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Author’s Abstract

The weakest liberal precondition and strongest postcondition predicate transformers
are generalized to the weakest invariant and strongest invariant. These new predicate
transformers are useful for reasoning about concurrent programs contai ning operations
in which the grain of atomicity is unspecified. They can aso be used to replace
behavioral arguments with more rigorous assertional ones.

Capsule Review

It iswidely recognized that reasoning, either formally or informally, about concurrent
programsis harder than reasoning about ordinary sequentia programs. At any pointin
the execution of any thread of control it is potentially possible for shared variablesto
be written by another thread, invalidating conditionsthat have just been established by
thefirst thread.

The standard approach to verifying concurrent programs isto divide the execution of
each thread into a series of atomic actions, and to show that all possibleinterleavingsof
the atomic actions of the variousthreads are guaranteed to produce correct results. This
report introduces a new method for verifying concurrent programs without specifying
the grain of atomicity of operations. It requires instead only that certain invariants of
the operations be known. For example, a statement likea := b + c typicaly consists
of several atomic actions (particularly if a, b, and c are long integers and cannot be
read or written atomically by the hardware), but it may be assumed that execution of
the entire statement or any part of it leavesinvariant the value of any variabled distinct
froma, b, and c.

From a theoretical standpoint, the verification method introduced in this report is
interesting in that it makes it possibleto verify concurrent programs without precisely
specifying the decomposition of statements into atomic operations. From a practical
standpoint, this means that programs can be analyzed at a coarser grain than that of
atomic operations.

The tools developed here are by no means a panacea. Verification of concurrent
algorithms is still a tricky business, requiring careful attention to detail, as study of
the examples in the text will indicate. However, by alowing the analysis to be done
at a coarser grain, these tools can reduce the number of steps (and consequently the
temptation to skip some steps) needed for verification, making the process somewhat
less arduous (and error-prone) than it has been in the past.

Jim Saxe
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1 Introduction

Partial correctness is a relation between the program states before and after execution
of an entire program. For reasoning about concurrent programs, the appropriate gener-
alization of partial correctness isinvariance, which is a relation between the program
states before and after the execution of each atomic operation of a program. The ap-
propriate generaization of the Hoare triple { P} S{Q} is the assertion that S leaves a
predicate | invariant [13]. Because the invariant | describes the program state during
execution, it must depend upon the control state as well as on the values of ordinary
program variables.

The predicate transformerswip (the weakest liberal precondition) and sp (the strongest
postcondition) for proving partia correctness properties of sequentia programs were
developed in the early 1970's by de Bakker and others [3, 4] and popularized by
Dijkstra[5]. Here, we generalize them to the predicate transformers win (the weakest
invariant) and sin (the strongest invariant) for proving safety properties of concurrent
programs. Some of the ideas presented here originally appeared in [12], but with a
different notation.

Thewlpand sp operatorsare useful because they allow oneto encode partial correctness
informationin a predicate. A predicate containing the wlp or sp operator can be used
in aprogram annotation to prove apartial correctness property. Whileit iswell known
that the ability to express such predicates is necessary for alogic of Hoare triples to
be complete [1], the practical utility of these predicates in proving partial correctness
propertiesis not widely appreciated.

In an anal ogous fashion, the predicate transformers win and sin are useful for proving
invariance properties of concurrent programs because predicates they can appear in
an invariant. We have discovered two applications of these predicate transformers:
reasoning about programs that are not decomposed into their atomic operations, and
transforming certain behavioral reasoning into more rigorous assertiona reasoning.

We give two examples of reasoning about nonatomic operations. The first shows that,
when theatomicity of an operationisobvioudly irrelevant, we can reason directly about
the nonatomic operation instead of pretending that it is atomic. While not having
to introduce unnecessary atomicity is aesthetically pleasing, it offers little practical
benefit. The second example, a correctness proof of the bakery algorithm [9], is
more compelling. The bakery agorithm is a mutual exclusion agorithm that makes
no atomicity assumptions about its operations. Our proof reveals that the algorithm
has a subtle bug—more precisely, its correctness depends upon unstated assumptions.
Correctness proofs of the bakery agorithm have appeared in [9] and [10], and a proof
of a variant, requiring the same assumptions, appeared in [11]. The fact that none of
these other proofs revealed the hidden assumption indicates the utility of the approach



presented here.

Our final example illustrates a different use of the predicate transformers. Assertional
reasoning, based upon invariance, has proved to be more reliable than behaviora
reasoning, which argues directly about the sequence of operations executed by the
program. However, there have been examples in which a purely assertiona proof
was more complicated than a hybrid proof—one using a behaviora argument to show
that the given agorithm is equivalent to a simpler one whose correctness is proved
assertionally. It appears that the win and sin operators can be used in these examples
to replace the hybrid proof with a simple, assertional one. This is illustrated by a
distributed algorithm abstracted from part of a well-known algorithm for computing a
minimum spanning tree [6].

This paper isprimarily concerned with applicationsof winand sin rather than with their
formal properties. The treatment of the formalismis brief, and no attempt is made to
develop a complete proof system. We hope to present compl eteness resultsin a future

paper.

Our approach is semantic rather than syntactic, meaning that we deal not with pieces of
program text but with the mathematical objects represented by those pieces of text. For
example, we view the expression x > 0 as a boolean-valued function on the program
state (afunction that depends only on the value of the variable x) rather than asa string
of characters generated by some grammar. By eschewing syntax, we hope to focus
attention on the underlying concepts.

The definitionsand propertiesof the predicate transformerswin and sin are independent
of a programming language. They can be applied to concurrent programs written
in any imperative language, regardless of whether processes communicate through
shared memory, synchronous or asynchronous message passing, or remote procedure
cal. However, our mgjor examples involve a generaization of the Owicki-Gries
method [10, 14], and we describe this method only for programs that can be written in
avery simple language.

2 Assertional Reasoning

We begin with a review of the traditional approach to concurrent program verification
that will servetointroduce some notation and describe our view of concurrent programs.
We take as an exampl e the program of Figure 1. In this program, the body of the outer
cobegin is executed concurrently as n separate processes, each with a different value
substitutedfor i, and the body of theinner cobegin similarly “forks’ n— 1 subprocesses.
(Here and throughout this paper, the range of values of thevariablesi and j isassumed
tobetheset {1, ..., n}. To avoid having to define the meaning of an empty cobegin
statement, we assume that n > 1 for this program and its variants that appear later.)
The await operation can be executed only when its condition istrue, in which case it
is equivalent to a skip. Angle brackets enclose atomic operations, and the predicate



var num: array 1...n of nonnegativeinteger;
cobeginUi_1.n
loopncs;: (noncritical section);
Bi: (num[i] :=1+ max{num[j]:j #i});
8i: cobeginlj
nij: (awaiti < j)
coend;
csi: (critical section);
pi: (num[i] :=0)
endloop
coend

Figure1: A simplified version of the bakery agorithm.

i <« ] isdefined to equal
(num[j]1=0) v (num[i] < num[j]) v (num[i] = num[j] A i < ) (@D}

Since we are concerned only with safety properties [10], it does not matter what
fairness assumptions are made about when an operation must be executed. Thus, the
inner cobegin could beimplemented by afor loop, with the subprocesses executed one
after the other.

This program is a simplified version of the bakery algorithm—a mutual exclusion
algorithm described in [9]. The critical and noncritical sections are represented by
atomic operations, which are assumed not to modify the variables num[i], and the
original bakery agorithmistrivialized by making the operations g; and »;; atomic.

2.1 Statesand Predicates

In our semantic approach, a program consists of a set S of states and a set IT of atomic
operations.! Here, we describe the set of states; atomic operations are defined in
Section 2.2.

States

A dstate of a program is a mapping from the set of program variables to some set of
values—in other words, a state consists of an assignment of values to the program’s
variables. Inadditionto ordinary program variables, we a so introducecontrol variables
that describe the control state of the program.

For simple cobegin programs, such as the simplified bakery agorithm of Figure 1,
the control variables consist of variables at(¢), for every atomic operation & in I1.

11f we were considering liveness properties as well as safety properties, a program would also have to
include fairness conditions.



The variable at(¢) is a boolean-valued variable whose value is trueiff (if and only if)
control isat operation &. For the simplified bakery algorithm, the variables are num[i],
at(ncs;), at(g;), at(nij), at(csi), and at(p;), foral i, j = 1,...,nwithi # j. A state
of this program is an assignment of nonnegative integers to the variables num[i] and
booleansto the at variables.

We restrict the set S of states to allow only valid assignments of values to the control
variables. For simple cobegin programs, we require that the values of the at variables
do not declare control to be at two places in the same process—except where a nested
cobegin splits the process into subprocesses. For example, in the simplified bakery
agorithm, at(n;j) and at(cs;) are not both assigned the value true in any state.

The set S of program states may include ones we don’t expect to occur during an
execution. For example, the simplified bakery agorithm contains states with at(n;;)
trueand num[i] = 0, even though 8; sets num[i] to a nonzero value. Similarly, there
are states in which at(cs;) and at(cs,) both have the value true, even though thisis
acorrect mutual exclusion algorithm, and control will never be simultaneously at the
critical sections of two different processes while executing the program.

Definition of it %
1" Um

Let xq, ..., Xm be digtinct variables, and let v, ..., vy bevaues. For any state s, we
define st 7 to be the assignment of values to variables that is the same as s except
that each x;, is assigned the value vp. Note that ]! » need not be a state if one or
more of the X; are control variables.

State Functions and Predicates

A dtate function is a function whose domain is the set of states, and a predicate is a
boolean-valued state function. If P isa predicate, wewrites = P instead of P(s) and
define = P toequal Vs € S: s = P. Thus, = P assertsthat P istruefor al program
States.

A variable is a state function whose value on a state is the value of the variable in that
gtate. In particular, aboolean-valued variableis a predicate.

State Function Not Accessing a Set of Variables

We say that a state function f does not access a set {3, ..., Xy} of variables iff
f(s) = f(s)t)m) forevery statesand dl values vy, . . ., vy such that st 7m isastate.
Intuitively, f does not access a set of variables iff the value of f can be computed
without knowing the values of those variables.?

20One might expect that a state function does not access a set {x1, ..., Xm} of variables iff it does not
access each singleton set {X; }. However, thisis not true. For example, in the simplified bakery algorithm,
taking any state and changing the value of either at(cs;) or at(p; ) by itself cannot yield avalid control state.
Hence, every state function does not access the set {at(cs;)} and does not accessthe set {at(p;)}. However,
at(cs;) is a state function that accesses (does not not access) the set {at(cs; ), at(p;)}. What al this meansis



A control predicateisa predicate that does not access the set of all variables other than
control variables.

