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DEC’s business and technology objectives require a strong research program. The
Systems Research Center (SRC) and three other research laboratories are committed to
filling that need.
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the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed computing,
programming environments, system modelling techniques, specification technology,
and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems
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solely in the abstract. Based on this belief, our strategy is to demonstrate the technical
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computing.
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Author’s Abstract

The weakest liberal precondition and strongest postcondition predicate transformers
are generalized to the weakest invariant and strongest invariant. These new predicate
transformers are useful for reasoning about concurrent programs containing operations
in which the grain of atomicity is unspecified. They can also be used to replace
behavioral arguments with more rigorous assertional ones.

Capsule Review

It is widely recognized that reasoning, either formally or informally, about concurrent
programs is harder than reasoning about ordinary sequential programs. At any point in
the execution of any thread of control it is potentially possible for shared variables to
be written by another thread, invalidating conditions that have just been established by
the first thread.

The standard approach to verifying concurrent programs is to divide the execution of
each thread into a series of atomic actions, and to show that all possible interleavings of
the atomic actions of the various threads are guaranteed to produce correct results. This
report introduces a new method for verifying concurrent programs without specifying
the grain of atomicity of operations. It requires instead only that certain invariants of
the operations be known. For example, a statement like a :D b C c typically consists
of several atomic actions (particularly if a, b, and c are long integers and cannot be
read or written atomically by the hardware), but it may be assumed that execution of
the entire statement or any part of it leaves invariant the value of any variable d distinct
from a, b, and c.

From a theoretical standpoint, the verification method introduced in this report is
interesting in that it makes it possible to verify concurrent programs without precisely
specifying the decomposition of statements into atomic operations. From a practical
standpoint, this means that programs can be analyzed at a coarser grain than that of
atomic operations.

The tools developed here are by no means a panacea. Verification of concurrent
algorithms is still a tricky business, requiring careful attention to detail, as study of
the examples in the text will indicate. However, by allowing the analysis to be done
at a coarser grain, these tools can reduce the number of steps (and consequently the
temptation to skip some steps) needed for verification, making the process somewhat
less arduous (and error-prone) than it has been in the past.

Jim Saxe
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1 Introduction

Partial correctness is a relation between the program states before and after execution
of an entire program. For reasoning about concurrent programs, the appropriate gener-
alization of partial correctness is invariance, which is a relation between the program
states before and after the execution of each atomic operation of a program. The ap-
propriate generalization of the Hoare triple fPg S fQg is the assertion that S leaves a
predicate I invariant [13]. Because the invariant I describes the program state during
execution, it must depend upon the control state as well as on the values of ordinary
program variables.

The predicate transformers wlp (the weakest liberal precondition) and sp (the strongest
postcondition) for proving partial correctness properties of sequential programs were
developed in the early 1970’s by de Bakker and others [3, 4] and popularized by
Dijkstra [5]. Here, we generalize them to the predicate transformers win (the weakest
invariant) and sin (the strongest invariant) for proving safety properties of concurrent
programs. Some of the ideas presented here originally appeared in [12], but with a
different notation.

The wlp and sp operators are useful because they allow one to encode partial correctness
information in a predicate. A predicate containing the wlp or sp operator can be used
in a program annotation to prove a partial correctness property. While it is well known
that the ability to express such predicates is necessary for a logic of Hoare triples to
be complete [1], the practical utility of these predicates in proving partial correctness
properties is not widely appreciated.

In an analogous fashion, the predicate transformers win and sin are useful for proving
invariance properties of concurrent programs because predicates they can appear in
an invariant. We have discovered two applications of these predicate transformers:
reasoning about programs that are not decomposed into their atomic operations, and
transforming certain behavioral reasoning into more rigorous assertional reasoning.

We give two examples of reasoning about nonatomic operations. The first shows that,
when the atomicity of an operation is obviously irrelevant, we can reason directly about
the nonatomic operation instead of pretending that it is atomic. While not having
to introduce unnecessary atomicity is aesthetically pleasing, it offers little practical
benefit. The second example, a correctness proof of the bakery algorithm [9], is
more compelling. The bakery algorithm is a mutual exclusion algorithm that makes
no atomicity assumptions about its operations. Our proof reveals that the algorithm
has a subtle bug—more precisely, its correctness depends upon unstated assumptions.
Correctness proofs of the bakery algorithm have appeared in [9] and [10], and a proof
of a variant, requiring the same assumptions, appeared in [11]. The fact that none of
these other proofs revealed the hidden assumption indicates the utility of the approach
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presented here.

Our final example illustrates a different use of the predicate transformers. Assertional
reasoning, based upon invariance, has proved to be more reliable than behavioral
reasoning, which argues directly about the sequence of operations executed by the
program. However, there have been examples in which a purely assertional proof
was more complicated than a hybrid proof—one using a behavioral argument to show
that the given algorithm is equivalent to a simpler one whose correctness is proved
assertionally. It appears that the win and sin operators can be used in these examples
to replace the hybrid proof with a simple, assertional one. This is illustrated by a
distributed algorithm abstracted from part of a well-known algorithm for computing a
minimum spanning tree [6].

This paper is primarily concerned with applications of win and sin rather than with their
formal properties. The treatment of the formalism is brief, and no attempt is made to
develop a complete proof system. We hope to present completeness results in a future
paper.

Our approach is semantic rather than syntactic, meaning that we deal not with pieces of
program text but with the mathematical objects represented by those pieces of text. For
example, we view the expression x > 0 as a boolean-valued function on the program
state (a function that depends only on the value of the variable x) rather than as a string
of characters generated by some grammar. By eschewing syntax, we hope to focus
attention on the underlying concepts.

The definitions and properties of the predicate transformers win and sin are independent
of a programming language. They can be applied to concurrent programs written
in any imperative language, regardless of whether processes communicate through
shared memory, synchronous or asynchronous message passing, or remote procedure
call. However, our major examples involve a generalization of the Owicki-Gries
method [10, 14], and we describe this method only for programs that can be written in
a very simple language.

2 Assertional Reasoning

We begin with a review of the traditional approach to concurrent program verification
that will serve to introduce some notationand describe our view of concurrent programs.
We take as an example the program of Figure 1. In this program, the body of the outer
cobegin is executed concurrently as n separate processes, each with a different value
substituted for i, and the body of the inner cobegin similarly “forks” n�1 subprocesses.
(Here and throughout this paper, the range of values of the variables i and j is assumed
to be the set f1; : : : ; ng. To avoid having to define the meaning of an empty cobegin
statement, we assume that n > 1 for this program and its variants that appear later.)
The await operation can be executed only when its condition is true, in which case it
is equivalent to a skip. Angle brackets enclose atomic operations, and the predicate

2



var num: array 1: : : n of nonnegative integer;

cobegin iD1:::n

loopncsi : hnoncritical sectioni;
þi : hnum[i] := 1Cmaxfnum[ j ] : j 6D igi;
Ži : cobegin j 6Di

�i j : hawait i − j i
coend;

csi : hcritical sectioni;
²i : hnum[i] := 0i

endloop
coend

Figure 1: A simplified version of the bakery algorithm.

i − j is defined to equal

.num[ j ] D 0/ _ .num[i] < num[ j ]/ _ .num[i] D num[ j ] ^ i < j / (1)

Since we are concerned only with safety properties [10], it does not matter what
fairness assumptions are made about when an operation must be executed. Thus, the
inner cobegin could be implemented by a for loop, with the subprocesses executed one
after the other.

This program is a simplified version of the bakery algorithm—a mutual exclusion
algorithm described in [9]. The critical and noncritical sections are represented by
atomic operations, which are assumed not to modify the variables num[i], and the
original bakery algorithm is trivialized by making the operations þi and �i j atomic.

2.1 States and Predicates

In our semantic approach, a program consists of a set S of states and a set 5 of atomic
operations.1 Here, we describe the set of states; atomic operations are defined in
Section 2.2.

States

A state of a program is a mapping from the set of program variables to some set of
values—in other words, a state consists of an assignment of values to the program’s
variables. In addition to ordinary program variables, we also introducecontrol variables
that describe the control state of the program.

For simple cobegin programs, such as the simplified bakery algorithm of Figure 1,
the control variables consist of variables at(¾ ), for every atomic operation ¾ in 5.

