a determinate point [e] to [0] precisely when the scaled form Fs collapses the line
[e] through the origin of P« into the origin [0] of Q. In the indeterminate-point
approach, we similarly demand that the identity relating a strongly multiprojective
map to its multilinear scaled form must hold without exception.

While the almost-everywhere approach tries to ignore undefined values as much
as possible, the indeterminate-point approach builds undefinedness, and the precise
locations of the undefined values, into the concept of a projective map. For example,
a function Fi«;: Lis) — Lix) that is equal to a constant Fix(z) := w = [w1; wo)] almost
everywhere is as constant as a function can be in the almost-everywhere approach,
and is also projective in that approach. In the indeterminate-point approach, in
order for Fi4) to be projective, it must satisfy the identity Fixj(z) = [F«(z)] for
some linear scaled form Fx and for all z. If we want Fj4) to be as constant as
possible, our best choice is to have Fi(z) := [wi(az;1 + bzo); wo(azy + bzo)] for
some real constants a and b, not both zero. This gives us Fix(z) = w for all z
except for the two special cases z = [—b;a] and z = [0;0] = [0], where we have
Fw)([-b;a]) = Fw([0]) = [0]. Thus, in order to be considered projective in the
indeterminate-point approach, an almost-everywhere-constant map Fix} must carry
precisely one determinate argument point to the indeterminate result point; further-
more, the identity of that special argument point is a distinguishing characteristic
of the function Fiy;.

Remark 26.2. The restrictions placed on almost-everywhere-constant functions
Fis1: Lix) — Lix) if they want to be projective in the indeterminate-point approach
have a certain charm. The facts that there is a unique z with z # {0] but Fi(z) =
[0] and that this z must be specified mean essentially that the polynomial scale
factor that converts the constant function Fi) from degree zero to degree one must
be specified, up to a constant multiple. If converting to the indeterminate-point
approach meant that all polynomial scale factors were automatically specified up to
a constant multiple, we could eliminate the thick dividing line around the “rational
map” box in Fig. 24.3. Unfortunately, that hope is not realized, because of the
problem of multiple roots. Suppose that Fi(z) := [0] for z in {[0],u,v}, while
Fui(z) := w # [0] for all other z; and suppose that we want to consider Fix as a

26.3 MULTIPROJECTIVITY IN THE WEAK SENSE 157

degenerate case of a rational cubic curve. The cubic polynomial scale factor must
have either u as a single root and v as a double root, or vice versa; but there is no
way to tell which. Thus, we would still need the thick dividing line in Fig. 24.3,
even if we converted completely to the indeterminate-point approach. (This example
would work even over the complex numbers. Over the reals, things are worse: the
map defined by Fix([0]) := [0] and Fi«(z) := w # [0] for z # [0] can be viewed
as a degenerate quadratic rational curve by using, as scale factor, any quadratic
polynomial that has no real roots.)

The good news is that, in the indeterminate-point approach, the monstrous
pairing g« of Example 26.1 is neither weakly nor strongly biprojective. The bad
news is that the indeterminate-point approach has its own monstrosities, like the
following example, invented by Jim Saxe.

Example 26.3. Let n: Lix) — Lix) be an arbitrary bijective map, preferably rather
chaotic. Define the pairing hix) as follows. If either = or y is the indeterminate
point (0], then hix(z,y) := [0]. Also, if y = x(z), then hix(z,y) := [0]. Otherwise,
hixi(z,y) := [1;1]. The function Ay is weakly biprojective in the indeterminate-
point approach, since each section parallel to either the z or y axis is the constant
[1;1] except for a single indeterminate value. For example, if we fix z, we can write
hisi(z,9) = [r(z)oys — 7(=)130; 7(2)oys — (z)10], where 7(z) = [x(z)1; x(z)o]; the
affine-world version of this formula might be more perspicuous:

_y-—=(z)
hl*](z, y) = y— ﬂ'(z) .
If y is fixed, we have the similar formula
-7~ '(y)

hixi (z,y) = z—w—-l(ﬂ

On the other hand, the function hi4 is not strongly biprojective, since there is
too much information in x to be repesented by eight coefficients. (Note that,
in the almost-everywhere approach, the pairing hi is both weakly and strongly
biprojective—in fact, both weakly and strongly biconstant.)

We have tried two different approaches to handling undefinedness, and, in both
cases, the natural notion of weak biprojectivity turned out to be too weak to be
interesting: monstrous pairings existed that were weakly, but not strongly, bipro-
jective. If the only difference between weak and strong multiprojectivity is that
the weak case includes various monstrosities, then it probably isn’t worth bothering
with the weak case. We could continue to test this hypothesis by exploring still
more approaches to handling undefinedness. One interesting possibility would be to
call a pairing weakly biprojective if almost all of its sections were projective in the
indeterminate-point sense. But we won’t; instead, we shall try to tackle the question
from a different perspective. What happens, in the indeterminate-point approach,
if we restrict our attention to the special class of pairings where no undefinedness
arises at all? Let us call a pairing fix total if the value f4(z, y) is a determinate
point whenever both z and y are determinate points.