2.2 Actionsand Atomic Operations

Actions

Anactionisarelation on the set of states—that is, a set of pairs of states. The possible
executions of an atomic operation are represented by an action &, where (s,t) € &
means that executing the atomic operation starting in state s can produce statet.

Anaction & isdeterministiciff for each state s thereisat most onet suchthat (s, t) € &.
Any deterministic action can be writtenin thefollowing form, where the x,, are distinct
program variables, b isa predicate, and the e, are state functions:

X1 €1
b = 2
Xm €n

This describes the set of all pairs (s, S:i(s)jjj g“ﬁ(s)) such that s = b equalstrue. In other
words, it is an action that can be executed only if b istrue, and it has the effect of first
evaluating the expressions e, and then setting the xp, &l in one step. Although we
do not assume that actions are deterministic, we will not discuss the representation of

nondeterministic actions.
For the ssimplified bakery algorithm of Figure 1, statement 8; describesthe action

numli] 1+ max{num[j]:j #i}
at(si) (at(,Bi) ) = (false )

at(nij) true, forall j #i
and statement #;; describes the action
- . . at(ni;)\ . (false
at(nij) A i < j (at(csi) = /\k#j —at(ni)

Action Modifying or Not Accessing Variables

We say that an action & modifiesavariable x iff thereexistsapair (s, t) in& such that x
hasdifferent valuesin statess and t. We say that & doesnot accesstheset {xs, ..., Xm}
of variablesiff & does not modify any of thex, andfor any (s, t) € & and any valuesvy,
<oy um, i SJEIm isastate then (sitm, tib7m) € €. Intuitively, x does not access a

< Um? SV Um

set of variablesiff & can be executed without reading or writing any of those variables.

that thereis no unique definition of the set of variablesthat are accessed by a state function.



The action (2) does not modify any variables other than the xp; it does not access any
set of variables that does not contain the x, and is not accessed by any of thee,. In
the simplified bakery algorithm, the action described by 8, modifies only the variables
num(2], at(B2), and at(n2;) for dl j # 2; it does not access the set {at(B1), at(n1)} (as
well as many other sets of variables).

Atomic Operations

An atomic operation & of aprogram consistsof an action together with control predicates
at(¢) and after(¢). Intuitively, at(¢) asserts that control is at a point where & can be
executed, and after (&) assertsthat control isat apoint that can be reached by executing
&. Inthe simplified bakery agorithm,

after(ncs)) = at(B)
after(8) = /\ at(nij)
j#i
after(nij) = at(cs) v (ﬁat(’iij) ~\ at(’“k))
ket j
after(p;) = at(ncs;)

The at predicates are program variables and are not defined in terms of anything el se.

We will identify an atomic operation with itsaction. Thus, if £ isan atomic operation,
(s, t) € &£ meansthat the pair of states (s, t) isan element of the action of £. Similarly,
we say that an atomic operation does not modify avariableiff itsaction does not modify
thevariable.

Our informal statement, that at(¢) holdsiff control isat & and after (¢) holdsiff control is
immediately after £, isformalized asthefoll owingassumption about atomic operations.

CTL1. For any atomic operation &: if (s,t) € & then s = at(§) and
t = after(&).

For simple cobegin programs like the smplified bakery algorithm, there is avariable
at(¢) for each atomic operation & in the set T of the program’s atomic operations. For
programswrittenin a different language, the at predicates might be defined in terms of
other control variables.

2.3 TheHoarelLogic of Actions

Definition of Hoare Triples

Let & bean actionand let P and Q be predicates. We definethe Hoaretriple { P} & { Q}
tomean V(s,t) € £&:(s = P) = (t = Q). In other words, {P} & {Q} asserts that
if P istruein state s and executing & in state s can yield state t, then Q istruein



statet. While this definition is superficially the same as the usual one for ordinary
Hoaretriples, it is different in two respects: (i) £ isan action (a set of pairs of states),
not a program statement, and (ii) the state includes control variables, not just ordinary
program variables.

Proving Hoare Triples

Thelanguage-independent rulesfor reasoning about ordinary Hoare triples[8] apply to
our Hoaretriplesaswell. Because our statesincludecontrol variables, we do not need a
separateaxiomor proof rulefor every languageconstruct. Instead, wecan usethesimple
rulethat, if & istheaction (2), then {P} £ {Q} isequivaentto = (P A b) = Qg &,

where Qg 3 isthe predicate defined by lettings = Qi i equal S:i(s)jjj 2",{3) = Q,

for any state s.3 This rule follows from the definitions of {P} £ {Q} and of action (2).
As an example, the reader can derive {(num[i] > 0) v —at(#ij)} nij {i < j} fromthis
rule and the definitionof i « j.

Action Leaving a Predicate Invariant or Unchanged

We say that a predicate P isan invariant of an action &, or that & leaves P invariant,
iff {P}& {P} holds. In other words, P isan invariant of & iff any execution of & froma
statein which P istrueyieldsastatein which P istrue.

We say that £ leaves P unchanged iff it leaves both P and —P invariant, which istrue
iff( sEP)=(EP)fordl (s,t) €é&.

Properties of Invariance

We now list some simple properties that are useful for reasoning about invariance,
where & isan arbitrary atomic operation and P and the B, are predicates.

AC1. If P doesnot accesstheset of variablesmodified by &, then & leaves P unchanged.
AC2. If & leaveseach B invariant, then it leaves /\,, P, and \/,, P invariant.
AC3. If = P = —at(&) then & leaves P invariant.

ACA4. & leaves P invariant iff it leaves (at(&) v after(&)) A P invariant.

Properties AC1 and AC2 follow from the definitions of what it means for an action to
leave a predicate invariant or unchanged. Properties AC3 and AC4 follow from the
definition of invariance and assumption CTL1.

Remember that an atomic operation & consists of an action together with the control
predicates at(¢) and after(£). Properties of atomic operations that do not mention
control predicates, such as propertiesAC1 and AC2, hold for any action.

3In a syntactic approach, one would define QQ::: Qn" when Q and the e, are formulas rather than state
functions. Given formulas for Q and the ep, the formula for Q& " & is obtained by simultaneously
substituting ep for xp, forp=1,..., m.



24 Propertiesof a Program

Executions

An execution of the program consists of afinite or infinite sequence s, sy, . . . Of states
such that each pair (S, Sme1) iSin some action of I1.4 In other words, an execution
is any sequence of states obtained by starting in an arbitrary state and executing pro-
gram actions. Properties of the program are expressed as assertions about the set of
executions.

We do not assume any particular starting state for the execution, so the simplified
bakery algorithm has executions beginning in a state with all processes at their critical
sections. In our formalism, the usual assumption that the program starts in a proper
initial state appears as a hypothesisin the property to be proved.

We can consider two programsto be equivalent if they have the same set of executions.
A pair of statesisin an action of IT iff it isin the union of al the actions of I1. (Since
actions are sets of pairs, the union of actions is just ordinary set union.) The set of
executions of aprogram depends only on the set S of states and the union of the actions
in IT. Thus, two programs may be considered equivalent if they have the same set of
states and the unions of their atomic operations are the same.

There can be many different sets I that have the same union and thus define equival ent
programs. For example, suppose a program has an atomic operation & that sends a
message to some process p and an atomic operation p that sends a message to some
other process q. Replacing these two atomic operations by the single atomic operation
& U u that sends a message to either p or g results in a new set T1 that defines an
equivalent program. (We define at(¢ U w) to be at(¢) v at(n) and after(¢ U w) to be
after(&) v after(u).) Theaction & U u will be nondeterministicif there existsastatein
which the program can send a message to either p or g.

Properties

A property isaboolean-val ued function on the set of sequences of states. The program
is said to satisfy a property P, written = P, iff P istruefor every program execution.

If P and Q are predicates, we define P = 0OQ to be the property that is true of a
sequence Sy, 1, - - . iff = (so = P) v (Vm: sy = Q). Thus, = P = OQ assertsthat Q
istruefor every state of every program execution that startsin a state with P true.

We consider only properties of the form P = OQ. Partia correctness is expressed
in this form by letting P be the initial condition and Q the predicate asserting that
the termination condition (which is a control predicate) implies that the answer is
correct. The mutua exclusion property of the simplified bakery algorithmis expressed
as P = OQwhere P is /\; at(ncs;) and Q is /\;; —(at(csi) A at(cs;))).

4Since we are concerned only with safety properties, we need not disallow finite sequences that end in
nonhalting states.



Program Invariants

A predicate is said to be a program invariant iff it is an invariant of every action of
I, or, equivalently, iff it is an invariant of the union of all actions of T1. A predicate
| isaprograminvariant iff = | = 0Ol. Itisclearthaa =P = |, = | = 0OIl, and
= | = Q together imply = P = 0OQ. Hence, to prove = P = 0OQ, it suffices
to find a program invariant | suchthat = P = | and = | = Q. This reduces the
proof of a safety property, which is an assertion about executions, to reasoning about
predicates and individua actions.

2.5 Simple cobegin Programs

We will describe the Owicki-Gries method only for programs that can be written in a
simplelanguage of nested cobegins. We now describe these programs and make some
definitionsthat pertain only to them and not to arbitrary programs.

TheProgramsand Their Control Predicates

A simple cobegin program is one that can be written in a language consisting of € -
ementary statements (such as assignment and await statements), concatenation (“;”),
nonterminating loop—endloop statements, and cobegin—coend statements. We re-
quirethat any “loop” keywords must precede every “;”. Each elementary statement is
enclosed in angle brackets, indicating that it represents an atomic operation.

The control variables of asimple cobegin program consist of the variables at(¢) for all
itsatomic operations&. The after predicates can be defined in terms of the at variables
by a simple recursion on the program structure; we will not bother giving the general
definition.

Atomic Operations Belonging to Different Processes

We say that two atomic operations belong to different processes iff they occur in
different clauses of the same cobegin statement. For example, in the ssimplified bakery
agorithm of Figure 1, n;; and nix belong to different processesif j # k, while g and
nij do not belong to different processes. The Owicki-Gries method is based upon the
following property of simple cobegin programs.

CTL2. If atomic operations & and w in I belong to different processes, then & leaves
at(w) and after(u) unchanged.

Predecessors

We say that an atomic operation w is a predecessor of an atomic operation & iff
control can reach & by executing n. In the simplified bakery agorithm, g; isthe only
predecessor of each #;j, and each n;; is the only predecessor of cs;. Our restriction



var num: array 1...n of nonnegativeinteger;
cobeginli_1. n
loopncs;: (noncritical section);
Bi: (num[i] :=1+ max{num[j]:j #i}) {num[i] > O};

8i: cobeginlj
{num[i] > O} n;j: (awaiti < j) {(num[i] > 0) A (i < })}
coend;

{(num[i] > 0) A A, ( <))}
csi: (critical section);
pi: (num[i] :=0)
endloop
coend

Figure 2: An annotation of the simplified bakery agorithm.

that a “loop” cannot follow a*“;” implies that an atomic operation has more than one
predecessor only if it immediately followsa*“coend”. If the body of aloop statement
consists of asingle atomic operation &, then & isits own predecessor.