1If we were considering liveness properties as well as safety properties, a program would also have to
include fairness conditions.
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The variable at(¾ ) is a boolean-valued variable whose value is true iff (if and only if)
control is at operation ¾ . For the simplified bakery algorithm, the variables are num[i],
at(ncsi), at(þi ), at(�i j ), at(csi ), and at(²i ), for all i; j D 1; : : : ; n with i 6D j . A state
of this program is an assignment of nonnegative integers to the variables num[i] and
booleans to the at variables.

We restrict the set S of states to allow only valid assignments of values to the control
variables. For simple cobegin programs, we require that the values of the at variables
do not declare control to be at two places in the same process—except where a nested
cobegin splits the process into subprocesses. For example, in the simplified bakery
algorithm, at(�i j ) and at(csi ) are not both assigned the value true in any state.

The set S of program states may include ones we don’t expect to occur during an
execution. For example, the simplified bakery algorithm contains states with at(�i j )
true and num[i] D 0, even though þi sets num[i] to a nonzero value. Similarly, there
are states in which at(cs1) and at(cs2) both have the value true, even though this is
a correct mutual exclusion algorithm, and control will never be simultaneously at the
critical sections of two different processes while executing the program.

Definition of sx1
v1

ÐÐÐ
ÐÐÐ

xm
vm

Let x1, : : : , xm be distinct variables, and let v1, : : : , vm be values. For any state s, we
define sx1

v1

ÐÐÐ
ÐÐÐ

xm
vm

to be the assignment of values to variables that is the same as s except
that each xp is assigned the value vp . Note that sx1

v1

ÐÐÐ
ÐÐÐ

xm
vm

need not be a state if one or
more of the xi are control variables.

State Functions and Predicates

A state function is a function whose domain is the set of states, and a predicate is a
boolean-valued state function. If P is a predicate, we write s jD P instead of P.s/ and
define jD P to equal 8s 2 S: s jD P. Thus, jD P asserts that P is true for all program
states.

A variable is a state function whose value on a state is the value of the variable in that
state. In particular, a boolean-valued variable is a predicate.

State Function Not Accessing a Set of Variables

We say that a state function f does not access a set fx1, : : : , xmg of variables iff
f .s/ D f .sx1

v1

ÐÐÐ
ÐÐÐ

xm
vm
/ for every state s and all values v1, : : : , vm such that sx1

v1

ÐÐÐ
ÐÐÐ

xm
vm

is a state.
Intuitively, f does not access a set of variables iff the value of f can be computed
without knowing the values of those variables.2

2One might expect that a state function does not access a set fx1; : : : ; xm g of variables iff it does not
access each singleton set fxi g. However, this is not true. For example, in the simplified bakery algorithm,
taking any state and changing the value of either at(csi ) or at(²i ) by itself cannot yield a valid control state.
Hence, every state function does not access the set fat(csi )g and does not access the set fat(²i )g. However,
at(csi ) is a state function that accesses (does not not access) the set fat(csi );at(²i )g. What all this means is
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A control predicate is a predicate that does not access the set of all variables other than
control variables.

2.2 Actions and Atomic Operations

Actions

An action is a relation on the set of states—that is, a set of pairs of states. The possible
executions of an atomic operation are represented by an action ¾ , where .s; t/ 2 ¾
means that executing the atomic operation starting in state s can produce state t .

An action ¾ is deterministic iff for each state s there is at most one t such that .s; t/ 2 ¾ .
Any deterministic action can be written in the following form, where the xp are distinct
program variables, b is a predicate, and the ep are state functions:

b

0B@ x1
:::

xm

1CA :D

0B@e1
:::

em

1CA (2)

This describes the set of all pairs .s; sx1
e1.s/
ÐÐÐ
ÐÐÐ

xm
em.s// such that s jD b equals true. In other

words, it is an action that can be executed only if b is true, and it has the effect of first
evaluating the expressions ep and then setting the xp , all in one step. Although we
do not assume that actions are deterministic, we will not discuss the representation of
nondeterministic actions.

For the simplified bakery algorithm of Figure 1, statement þi describes the action

at(þi )

0@num[i]
at(þi )
at(�i j )

1A :D
0@1Cmaxfnum[ j ] : j 6D ig

f alse
true; f or all j 6D i

1A
and statement �i j describes the action

at(�i j ) ^ i − j

�
at(�i j )
at(csi )

�
:D
�

f alseV
k 6Di; j :at(�ik )

�
Action Modifying or Not Accessing Variables

We say that an action ¾ modifies a variable x iff there exists a pair .s; t/ in ¾ such that x
has different values in states s and t . We say that ¾ does not access the set fx1, : : : , xmg
of variables iff ¾ does not modify any of the xp and for any .s; t/ 2 ¾ and any values v1,
: : : , vm , if sx1

v1

ÐÐÐ
ÐÐÐ

xm
vm

is a state then .sx1
v1

ÐÐÐ
ÐÐÐ

xm
vm
; t x1
v1

ÐÐÐ
ÐÐÐ

xm
vm
/ 2 ¾ . Intuitively, x does not access a

set of variables iff ¾ can be executed without reading or writing any of those variables.

that there is no unique definition of the set of variables that are accessed by a state function.
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The action (2) does not modify any variables other than the xp; it does not access any
set of variables that does not contain the xp and is not accessed by any of the ep . In
the simplified bakery algorithm, the action described by þ2 modifies only the variables
num[2], at(þ2), and at(�2 j ) for all j 6D 2; it does not access the set fat(þ1); at(�12)g (as
well as many other sets of variables).

Atomic Operations

An atomic operation ¾ of a program consists of an action together with control predicates
at(¾ ) and after(¾ ). Intuitively, at(¾ ) asserts that control is at a point where ¾ can be
executed, and after(¾ ) asserts that control is at a point that can be reached by executing
¾ . In the simplified bakery algorithm,

after(ncsi ) � at(þi )

after(þi ) �
^
j 6Di

at(�i j )

after(�i j ) � at(csi ) _
 
:at(�i j ) ^

_
k 6Di; j

at(�ik)

!
after(²i ) � at(ncsi )

The at predicates are program variables and are not defined in terms of anything else.

We will identify an atomic operation with its action. Thus, if ¾ is an atomic operation,
.s; t/ 2 ¾ means that the pair of states .s; t/ is an element of the action of ¾ . Similarly,
we say that an atomic operation does not modify a variable iff its action does not modify
the variable.

Our informal statement, that at(¾ ) holds iff control is at ¾ and after(¾ ) holds iff control is
immediately after ¾ , is formalized as the followingassumption about atomic operations.

CTL1. For any atomic operation ¾ : if .s; t/ 2 ¾ then s jD at(¾ ) and
t jD after(¾ ).

For simple cobegin programs like the simplified bakery algorithm, there is a variable
at(¾ ) for each atomic operation ¾ in the set 5 of the program’s atomic operations. For
programs written in a different language, the at predicates might be defined in terms of
other control variables.

2.3 The Hoare Logic of Actions

Definition of Hoare Triples

Let ¾ be an action and let P and Q be predicates. We define the Hoare triple fPg ¾ fQg
to mean 8.s; t/ 2 ¾ : .s jD P/ ) .t jD Q/. In other words, fPg ¾ fQg asserts that
if P is true in state s and executing ¾ in state s can yield state t , then Q is true in

6



state t . While this definition is superficially the same as the usual one for ordinary
Hoare triples, it is different in two respects: (i) ¾ is an action (a set of pairs of states),
not a program statement, and (ii) the state includes control variables, not just ordinary
program variables.

Proving Hoare Triples

The language-independent rules for reasoning about ordinary Hoare triples [8] apply to
our Hoare triples as well. Because our states include control variables, we do not need a
separate axiom or proof rule for every language construct. Instead, we can use the simple
rule that, if ¾ is the action (2), then fPg ¾ fQg is equivalent to jD .P ^ b/) Qx1

e1

ÐÐÐ
ÐÐÐ

xm
em

,
where Qx1

e1

ÐÐÐ
ÐÐÐ

xm
em

is the predicate defined by letting s jD Qx1
e1

ÐÐÐ
ÐÐÐ

xm
em

equal sx1
e1.s/
ÐÐÐ
ÐÐÐ

xm

em.s/
jD Q,

for any state s.3 This rule follows from the definitions of fPg ¾ fQg and of action (2).
As an example, the reader can derive f.num[i] > 0/ _:at(�i j )g �i j fi − j g from this
rule and the definition of i − j .