158 THE RATIONAL CASE 26.5

Exercise 26.4. Prove that strongly-biprojective total pairings exist. In particular,
prove that the pairing given affinely by the formula

— Ety
fix(2,9) := 1= py
is such a pairing. The projective version of this formula is fix(z,y) = [ziyo +

Toy1;ZoYo — Z1Y1); show that the two homogeneous coordinates on the right-hand
side can be simultaneously zero over the real numbers only if either zo = z; =0 or
yo = y1 = 0. Note that this result depends on the fact that the coefficient field is
the real numbers. Over the complex numbers, no strongly-biprojective pairing can
be total.

Restricting our attention to total pairings simplifies things substantially. In
particular, consider a section of a weakly-biprojective total pairing fi«); say that
we fix z and consider the section y — fixi(z,y). By weak biprojectivity in the
indeterminate approach, there must exist four constants a, b, ¢, and d, not all zero,
with fix1(z,y) = [ay1 + byo; cy1 + dyo| for all y. The equivalent formula in the affine
world is
ay+b
cy+d
Note that this section will be total if and only if it is a fractional linear map, that

is, if and only if ad — be # 0. The weakly-biprojective pairing fi« as a whole will be
total if and only if all of its sections are fractional linear maps.

foa(z,y) =

Exercise 26.5. Over the real numbers, prove that every weakly-biprojective total
pairing is actually strongly-biprojective. Warning: the proof that I know is rather
intricate, and exploits both the topological and algebraic properties of the real
numbers.

The result in Exercise 26.5 deals yet another blow to the concept of weak mul-
tiprojectivity, by suggesting that there are no interesting pairings that are weakly,
but not strongly, biprojective. While that may be true over the real numbers, Jim
Saxe discovered that it fails in a fascinating way over another coefficient field, in
particular, over the field k = Z/3Z. Over this field, there are precisely 4 - 144 = 576
weakly-biprojective total pairings, of which only 3 - 144 = 432 are strongly biprojec-
tive. We shall close this section (and this paper) by studying the case k = Z/3Z in
a series of exercises.

For the rest of this section, let k denote the coefficient field Z/3Z, which consists
of {0,1,—1} under arithmetic modulo 3. Before we consider biprojective pairings
over k, it is worth pointing out that the discrete nature and finite characteristic of
k cause other theories in this paper to work out rather differently. One example is
that the almost-everywhere approach doesn’t make any sense when the coefficient
field is finite and discrete. As a second example, note that computing an n-blossom
involves dividing by various multinomial coefficients with n as their upper index.
If n equals or exceeds the characteristic of the coefficient field k, then blossoming
won’t be possible in general.

26.9 MULTIPROJECTIVITY IN THE WEAK SENSE 159

Exercise 26.6. There are 27 set-theoretic functions F:k — k, which are precisely
the 27 polynomials of the form F(z) := az? +bz+c for a, b, and ¢ in k. Polynomials
of degree 3 or more are not needed, because 3 = z (mod 3). There are 3% = 6561
triaffine functions f:k3 — k, of which 81 are symmetric. These 81 symmetric tri-
affine functions, however, have only 9 different diagonals among them. For example,
the diagonal of the function f(z1,z2,2zs) := z; + z2 + z3 is identically zero, and
hence agrees with the diagonal of the zero function f(z;,z3,z3) := 0. Deduce that
some of the quadratic functions over k don’t have multiaffine 3-blossoms. In fact,
the function F(z) := az? + bz + ¢ has a 3-blossom if and only if @ = 0, in which case
it has 9 different 3-blossoms.

Exercise 26.7. We now turn to pairings over k. An affine line L over k contains
three points: 0, 1, and —1. The linearization L« of L is a vector space of dimension
two over k, which contains 9 points. The projective line L« over k consists of four
points, which we shall refer to sloppily as 0, 1, oo, and —1, where:

0=1[0;1] = [0; -1]

1=[1;1] =[-1-1]
oo = [1;0] = [-1;0]
-1=[-11] =[1;-1]

Prove that a set-theoretic map H: Lixj — Li«; is a fractional linear mapping if and
only if H is a permutation on the four letters {0, 1, 00, —1}. Conclude that a function
Jix1: Lixg X Lix) — Lix) is a weakly-biprojective total pairing if and only if the values
of fix) form a 4-by-4 Latin square.

Exercise 26.8. The structure of a pairing fix(z,y) is not changed in any essential
way if we permute the names of the four values of z, or those of y, since every
permutation is a fractional linear map. Show that such renamings can be used to
partition the set of all weakly-biprojective total pairings into equivalence classes of
size 144, where each equivalence class contains precisely one member that satisfies
the normalization conditions fi4(w,0) = fi4/(0,w) = w for w in Lisj. Enumerate
the 4-by-4 Latin squares by showing that there are precisely four of them that satisfy
the normalization conditions, the four shown in Fig. 26.9.