2.6 TheOwicki-GriesMethod

Decomposing the Invariant

One can prove directly that a predicate | isa program invariant by proving {I}& {1}
for every atomic operation &, as proposed by Ashcroft [2]. However, in the Owicki-
Gries method [10, 14], the proof is decomposed into smaller steps by writing | as a
conjunction of simpler predicates. For our cobegin programs, | iswritteninthe form

/\ @) = 1o) A (after(5) = 1) (3)

Eell

for predicates 1 and ;. Intuitively, | isthe predicate asserting that, for every atomic
operation &, if control isat & then I; istrue, and if control isimmediately after £ then
I/ istrue. We represent | as a program annotation, where {l¢} is written immediately
before and {1;} immediately after &, omitting predicates that are identically true. We
say that the annotationisinvariant iff the predicate | represented by the annotationis
aprogram invariant.

Figure2 showssuch an annotationfor thesimplified bakery al gorithm. For the predicate
I defined by  this  annotation, it is ey to se tha
E /\ at(ncsi)) = |, and some predicate calculus reasoning shows that the defini-
tionofi « j implies= 1 = /\i;&j —(at(csi) A at(cs;)). Hence, to prove the mutual
exclusion property for thisagorithm, we need prove only the invariance of 1.
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The Owicki-Gries Conditions

One provestheinvariance of an annotation by proving the following two Owicki-Gries
conditions.

Sequential Correctness:
(@) Forevery action& e IT: {I:}& {I.}.

(b) For every action & € II: if wua,..., um are the predecessors of &, then
E (at(¢) A /\p Il;p) = I

Interference Freedom:  For every pair of distinct atomic operations
& p in II that belong to different processes.  {l, A I} pu{lg} and

(A1 i {12),

The proof that these conditions imply the invariance of (3) uses properties CTL1,
CTL2, and AC2, the definition of aHoare triple, and properties of the control structure
of simple cobegin programs.

We urge the reader who is not familiar with the Owicki-Griesmethod to useit to prove
the invariance of the annotation of Figure 2.

3 TheWeakest and Strongest | nvariants

3.1 MoreAbout Actions

The Composition of Actions

Let &£ u denote the composition of the actions & and ., which is defined to be the action
{(s,u) : At ((s,t) € &) A ((t,u) € w)}. Thus, & u isexecuted by first executing & then
executing u, dl as asingle action. The composition of two actions in I1, the set of
atomic operations of the program, is usually not an element of I1.

The composition &; - - - &y of any finite, nonempty sequence of actionsis defined in the
obviousway, and the composition of the null sequence of actionsis defined to be the
identity action {(s, s) : s € S}. Thus, any element in IT*, the set of finite sequences of
atomic operationsin I, is defined to be an action.

Commutativity of Actions

We say that & right commutes with p (or that n left commutes with &) iff £ C ué.
Hence, & right commutes with w iff (s,t) € & and (t, u) € u imply that there existsa
gtatet’ with (s,t') € pw and (t/, u) € &. Intuitively, & right commutes with . iff any
state reachable from state s by first executing & and then executing w is also reachable
from s by first executing u then executing & .
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Two actions are said to commute iff each of them right commutes with the other—in
other words, iff executing themin either order hasthe same effect. A semaphore action
P(s) right commutes with a semaphore action V (s) in a different process, but these
two actions do not commute.

The following property is a consequence of the definitions of commutativity and of
what it means for an action not to access a set of variables.

AC5. Two actionscommuteif each of them does not accessthe set of variablesmodified
by the other.

3.2 TheWeakest Liberal Precondition

For any action ¢ and predicate Q, we define the predicate wip(§, Q) by letting
s = wlp, Q) equa vVt € S:((s,t) € §) = (t &= Q). The operator wip is the
weakest liberal precondition operator [5]. The predicate wlp(§, Q) istheweakest one
satisfying {wlp(g, Q)} & {Q}. Thus, {P}& {Q} isequivdentto = P = wlp§, Q),
s0 & leaves | invariant iff = | = wlp(&, 1). If & isthe action defined by (2), then
wlp, Q) = Qi i v —b.

Our definition of wlp(§, Q) differs from the usua definition in that (i) & is an action
rather than a program statement, and (ii) our predicates may be functions of control
variables, rather than just of ordinary variables. For example, CTL1 and the definition
of wipimply = (—at(§)) = wlp(§, Q) for any atomic operation & and predicate Q.
Thisresult has no counterpart for the usual definition of wip.

Wewill usethefollowing propertiesof wip, where P, Q, and the Qy, are any predicates,
and & and p are any actions.

WLPO. = wlpu, Q) = wlpE, wip(u, Q)
WLPL = A, wlp(, Qn) = wlpé&, A, Qn)
WLP2. If = P = Qthen = wlp(, P) = wip, Q).

WLP3. If & leaves | invariant and & right commutes with ., then & leaves wlp(u, 1)
invariant.

WLPA. If & leaves P unchanged, then = wlpE, P v Q) = P v wlp(&, Q).

WLP5. If aset of variablesis not accessed by & and not accessed by Q, then it is not
accessed by wip(é, Q).

Properties WLPO-WL P2 follow easily from the definition of wip and are well known.
Notethat in WLP1, h can range over an infinite set of indices. Property WLP3 follows
from WLPO and the easily derived property that « € g implies = wlp(8, Q) =
wlp(a, Q). Property WLP4 can be derived from WLP1 and WLP2, athough it is
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easier to proveit directly from the definition of wip. Property WLP5 followsfrom the
definitions of wip and of what it means for a predicate or an action not to access a set
of variables.

3.3 The Strongest Postcondition

The strongest postcondition operator, sp, is defined by lettingt = sp(&, P) equal
ds € S ((s,t) € &) A (s &= P). It follows from this definition that {P} & {Q} is
equivaentto =sp(&, P) = Q.

Asobserved by de Bakker and Meertens[4], the operator sp isa dual of wip; for every
property of wip thereisacorresponding dual property of sp. For example, thefollowing
are the duals of WLP2 and WLP3.

SP2. If = P = Qthen |=sp(, P) = sp(&, Q).

SP3. If & leaves | invariant and & left commutes with w, then & leaves sp(u, I)
invariant.

Theinterested reader can derive these and the duals of the other properties of wip.

3.4 Nonatomic Operations

Operationsand Their Control Predicates

An operation o consists of aset of atomic operations and two control predicates, at(o)
and after (o). Theset of operationsof ¢ containsall the atomic operationsthat constitute
o, and the predicates at(o) and after (o) assert that control is at the entry and exit point
of o, respectively. For example, in the simplified bakery algorithm, the operation §;
has {ni; : j # i} asitsset of operations, at(s;) = /\j at(ni;), and after(8;) = at(csi).

We identify an operation o with its set of atomic operations, writing & € ¢ to denote
that £ isan element of o’s set of atomic operations. We can view an operation as a set
of actions plus certain control information, so any concept defined for sets of actionsis
also defined for operations. Any property of operations that does not mention control
predicates holds for an arbitrary set of actions.

If o isan operation, we define the control predicatein(o) to equal \/,.,, at(§), soin(o)
assertsthat control isinside o or at its entry point. We make the foll owing assumption
about the relation between in(o), after(o), and the control predicates for the atomic
operationsino.

CTL3. k= (in(o) v after(0)) = \V/,, (at(§) v after(§))

We identify an atomic operation & with the singleton set {£}, so an atomic operation
is an operation consisting of a single action. If & is an atomic operation, then in(&)
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isequivalent to at(£). Therefore, any rules for reasoning about nonatomic operations
should reduce to rules for atomic operationswhen in isreplaced by at.

TheAction (o)

For an operation o, welet (o) denote the action consisting of al pairs (s, t) such that
an execution of o starting from state s can terminate in state t. In other words, (o) is
the action obtained by considering o to be an atomic operation, where nonterminating
executions are disallowed. If = after(o) = —in(o) holds, so o isnot a*salf-looping”
operation, then we can define the action (o) intermsof o, at(o), and after(o) by

(o) = (Jl(s.t) e 1 (s = at(0)) A (t = after(o))} (4)

reo*

When self-looping operations are alowed, the definition of (o) is more complicated
and is omitted.

Hoare Triples, wip, and sp for Operations

We have defined Hoare triples, wip, and sp for actions. We extend these definitions
to operations by defining { P} o {Q} to equal {P} (o) {Q}, defining wlp(o, Q) to equal
wlp((o), Q), etc.

These concepts are traditionally defined for program statements. If we view a pro-
gram statement as an operation, then our definitions are essentialy the same as the
conventiona ones—except that our program state includes control information. More
precisely, if operation o represents aprogram statement S, and the predicate Q does not
access the set of control variables, then wlp(o, Q) equals wlp(S, Q) v —at(o), where
wlp(S, —) denotes the traditional weskest liberal precondition operator for statement
S.

Some Definitionsfor Sets of Actions

We now extend the definitions of some properties of individual actionsto properties of
sets of actions (and hence of operations) by defining them to hold for a set of actions
iff they hold for each action in the set. A set o of actionsis said to leave a predicate
P invariant iff each actionin o leaves P invariant, and to leave P unchanged iff each
actionin o leaves P unchanged. We say that ¢ modifiesavariableiff someactionin o
modifiesthe variable, and that it does not access a set of variablesiff each of itsactions
does not access the set of variables. We say that o right commutes with a set of actions
7 iff every action of o right commutes with every action of t; the definitions of |eft
commutes and commutes are ana ogous.

Properties of Operations

We will use the following genera properties of operations, where o and t are any
operationsand P, Q, andthe B, are any predicates. Notethat OP1, OP2, and OP5 hold
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for arbitrary sets of actions, not just for operations.

OPL1. If P does not access the set of variables modified by o, then o leaves P un-
changed.

OP2. If o leaves each B, invariant, then it leaves A\, P, and \/,, B, invariant.
OP3. ¢ leaves P A —in(o) invariant.
OP4. o leaves P invariant iff it leaves (in(o) Vv after(o)) A P invariant.

OP5. Operationso and r commute if each of them does not access the set of variables
modified by the other.

Properties OP1, OP2, and OP5 are immediate consequences of the correspondingly-
numbered properties of actions. Property OP3 followsfrom AC3 and the definition of
in(o). Property OP4 followsfrom AC3, AC4, the definition of in(c), and assumption
CTL3.