Action Leaving a Predicate Invariant or Unchanged

We say that a predicate P is an invariant of an action ¾ , or that ¾ leaves P invariant,
iff fPg ¾ fPg holds. In other words, P is an invariant of ¾ iff any execution of ¾ from a
state in which P is true yields a state in which P is true.

We say that ¾ leaves P unchanged iff it leaves both P and :P invariant, which is true
iff .s jD P/ � .t jD P/ for all .s; t/ 2 ¾ .

Properties of Invariance

We now list some simple properties that are useful for reasoning about invariance,
where ¾ is an arbitrary atomic operation and P and the Ph are predicates.

AC1. If P does not access the set of variables modified by ¾ , then ¾ leaves P unchanged.

AC2. If ¾ leaves each Ph invariant, then it leaves
V

h Ph and
W

h Ph invariant.

AC3. If jD P ) :at(¾ ) then ¾ leaves P invariant.

AC4. ¾ leaves P invariant iff it leaves .at(¾ )_ after(¾ )/ ^ P invariant.

Properties AC1 and AC2 follow from the definitions of what it means for an action to
leave a predicate invariant or unchanged. Properties AC3 and AC4 follow from the
definition of invariance and assumption CTL1.

Remember that an atomic operation ¾ consists of an action together with the control
predicates at(¾ ) and after(¾ ). Properties of atomic operations that do not mention
control predicates, such as properties AC1 and AC2, hold for any action.

3In a syntactic approach, one would define Qx1
e1
ÐÐÐÐÐÐ

xm
em when Q and the ep are formulas rather than state

functions. Given formulas for Q and the ep, the formula for Qx1
e1
ÐÐÐÐÐÐ

xm
em is obtained by simultaneously

substituting ep for xp, for p D 1; : : : ;m.
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2.4 Properties of a Program

Executions

An execution of the program consists of a finite or infinite sequence s0; s1; : : : of states
such that each pair .sm ; smC1/ is in some action of 5.4 In other words, an execution
is any sequence of states obtained by starting in an arbitrary state and executing pro-
gram actions. Properties of the program are expressed as assertions about the set of
executions.

We do not assume any particular starting state for the execution, so the simplified
bakery algorithm has executions beginning in a state with all processes at their critical
sections. In our formalism, the usual assumption that the program starts in a proper
initial state appears as a hypothesis in the property to be proved.

We can consider two programs to be equivalent if they have the same set of executions.
A pair of states is in an action of 5 iff it is in the union of all the actions of 5. (Since
actions are sets of pairs, the union of actions is just ordinary set union.) The set of
executions of a program depends only on the set S of states and the union of the actions
in 5. Thus, two programs may be considered equivalent if they have the same set of
states and the unions of their atomic operations are the same.

There can be many different sets5 that have the same union and thus define equivalent
programs. For example, suppose a program has an atomic operation ¾ that sends a
message to some process p and an atomic operation ¼ that sends a message to some
other process q . Replacing these two atomic operations by the single atomic operation
¾ [ ¼ that sends a message to either p or q results in a new set 5 that defines an
equivalent program. (We define at(¾ [ ¼) to be at(¾ ) _ at(¼) and after(¾ [ ¼) to be
after(¾ )_ after(¼).) The action ¾ [¼ will be nondeterministic if there exists a state in
which the program can send a message to either p or q .

Properties

A property is a boolean-valued function on the set of sequences of states. The program
is said to satisfy a property P, written jD P, iff P is true for every program execution.

If P and Q are predicates, we define P ) 2Q to be the property that is true of a
sequence s0; s1; : : : iff :.s0 jD P/_ .8m: sm jD Q/. Thus, jD P ) 2Q asserts that Q
is true for every state of every program execution that starts in a state with P true.

We consider only properties of the form P ) 2Q. Partial correctness is expressed
in this form by letting P be the initial condition and Q the predicate asserting that
the termination condition (which is a control predicate) implies that the answer is
correct. The mutual exclusion property of the simplified bakery algorithm is expressed
as P ) 2Q where P is

V
i at(ncsi) and Q is

V
i 6D j :.at(csi) ^ at(csj )/.

4Since we are concerned only with safety properties, we need not disallow finite sequences that end in
nonhalting states.
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Program Invariants

A predicate is said to be a program invariant iff it is an invariant of every action of
5, or, equivalently, iff it is an invariant of the union of all actions of 5. A predicate
I is a program invariant iff jD I ) 2I . It is clear that jD P ) I , jD I ) 2I , and
jD I ) Q together imply jD P ) 2Q. Hence, to prove jD P ) 2Q, it suffices
to find a program invariant I such that jD P ) I and jD I ) Q. This reduces the
proof of a safety property, which is an assertion about executions, to reasoning about
predicates and individual actions.

2.5 Simple cobegin Programs

We will describe the Owicki-Gries method only for programs that can be written in a
simple language of nested cobegins. We now describe these programs and make some
definitions that pertain only to them and not to arbitrary programs.

The Programs and Their Control Predicates

A simple cobegin program is one that can be written in a language consisting of el-
ementary statements (such as assignment and await statements), concatenation (“;”),
nonterminating loop—endloop statements, and cobegin—coend statements. We re-
quire that any “loop” keywords must precede every “;”. Each elementary statement is
enclosed in angle brackets, indicating that it represents an atomic operation.

The control variables of a simple cobegin program consist of the variables at(¾ ) for all
its atomic operations ¾ . The after predicates can be defined in terms of the at variables
by a simple recursion on the program structure; we will not bother giving the general
definition.

Atomic Operations Belonging to Different Processes

We say that two atomic operations belong to different processes iff they occur in
different clauses of the same cobegin statement. For example, in the simplified bakery
algorithm of Figure 1, �i j and �ik belong to different processes if j 6D k, while þi and
�i j do not belong to different processes. The Owicki-Gries method is based upon the
following property of simple cobegin programs.

CTL2. If atomic operations ¾ and ¼ in 5 belong to different processes, then ¾ leaves
at(¼) and after(¼) unchanged.

Predecessors

We say that an atomic operation ¼ is a predecessor of an atomic operation ¾ iff
control can reach ¾ by executing ¼. In the simplified bakery algorithm, þi is the only
predecessor of each �i j , and each �i j is the only predecessor of csi . Our restriction
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var num: array 1: : : n of nonnegative integer;

cobegin iD1:::n

loopncsi : hnoncritical sectioni;
þi : hnum[i] := 1Cmaxfnum[ j ] : j 6D igi fnum[i] > 0g;
Ži : cobegin j 6Di

fnum[i] > 0g �i j : hawait i − j i f.num[i] > 0/ ^ .i − j /g
coend;

f.num[i] > 0/^Vj 6Di .i − j /g
csi : hcritical sectioni;
²i : hnum[i] := 0i

endloop
coend

Figure 2: An annotation of the simplified bakery algorithm.

that a “loop” cannot follow a “;” implies that an atomic operation has more than one
predecessor only if it immediately follows a “coend”. If the body of a loop statement
consists of a single atomic operation ¾ , then ¾ is its own predecessor.

2.6 The Owicki-Gries Method

Decomposing the Invariant

One can prove directly that a predicate I is a program invariant by proving fI g ¾ fI g
for every atomic operation ¾ , as proposed by Ashcroft [2]. However, in the Owicki-
Gries method [10, 14], the proof is decomposed into smaller steps by writing I as a
conjunction of simpler predicates. For our cobegin programs, I is written in the form^

¾25
.at(¾ )) I¾ / ^ .after(¾ )) I 0¾ / (3)

for predicates I¾ and I 0¾ . Intuitively, I is the predicate asserting that, for every atomic
operation ¾ , if control is at ¾ then I¾ is true, and if control is immediately after ¾ then
I 0¾ is true. We represent I as a program annotation, where fI¾ g is written immediately
before and fI 0¾g immediately after ¾ , omitting predicates that are identically true. We
say that the annotation is invariant iff the predicate I represented by the annotation is
a program invariant.

Figure 2 shows such an annotation for the simplified bakery algorithm. For the predicate
I defined by this annotation, it is easy to see that
jD V

i at(ncsi ) ) I , and some predicate calculus reasoning shows that the defini-
tion of i − j implies jD I ) V

i 6D j :.at(csi ) ^ at(csj )/. Hence, to prove the mutual
exclusion property for this algorithm, we need prove only the invariance of I .
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The Owicki-Gries Conditions

One proves the invariance of an annotation by proving the following two Owicki-Gries
conditions.