160 THE RATIONAL CASE 26.13

-1 | -1 0 1 00 -1 | ~1| o 1 0
oo | oo | -1 0 1 oo | oo 0 -1 1
1 1 oo -1 0 1 1 -1 0 oo
0 0 1 oo | -1 0 0 1 oo | -1
Y00 1 o -1 Y2l 0 1 o -1
-1]-1] o0 0 -1 | ~-1}| o 1 0
0o oo | —1 0 oo oo | —1 0 1
1 1 0 -1 | o0 1 1 0 -1 | o
0 0 oo | —1 0 0 1 oo | ~1
Y720 1 e -1 Y20 1 o -1

Fig. 26.9. The four normalized Latin squares of order 4.

Exercise 26.10. By the rules of the indeterminate-point approach, a pairing fi«
is strongly biprojective if and only if there exist eight constants, a through d and p
through s, not all zero, such that

fini(z,y) = [az1y1 + bz1yo + cZoy1 + dzoyo; PZ1y1 + qZ1¥0 + rZoy1 + 8ToYo

for all z and y. Show that, if the normalization conditions also hold for fi«), then
there must exist two constants, ¢ and p, such that

fix1(z,y) = [az1y1 + Z1Y0 + Toy1; PT1Y1 + ZoYol

for all z and y. The values of such a pairing are given in Fig. 26.11 as functions of
a and p.

Exercise 26.12. If we assume that the pairing fix) is total, as well as being strongly
biprojective and normalized, an explicit check of cases reveals that only three pos-
sibilities for the two parameters a and p remain: we can have p=1 and a = 1 or
we can have p = —1 and a = 0. These three cases correspond to three of the four
weakly-biprojective total pairings given in Fig. 26.9. The fourth (bottom-right) pair-
ing in Fig. 26.9 represents an equivalence class of 144 total pairings over k = Z/3Z
that are weakly biprojective, but not strongly biprojective.

Exercise 26.13. Find a simple property of a weakly-biprojective total pairing over
k that can serve as a test of strong biprojectivity. Hint: Consider the cycle structures
of the six permutations formed by picking two rows out of the Latin square.

26.13 MULTIPROJECTIVITY IN THE WEAK SENSE 161

1 1 a a-—1 a+1
p—1 p p+1
a+1 a a—1
o0 [e o] -
4 P 4
1 1 a—1 a+1 a
r+1 P p—1
0 0 1 00 -1
Vel o 1 00 -1

Fig. 26.11. The normalized, strongly-biprojective pairings over Z/3Z

162 ACKNOWLEDGMENTS

Acknowledgments

In an effort of this magnitude, there are many people to thank.

Jim Saxe and Jorge Stolfi were my invaluable and reliable comrades in the
development of these ideas, ever ready to listen to my latest half-baked idea, to
indicate its problems, and to point me in the right direction. Jim Saxe has formidable
courage, tenacity, and insight; Jorge Stolfi has a formidable instinct for the perfect
definition and the best notation.

Carl de Boor taught me about splines in his wonderful book and, in the process,
gave me a standard to strive for in clarity of explanation. He also told me about
his corner-sectioning technique during a provocative conversation, and he sent me
a copy of de Casteljau’s notes.

Andrew Odlyzko showed me how to persevere on the factoring problem at
the end of Section 10, even after I had to give up on the obvious approach. Bill
Gosper coaxed Macsyma into solving that same factoring problem while I was still
persevering, although the proof that Macsyma found would have been difficult to
publish.

Tony DeRose intrigued me by his work on geometric continuity and sparked
my interest in other spline problems.

Leo Guibas, Greg Nelson, and Neil Wilhelm served as valuable test audiences
for many of these ideas.

Mary-Claire van Leunen answered countless small questions about writing and
the English language that occurred to me as I wrote, and did so with clarity and
insight.

Cynthia Hibbard produced the index and worried about the many details of
production and printing. She believed in me when I said that I would finish the
manuscript someday. She and Frances Maurier both did some editing of the text,
and I had great fun reading and pondering their suggestions.

Jorge Stolfi drew the cartoon on the title page, and also lent me his drafting
equipment for me to use on the figures.

John Warnock and the other folks at Adobe Systems Incorporated devised and
implemented PostScript, which served me quite well in the production of the figures.
Fig. 9.6 is a good case in point.

Donald Knuth taught me how to do research and also wrote TEX, the system
that compiled this document.

Gaston Gonnet and his colleagues at Waterloo wrote Maple, the symbolic alge-
braic manipulation system that I used for such purposes as computing the formulas
in Section 23. Andrei Broder installed and maintained Maple at SRC.