3.5 TheWeakest Invariant

Definition of win

Let o beaset of actionsand let Q beapredicate. The predicate win(o, Q) isdefinedto
equal the digunction of all predicates | suchthat =1 = Q and o leaves | invariant.
The operator win is called the weakest invariant operator. By OP2, win(o, Q) isan
invariant of o; it is the weakest invariant of ¢ that implies Q. The set of actions o
leaves Q invariant iff = Q = win(o, Q). (Since = win(o, Q) = Q awaysholds, o
leaves Q invariant iff = Q = win(o, Q).)

Expressing win in Terms of wip

Thewin operator can be expressed in terms of wip as follows.

win@, Q = A\ wlp(, Q (5

reo*

Let Rdenotetheright-hand sideof (5). To verify (5), wemust provethat (i) = R= Q,
(i) Risan invariant of o, and (iii) R is implied by every invariant of o. Property
(i) holds because the empty sequence, which isin o*, is the identity action ¢, and
wlp(, Q) = Q. To prove (ii), observe that for any action & of o, WLPO and WLP1
imply = wip, R) = A, wlpEAr, Q). Hence = R = wlp(&, R), s0 & leaves R
invariant. Finaly, it follows from WLPO and WLP2 that = | = wlp(, 1) and
El = wp®, Q imply = | = wlpEx, Q). A simple induction argument then
shows that if o leaves | invariantand = | = Q, then = | = wlp(x, Q) for dl
A € o*, which proves (iii).
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Let (0*) be |, -, theaction consisting of al (s, t) such that executing some finite
number of actions of o starting in s yieldst. It iseasy to show that = win(o, Q) =
wlp((c*), Q). If o isan operation, so (o) isdefined, then (o*) is a superset of (o).
While (o) contains pairs of states obtained only from complete executions of o, the
action (o*) includes pairs obtained from incompl ete executions as well.

Properties of win

We will use the following properties of the win operator, where P, Q, and the Q;, are
any predicates and o and t are any sets of actions. They follow easily from equation
(5) and the corresponding properties of wip.

WINL. = A, win(o, Qn) = win(o, /\; Qn)
WIN2. If = P = Qthen = win(o, P) = win(o, Q).

WINS3. If o leaves | invariant and o right commutes with t, then o leaves win(z, I)
invariant.

WIN4. If o leaves P unchanged, then = win(o, P v Q) = P v win(o, Q).

WINS. If aset of variablesis not accessed by o and not accessed by Q, then it is not
accessed by win(o, Q).

The Predicate Transformer winp

Of particular importanceinverifying programsareformulasof theformwin(o, after(o) = Q),
where ¢ is an operation. We denote this formula by winp(o, Q), where winp stands

for weakest invariant of a postcondition. The predicate winp(o, Q) asserts of a state

sthat if control isanywherein o, then any terminating execution of o starting in state

s terminates with Q true. Contrast winp(o, Q) with wlp(o, Q), which makes this
assertion only for a state s with control at the beginning of o. Wewill usethefollowing
properties of winp.

WINPL. = at(o) A winp(o, Q) = at(o) A wip(o, Q)

WINP2. If | after(c) = —in(o) then [ after(c) A winp(o, Q) =
after(o) A Q.

WINP3. If o leaves P invariant, then = P A winp(o, Q) = P A winp(o, P A Q).
WINP4. If |= after(o) = —in(o) and o leaves P invariant, then o leaves (in(o) A
P Awinp(o, Q) Vv (after(c) A P A Q) invariant.

The validity of WINP1 should be obvious from our discussion of the relation be-
tween winp and wip. It can be derived from (4), (5), and the observation that
= wlp(Up &n, Q) = A, wip(én, Q). Property WINP2 is proved as follows.®

5Complicated proofs are broken down into numbered steps. Boxed numbers indicate the statement or
statements that immediately imply the desired conclusion.
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1. | after(o) = win(o, after(o))
Proor: OP3 and the hypothesisimply that o |eaves after(o) invariant.

2. = after(o) A winp(o, Q) = win(o, after(c) A Q)
Proor: By 1, WIN1, and the definition of winp, since = (after(o) A (after(o) =
Q) = after(o) A Q.

k= after(o) A winp(o, Q) = after(o) A Q.

Proor: By 2 and the definition of win, since OP3 and the hypothesisimply that o
leaves after(o) A Q invariant, o win(o, after(o) A Q) equalsafter(c) A Q.

Property WINP3 is proved as follows.

1. = winp(o, P A Q) = winp(o, P) A winp(o, Q)
Proor: By thedefinitionof winpand WINL1, since (after (o) = P)A(after(c) = Q)
equals after(o) = (P A Q).

2. &= P = winp(o, P)

ProoF: Sincel= P = (after(c) = P), WIN2implies= win(o, P) = winp(o, P).
But o leaves P invariant, so = win(o, P) = P.

= (P A winp(o, Q) = (P Awinp(o, P A Q)
ProoF: By 1 and 2.

= (P Awinp(e, P A Q) = (P Awinp(e, Q)
Proor: By WIN2, = winp(o, P A Q) = winp(o, Q).

To prove WINP4, we apply WINP2 to rewrite (in(c) A P Awinp(o, Q)) Vv (after(o) A
P A Q) as(in(o) v after(a)) A P A winp(o, Q) and then apply OP2.

3.6 The Strongest Invariant

Just as sp isthedua of wip, we can define an operator sin, the strongest invariant, that
isdual towin. For any set of actions o and predicate P, sin(o, P) isdefined to be the
conjunction of al invariants | of o that are implied by P. Corresponding to (5), we
have

sin(a, P) = /\ spx. P) (6)

reo*

Thedua of winpissinp(o, P), definedtobesin(o, at(o) A P),whereos isanoperation.
We will use the following properties, dua to WIN2 and WIN3, which can be derived
from (6), SP2, and SP3.

SIN2. If = P = Qthen=sin(o, P) = sin(o, Q).
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array num[1...n] of nonnegativeinteger
arrayc[l...n]  of boolean
cobeginli—y n
loopncs;: noncritical section;
aj: C[i] :=true
Bi: num[i] :=1+ max{num[j]:j #i};
yi: c[i] :=falsg

8i: cobeginUj
€j: await —c[j];
nij: awaiti < j
coend;
cs;: critical section;
pi: num[i] :=0
endloop

coend

Figure 3: The bakery agorithm.

SIN3. If o leaves | invariant and o left commutes with 7, then o leaves sin(z, |)
invariant.

3.7 Simple cobegin Programs with Unspecified Atomicity

TheProgramsand Their Control Predicates

We now consider simple cobegin programs containing el ementary statements that are
not atomic operations. These are programs that can be written in the same simple
language considered above, except without the requirement that every elementary
statement be enclosed in angle brackets. An example of such a program is the bakery
algorithm, givenin Figure 3. Thisis essentially the same asthe original versionin[9],
though with different notation. It is an extreme exampl e because no atomic operations
are specified.

Figure 3 says nothing about the grain of atomicity of the program’s operations. State-
ment B; could be executed by reading each num[ j ] onebit at atime, and writingnum([i]
one bit at atime. Theindividua bits could even be read and written severa times.
Thus, Figure 3 does not describe a single program,; it is a specification of a class of
programs that are vaid implementations of the bakery agorithm. Proving a property
of the bakery algorithm means proving that property for any valid implementation.

In addition to the ordinary variables num[i] and cJi], an implementation of the bakery
algorithm will contain hidden variables—variables not explicitly mentioned in Fig-
ure 3. For example, hidden variables are needed to hold the vaues of intermediate
computations when executing 8. In the bakery agorithm, the control variables are
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hidden variables. We can't write an explicit expression for the predicate in(8;) in
terms of variables at(&) for atomic operations & because Figure 3 does not specify what
those atomic operations are. Such an expression can be written only for a particular
implementation, in which the atomic operations are given.

We let © denotethe set of operationsthat correspond to the el ementary statements and
tests of the program. For the bakery algorithm, @ = {ncs;, «i, Bi, %, €ij, nij, CSi, pi :
i # j}. Theset Q isapartition of the set IT of atomic operations, since each atomic
operation of the program belongs to exactly one operation in 2. Of course, the actual
atomic operationsthat constitute an element of 2 depend upon the implementation.

We can deduce certain relations between the at and after predicates from the pro-
gram control structure. For example, in the bakery agorithm, we have = at(cs;) =
/\ji after(nij) and = (after(nij) A in(csi)) = at(csi). We will assume these obvious
relations without giving aformal method for deriving them.

Operations Belonging to Different Processes

The definition of what it means for two arbitrary operations to belong to different
processes is the same as the definition for atomic operations—namely, that ¢ and
belong to different processes iff they occur in different clauses of the same cobegin
statement. We make the following assumption, which isthe generalization of CTL2 to
arbitrary operations.

CTLA4. If operationso and t in Q belong to different processes, then t leaves at(o),
in(o), and after (o) unchanged.

Predecessors

The definition of one operation being a predecessor of another is essentialy the same
as the definition for atomic operations—namely, an operation p in Q is a predecessor
of an operation o in  iff control can reach o by completing the execution of p. Inthe
bakery agorithm, p; is the only predecessor of ncs;, and each »;j is a predecessor of
CS.

The Semantics of Nonatomic Operations

To reason formally about programs with nonatomic operations, we must make some
assumptions about those operations. Our first assumption isthat, in the absence of con-
current execution of other operations, a nonatomic operation has the expected meaning.
For example, executing a nonatomic assignment X := 2 x y when y equals 1 sets x to
2. Formally, this means that we assume the validity of ordinary rules for manipulating
wlp formulas involving nonatomic operations. Thus, if o isa nonatomic assignment
X :=2x Y, thenwlp(o, x = 2) equals (y = 1) v —at(o).

What it means to execute a nonatomic operation in the presence of concurrent activity
is a subtle issue. Consider again a honatomic assignment X = 2 x y. If x is not
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concurrently modified by another operation, must execution of this assignment set x
to an even value? One can argue that the answer is“yes’, since regardless of what
value is obtained when reading y, multiplying it by 2 yields an even number. On the
other hand, one can argue that the answer is “no”, since (X :=y); (X :=X+Y) isa
valid implementation of X := 2 x y whose execution could set x to an odd value—for
example, if another process increments y by 1 in the middle of the execution.

Deciding what the semanticsof x := 2x y should beisaprobleminlanguagedesign—a
topic we wish to avoid. Instead, we just assume that this operation does not modify or
access any variables we don't expect it to. We can make the obvious assumption that
x is the only nonhidden variable modified by this operation, and the operation does
not access any set of nonhidden variables that does not contain x or y. However, we
also need some assumption about the hidden variables that the operation may modify
Or access.