Sequential Correctness:

(a) For every action ¾ 2 5: fI¾g ¾ fI 0¾g.
(b) For every action ¾ 2 5: if ¼1; : : : ; ¼m are the predecessors of ¾ , then
jD .at(¾ ) ^Vp I 0¼p

/) I¾ .

Interference Freedom: For every pair of distinct atomic operations
¾; ¼ in 5 that belong to different processes: fI¼ ^ I¾g¼ fI¾ g and
fI¼ ^ I 0¾g¼ fI 0¾ g.

The proof that these conditions imply the invariance of (3) uses properties CTL1,
CTL2, and AC2, the definition of a Hoare triple, and properties of the control structure
of simple cobegin programs.

We urge the reader who is not familiar with the Owicki-Gries method to use it to prove
the invariance of the annotation of Figure 2.

3 The Weakest and Strongest Invariants

3.1 More About Actions

The Composition of Actions

Let ¾¼ denote the composition of the actions ¾ and ¼, which is defined to be the action
f.s; u/ : 9t : ..s; t/ 2 ¾ /^ ..t; u/ 2 ¼/g. Thus, ¾¼ is executed by first executing ¾ then
executing ¼, all as a single action. The composition of two actions in 5, the set of
atomic operations of the program, is usually not an element of 5.

The composition ¾1 Ð Ð Ð ¾m of any finite, nonempty sequence of actions is defined in the
obvious way, and the composition of the null sequence of actions is defined to be the
identity action f.s; s/ : s 2 Sg. Thus, any element in 5Ł, the set of finite sequences of
atomic operations in 5, is defined to be an action.

Commutativity of Actions

We say that ¾ right commutes with ¼ (or that ¼ left commutes with ¾ ) iff ¾¼ � ¼¾ .
Hence, ¾ right commutes with ¼ iff .s; t/ 2 ¾ and .t; u/ 2 ¼ imply that there exists a
state t 0 with .s; t 0/ 2 ¼ and .t 0; u/ 2 ¾ . Intuitively, ¾ right commutes with ¼ iff any
state reachable from state s by first executing ¾ and then executing ¼ is also reachable
from s by first executing ¼ then executing ¾ .
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Two actions are said to commute iff each of them right commutes with the other—in
other words, iff executing them in either order has the same effect. A semaphore action
P.s/ right commutes with a semaphore action V .s/ in a different process, but these
two actions do not commute.

The following property is a consequence of the definitions of commutativity and of
what it means for an action not to access a set of variables.

AC5. Two actions commute if each of them does not access the set of variables modified
by the other.

3.2 The Weakest Liberal Precondition

For any action ¾ and predicate Q, we define the predicate wlp.¾; Q/ by letting
s jD wlp.¾; Q/ equal 8t 2 S: ..s; t/ 2 ¾ / ) .t jD Q/. The operator wlp is the
weakest liberal precondition operator [5]. The predicate wlp.¾; Q/ is the weakest one
satisfying fwlp.¾; Q/g ¾ fQg. Thus, fPg ¾ fQg is equivalent to jD P ) wlp.¾; Q/,
so ¾ leaves I invariant iff jD I ) wlp.¾; I /. If ¾ is the action defined by (2), then
wlp.¾; Q/ � Qx1

e1

ÐÐÐ
ÐÐÐ

xm
em
_:b.

Our definition of wlp.¾; Q/ differs from the usual definition in that (i) ¾ is an action
rather than a program statement, and (ii) our predicates may be functions of control
variables, rather than just of ordinary variables. For example, CTL1 and the definition
of wlp imply jD .:at(¾ )/ ) wlp.¾; Q/ for any atomic operation ¾ and predicate Q.
This result has no counterpart for the usual definition of wlp.

We will use the following properties of wlp, where P, Q, and the Qh are any predicates,
and ¾ and ¼ are any actions.

WLP0. jD wlp.¾¼; Q/ � wlp.¾; wlp.¼; Q//

WLP1. jDVh wlp.¾; Qh/ � wlp.¾;
V

h Qh /

WLP2. If jD P ) Q then jD wlp.¾; P/) wlp.¾; Q/.

WLP3. If ¾ leaves I invariant and ¾ right commutes with ¼, then ¾ leaves wlp.¼; I /
invariant.

WLP4. If ¾ leaves P unchanged, then jD wlp.¾; P _ Q/ � P _ wlp.¾; Q/.

WLP5. If a set of variables is not accessed by ¾ and not accessed by Q, then it is not
accessed by wlp.¾; Q/.

Properties WLP0–WLP2 follow easily from the definition of wlp and are well known.
Note that in WLP1, h can range over an infinite set of indices. Property WLP3 follows
from WLP0 and the easily derived property that Þ � þ implies jD wlp.þ; Q/ )
wlp.Þ; Q/. Property WLP4 can be derived from WLP1 and WLP2, although it is
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easier to prove it directly from the definition of wlp. Property WLP5 follows from the
definitions of wlp and of what it means for a predicate or an action not to access a set
of variables.

3.3 The Strongest Postcondition

The strongest postcondition operator, sp, is defined by letting t jD sp.¾; P/ equal
9s 2 S: ..s; t/ 2 ¾ / ^ .s jD P/. It follows from this definition that fPg ¾ fQg is
equivalent to jD sp.¾; P/) Q.

As observed by de Bakker and Meertens [4], the operator sp is a dual of wlp; for every
property of wlp there is a corresponding dual property of sp. For example, the following
are the duals of WLP2 and WLP3.

SP2. If jD P ) Q then jD sp.¾; P/) sp.¾; Q/.

SP3. If ¾ leaves I invariant and ¾ left commutes with ¼, then ¾ leaves sp.¼; I /
invariant.

The interested reader can derive these and the duals of the other properties of wlp.

3.4 Nonatomic Operations

Operations and Their Control Predicates

An operation ¦ consists of a set of atomic operations and two control predicates, at(¦ )
and after(¦ ). The set of operations of¦ contains all the atomic operations that constitute
¦ , and the predicates at(¦ ) and after(¦ ) assert that control is at the entry and exit point
of ¦ , respectively. For example, in the simplified bakery algorithm, the operation Ži

has f�i j : j 6D ig as its set of operations, at(Ži ) �
V

j at(�i j ), and after(Ži ) � at(csi ).

We identify an operation ¦ with its set of atomic operations, writing ¾ 2 ¦ to denote
that ¾ is an element of ¦ ’s set of atomic operations. We can view an operation as a set
of actions plus certain control information, so any concept defined for sets of actions is
also defined for operations. Any property of operations that does not mention control
predicates holds for an arbitrary set of actions.

If ¦ is an operation, we define the control predicate in(¦ ) to equal
W
¾2¦ at(¾ ), so in(¦ )

asserts that control is inside ¦ or at its entry point. We make the following assumption
about the relation between in(¦ ), after(¦ ), and the control predicates for the atomic
operations in ¦ .

CTL3. jD .in(¦ ) _ after(¦ )/ �W¾2¦ .at(¾ )_ after(¾ )/

We identify an atomic operation ¾ with the singleton set f¾ g, so an atomic operation
is an operation consisting of a single action. If ¾ is an atomic operation, then in(¾ )
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is equivalent to at(¾ ). Therefore, any rules for reasoning about nonatomic operations
should reduce to rules for atomic operations when in is replaced by at.

The Action h¦ i
For an operation ¦ , we let h¦ i denote the action consisting of all pairs .s; t/ such that
an execution of ¦ starting from state s can terminate in state t . In other words, h¦ i is
the action obtained by considering ¦ to be an atomic operation, where nonterminating
executions are disallowed. If jD after(¦ )) :in(¦ ) holds, so ¦ is not a “self-looping”
operation, then we can define the action h¦ i in terms of ¦ , at(¦ ), and after(¦ ) by

h¦ i D
[
½2¦ Ł
f.s; t/ 2 ½ : .s jD at(¦ )/^ .t jD after(¦ )/g (4)

When self-looping operations are allowed, the definition of h¦ i is more complicated
and is omitted.

Hoare Triples, wlp, and sp for Operations

We have defined Hoare triples, wlp, and sp for actions. We extend these definitions
to operations by defining fPg¦ fQg to equal fPg h¦ i fQg, definingwlp.¦; Q/ to equal
wlp.h¦ i; Q/, etc.