Bob Taylor, my boss at SRC, built a research laboratory where a one-day search
for a good way to label some diagrams of splines could blossom into a three-year
exploration of some interesting mathematics. He also looked the other way—in fact,
even applauded—while I slighted my other responsibilities unconscionably in order
to work on this paper.

Jim Saxe, Marc Brown, and Leo Guibas provided many helpful comments on
drafts of the manuscript.

Thank you all.

REFERENCES 163

References

[1] Brian A. Barsky and John C. Beatty. “Local control of bias and tension in
beta-splines.” ACM Transactions on Graphics 2, 2 (April 1983), 109-134.

[2] Richard H. Bartels and John C. Beatty. “Beta-splines with a difference.” Tech-
nical Report CS-83-40, Computer Graphics Laboratory, University of Waterloo,
Ontario, Canada (May 1984).

[3] Wolfgang Bshm. “Generating the Bézier points of triangular splines.” In
Robert E. Barnhill and Wolfgang Bohm, editors, Surfaces in Computer Aided
Geometric Design, pages 77-91, particularly page 77. North-Holland (1983).

(4] Wolfgang Bshm. “Smooth curves and surfaces.” In Gerald E. Farin, editor, Ge-
ometric Modeling: Algorithms and New Trends, pages 175-184. SIAM (1987).

[5] Wolfgang Bohm, Gerald Farin, and Jiirgen Kahmann. “A survey of curve and
surface methods in CAGD.” Computer Aided Geometric Design 1, 1 (July
1984), 1-60.

(6] Elaine Cohen, Tom Lyche, and Larry L. Schumaker. “Algorithms for degree-
raising of splines.” ACM Transactions on Graphics 4, 3 (July 1985), 171-181.

(7] Wolfgang Dahmen and Charles A. Micchelli. “Multivariate splines: a new con-
structive approach.” In Robert E. Barnhill and Wolfgang B6hm, editors, Sur-
Jaces in Computer Aided Geometric Design, pages 191-215, particularly page
204. North-Holland (1983).

(8] Carl de Boor. A Practical Guide to Splines. Springer-Verlag (1978).

[9] Pages 4-12.
[10] Page 131.
[11] Pages 146-147.

[12] C. de Boor and R. DeVore. “Approximation by smooth multivariate splines.”
Transactions of the AMS 276, 2 (April 1983) 775788, particularly 783.

(13] Carl de Boor and Klaus Héllig. “B-splines without divided differences.” In
Gerald E. Farin, editor, Geometric Modeling: Algorithms and New Trends,
pages 21-27. SIAM (1987).

(14] Paul de Faget de Casteljau. “Formes & Péles: Courbes et Surfaces.” Photo-
copied manuscript (June 1984).

[15] Anthony D. DeRose. Geometric Continuity: A Parametrization Independent
Measure of Continuity for Computer Aided Geometric Design. PhD thesis,
University of California at Berkeley (1985). Also available from Berkeley as
Technical Report UCB/CSD 86/255.

[16] Tony D. DeRose and Brian A. Barsky. “An intuitive approach to geometric
continuity for parametric curves and surfaces.” In Proceedings of Graphics
Interface ’85, Montreal (May 1985), 343-351.

[17] C. T. J. Dodson and T. Poston. Tensor Geometry: The Geometric Viewpoint
and its Uses. Pitman, London (paperback edition, 1979).

(18] Pages 83 and 262.
[19] Exercise 7d, page 104.

164 REFERENCES

[20] Heinrich Dérrie. 100 Great Problems of Elementary Mathematics: Their History
and Solution, pages 231-236. Translated by David Antin. Dover (1965).

[21] Gerald Farin. “Visually C? cubic splines.” Computer-aided design 14, 3 (May
1982) 137-139.

[22] Gerald Farin. “Algorithms for rational Bézier curves.” Computer-aided design
15, 2 (March 1983) 73-77.

[23] A. R. Forrest. “Computational geometry: achievements and problems.” In
Robert E. Barnhill and Richard F. Riesenfeld, editors, Computer Aided Geo-
metric Design, pages 17—44, particularly page 27. Academic Press (1974).

[24] P. O. Frederickson. “Generalized triangular splines.” Math Report 7-71, Lake-
head University, 1971. Cited in [12].

[25] Ronald N. Goldman. “Subdivision algorithms for Bézier triangles.” Computer-
Aided Design 15, 3 (May 1983), 159-166. See also the letter to the editor from
Wolfgang Bohm and Gerald Farin in 15, 5 (September 1983), 260-261.

[26] T. N. T. Goodman and K. Unsworth. “Generation of S-spline curves using a
recurrence relation.” Computer Science Report 85/02, University of Dundee,
Scotland (February 1985).

[27] Paul R. Halmos. Finite-Dimensional Vector Spaces. Springer-Verlag (1974).
(28] Exercise 6, page 38.

[29] Pages 138-139.