Intuitively, we assume that each processhasitsown loca variablesthat are not accessed
or modified by any other process. More precisely, we assume that, for each operation o
in 2, thereisaset of variablesthat arelocal too. If o and t are operationsin different
processes, we assume that they have digoint sets of local variables. We then assume
the following rules for reasoning about nonatomic assignment and await statements.

Assignment Rule A nonatomic operationx := exp(yi, .. ., Ym) modifiesonly x and
variableslocal to the operation. The operation does not access any set of variablesthat
contains neither x, nor any y,, nor any variableloca to the operation.

Await Rule A nonatomic operation await exp(ys, ..., Ym) modifies only variables
local toit. The operation does not access any set of variablesthat contains neither any
Yyp nor any variablelocd to the operation.

3.8 The Owicki-GriesMethod with Unspecified Atomicity

Decomposing the Invariant

We now extend the Owicki-Gries method to permit reasoning about simple cobegin
programs like the bakery agorithm with nonatomic elementary statements. A safety
property is still proved by finding the appropriate invariant |, where | iswritten as an
annotation. However, the annotation now denotes the predicate

/\ (in(@) = 1,) A (after(o) = 1)) 7)

oeQ

Intuitively, this predicate asserts that, for each operation o, if control isino then |, is
true, and if control is immediately after o then 1 istrue. Sincein(o’) is equivaent to
at(o) if o isan atomic operation, (7) isthe same as (3) if every operation o isatomic.
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The Owicki-Gries Conditions

To prove theinvariance of an annotation, one proves the following nonatomic Owicki-
Gries conditions, where J, isdefined to be (in(o) A 1) Vv (after(o) A 1)).

Sequential Correctness:
(8) Every operationo € Q2 leaves J, invariant.
(b) For every operation o € Q and every predecessor set oy, ..., pm Of o

@) A Apl,) = o

Interference Freedom: For every pair of distinct operationso, t in €2 that belong
to different processes: t leavesin(o) A I, A J; and after(c) A 1 A J; invariant.

The proof that these conditionsimply theinvariance of | issimilar to the proof for the
atomic Owicki-Gries conditions.

By part (a) of the sequential correctness condition, each operation 7 in Q leaves J,
invariant. Therefore, OP2 impliesthat to prove the interference-freedom condition for
thepair o, 7, it suffices to provethat r leavesin(o) A 1, and after(o) A I invariant.
Since ¢ and t are in different processes, t leaves in(o) and after(o) invariant (by
CTL4). Hence by OP2, to provethisinterference-freedom condition, it also suffices to
provethat t leaves |, and | invariant.

For an atomic operation &, the formula {1:} & {1} is equivalent to the assertion that
& leaves J; invariant. Hence, if all operations are atomic, the nonatomic sequential-
correctness condition is egquivaent to the atomic Owicki-Gries condition. If o and
T are atomic operations, the presence of the in(o) and after(o) conjuncts makes this
nonatomic interference-freedom condition somewhat weaker than the atomic Owicki-
Gries condition.

4 Applications

4.1 TheSingle-AccessRule

It isusually assumed that an operation may be treated as atomic if it contains at most
one access to a shared variable. We call thisassumption the single-accessrule. It was
first published by Owicki and Griesin[14], but probably qualifiesasafolk theorem[7].
In thetraditiona method of reasoning about a concurrent program, one first appliesthe
single-access rule to replace the program with one containing larger atomic operations
and then appliesthe atomic Owicki-Gries method to the new program. Wewill indicate
with an example how the win formalism allows one to use the nonatomic Owicki-Gries
method to reason about the original program without using the single-access rule to
change the grain of atomicity.
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var X, y: array 1...nof integer;

m: integer;
cobeginUi—1 nai: (M :=max(m, x[i]);
yli] :=x[i] ) {m > y[i]}
coend

Figure 4: Annotation of aprogram obtained with the single-action rule.

var X, y: array 1...nof integer;

m: integer;
cobeginUi_y..n &: (M :=max(m, x[i])) {m > x[i]};
{winp(yi, m> y[iD} i y[i] =xX[i] {m > y[i]}
coend

Figure5: Annotation of the original program.

Thesingle-access ruleis based upon the assumption that any access to ashared variable
is atomic, which may not always be the case. (For example, the variable may be
implemented as two words of memory, with access to each word being a separate
action.) A more precise formulation of the single-access ruleisthat if 0; &; v appears
in a program, & is atomic, and 6 and y are operations that do not access any set
of variables that are not local to the process containing them, then 6; &; v may be
considered a single atomic operation.

Any Owicki-Gries method proof of a program transformed with the single-access rule
can be turned into a proof of the original program. However, proving this result
in generd is rather tedious and requires properties of win and sin that we have not
introduced. Instead, we illustrate the result with an example—namely, the annotated
program of Figure 4, which is obtained by applying the single-action rule to combine

&: (m = max(m, x[i]))

vi yli] = x[i]

into the one atomic operation «;. (In this program, m is the only nonloca variable)
It is easy to prove the invariance of this annotation, from which one can deduce that
m > max(y[1], ..., y[n]) holdsupon termination.

Instead of applying the single-action rule, we apply the nonatomi c Owicki-Griesmethod
directly to the annotated program of Figure 5. We give a more detailed proof than is
warranted by the examplein order toillustrate the decomposition into simple steps that
isthe hallmark of the Owicki-Gries method.
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Proof of Sequential Correctness—(a)

We must show that every operation o leaves J, invariant. (Recall that J, equals
(in(o) A l5) Vv (after(c) A 17).) There aretwo casesto check: o =& and o = ;.

&: Anaomic action o leaves J, invariantiff {I,} o {I,}. We must therefore prove
{true} & {m > x[i]}, which followsfrom the usual rulesfor Hoare triples.

¥i: The invariance of Jy, follows immediately from WINP4 (substituting true for
P).

Proof of Sequential Correctness—(b)

We must show that for every operationo: if py, ..., pm aethe predecessors of o, then
= at(o) A /\p I[’)p = |,. Again, there are two choices of ¢ to consider.

& Thisconditionisvacuous, since & has no predecessors. (Formally, the condition
holds because the conjunction of an empty set of predicates equals false.)

Yi: Since§; istheonly predecessor of v, we must prove
= @t(yi) A (m = x[i])) = winp(yi, m=> y[i])

This formula follows from WINP1, since a simple wlp calculation shows that
at(yi) A wip(yi, m > y[i]) equalsat(yi) A (m = x[i]).

Proof of Interference Freedom

For each operation r and each operation o in adifferent process from r, we must prove
that ¢ leaves in(o) A I, A J; and after(o) A 1. A J; invariant. As we observed in
Section 3.8, it suffices to provethat ¢ leaves |, and | invariant.

Proof for t = &. There aretwo choices of o to be checked—namely, & and v, with

i £ k.

&: Operation & obviously leaves | invariant, since I equalstrue. (Formally, this
follows from OP1.) To prove that & leaves I} invariant, we must show that
{m > x[i]} & {m > x[i]} holds, which follows from the usua rules for reasoning
about Hoare triples.

vi: [1] & leaves |, invariant.

Proor: We must show that {m > y[i]} & {m > yJi]} holds, which follows by
ordinary reasoning about Hoare triples.

2. & commutes with ;.
ProoF: By the Assignment Rule and OP5.
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3. & leaves —after (i) invariant.
Proor: By CTLA4.
4. & leaves after(vi) = I{,,i invariant.
ProoF: By 1, 3, and OP2.
& leaves |y, invariant.
ProoF: By 2, 4, and WINS, since |, equals win(yi, after(yi) = 1).

Proof for T = . We havethe same two choicesforo.

&: Operation v obvioudy leaves | invariant, since I = true. By the Assignment
Ruleand OP1, it leaves I invariant

yi: The Assignment Rule and OPL imply that v leaves I, invariant (sincei # k).

The proof thet it leaves |, invariant issimilar to the proof for 7 = &.

4.2 TheBakery Algorithm

We now prove the correctness of the original bakery algorithm, shown in Figure 3.
More precisely, we prove that this agorithm is correct if two additional assumptions
are made about it. Our inability to verify the correctness of the original algorithm
will lead to the discovery of the necessary assumptions. These assumptions will be
discussed later, after the proof.

We have aready given rules for reasoning about nonatomic assignment and await
statements. The bakery agorithm a so contains the nonatomic critical and noncritical
sections, for which we make the foll owing obvious assumption.

Section Hypothesis  In the bakery agorithm of Figure 3, a cs; or ncs; operation
neither modifies nor accesses any set of variablesthat containsneither any num[ j], nor
any c[j], nor any variablelocal to the operation.

421 Almost a Proof

In the Owicki-Gries method, the key to the proof isfinding an invariant annotation. In
practice, the annotation is obtained by a method of trial and error that can be viewed as
an attempt to approximate a weakest invariant. We begin with an informal derivation
of an invariant annotation for the bakery algorithm. After obtaining the annotation, we
use the Owicki-Gries method to proveitsinvariance. Thisis an idealized presentation;
in reality, derivation and proof of the annotation go hand in hand.

We start with the predicate Ics, which is true when control is in process i’s critical
section. The truth of 15 must imply that no other process j isin its critical section.
The structure of the program suggests that we let 15 equal /\J-;,Ei IY/)ij , SO we look next

/
a Inij'
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The basic idea of the algorithm is that process i enters its critical section only when
numf[i] > Oand i <« j. Mutua exclusion is guaranteed because num[i] > 0 and
i <« jimplythat j « i. Letting N; denote the predicate num[i] > 0, our first guess
for IY/)ij isNi A (i < ).

This choice of I, ~does not satisfy the interference-freedom condition for gj or pj
(the condition with o equal to n;j, and T equal to B; or p;), since num[j] can assume
arbitrary values during execution of the operations g and p;. In such a case, the
standard approach is either to strengthen IY/)ij to imply that control isnot in g; or p;, or
else to weaken it to be true whenever control isin those operations. Since process j
can execute B; after processi has executed 7;;, strengthening IY/)ij won'’t work; we must
weaken it. We weaken IY/)ij toreguireonly thati « j hold whilecontrol in process j is
after B; and before p;. Thisis still strong enough to guarantee mutua exclusion when
wetake lcs tobe A I . Let Qjj be the predicate asserting that if control isin y,
8j, orcsj, theni <« j. Our nextguessat I isNi A Qj.

Our choiceof I} still doesnot setisfy theinterference-freedom conditionfor g because
B puts control at y; without necessarily ensuring that i < j. We must strengthen IY/)ij
by conjoining a predicate to ensure that i < j if executing g; leaves control &t y;.
Since winp(B;j,i K j) isthe predicate asserting that i < j holds upon completion of
B, we conjoin the predicate in(8j) = winp(p;,i < j), which we denoteby B;. We
thuschoose N A Pi’j A Qjj for I,’m. A quick check showsthat this IY/)ij seems to be | eft
invariant by every operation of process j.