These concepts are traditionally defined for program statements. If we view a pro-
gram statement as an operation, then our definitions are essentially the same as the
conventional ones—except that our program state includes control information. More
precisely, if operation ¦ represents a program statement S, and the predicate Q does not
access the set of control variables, then wlp.¦; Q/ equals wlp.S; Q/ _ :at(¦ ), where
wlp.S;�/ denotes the traditional weakest liberal precondition operator for statement
S.

Some Definitions for Sets of Actions

We now extend the definitions of some properties of individual actions to properties of
sets of actions (and hence of operations) by defining them to hold for a set of actions
iff they hold for each action in the set. A set ¦ of actions is said to leave a predicate
P invariant iff each action in ¦ leaves P invariant, and to leave P unchanged iff each
action in ¦ leaves P unchanged. We say that ¦ modifies a variable iff some action in ¦
modifies the variable, and that it does not access a set of variables iff each of its actions
does not access the set of variables. We say that ¦ right commutes with a set of actions
− iff every action of ¦ right commutes with every action of − ; the definitions of left
commutes and commutes are analogous.

Properties of Operations

We will use the following general properties of operations, where ¦ and − are any
operations and P, Q, and the Ph are any predicates. Note that OP1, OP2, and OP5 hold
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for arbitrary sets of actions, not just for operations.

OP1. If P does not access the set of variables modified by ¦ , then ¦ leaves P un-
changed.

OP2. If ¦ leaves each Ph invariant, then it leaves
V

h Ph and
W

h Ph invariant.

OP3. ¦ leaves P ^:in(¦ ) invariant.

OP4. ¦ leaves P invariant iff it leaves .in(¦ ) _ after(¦ )/ ^ P invariant.

OP5. Operations ¦ and − commute if each of them does not access the set of variables
modified by the other.

Properties OP1, OP2, and OP5 are immediate consequences of the correspondingly-
numbered properties of actions. Property OP3 follows from AC3 and the definition of
in(¦ ). Property OP4 follows from AC3, AC4, the definition of in(¦ ), and assumption
CTL3.

3.5 The Weakest Invariant

Definition of win

Let ¦ be a set of actions and let Q be a predicate. The predicatewin.¦; Q/ is defined to
equal the disjunction of all predicates I such that jD I ) Q and ¦ leaves I invariant.
The operator win is called the weakest invariant operator. By OP2, win.¦; Q/ is an
invariant of ¦ ; it is the weakest invariant of ¦ that implies Q. The set of actions ¦
leaves Q invariant iff jD Q � win.¦; Q/. (Since jD win.¦; Q/) Q always holds, ¦
leaves Q invariant iff jD Q) win.¦; Q/.)

Expressing win in Terms of wlp

The win operator can be expressed in terms of wlp as follows.

win.¦; Q/ �
^
½2¦ Ł

wlp.½; Q/ (5)

Let R denote the right-hand side of (5). To verify (5), we must prove that (i) jD R) Q,
(ii) R is an invariant of ¦ , and (iii) R is implied by every invariant of ¦ . Property
(i) holds because the empty sequence, which is in ¦ Ł, is the identity action �, and
wlp.�; Q/ D Q. To prove (ii), observe that for any action ¾ of ¦ , WLP0 and WLP1
imply jD wlp.¾; R/ � V

½ wlp.¾½; Q/. Hence jD R ) wlp.¾; R/, so ¾ leaves R
invariant. Finally, it follows from WLP0 and WLP2 that jD I ) wlp.¾; I / and
jD I ) wlp.½; Q/ imply jD I ) wlp.¾½; Q/. A simple induction argument then
shows that if ¦ leaves I invariant and jD I ) Q, then jD I ) wlp.½; Q/ for all
½ 2 ¦ Ł, which proves (iii).
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Let h¦ Łi be
S
½2¦ Ł ½, the action consisting of all .s; t/ such that executing some finite

number of actions of ¦ starting in s yields t . It is easy to show that jD win.¦; Q/ �
wlp.h¦ Łi; Q/. If ¦ is an operation, so h¦ i is defined, then h¦ Łi is a superset of h¦ i.
While h¦ i contains pairs of states obtained only from complete executions of ¦ , the
action h¦ Łi includes pairs obtained from incomplete executions as well.

Properties of win

We will use the following properties of the win operator, where P, Q, and the Qh are
any predicates and ¦ and − are any sets of actions. They follow easily from equation
(5) and the corresponding properties of wlp.

WIN1. jDVh win.¦; Qh / � win.¦;
V

h Qh/

WIN2. If jD P ) Q then jD win.¦; P/) win.¦; Q/.

WIN3. If ¦ leaves I invariant and ¦ right commutes with − , then ¦ leaves win.−; I /
invariant.

WIN4. If ¦ leaves P unchanged, then jD win.¦; P _ Q/ � P _win.¦; Q/.

WIN5. If a set of variables is not accessed by ¦ and not accessed by Q, then it is not
accessed by win.¦; Q/.

The Predicate Transformer winp

Of particular importance in verifying programs are formulas of the formwin.¦; after(¦ )) Q/,
where ¦ is an operation. We denote this formula by winp.¦; Q/, where winp stands
for weakest invariant of a postcondition. The predicate winp.¦; Q/ asserts of a state
s that if control is anywhere in ¦ , then any terminating execution of ¦ starting in state
s terminates with Q true. Contrast winp.¦; Q/ with wlp.¦; Q/, which makes this
assertion only for a state s with control at the beginning of ¦ . We will use the following
properties of winp.

WINP1. jD at(¦ ) ^ winp.¦; Q/ � at(¦ ) ^wlp.¦; Q/

WINP2. If jD after(¦ ) ) :in(¦ ) then jD after(¦ ) ^ winp.¦; Q/ �
after(¦ ) ^ Q.

WINP3. If ¦ leaves P invariant, then jD P ^winp.¦; Q/ � P ^winp.¦; P ^ Q/.

WINP4. If jD after(¦ ) ) :in(¦ ) and ¦ leaves P invariant, then ¦ leaves .in(¦ ) ^
P ^winp.¦; Q// _ .after(¦ ) ^ P ^ Q/ invariant.

The validity of WINP1 should be obvious from our discussion of the relation be-
tween winp and wlp. It can be derived from (4), (5), and the observation that
jD wlp.

S
h ¾h; Q/ �Vh wlp.¾h; Q/. Property WINP2 is proved as follows.5

5Complicated proofs are broken down into numbered steps. Boxed numbers indicate the statement or
statements that immediately imply the desired conclusion.
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1. jD after(¦ ) � win.¦; after(¦ )/

PROOF: OP3 and the hypothesis imply that ¦ leaves after(¦ ) invariant.

2. jD after(¦ ) ^winp.¦; Q/ � win.¦; after(¦ ) ^ Q/

PROOF: By 1, WIN1, and the definition of winp, since jD .after(¦ ) ^ .after(¦ ) )
Q// � after(¦ ) ^ Q.

3 jD after(¦ ) ^winp.¦; Q/ � after(¦ ) ^ Q.

PROOF: By 2 and the definition of win, since OP3 and the hypothesis imply that ¦
leaves after(¦ ) ^ Q invariant, so win.¦; after(¦ ) ^ Q/ equals after(¦ ) ^ Q.

Property WINP3 is proved as follows.

1. jD winp.¦; P ^ Q/ � winp.¦; P/ ^winp.¦; Q/

PROOF: By the definitionof winp and WIN1, since .after(¦ )) P/^.after(¦ ) ) Q/
equals after(¦ )) .P ^ Q/.

2. jD P ) winp.¦; P/

PROOF: Since jD P ) .after(¦ )) P/, WIN2 implies jD win.¦; P/) winp.¦; P/.
But ¦ leaves P invariant, so jD win.¦; P/ � P.

3 jD .P ^winp.¦; Q//) .P ^winp.¦; P ^ Q//

PROOF: By 1 and 2.

4 jD .P ^winp.¦; P ^ Q//) .P ^winp.¦; Q//

PROOF: By WIN2, jD winp.¦; P ^ Q/) winp.¦; Q/.

To prove WINP4, we apply WINP2 to rewrite .in(¦ )^ P^winp.¦; Q// _ .after(¦ )^
P ^ Q/ as .in(¦ ) _ after(¦ )/^ P ^ winp.¦; Q/ and then apply OP2.