(30] Donald E. Knuth. Fundamental Algorithms, pages 50 and 480-482. Volume 1
of The Art of Computer Programming. Addison-Wesley (second edition, 1973).

[31] Serge Lang. Algebra. Addison-Wesley (second edition, 1984).

[32] Pages 501-502.
[33] Page 520.
[34] Pages 586-588.

[35] Lyle Ramshaw. “Béziers and B-splines as multiaffine maps.” To appear in
Theoretical Foundations of Computer Graphics and CAD, the proceedings of
a NATO International Advanced Study Institute in Lucca, Italy during July,
1987. Springer-Verlag (1987).

[36] M. A. Sabin. The use of piecewise forms for the numerical representation of
shape. Dissertation, Hungarian Academy of Sciences (1977). Cited in (3, 5].

[37] P. Sablonniére. “Spline and Bézier polygons associated with a polynomial spline
curve.” Computer-Aided Design 10, 4 (July 1978), 257-261.

[38] Jorge Stolfi. “Oriented projective geometry.” To appear in the proceedings of
the ACM Symposium on Computational Geometry, Waterloo, Canada (June
1987).

[39] E. C. Zeeman. “The umbilic bracelet and the double-cusp catastrophe.” In
P. Hilton, editor, Structural Stability, the Theory of Catastrophes, and Applica-
tions in the Sciences, published as volume 525 of Lecture Notes in Mathematics,
pages 328-366. Springer-Verlag (1976).

INDEX

Index

A-frame
apparent ~, in rational case 153,154
defined 114
from blossoming viewpoint 115, 116

affine
contrasted with linear 89

affine blossom
of a bipolynomial surface 73
of a polynomial map 23
of a rational map 144

affine equivalence, defined 21
affine frame 16, 21, 30

affine map
compared with linear 8
converted to linear map using
Homogenizing Principle 27,28

B-polynomial

defined 101

linear blossoms of, as

n-covariant tensors 108

using lattice to compute ~ values 104
B-splines

defined 101

divided difference formula for 106-108

from de Boor Algorithm 101, 102

recurrence for 102-106

barycentric basis, defined
for a linearization 30

barycentric coordinates
defined 16
extending ~ from an affine space
to its linearization 27
Bésier basis, (see Bézier frame)

Bézier curve segments
and blossoming 14

Bézier frame
as special case of a de Casteljau frame 33

165

Bézier points
as blossom values 14
as vertices of an A-frame 114
as vertices of a de Casteljau

Diagram 79-80

constraints on ~ of a cubic surface 6061
defined for parabolic arc 2
of a rational curve, defined 147
in degree raising 59,60

Bézier technique
for specifying a curve 14,32
for specifying surfaces 16

Bézier tensor
defined 146

Bézier triangular surface patches 16

Bészier-de Casteljau theory

in relation to blossoms 12-17

of a bipolynomial surface 71

subdivision property of 38,39
bipolynomial spline surface, defined 130
bipolynomial surface 69-75
blending function, defined 127

blossom

affine ~ (f®) 23
algebraic view of arguments of a 46-57
algorithmic view of arguments of a 38-40
computing a ~, using

coordinate-based technique 12

using coordinate-free technique 12

differential view of arguments of a 40-46
linear ~ (f2), defined 28
multiaffine ~ (f), defined

in Proposition 2.1 10
multilinear ~ (fs), introduced 29
multiprojective ~ (fis1), defined 145
projective ~ (f2,), defined 145

166

blossoming

a bipolynomial surface 71

and parametric continuity 79,80

and polygonal surface patches 118

and the Bégier theory of curves
and surfaces 12-17

applied to bipolynomial functions 69-71

a quadratic curve, geometric
intuition for 15

a spline curve 82-85

B-splines 101-108

a polynomial curve 13-14

a polynomial surface 15-16

in relation to A-frame 115, 116

in relation to computer graphics 8

in relation to osculating flats 44

investigation of spline curves
via ~, 45-46, 78-99

process, introduced 9

rational maps 144-146

use of, in raising the degree of
a spline curve 109-110

use of, in understanding the de
Casteljau Algorithm 38-39

Blossoming Principle
for a bipoynomial surface 70
for a homogeneous polynomial map 11
for a polynomial map 10,11
introduced 8-12

Bdhm, Wolfgang 4,5,79

Cartesian basis, of a linearized
space Pi, defined 30

Cartesian coordinate system
extending a ~, from an affine space
P to its linearisation Ps 27

catastrophe theory 51, 55
Chain Rule 112
Cohen, Elaine 109

computer-aided geometric design
6,18,25,27,48,69,78,124,140

conjugate diameters of an
ellipse, defined 149

convex-hull
~ property of Bésier scheme, in
relation to blossoming 14
property of, in the rational case 150
and blossoming 9
problems in, 1
two types of surface recognized in 68,69