The standard approach is to work backwards through the program, so we now choose
;- Since we know nothing about the atomic operations that constitute n;j, we are
forced to let 1, equa winp(nij, I,’m) in order to satisfy part (8) of the Sequential
Correctness Condition. We continue working backwards and now try tofind | 6’” .

Part (b) of the Sequential Correctness Condition states that at(ni;) A 'éi,- implies
l;;,» which equals winp(nij, Ni A Pi’j A Qij). By WINPI, |éi,- must therefore im-
ply wlp(ij, Ni A Pi’j A Qij). In the absence of concurrent activity, i <« j must
hold upon completion of 5;j, S0 executing n;; makes Q;; true. In other words,
wlp(nij, Q) isidenticaly true. Since executing n;; doesn't change N; or F’,’J we
see that wlp(nij, Ni A Pi’j A Qij) equals Ni A Pi’j , which becomes our natural choice
for 1/,

Continuing backwards in this way, we let I, equa winp(ejj, IG’”) and choose |
o it implies wip(eij, Ni A Pj). Since € does not change num[i], we see that
wlp(eij, Ni A Pi’j) equals Ni A wlp(eij, Pi’j). If wlp(eij, Pi’j) were identically true,
then we could let I, equal N, which obviously holds after processi has executed i
and y;. Unfortunately, wlp(eij, Bj) isnotidenticaly true; just looking at €ij gives us
no reason to believe that B will betrue after executing it.

Simply manipulating formulas will take us no further; we must think about why the
algorithmworks. Thepredicate P assertsthatif g; iscurrently executing, thenrunning
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it to completion will set num[j] to avaluethat makesi < j true. We expect P;; to be
true after executing €;; because €;; terminates only when it findsc[j] false, and c[j] is
truewhen control isin statement g; . Thissuggestsreplacing P by theweaker predicate
(in(B;) A c[j]) = winp(B;,i < j), which we denote P;. A complete execution of
€ij terminates only when c[j] isfase, so wip(eij, Pj) isidentically true and we can
satisfy the requirement that |, implies wip(eij, Ni A Bj) by letting I, equa N;. Of
course, we must also make sure that replacing P by B doesnot invalidate any of the
conditionswe have aready checked.

Therest of the derivation is straightforward, so we stop now and define the compl ete
annotation. First, recall that the predicates N;, Bj, and Qjj, fori # j, are defined as
follows:

N = num[i] >0
R; = ((nB)Ac[j]) = winpB,i < j)
Qj = (in(y)Vvin@) vin(cs)) =i < j

where in(8;) is defined to equal \/, in(ew) V in(nw). The predicates of the annotation
are defined below. Each |, that contains awinp is equal to winp(o, 1)), but WINP3
has been used to write some of these predicates in a more convenient form.

Ines= true nes= true

lo, = winp(ai, cli]) l,, =cli]

lg =c[i] Awinp(Bi, Ni) Iz =cli] AN

IVu =N |]/,| =N

le; = Ni Awinp(ej, Bj) le, = Ni AR

|nij = Ni AN Pﬁj /\winp(nij, Qij) Ir/)ij = Ni AN Pﬁj AN Qij

les = Ni AN RBj A Qg les = NiAAja By A Qi
I, =true I, =true

The predicate defined by the annotationis clearly truein theinitial state and, since I

and I¢5 cannot bothbetrueifi # |, itimpliesthemutua exclusion condition. We now
attempt to prove the invariance of this annotation using the nonatomic Owicki-Gries
method.

Proof of Sequential Correctness—(a)

We must prove that each operation o leaves J, invariant.

ncsi: Since Ines and 1. both equal true, OP4 impliesthat Jnes is l€ft invariant by
ncs;.

ai: WINP4 impliesthat «; leaves J,, invariant.

Bi: The Assignment Rule and OP1 imply that 8; leaves c[i] invariant, and WINP4
then impliesthat g; leaves Jg invariant.
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yi: The Assignment Rule and OP1 imply that y; leaves N; invariant, so OP4 implies
that y; leaves J,, invariant.

€ij: The Await Rule and OP1 imply that ¢;; leaves N; invariant, so WINP4 implies
that €j; leaves J; invariant.
nij: 1. nij leaves N; invariant.
ProoF: By the Await Rule and OP1.
2. nij leaveswinp(Bj,i < j) invariant.
Proor: TheAwait and Assignment Rulesand WINSimply that winp(gj, i < j)

does not access the set of variables modified by 7ij, so OP1 impliesthat i
leaves winp(B;, i < j) invariant.

3. nij leaves —(in(8;) A c[j]) invariant.
Proor: CTL4 impliesthat n;; leaves —in(#;;) invariant. The Await Rule and

OPL1 imply that it leaves —c[j] invariant. Rule OP2 then implies that n;;
leaves —(in(Bj) A c[j]) invariant.
4. nij leaves B invariant.
ProoF: By 2, 3, and OP2.
nij leaves J, invariant.
ProoF: By 1, 4, OP2, and WINP4.

csi: The Section Hypothesis and OP1 imply that cs; leaves I¢ invariant, so OP4
impliesthat it leaves J.q invariant.

pi: By OP4,since |, and 1 both equal true.

Proof of Sequential Correctness—(b)

We must show that for every operationo: if py, ..., pm aethe predecessors of o, then
Fat(o) A N\p I, = lo. Thereare eight choices of o to consider.

ncsi: = (@t(nesi) A 1)) = Incs, istrivialy true, since Ines = true.

aj ¢ 1. E=at(a) A winp(a;, c[i]) = at(oi) A wlp(a, C[i])
Proor: By WINPL.
2. = wlp(ai, ci]) = true
ProoF: By an elementary wip calculation.
'= (at(ai) A Ir/msi) = Iozi
Proor: By 1, 2 and the definition of 1,
Bi: Similar to the proof for ;.

vit E 1y = 1, followsimmediately from the definitionsof 1, and I,,.
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€ij . 1 E at(eij) /\winp(eij, HJ) = at(eij) A wlp(eij, Pij)
Proor: By WINPL.
2. E wlp(eij, =c[j]) = wlp(eij, Bj)
Proor: By WL P2, since the definition of P;j implies|= (—c[j]) = P;.
3. = wlp(ej, —c[j]) = true
ProoF: By an elementary wip calculation.
4, |=at(ei,-) = winp(eij, Pj)
ProoF: By 1, 2, and 3.
F @) A1) = 1
Proor: By 4 and the definitions of ';//. and Ig;.

nijs L = at(nij) A winp(nij, Qi) = at(nij) A wlp(ij, Qi)

Proor: By WINPL.

2. Ewlp@ij,i < j) = wlphij, Qi)
ProoF: By WLP2, since = (i < j) = Qjj.

3. Ewlp(mij,i < j) = true
ProoF: By an elementary wip calculation.

4. = at(nij) = winp@ij, Qij)
ProoF: By 1, 2, and 3.

E @tmi) A1) = 1y
Proor: By 4 and the definitionsof 1/ and I,,.

csit = (@t(csi) A /\jz ly,) = les followsimmediately from the definitions of 1)
and leg .

pii = @(pi) A1) = 1, obvioudly holds, since |, equalstrue.

Proof of Interference Freedom

For each operation r and each operation o in adifferent process from r, we must prove
that v leaves both in(o) A 1, A J; and after(c) A 1, A J; invariant. As observed in
Section 3.8, to provethat t leavesin(o) A |, A J; invariant, it suffices to provethat it
leaves either I, A J; or simply |, invariant, and similarly for after(c) A 1. A J;.

Proof for t = ncsx.  We begin by proving that ncs, leaves invariant the “primitive”
predicates, such as Bj, that appear in the annotation. Predicate B; isa littletrickier
than the rest because it contains awinp formula. Also, since Bj and Q;; mention the
control state of process j, which is changed by ncs;, the case k = | requires specia
consideration.
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NC1. Operation ncsy leavesci], Ni, and Q;; invariant, fori # kand j # k.
Proor: This followsfrom the Section Hypothesisand OP1.

NC2. Operation ncsy leaves Bj invariant, fori # kand j # k.
Proor: Operationncsy leaves winp(;, i « j) invariant by the Section Hypoth-
esis, the Assignment Rule, and WINS. It leaves —in(g;) invariant by CTL4, and
—c[ j] invariant by the Section Hypothesisand OP1. Rule OP2 then impliesthat
ncsy leaves B; invariant.

NC3. Operation ncs; leaves Q;; invariant, fori # j.
ProoF: Reasoning about control predicates implies

k= (in(ncs;) Vv after(ncs;)) A (in(y;) vin(s;) vin(cs))) = false
Hence, (in(ncs;) Vv after(ncsj)) A Qjj is identically true, so OP4 implies that
ncs; leaves Qjj invariant.
NCA. Operation ncs; leaves P invariant, fori # j.
Proor: The proof issimilar to that of NC3.

Using these four results, we can prove that ncsy leaves |, and | invariant, for each
operationo inprocessi, wherei # k. If |, containsno winp expression, theninvariance
followseasily from NC1-NC4. The proofsfor al o containing awinp expression are
similar to the proof for o = €;;, whichis given below.

€j: 1. ncsy leaves By invariant.
Proor: By NC2 and NC4.
2. ncsg leaves after(e;;) = Py invariant.
ProoF: By 1, CTL4, and OP2.

3. ncsx commutes with ;.
ProoF: By the Section Hypothesis, the Await Rule, and OP5.

4. ncse leaves winp(eij, Bj) invariant.

ProoF: By 2, 3, WIN3, and the definition of winp.
ncsy leaves I, invariant.

ProoF: By 4, NC1, and OP2.
[6] ncsy leaves 1/, invariant.

Proor: By 1, NC1, and OP2.
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Proof for t = ax. We begin by proving the invariance results for o that are the
analogs of NC1-NC4. The proofs of «1-«3 are similar to the proofs of NC1-NC3
and are omitted. The strict analog of NC4 does not hold, since «; does not leave B
invariant. However, in the annotation, P aways appears conjoined with N;, so it
suffices to provethat o leaves Ni A B invariant.

al. Operation oy leavesc[i], N;, and Q;; invariant, fori # kand j # k.
a2. Operation oy leaves B invariant, fori # kand j #Kk.
a3. Operation o leaves Qjj invariant, fori # j.
a4. Operation o leaves Ni A Py invariant, fori # j.
1 = (in(ey) Vv after(e)) An(By) = at(B))
ProoF: By reasoning about the control state.
2. EN=wlp@,i<])
ProoF: By elementary reasoning about wip.
3. (N Aat(p)) = winp(By,i < )
Proor: By 2 and WINP1.
4. = ((in(ey) v after(eg)) A Ni AIN(Bj) Aclj]) = winp(By,i < )
Proor: By 1 and 3.
5. k= (in(e) v after(a;)) A Ni A Py = (in(ey) v after(eg)) A Ni

Proor: By 4 and the definition of P, since = (AA B) = Cimpliess= A A
(B= C) = A (Substitute R; for B= C.)