3.6 The Strongest Invariant

Just as sp is the dual of wlp, we can define an operator sin, the strongest invariant, that
is dual to win. For any set of actions ¦ and predicate P, sin.¦; P/ is defined to be the
conjunction of all invariants I of ¦ that are implied by P. Corresponding to (5), we
have

sin.¦; P/ �
^
½2¦ Ł

sp.½; P/ (6)

The dual of winp is sinp.¦; P/, defined to be sin.¦; at(¦ ) ^ P/, where¦ is an operation.
We will use the following properties, dual to WIN2 and WIN3, which can be derived
from (6), SP2, and SP3.

SIN2. If jD P ) Q then jD sin.¦; P/) sin.¦; Q/.
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array num[1 : : : n] of nonnegative integer
array c[1 : : : n] of boolean

cobegin iD1:::n

loopncsi : noncritical section;
Þi : c[i] := true;
þi : num[i] := 1Cmaxfnum[ j ] : j 6D ig;

i : c[i] := false;
Ži : cobegin j 6Di

ži j : await :c[ j ] ;
�i j : await i − j

coend;
csi : critical section;
²i : num[i] := 0

endloop
coend

Figure 3: The bakery algorithm.

SIN3. If ¦ leaves I invariant and ¦ left commutes with − , then ¦ leaves sin.−; I /
invariant.

3.7 Simple cobegin Programs with Unspecified Atomicity

The Programs and Their Control Predicates

We now consider simple cobegin programs containing elementary statements that are
not atomic operations. These are programs that can be written in the same simple
language considered above, except without the requirement that every elementary
statement be enclosed in angle brackets. An example of such a program is the bakery
algorithm, given in Figure 3. This is essentially the same as the original version in [9],
though with different notation. It is an extreme example because no atomic operations
are specified.

Figure 3 says nothing about the grain of atomicity of the program’s operations. State-
ment þi could be executed by reading each num[ j ] one bit at a time, and writing num[i]
one bit at a time. The individual bits could even be read and written several times.
Thus, Figure 3 does not describe a single program; it is a specification of a class of
programs that are valid implementations of the bakery algorithm. Proving a property
of the bakery algorithm means proving that property for any valid implementation.

In addition to the ordinary variables num[i] and c[i], an implementation of the bakery
algorithm will contain hidden variables—variables not explicitly mentioned in Fig-
ure 3. For example, hidden variables are needed to hold the values of intermediate
computations when executing þi . In the bakery algorithm, the control variables are
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hidden variables. We can’t write an explicit expression for the predicate in(þi ) in
terms of variables at(¾ ) for atomic operations ¾ because Figure 3 does not specify what
those atomic operations are. Such an expression can be written only for a particular
implementation, in which the atomic operations are given.

We let� denote the set of operations that correspond to the elementary statements and
tests of the program. For the bakery algorithm,� D fncsi; Þi ; þi; 
i ; ži j ; �i j ; csi ; ²i :
i 6D j g. The set � is a partition of the set 5 of atomic operations, since each atomic
operation of the program belongs to exactly one operation in �. Of course, the actual
atomic operations that constitute an element of � depend upon the implementation.

We can deduce certain relations between the at and after predicates from the pro-
gram control structure. For example, in the bakery algorithm, we have jD at(csi ) �V

j 6Di after(�i j ) and jD .after(�i j ) ^ in(csi )/) at(csi ). We will assume these obvious
relations without giving a formal method for deriving them.

Operations Belonging to Different Processes

The definition of what it means for two arbitrary operations to belong to different
processes is the same as the definition for atomic operations—namely, that ¦ and −
belong to different processes iff they occur in different clauses of the same cobegin
statement. We make the following assumption, which is the generalization of CTL2 to
arbitrary operations.

CTL4. If operations ¦ and − in � belong to different processes, then − leaves at(¦ ),
in(¦ ), and after(¦ ) unchanged.

Predecessors

The definition of one operation being a predecessor of another is essentially the same
as the definition for atomic operations—namely, an operation ² in � is a predecessor
of an operation ¦ in� iff control can reach ¦ by completing the execution of ². In the
bakery algorithm, ²i is the only predecessor of ncsi , and each �i j is a predecessor of
csi .

The Semantics of Nonatomic Operations

To reason formally about programs with nonatomic operations, we must make some
assumptions about those operations. Our first assumption is that, in the absence of con-
current execution of other operations, a nonatomic operation has the expected meaning.
For example, executing a nonatomic assignment x :D 2 Ł y when y equals 1 sets x to
2. Formally, this means that we assume the validity of ordinary rules for manipulating
wlp formulas involving nonatomic operations. Thus, if ¦ is a nonatomic assignment
x :D 2 Ł y, thenwlp.¦; x D 2/ equals .y D 1/_ :at(¦ ).

What it means to execute a nonatomic operation in the presence of concurrent activity
is a subtle issue. Consider again a nonatomic assignment x :D 2 Ł y. If x is not
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concurrently modified by another operation, must execution of this assignment set x
to an even value? One can argue that the answer is “yes”, since regardless of what
value is obtained when reading y, multiplying it by 2 yields an even number. On the
other hand, one can argue that the answer is “no”, since hx :D yi; hx :D x C yi is a
valid implementation of x :D 2 Ł y whose execution could set x to an odd value—for
example, if another process increments y by 1 in the middle of the execution.

Deciding what the semantics of x :D 2Ł y should be is a problem in language design—a
topic we wish to avoid. Instead, we just assume that this operation does not modify or
access any variables we don’t expect it to. We can make the obvious assumption that
x is the only nonhidden variable modified by this operation, and the operation does
not access any set of nonhidden variables that does not contain x or y. However, we
also need some assumption about the hidden variables that the operation may modify
or access.

Intuitively, we assume that each process has its own local variables that are not accessed
or modified by any other process. More precisely, we assume that, for each operation ¦
in�, there is a set of variables that are local to ¦ . If ¦ and − are operations in different
processes, we assume that they have disjoint sets of local variables. We then assume
the following rules for reasoning about nonatomic assignment and await statements.

Assignment Rule A nonatomic operation x :D ex p.y1; : : : ; ym/modifies only x and
variables local to the operation. The operation does not access any set of variables that
contains neither x , nor any yp , nor any variable local to the operation.

Await Rule A nonatomic operation await ex p.y1; : : : ; ym/ modifies only variables
local to it. The operation does not access any set of variables that contains neither any
yp nor any variable local to the operation.

3.8 The Owicki-Gries Method with Unspecified Atomicity

Decomposing the Invariant

We now extend the Owicki-Gries method to permit reasoning about simple cobegin
programs like the bakery algorithm with nonatomic elementary statements. A safety
property is still proved by finding the appropriate invariant I , where I is written as an
annotation. However, the annotation now denotes the predicate^

¦2�
.in(¦ )) I¦ /^ .after(¦ )) I 0¦ / (7)

Intuitively, this predicate asserts that, for each operation ¦ , if control is in ¦ then I¦ is
true, and if control is immediately after ¦ then I 0¦ is true. Since in(¦ ) is equivalent to
at(¦ ) if ¦ is an atomic operation, (7) is the same as (3) if every operation ¦ is atomic.
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The Owicki-Gries Conditions

To prove the invariance of an annotation, one proves the following nonatomic Owicki-
Gries conditions, where J¦ is defined to be .in(¦ ) ^ I¦ / _ .after(¦ ) ^ I 0¦/.

Sequential Correctness:

(a) Every operation ¦ 2 � leaves J¦ invariant.

(b) For every operation ¦ 2 � and every predecessor set ²1; : : : ; ²m of ¦ :
jD .at(¦ ) ^Vp I 0²p

/) I¦ .

Interference Freedom: For every pair of distinct operations ¦; − in� that belong
to different processes: − leaves in(¦ )^ I¦ ^ J− and after(¦ )^ I 0¦ ^ J− invariant.

The proof that these conditions imply the invariance of I is similar to the proof for the
atomic Owicki-Gries conditions.

By part (a) of the sequential correctness condition, each operation − in � leaves J−
invariant. Therefore, OP2 implies that to prove the interference-freedom condition for
the pair ¦ , − , it suffices to prove that − leaves in(¦ ) ^ I¦ and after(¦ ) ^ I 0¦ invariant.
Since ¦ and − are in different processes, − leaves in(¦ ) and after(¦ ) invariant (by
CTL4). Hence by OP2, to prove this interference-freedom condition, it also suffices to
prove that − leaves I¦ and I 0¦ invariant.