INDEX

continuity constraints, (see
also, parametric and
geometric continuity)

for rational splines 152-154

corner-sectioning 126-127, 132-133

Curried point of view
various applications of 69,71

de Boor Algorithm
computation scheme of 102-106
in relation to spline-controlling 84
introduced 6
weighting functions resulting
from ~ (see B-splines) 101

de Boor, Carl 106, 126, 6, 132

de Boor points 5,6 , 35, 89-90, 101,
of a bipolynomial spline surface 130

de Casteljau Algorithm
for a bipolynomial surface 71
generalized to de Casteljau frames 37-38
introduced 3
using blossoms to understand 36-38
using ~ to convert between

affine frames 119

using ~ to understand blossoms 38,39

de Casteljau basis (see de Casteljau frame)

de Casteljau Diagram
one-dimensional (for curves)
3, 79, 88-90, 153
two-dimensional (for surfaces) 15, 119-121

de Casteljau frame 33-35, 71, 82
de Casteljau, Paul de Faget 6, 33

de Casteljau technique 37, 82
for specifying curves 32-35
in relation to spline curves 82-84
degeneracy 3, 15, 78
in degree raising 60, 76
degree joining
coordinate-based ~ 76
coordinate-free ~ 77
defined 75
deriving formulas for 75-77

degree lowering
coordinate-based 43-44, 66
coordinate-free 67-68
defined 66
deriving formulas for 66-68

degree raising

and simplicity of tensors 61-66

coordinate-based 66

coordinate-free 66—67

defined 58

effect on labels for a polynomial
curve 59,60, 62,63

effect on labels for a
polynomial surface 63-66

INDEX

effect on labels for a spline curve 110,111

degree splitting
coordinate-based ~ 76

coordinate-free ~ 77
defined 75
deriving formulas for 75-77

derivatives
defined for surfaces 42
in terms of blossoms 40-42

DeRose, Anthony 112

DeVore, R. 126 132,

directional derivative, defined 42
divided difference operator 106

Fad di Bruno’s Formula 112
falling factorial power notation 41
Farin’s technique

for indirectly specifying the weights

of Bézier tensors 151, 152

for drawing G2 cubic splines 116
finite Fourier transforms 94
flavor (Flav)

~ of a tensor 22,30
~ of an X-polynomial 19

relation to total derivative of a 1-tensor 59

flavor-biexponentiating
defined for homogeneous
bipolynomial map 74

flavor-exponentiating
defined for homogeneous
polynomial map 29

flavor-multiplicative
defined for multilinear map 29

Forrest, Robin 93
fractional linear map, defined 158
Frederickson, P.O. 133

free vector
on an affine space, defined 26

167

Generalized de Casteljau Algorithm 37

computation scheme of 38

geometric continuity, 79
compared with parametric
continuity 113-114
for spline curves 111-117
in the rational case 152-154

Goldman, Ronald N. 36

Hollig, Klaus 6
Homogenizing Principle
in bipolynomial case 74
linear variant 27,28
use of, in converting from affine
to linear worid 25-29
use of, when differentiating interacts
with blossoming 40-42

hypocycloid 53,53

implicit modeling 1

interpolation 3, 15-16, (see also,
de Casteljau Algorithm)
contrasted with extrapolation 87

joint
between polynomial surfaces 118-121

geometric continuity constraint, defined

79 (see geometric continuity)

parametric continuity constraint, defined

78 (see parametric continuity)

knot
defined 80
multiplicity of a ~ , defined 80

knot sequence
defined 80
introduced 5

knotline
defined 119
multiplicity of a ~ , defined 119

Kronecker delta notation 101 106

linear blossom
of a bipolynomial surface 74
of a polynomial map 28
of a rational map 144

linear map
compared with affine map 8
derivation of ~ from affine map 27-28

168

linearization
of affine space P (Ps) 26

local control
compared with local flexibility 124
defined for drawing splines 124

local flexibility
compared with local control 124
for a square-patch spline surface 125-127
for a triangular-patch
spline surface 131-133
property of spline space, defined 124

Lyche, Tom 109

Moébius strip 48, 50

multiafiine blossom
of a bipolynomial surface, defined 70
of a polynomial map, defined 10
of a rational map, defined 144
relation between ~ and affine blossom 23
term introduced 8,9

multilinear blossom
of a bipolynomial surface 70,74
of a polynomial map 29
of a rational map 44

Multinomial Theorem 24
multiprojective blossom, defined 145

multiprojectivity
defined 145
in the weak sense 154-158

n-tensor

compound ~,
defined 47
introduced 22

defined 22

simple ~,
and degree raising 61-66
defined 47
introduced 22

normal form correspondence
as an algebra isomorphism 21, 30

Odlysko, Andrew 64

osculating
a polynomial surface by a
triangular-patch surface 139
in degree lowering 66
in degree splitting and joining 76