6. o leaves (in(o;) Vv after(aj)) A N; invariant.
ProoF: By 1 and OP4.

o) leaves Ni A Pjj invariant.
ProoF: By 5, 6, and OP4.

We can now provethat oy leaves |, and | invariant for al the operations o in process
i, wherei # k. Only the proofsfor o equal to g; and €;; are given; the rest are similar
or elsefollow easily from o 1-«4.

Bi: o leaves | invariant.
ProoF: By 1 and OP2.

2. ay leaves after(8;) = N; invariant.
ProoF: By @1, CTL4, and OP2.

3. ax and B commute.
ProoF: By the Assignment Rule and OP5.
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Eiji

4.

ay leaves winp(gi, N;) invariant.

ProorF: By 2, 3, WIN3, and the definition of winp.
ax leaves |4 invariant.

ProoF: By 4, a1, and OP2.

We consider separately thetwo cases j # k and j = k. The proof for j # kisas
follows.

ax leaves I invariant.
ProOF: o leaves N; invariant by 1, and it leaves By invariant by «2, so OP2
impliesthat it leaves N; A B invariant.

. oy leaves after(ejj) = B invariant.

Proor: By 2, CTL4, and OP2.

o commutes with ;.

ProoF: By the Assignment and Await Rules (since j # k) and OP5.
ax leaves winp(eij, Bj) invariant.

ProorF: By 2, 3, WIN3, and the definition of winp.

ak leaves | invariant.

ProoF: By 4, a1, and OP2.

We now consider thecase j = k.

2.

aj leaves I/ invariant.

PrROOF: By 4.

€ij leaves B unchanged.

ProoF: By the Await Rule and OP1.

= win(ej, Py v —after(e)) = Pj v win(ej, —after(ej))
Proor: By 2 and WINA4.

E winp(ej, Bj) = Bj v winp(e;j, true)

Proor: By 3 and the definition of winp.

= winp(eij, Bj) = Bj v (=in(e) A winp(eij, true))
Proor: By 4 and propositional logic, since = in(ej) = —in(B;j) implies
= in(e;) = Rj.

Elg = (NiARj) Vv (=in()A...)

ProoF: By 5.

«j leaves I invariant.

Proor: By 6, ¢4, OP3, and OP2.
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Proof for t = Bx. We begin with the analogs of NC1-NC4. The analog of NC3isn’t
valid because g; does not leave Qj; invariant. Since Q;; aways appearsin conjunction
with B, it would suffice to prove thet g; leaves B; A Qjj invariant—but it doesn’t.
However, to proveinterference freedom, it sufficesto show that g; leaves Jg A Pyj A Qjj
invariant.

B1. Operation pi leavescli], Ni, and Qjj invariant, fori # kand j # k.
Proor: Follows from the Assignment Rule and OP1.

B2. Operation i leaves By invariant, fori # kand j # k.

1. Bk leaves —(in(B;j) A c[j]) invariant.
ProoOF: i leaves —in(g;) invariant by CTL4 and it leaves —c[j] invariant by
the Assignment Rule and OP1, so OP2 impliesthat it leaves —(in(B;) A c[j])
invariant.

2. Pk leaveswinp(g;,i < j) invariant.

The crucial fact that g leaves winp(gj,i <« j) invariant cannot be proved. It
must be assumed as an additional hypothesis. Thisassumption is discussed |ater.

3. Pk leaves P invariant.
ProoF: By 1, 2, and OP2.

B3. Operation g leaves Jg A Bj A Qj invariant, fori # j.

L | Jg = (in(gy) v after(8))) A c[j] A winp(Bj, Nj)
Proor: By WINP2 and the definition of Jg,.

2. = (in(gy) vafter(B) A Qij = (in(B;) v after(8;)) A (—after (8;) v (after(B;) A
winp(gj, i < J)))
Proor: By WINP2 and propositional logic, since

= (in(8;) v after(8;)) A (in(y;) v in(8;) vin(cs;)) = after(p;)

3. = (in(g;) v after(B)) Ac[jl A Rj A Qij = (in(g;) v after(8)) A c[j] A
winp(B,i < J)
Proor: By 2 and propositional logic, using = after(8;) = —in(g;).

4 =g AR A Q) = Jg Awinp(j,i K )
ProorF: By 1, 3, and propositional logic.

B leaves Jg A Pj A Qj invariant.
ProoF: By 4 and OP2, since the sequential correctness proof showed that
B leaves Jg invariant, and the definition of winp implies that g; leaves
winp(B;, 1 < ) invariant.
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p4. Operation g; leaves B invariant.

1. Bj leaves —in(B;) invariant.
Proor: By OP3.
2. p; leaves —c[j] invariant.
ProoF: By the Assignment Rule and OP1.
3. Bj leaveswinp(f;,i « j) invariant.
ProoF: By the definition of win.
B; leaves P invariant.
Proor: By 1, 2, 3, OP2, and the definition of B;.

We must now provetheinterference-freedom conditionfor t = ¢ and all o in process
i, withi # k. For most operations o, the proof is essentially the same asfor t = .
When o = 5, the proof for t = g is simpler than the proof for © = ax, since g
commutes with €; and «; does not. However, the proof for o = #;; isis trickier
because g; does not commute with n;;. We consider the interference-freedom proofs
for r = Bk only when o equals g and n;j, withi # k.

Bi: We must prove that i leaves 14 and I,’gi invariant. The invariance of I,’gi follows
immediately from g1. However, to prove that gy leaves lg invariant, we must
show that it leaves winp(8i, num[i] > 0) invariant. This cannot be done. We
must assume that gx leaves winp(g;, num[i] > 0) invariant. This assumption
isdiscussed later.

nij: We must prove that i leaves Jg A I, and Jg A | invariant. The proof when
k # j issimilar to the proof for t = o and o = € given above. We consider
only the case whenk = j.

B; leaves Jg A I invariant.
Proor: By 81, 83, and OP2.
2. nij leaves Qj;; unchanged.
Proor: By the Await Rule and OP1.
3. = winp(ij, Qj) = Qi vV winp(nij, true)
Proor: By 2 and WIN4, which imply that win(n;;, Qi v —after(n;;)) equals
Qij v win(nij, —after(nij)).
4. = winp(ij, Q) = Q;j Vv (=in(B;) A winp(nij, true))
Proor: By 3 and predicate calculus reasoning, since = in(8;) = —(in(y;) v
in(s;) vin(csj)), so = in(8)) = Qj.
5. Al = g ANARAQ)) V(=InB)A...)
ProoF: By 4 and the definition of J,..
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[6] B leaves Jg A I, invariant.
Proor: By 5 and OP2, since 1 impliesthat it leaves N; invariant, 84 implies
that itleaves Js A Pj A Qjj invariant,and OP3impliesthat itleaves—in(gj)A. . .
invariant.

Proof for t = y. Asusua, we begin with the analogs of NC1-NC4. The statements
and proofsof y1 and y 2 are similar to the ones for NC1 and NC2 and are omitted.

y3. Operation y; leaves Q;j invariant, fori # j.

Proor: Followsfrom OP4,theAssignment Rule, OP1, and OP2, since = after(y;) =
in(8;) impliesthat (in(y;) v after(y;)) A Qij equas (in(y;) v after(y;)) A (i < ).

y4. Operation y; leaves B; invariant.

Proor: By OP4, since = (in(y;) Vv after(y;)) = —in(g;) implies that (in(y;) v
after(y;)) A B equalsin(y;) v after(y;).

The proof of the individual interference conditionsfor t = yx are similar to the proofs
for t = ax and are omitted.

Proof for t = eq (k #1). The proof begins, as usua, by stating and proving e1—<4,
theanalogs of NC1-NC4. Their proofsare essentially the same asthe proofsof y 1-y 4.
The interference-freedom conditionsfollow easily from e 1—4, WIN3, and OP2, using
the Assignment and Await Rules and WINS to show that €4 commuteswith o, §;, €ij,
and nij, fori # k.

Proofsfor r = ny (k # 1) and r = csx. These proofs are similar to the proofs for
€ and ncsy, respectively, and are omitted.

Proof for © = px. This proof issimilar to, but simpler than, the proof for . Like
that proof, it requires two additional assumptions—namely, we must assume that py
leaves winp(Bj,i < j) and winp(;, num[i] > 0) invariant, for i # kand j # k.

4.2.2 Correcting the Proof

The proof above relied upon two extra assumptions:

e B¢ and px leave winp(Bi, num[i] > 0) invariant, for k # i.

o B and py leave winp(Bj,i < j) invariant, fork # i andk # j.

Thefirst assumptionissatisfiedif ; alwayssetsnum[i] greater than O, regardlessof how
the value of num[k] changes while executing the operation. One can devise a“legal”
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implementation of B; that does not satisfy this assumption, but such an implementation
would be contrived. It seems quite reasonable to incorporate the assumption into the
definition of statement ;.

For the second assumption to be satisfied, modifying the value of num[k] must leave
winp(Bj,i < j) invariant. However, there is no reason why it should. Hereis a
perfectly reasonable implementation of 8;, where the variablest;; are local to process

I

cobeginli; A1 tji := num(l] coend;
B2 num[j] =1+ max{ty : 1 # j}

Consider astate s in which al thet; equal O, dl the num[l] equal 0 except num[k] =
numli] > 1, and control isat 81 and after 1;;. (Itis possibleto reach such astatein
anormal execution of the bakery agorithm.) Completing the execution of g; starting
instate swill set num[j] to 14 num[K], which equals 1+ num[i], makingi « j true.
Therefore, s = winp(B;, i < j) istrue. However, if the state is changed by setting
num(Kk] to O, completing the execution of g; will set num[j] to 1, makingi « j false.
Hence executing px makes winp(g;, i < j) fase, so this predicate isnot |eft invariant
by px. Moreover, since B¢ could temporarily change num[k] from a nonzero to azero
value, B need not leave winp(B;, i « j) invariant either.

We can fix the proof by replacing winp(gj,i « j) with a predicate R;; having the
following properties.

(i) Rj isleftinvariant by ;.

(i) = (after(g)) A Rj) =i < j.

(iii) E @t(B) Anum(i] > 0) = R;.

(iv) Rij doesnot access any set of variablesthat containsneither num[i], nor num[j],
nor any variablelocal to §;.