For an atomic operation ¾ , the formula fI¾g ¾ fI 0¾ g is equivalent to the assertion that
¾ leaves J¾ invariant. Hence, if all operations are atomic, the nonatomic sequential-
correctness condition is equivalent to the atomic Owicki-Gries condition. If ¦ and
− are atomic operations, the presence of the in(¦ ) and after(¦ ) conjuncts makes this
nonatomic interference-freedom condition somewhat weaker than the atomic Owicki-
Gries condition.

4 Applications

4.1 The Single-Access Rule

It is usually assumed that an operation may be treated as atomic if it contains at most
one access to a shared variable. We call this assumption the single-access rule. It was
first published by Owicki and Gries in [14], but probably qualifies as a folk theorem [7].
In the traditional method of reasoning about a concurrent program, one first applies the
single-access rule to replace the program with one containing larger atomic operations
and then applies the atomic Owicki-Gries method to the new program. We will indicate
with an example how the win formalism allows one to use the nonatomic Owicki-Gries
method to reason about the original program without using the single-access rule to
change the grain of atomicity.
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var x , y: array 1: : : n of integer;
m: integer;

cobegin iD1:::n Þi : hm := max.m; x[i]/ ;
y[i] := x[i] i fm ½ y[i]g

coend

Figure 4: Annotation of a program obtained with the single-action rule.

var x , y: array 1: : : n of integer;
m: integer;

cobegin iD1:::n ¾i : hm := max.m; x[i]/ i fm ½ x[i]g;
fwinp. i ;m ½ y[i]/g  i : y[i] := x[i] fm ½ y[i]g

coend

Figure 5: Annotation of the original program.

The single-access rule is based upon the assumption that any access to a shared variable
is atomic, which may not always be the case. (For example, the variable may be
implemented as two words of memory, with access to each word being a separate
action.) A more precise formulation of the single-access rule is that if �I ¾ I appears
in a program, ¾ is atomic, and � and  are operations that do not access any set
of variables that are not local to the process containing them, then �I ¾ I may be
considered a single atomic operation.

Any Owicki-Gries method proof of a program transformed with the single-access rule
can be turned into a proof of the original program. However, proving this result
in general is rather tedious and requires properties of win and sin that we have not
introduced. Instead, we illustrate the result with an example—namely, the annotated
program of Figure 4, which is obtained by applying the single-action rule to combine

¾i : hm :D max.m; x[i]/ i
 i : y[i] :D x[i]

into the one atomic operation Þi . (In this program, m is the only nonlocal variable.)
It is easy to prove the invariance of this annotation, from which one can deduce that
m ½ max.y[1]; : : : ; y[n]/ holds upon termination.

Instead of applying the single-action rule, we apply the nonatomic Owicki-Gries method
directly to the annotated program of Figure 5. We give a more detailed proof than is
warranted by the example in order to illustrate the decomposition into simple steps that
is the hallmark of the Owicki-Gries method.
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Proof of Sequential Correctness—(a)

We must show that every operation ¦ leaves J¦ invariant. (Recall that J¦ equals
.in(¦ ) ^ I¦ /_ .after(¦ ) ^ I 0¦ /.) There are two cases to check: ¦ D ¾i and ¦ D  i .

¾i : An atomic action ¦ leaves J¦ invariant iff fI¦ g¦ fI 0¦ g. We must therefore prove
ft rueg ¾i fm ½ x[i]g, which follows from the usual rules for Hoare triples.

 i : The invariance of J i follows immediately from WINP4 (substituting true for
P).

Proof of Sequential Correctness—(b)

We must show that for every operation ¦ : if ²1; : : : ; ²m are the predecessors of ¦ , then
jD at(¦ ) ^Vp I 0²p

) I¦ . Again, there are two choices of ¦ to consider.

¾i : This condition is vacuous, since ¾i has no predecessors. (Formally, the condition
holds because the conjunction of an empty set of predicates equals false.)

 i : Since ¾i is the only predecessor of  i , we must prove

jD .at( i ) ^ .m ½ x[i]// ) winp. i ;m ½ y[i]/

This formula follows from WINP1, since a simple wlp calculation shows that
at( i ) ^wlp. i ;m ½ y[i]/ equals at( i ) ^ .m ½ x[i]/.

Proof of Interference Freedom

For each operation − and each operation ¦ in a different process from − , we must prove
that − leaves in(¦ ) ^ I¦ ^ J− and after(¦ ) ^ I 0¦ ^ J− invariant. As we observed in
Section 3.8, it suffices to prove that − leaves I¦ and I 0¦ invariant.

Proof for − D ¾k. There are two choices of ¦ to be checked—namely, ¾i and i , with
i 6D k.

¾i : Operation ¾k obviously leaves I¾i invariant, since I¾i equals true. (Formally, this
follows from OP1.) To prove that ¾k leaves I 0¾i

invariant, we must show that
fm ½ x[i]g ¾k fm ½ x[i]g holds, which follows from the usual rules for reasoning
about Hoare triples.

 i : 1 ¾k leaves I 0 i
invariant.

PROOF: We must show that fm ½ y[i]g ¾k fm ½ y[i]g holds, which follows by
ordinary reasoning about Hoare triples.

2. ¾k commutes with  i .
PROOF: By the Assignment Rule and OP5.
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3. ¾k leaves :after( i ) invariant.
PROOF: By CTL4.

4. ¾k leaves after( i )) I 0 i
invariant.

PROOF: By 1, 3, and OP2.

5 ¾k leaves I i invariant.
PROOF: By 2, 4, and WIN3, since I i equals win. i ; after( i )) I 0 i

/.

Proof for − D  k . We have the same two choices for ¦ .

¾i : Operation  k obviously leaves I¾i invariant, since I¾i � t rue. By the Assignment
Rule and OP1, it leaves I 0¾i

invariant

 i : The Assignment Rule and OP1 imply that  k leaves I 0 i
invariant (since i 6D k).

The proof that it leaves I i invariant is similar to the proof for − D ¾k.

4.2 The Bakery Algorithm

We now prove the correctness of the original bakery algorithm, shown in Figure 3.
More precisely, we prove that this algorithm is correct if two additional assumptions
are made about it. Our inability to verify the correctness of the original algorithm
will lead to the discovery of the necessary assumptions. These assumptions will be
discussed later, after the proof.

We have already given rules for reasoning about nonatomic assignment and await
statements. The bakery algorithm also contains the nonatomic critical and noncritical
sections, for which we make the following obvious assumption.

Section Hypothesis In the bakery algorithm of Figure 3, a csi or ncsi operation
neither modifies nor accesses any set of variables that contains neither any num[ j ], nor
any c[ j ], nor any variable local to the operation.

4.2.1 Almost a Proof

In the Owicki-Gries method, the key to the proof is finding an invariant annotation. In
practice, the annotation is obtained by a method of trial and error that can be viewed as
an attempt to approximate a weakest invariant. We begin with an informal derivation
of an invariant annotation for the bakery algorithm. After obtaining the annotation, we
use the Owicki-Gries method to prove its invariance. This is an idealized presentation;
in reality, derivation and proof of the annotation go hand in hand.

We start with the predicate Icsi , which is true when control is in process i’s critical
section. The truth of Icsi must imply that no other process j is in its critical section.
The structure of the program suggests that we let Icsi equal

V
j 6Di I 0�i j

, so we look next
at I 0�i j

.
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The basic idea of the algorithm is that process i enters its critical section only when
num[i] > 0 and i − j . Mutual exclusion is guaranteed because num[i] > 0 and
i − j imply that j 6− i. Letting Ni denote the predicate num[i] > 0, our first guess
for I 0�i j

is Ni ^ .i − j /.

This choice of I 0�i j
does not satisfy the interference-freedom condition for þj or ²j

(the condition with ¦ equal to �i j , and − equal to þj or ²j ), since num[ j ] can assume
arbitrary values during execution of the operations þj and ²j . In such a case, the
standard approach is either to strengthen I 0�i j

to imply that control is not in þj or ²j , or
else to weaken it to be true whenever control is in those operations. Since process j
can execute þj after process i has executed �i j , strengthening I 0�i j

won’t work; we must
weaken it. We weaken I 0�i j

to require only that i − j hold while control in process j is
after þj and before ²j . This is still strong enough to guarantee mutual exclusion when
we take Icsi to be

V
j 6Di I 0�i j

. Let Qij be the predicate asserting that if control is in 
j ,
Žj , or csj , then i − j . Our next guess at I 0�i j

is Ni ^ Qij .