INDEX

osculating flats

and projection 151
relation between ~ and arguments of
a multiaffine blossom 44-45,74

overloading
and degree raising of spline curves 109-110
defined 86
in the B-spline recurrence relation 106
in the divided-difference
formula for B-splines 107
tame ~ ,
defined for spline curve blossom 86
defined for spline surface blossom 122
the notation for a B-spline 101
the notation for a spline
curve blossom 86-87
the notation for a spline
surface blossom 121-123
wild ~, 171
defined for spline curve blossom 86-87
defined for spline surface blossom 122

pairing

defined 154

parametric continuity

and blossoming 79-80

compared with geometric
continuity 113-114

in the rational case 152-154

parametric modeling 1
piecewise modeling 1
pole of a polynomial curve

6, 34-35, 37, 71, 82-85

polynomial curve

defined 10, 12-13
joints between 79-80
raising the degree of a ~, 58-60, 61-63

polynomial map of degree n 10
polynomial of degree n

relation of degree and order 1-2

polynomial surface

defined 10

joints between 118-121

relation to “triangular-patch surface” 69
raising the degree of a ~ , 61, 63-66

Poston Tim 56
power basis, defined 32
projective blossom, defined 145-146

INDEX

projective geometry
and rational maps 142-144
and the simple 2-tensors on L 48-50
and the simple 3-tensors on L 51-55
oriented version of 55
projective line, defined 142
projective map, defined 145
projective plane, defined 49
projective space, defined 142

projective world
blossoming in 145-146
introduced 140

rational curves
controlling and joining 146-154
formula for multiprojective blossom of 147
specifying with Bézier tensors 146148

rational map (between affine spaces)
computing the degree of 140-141
defined 140

rational quadratic curves 148-150

recurrence relation for
B-gplines 6, 101 106
blossomed form of 106
reparameterization, defined 111

Rolle’s Theorem 62

Sabin, M.A. 133
Sablonniére, P. 4, 5 ,93
Saxe, Jim 154,157, 158
scale factors
issues in choosing 140-146, 147-148

scaling

weights of Bézier tensors 147-150
Schumaker, L.L. 109
section of a pairing, defined 154
shape parameters, defined 112
spline

introduced 1
spline curves

blossoms of 82-84

defined 78

geometric continuity for 111-117

periodicities of

additive 93

multiplicative 93
raising the degree of 109-111

169

spline surfaces
with rectangular patches 123-131
with triangular patches 131-139
contrast of square and
triangular patches 135

Stolfl, Jorge 55

symmetry condition
(m;n)-symmetric, defined 70

Taylor series 41, 42, 43, 111

tensor
contravariant, defined 25
dual functionals as ~, 6
covariant, defined 25
B-splines as ~, 7, 108
mixed, defined 25
perfect (m;n)th power ~, defined 74

tensor power
of an affine space 17,22
of a linear space 28-29

tensor product
of affine spaces, asymmetric 72-73
of elements 21
of linear spaces, asymmetric 74

tensor product construction
use of, in converting multiaffine
blossoms to affine 17
variant of, for algebras 73

tensor product surface (see also
bipolynomial surface) 69, 73

Tensoring Principle 6
asymmetric affine variant 72-73
asymmetric linear variant 74
developed 17-23
exploited to study blossom geometry 46
symmetric affine variant 23
symmetric linear variant 28-29
symmetric projective variant 145

total tensor differentiation, defined 58-59

trellis
of a spline curve, defined 93

triaffine function, introduced 4

triangular patch surface
defined in this paper 135
standard definition 68-69

truncated power function, defined 108

170

undeflnedness
compared in affine and
projective worlds 143-144
in indeterminate point approach 156
in the almost-everywhere
approach 154-155
univariate Beta Constraints

and geometric continuity 112-114
defined 112

validity interval, defined 81
Vandermonde determinant 34
vector-space duality 6, 25, 108

X-Polynomial
defined 18
flavor of 19

INDEX

rewriting tensor as ~, with affine frame 21

corresponding process
with linear basis 30

X-Polynomial Construction 18-19

applied to a multiaffine blossom 19-20

Zeeman’s umbilic bracelet 51-56

(m;n)

(81,...,up)
(u1,...,up;uo)
[61,...,up;uo]

@.

+ and

Index of Notations

Degree bounds

the degree bound on a polynomial map
the degree bound on a bipolynomial map
Points and coordinates

the Cartesian coordinates of a point u in an affine space

the Cartesian coordinates of a point u in a linear space

the homogeneous coordinates of a point in a projective space

the point (r) with real coordinate r in the affine line L
the points with coordinates r and s in the lines U and V'

Maps and blossoms

a polynomial map between affinespaces
the multiaffine blossomof F

the affine blossom of F

the homogeneous polynomial formof #

the multilinear blossom of F
the linear blossom of F' .