Weleaveit tothereader to check thet if R;j satisfiesthese properties, thentheinvariance
proof above works with R;j substituted for winp(gj,i < j) in the definition of B;.
(Perhaps the most difficult part of this proof is verifying 83, which is done by using
property (ii) toshow that |= Js A Bj A Qij = (Jg A Rj) Vv (after(B) A ...).) We
aso leave it to the reader to check that, for the implementation of g; given above, we
can define R;j to be

[(in(B81;i) v after(B1ji)) = winp(Blji, tjj = num[i] > 0)]
A [(n(B2) v after(82))) = winp(B2;,i < j)]

thereby proving that the algorithm is correct with thisimplementation of ;. (Property
(i) is proved by applying the nonatomic Owicki-Gries method to the one-process

program g;.)
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Thefollowingis an example of avalid implementation of g; for which thereis no such
predicate R;j, and for which the bakery algorithm isincorrect.

(num[j]:=0);

(m :=]);

for kj :=1tondo (if num[k;] > num[m;] then m; :=k;);
(num[j] =14 num[m;])

There is nothing in Figure 3 to prohibit such an implementation of statement g;; it
would be a fine implementation if 8; appeared in a sequential program. We leave it
to the reader to construct a scenario demonstrating that the bakery agorithm does not
satisfy the mutual exclusion property with thisimplementation of ;.

4.3 Another Example

Thus far, we have used win to reason about statements with an unspecified grain
of atomicity. In our final example, we use sin to replace behaviora reasoning with
assertiona reasoning. The example may seem contrived, but it is abstracted from the
part of the minimum spanning tree algorithm of Gallager et . [6] that computes the
minimum-weight external edge of a fragment. For this example, we just sketch the
programs and proofs, omitting details.

Consider atree of processes, each one communicating with its parent and its children
by sending messages. Each node p has a value val[ p], and the goal of the algorithm
is for the root process, denoted by r, to compute the minimum of all these values.
The agorithm is obvious—every process finds the minimum of its value and that of
its descendants, and reports that value to its parent. Each process p maintains three
variables;

Q[p]: aqueueof received messages.
mini[ p]: the minimum of val[ p] and the values reported by p’s children.

cnt[p]: the number of children of p who have not yet reported

For simplicity, assume that another process sends a message to process p by simply
inserting the message in Q[ p]. All queues are initially empty except for Q[r], which
containsafind message. The initia values of the other variables are unspecified. Each
process p executes the following two actions.

find(p): If thereisafind message in Q[ p], then removeit from Q[ p] and set mini[ p]
toval[ p]. Set cnt[ p] to the number of children p has, and add a find message to
every child’'squeue. If p hasno children and p # r, then add a report(val[ p])
message to the queue of p’sparent.
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receive(p): If thereis areport(v) message in Q[ p], then remove it from Q[ p], set
mini[ p] to the minimum of itself and v, and decrease cnt[ p] by one. If thismakes
cnt[ p] zero and p # r, then add a report(mini[ p]) message to the queue of p’'s
parent.

The algorithm terminates when cnt[r] = 0 and Q[r] is empty, a which time mini[r]
isthe result. We wish to prove the partial correctness property = P = OQ for this
algorithm, where P asserts the initia condition on the queues and Q assertsthat if the
termination condition holds then mini[r] has the correct value.

Define a process to be active if there is areport message in its queue or any message
in the queue of any descendant, and to be finished if it is not active and thereis no find
message in its queue or in the queue of any ancestor. Let | be the predicate asserting
that for every process p:

1. If thereisafind message in Q[ p], then (i) it is the only message in Q[ p] and
(ii) the queue of every descendant of p isempty.

2. If pisactive, then (i) cnt[ p] equals the number of unfinished descendants of p
plus the number of report messages in Q[ p], and (ii) the minimum of mini[ p]
and al v for which thereisareport(v) messagein Q[ p] equal s the minimum of
all val[ p’] with p’ equa to p or afinished descendant of p.

3. If pisfinished, then mini[ p] isthe minimum of all val[ p’] for p’ equal to p or a
descendant of p.

The reader can check that = P = |, = | = Q, and | isleft invariant by every
program action, provingthat = P = OQ.

Thus far, our example has been a simple exercise in assertiona reasoning. \We now
complicate matters by allowing the tree of processes to grow dynamically. We assume
a larger collection of processes, only some of which are initialy in the process tree,
and add a new action addchild(p, q) that makes process q a child of process p. This
action may be executed only when the following conditions hold: q is not the parent
or child of any process, Q[q] is empty, and val[q] is greater than the minimum of all
val[ p'] for processes p’ currently inthe tree.

Thefollowing simple operational argument showsthat the modified a gorithm, with the
addchildactions, satisfiesthesamecorrectnessproperty P = 0OQ. If anaddchild(p, q)
action isexecuted beforethefind(p) action, then the effect isthe same as if g were part
of theorigina processtree. On theother hand, if the action isexecuted after the find( p)
action, thentheeffect isthesame asif qwere added to the processtree after thealgorithm
had terminated. Hence, we may pretend that each addchild action occurs either before
or after the algorithm is executed. It is clear that executing an addchild(p, q) action
at the beginning does not change P, and, since the action is executed only if val[q] is
greater than the minimum value among existing tree processes, executing it at the end
does not change Q. Hence, the modified algorithm satisfies P = OQ.
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Although the modified algorithm satisfies the same partia correctness property as the
origina agorithm, a different proof is required because the modified agorithm does
not leave | invariant. For example, an addchild(p, q) action can make condition 3 of
| false. One can find a new invariant for the modified algorithm, but it would be nice
to reason directly from the correctness of the original agorithm, as in the behavioral
argument.

Let uswrite each addchild(p, q) action as the union of the two actions preadd(p, q)
and postadd(p, q), where apair (s, t) isin preadd(p, q) if process p is neither active
nor finished in state s, otherwise it isin postadd(p, q). (Formally, we modify the set
IT of actions but leave the union of al actions unchanged, so we obtain an equivalent
program.) The reader can check that every preadd action leaves | invariant; it isthe
postadd actions that may falsify | .

Let o denote the set of all postadd actions. We show that sin(o, |) is the invariant
that proves the correctness of the modified agorithm. To do this, we must prove
E P = sin(o, |), =sin(o, 1) = Q, and theinvariance of sin(o, 1).

As we observed above, every addchild action leaves P and Q invariant, so every
action of o does dso. Hence, = sin(o, P) = P and = sin(o, Q) = Q. By SIN2,
= P =sin(s, |)and = sin(o, 1) = Qthenfollowfrom=P = land= 1 = Q.

Finally, we show that sin(o, I) isan invariant. It is obvioudy left invariant by any
action in o, so we must show that it is left invariant by every other action. By SIN3,
it suffices to show that every action not in o left commutes with a postadd(p, q)
action. It is clear that the action postadd(p, q) commutes with every action not in
o except for the following: preadd(p’, p), preadd(q, q'), find(p), and find(q). We
prove left commutativity by showing that, if £ is any one of these four actions, then
postadd(p, q) & istheempty action. (Recall that & left commutes with o iff u& C &u.)

preadd(p’, q): The composition postadd(p, q) preadd(p’, p) is empty because an
addchild(p, q) action can be executed only if pisalready inthe processtreg, in
which case the preadd(p’, p) action cannot be executed.

preadd(q, q'): postadd(p, q) preadd(q, q’) is empty because the composition
addchild(p, g) addchild(qg, ') can be nonempty only if the two addchild ac-
tions are either both postadd or both preadd actions.

find(p): postadd(p, q) find(p) isempty because an addchild(p, q) action cannot be a
postadd action if Q[ p] containsa find message.

find(q): postadd(p, q) find(q) is empty because an addchild(p, q) action can occur
only if Q[q] isempty.

This completes the proof of invariance of sin(o, 1).
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5 Discussion

Although we have provided rigorous, step-by-step proofsin our first two examples, we
have not tried to be completely formal. We did not give the rules for reasoning about
control predicates needed to prove such obviousrelationsas = (in(e; ) Vv after (¢ji)) =
—in(g;) for the bakery algorithm. We believe that if a formalism is to be useful, it
must be possible to use it rigoroudly but informally, without having to prove obvious
properties. Experience with the atomic Owicki-Gries method indicates that it can
be used in this way, and we believe that the same is true of the nonatomic version
employingwin and sin.

Injudgingtheutility of winand sin, itisinstructiveto consider why previouscorrectness
proofs of the bakery algorithm did not discover its hidden assumptions. The original
proof in[9] isan informal behavioral one, soitisnot surprisingthat itisincorrect. The
proof in[11] utilizesaset of axiomsfor reasoning about behaviorsinvolvingnonatomic
operations. Whilethe use of axioms gives an appearance of extreme rigor, the method
ultimately reduces to the unstructured, informal reasoning of ordinary mathematics.
The undetected assumptions in the bakery algorithm provide one more example of the
unreliability of such reasoning.

A rigorous Owicki-Gries method proof is given in [10]. However, since the original
Owicki-Griesmethod requiresthat al atomic operationsbe specified, it wasnecessary to
trand atethe bakery algorithminto one with explicit atomic operations. Thetranslation
effectively specified aparticular class of implementationsof the algorithm—aclassthat
includesonly implementati ons sati sfying the hidden assumptions. Thisproof illustrates
the danger in trying to replace one program with an equivaent one, if the equivalence
has not been proved formally. Without a formal justification of the single-action rule,
even its use should be regarded with suspicion.

The bakery a gorithm’ stwo hidden assumptionsarethat g; setsnum(i] to be (i) positive
and (ii) greater than num[j], even if it is executed while the value of num[Kk] is being
changed, for k # i, j. Althoughthealgorithm has been rather widely studied, we know
of only one other person who independently discovered assumption (ii). We discovered
assumption (i) only when expanding an earlier version of our win proof to its present,
more rigorous, form. We knew about assumption (ii) before writingthisarticle, but we
are confident that attempting the proof would have led to its discovery anyway.

Assertional methods, including the Owicki-Griesmethod, reduce a proof of correctness
to a collection of small steps—each of which involves reasoning about a single opera
tion. Previous assertional methods require that each operation be atomic. The win and
sinoperators permit the generalization of these methodsto allow nonatomic operations.
However, much work remains in ng the practical utility of these operators and
developing their formal theory. We believe that our rules for reasoning about win pro-
vide arelatively complete method for proving P = 0OQ formulas for simple cobegin
programs, where the semantics of nonatomic operationsare defined by the Assignment
and Await Rules, but a detailed proof of thisresult has not yet been written. Moreover,
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we expect aformal system for reasoning about nonatomic operationsto be much more
sengitive to the semantics of the particular language constructs than one for reasoning
about atomic operations, so no far-reaching conclusions can be drawn from a single
completeness result. In particular, nonatomic communication primitives have yet to be
studied.
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