........

a rational map between projective spaces
the multiprojective blossom of Fi4
the projective blossom of Fiy

.............

the shared values of the blossoms f; for ¢ in theset S

the shared values of those f; for which (Z;,41) N (F,5) # 0

Spaces and tensors

an affinespace
an X-polynomial on P
the algebra of X-polynomials on P .
the k-homogeneous c-flavored X-polynomialson P

..............

affine equivalence between X-polynomials

an affine equivalence class of X-polynomials, that is, a tensor
the symmetric tensor algebraon P
the k-homogeneous c-flavored tensors on P
the normal-form map associated with an affine frame for P
the normal-form map associated with a linear basis for Pi
the linearization X}[P] of P, formed by all 1-tensors on P
the affine space P = X![P] formed by all pointsin P . . .
the linear space X [P] formed by all vectors on P

the unit vector on the affine line L .

. . 70

.................

...............

............

............

171

69

. 10

27
142

13

. 10

10
23

29
29
28

144
145
145

. 81
. 81

18
. 18
. 19

21

.21
.21

22

.21
. 30
. . 26
. 26
. 26

172

peén
PRQ
wen
WeZz
ab
a®b

dFy(£)

DQF(u)
dkFu(fl, esvy Ek)
D¢, -+ D¢, F(u)
D(e)

zk

Oscy F(r)
S\T

4

[t_,-, s ’tJ'+ﬂ+1]

Bs

INDEX OF NOTATIONS

Tensor powers and tensor products

the nth symmetric tensor power of the affine space P .
the asymmetric tensor product of the affine spaces P and Q . .

L Y

the nth symmetric tensor power of the linear space w
the asymmetric tensor product of the linear spaces W and Z

a tensor on P formed as the product of two tensors on P

a tensor on (U;V) formed as the product of tensorson U and V' .

Derivatives

the derivative of F at the point u, evaluated on the vector { . .
the quantity dFy(£) expressed as a directional derivative
the kth derivative of F at u, evaluated at §; through §x
the same quantity expressed as a directional derivative

the total tensor derivative of the tensor e

..........

Miscellaneous

a falling factorial power
the flat that osculates F to kth order at r
the set difference of S and T
the Kronecker delta notation
a divided-difference operator
the ¢th shape parameter of a joint in a spline curve

..................

..........

...............

...............

...............

. 22
.72

28

. 74
. 21

73

. 42
. 42
. 42
.. 42

58

41

. 44
. 76

101
106
112

SRC Reports

“A Kernel Language for Modules and Abstract Data “Retiming Synchronous Circuitry.”
Types.” Charles E. Leiserson and James B. Saxe.
R. Burstall and B. Lampson. Research Report 13, August 20, 1986.

Research Report 1, September 1, 1984. 2 .
“An O(n®) Shortest Path Algorithm for a Non-

“Optimal Point Location in a Monotone Rotating Convex Body.”
Subdivision.” John Hershberger and Leonidas J. Guibas.
Herbert Edelsbrunner, Leo J. Guibas, and Jorge Research Report 14, November 27, 1986.
Stolfi. . .
Research Report 2, October 25, 1984. “A Simple Ap;:roa.ch to Specifying Concurrent
Systems.
“On Extending Modula-2 for Building Large, Leslie Lamport.
Integrated Systems.” Research Report 15, December 25, 1986.

Paul Rovner, Roy Levin, John Wick.

Research Report 3, January 11, 1985. “A Generalization of Dijkstra’s Calculus.”

Greg Nelson.

“Eliminating go to’s while Preserving Program Research Report 16, April 2, 1987.
Structure.”

Lyle Ramshaw.

Research Report 4, July 15, 1985.

“win and stn: Predicate Transformers for
Concurrency.”
Leslie Lamport.

“Larch in Five Easy Pieces.” Research Report 17, May 1, 1987.
J. V. Guttag, J. J. Horning, and J. M. Wing. “Synchronizing Ti »
Research Report 5, July 24, 1985. ynchronizing lime Servers.

Leslie Lamport.
“A Caching File System for a Programmer’s Research Report 18, June 1, 1987.

Workstation.”

Michael D. Schroeder, David K. Gifford, and Roger
M. Needham.

Research Report 6, October 19, 1985.

“A Fast Mutual Exclusion Algorithm.”
Leslie Lamport.
Research Report 7, November 14, 1985.

“On Interprocess Communication.”
Leslie Lamport.
Research Report 8, December 25, 1985.

“Topologically Sweeping an Arrangement.”
Herbert Edelsbrunner and Leonidas J. Guibas.
Research Report 9, April 1, 1986.

“A Polymorphic A-calculus with Type:Type.”
Luca Cardelli.
Research Report 10, May 1, 1986.

“Control Predicates Are Better Than Dummy
Variables For Reasoning About Program
Control.”

Leslie Lamport.
Research Report 11, May 5, 1986.

“Fractional Cascading.”
Bernard Chazelle and Leonidas J. Guibas.
Research Report 12, June 23, 1986.

dlilglitlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