Our choice of I 0�i j
still does not satisfy the interference-freedom condition forþj because

þj puts control at 
j without necessarily ensuring that i − j . We must strengthen I 0�i j

by conjoining a predicate to ensure that i − j if executing þj leaves control at 
j .
Since winp.þj ; i − j / is the predicate asserting that i − j holds upon completion of
þj , we conjoin the predicate in(þj )) winp.þj ; i − j /, which we denote by P 0i j . We
thus choose Ni ^ P 0i j ^ Qij for I 0�i j

. A quick check shows that this I 0�i j
seems to be left

invariant by every operation of process j .

The standard approach is to work backwards through the program, so we now choose
I�i j . Since we know nothing about the atomic operations that constitute �i j , we are
forced to let I�i j equal winp.�i j ; I 0�i j

/ in order to satisfy part (a) of the Sequential
Correctness Condition. We continue working backwards and now try to find I 0ži j

.

Part (b) of the Sequential Correctness Condition states that at(�i j ) ^ I 0ži j
implies

I�i j , which equals winp.�i j ; Ni ^ P 0i j ^ Qij /. By WINP1, I 0ži j
must therefore im-

ply wlp.�i j ; Ni ^ P 0i j ^ Qij /. In the absence of concurrent activity, i − j must
hold upon completion of �i j , so executing �i j makes Qij true. In other words,
wlp.�i j ; Qij / is identically true. Since executing �i j doesn’t change Ni or P 0i j , we
see that wlp.�i j ; Ni ^ P 0i j ^ Qij / equals Ni ^ P 0i j , which becomes our natural choice
for I 0ži j

.

Continuing backwards in this way, we let Iži j equal winp.ži j ; I 0ži j
/ and choose I 0
i

so it implies wlp.ži j ; Ni ^ P 0i j /. Since ži j does not change num[i], we see that
wlp.ži j ; Ni ^ P 0i j / equals Ni ^ wlp.ži j ; P 0i j /. If wlp.ži j ; P 0i j / were identically true,
then we could let I 0
i

equal Ni , which obviously holds after process i has executed þi

and 
i . Unfortunately, wlp.ži j ; P 0i j / is not identically true; just looking at ži j gives us
no reason to believe that P 0i j will be true after executing it.

Simply manipulating formulas will take us no further; we must think about why the
algorithmworks. The predicate P 0i j asserts that if þj is currently executing, then running
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it to completion will set num[ j ] to a value that makes i − j true. We expect P 0i j to be
true after executing ži j because ži j terminates only when it finds c[ j ] false, and c[ j ] is
true when control is in statement þj . This suggests replacing P 0i j by the weaker predicate
.in(þj ) ^ c[ j ]/ ) winp.þj ; i − j /, which we denote Pij . A complete execution of
ži j terminates only when c[ j ] is false, so wlp.ži j ; Pij / is identically true and we can
satisfy the requirement that I 0
i

implies wlp.ži j ; Ni ^ Pij / by letting I 0
i
equal Ni . Of

course, we must also make sure that replacing P 0i j by Pij does not invalidate any of the
conditions we have already checked.

The rest of the derivation is straightforward, so we stop now and define the complete
annotation. First, recall that the predicates Ni , Pij , and Qij , for i 6D j , are defined as
follows:

Ni � num[i] > 0

Pij � .in(þj ) ^ c[ j ]/) winp.þj ; i − j /

Qij � .in(
j ) _ in(Žj ) _ in(csj )/) i − j

where in(Žj ) is defined to equal
W

l in(žkl ) _ in(�kl ). The predicates of the annotation
are defined below. Each I¦ that contains a winp is equal to winp.¦; I 0¦ /, but WINP3
has been used to write some of these predicates in a more convenient form.

Incsi� true I 0ncsi
� true

IÞi � winp.Þi ; c[i]/ I 0Þi
� c[i]

Iþi � c[i] ^winp.þi ; Ni/ I 0þi
� c[i] ^ Ni

I
i � Ni I 0
i
� Ni

Iži j � Ni ^winp.ži j ; Pij / I 0ži j
� Ni ^ Pij

I�i j � Ni ^ Pij ^winp.�i j ; Qij / I 0�i j
� Ni ^ Pij ^ Qij

Icsi � Ni ^
V

j 6Di Pij ^ Qij I 0csi
� Ni ^

V
j 6Di Pij ^ Qij

I²i � true I 0²i
� true

The predicate defined by the annotation is clearly true in the initial state and, since Icsi

and Icsj cannot both be true if i 6D j , it implies the mutual exclusion condition. We now
attempt to prove the invariance of this annotation using the nonatomic Owicki-Gries
method.

Proof of Sequential Correctness—(a)

We must prove that each operation ¦ leaves J¦ invariant.

ncsi : Since Incsi and I 0ncsi
both equal true, OP4 implies that Jncsi is left invariant by

ncsi .

Þi : WINP4 implies that Þi leaves JÞi invariant.

þi : The Assignment Rule and OP1 imply that þi leaves c[i] invariant, and WINP4
then implies that þi leaves Jþi invariant.
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i : The Assignment Rule and OP1 imply that 
i leaves Ni invariant, so OP4 implies
that 
i leaves J
i invariant.

ži j : The Await Rule and OP1 imply that ži j leaves Ni invariant, so WINP4 implies
that ži j leaves Jži j invariant.

�i j : 1. �i j leaves Ni invariant.
PROOF: By the Await Rule and OP1.

2. �i j leaves winp.þj ; i − j / invariant.
PROOF: The Await and Assignment Rules and WIN5 imply thatwinp.þj ; i − j /
does not access the set of variables modified by �i j , so OP1 implies that �i j

leaves winp.þj ; i − j / invariant.

3. �i j leaves :.in(þj ) ^ c[ j ]/ invariant.

PROOF: CTL4 implies that �i j leaves :in(þi j ) invariant. The Await Rule and
OP1 imply that it leaves :c[ j ] invariant. Rule OP2 then implies that �i j

leaves :.in(þj ) ^ c[ j ]/ invariant.

4. �i j leaves Pij invariant.
PROOF: By 2, 3, and OP2.

5 �i j leaves J�i j invariant.
PROOF: By 1, 4, OP2, and WINP4.

csi : The Section Hypothesis and OP1 imply that csi leaves Icsi invariant, so OP4
implies that it leaves Jcsi invariant.

²i : By OP4, since I²i and I 0²i
both equal true.

Proof of Sequential Correctness—(b)

We must show that for every operation ¦ : if ²1; : : : ; ²m are the predecessors of ¦ , then
jD at(¦ ) ^Vp I 0²p

) I¦ . There are eight choices of ¦ to consider.

ncsi : jD .at(ncsi) ^ I 0²i
/) Incsi , is trivially true, since Incsi � t rue.

Þi : 1. jD at(Þi ) ^ winp.Þi; c[i]/ � at(Þi ) ^wlp.Þi ; c[i]/
PROOF: By WINP1.

2. jD wlp.Þi ; c[i]/ � t rue

PROOF: By an elementary wlp calculation.

3 jD .at(Þi ) ^ I 0ncsi
/ ) IÞi

PROOF: By 1, 2 and the definition of IÞi

þi : Similar to the proof for Þi .


i : jD I 0þi
) I
i follows immediately from the definitions of I 0þi

and I
i .

27



ži j : 1. jD at(ži j ) ^winp.ži j ; Pij / � at(ži j ) ^ wlp.ži j ; Pij /

PROOF: By WINP1.

2. jD wlp.ži j ;:c[ j ]/ ) wlp.ži j ; Pij /

PROOF: By WLP2, since the definition of Pij implies jD .:c[ j ]/) Pij .

3. jD wlp.ži j ;:c[ j ]/ � t rue

PROOF: By an elementary wlp calculation.

4. jD at(ži j ) ) winp.ži j ; Pij /

PROOF: By 1, 2, and 3.

5 jD .at(ži j ) ^ I 0
i
/ ) Iži j

PROOF: By 4 and the definitions of I 0
i
and Iži j .

�i j : 1. jD at(�i j ) ^winp.�i j ; Qij / � at(�i j ) ^wlp.�i j ; Qij /

PROOF: By WINP1.

2. jD wlp.�i j ; i − j / ) wlp.�i j ; Qij /

PROOF: By WLP2, since jD .i − j /) Qij .

3. jD wlp.�i j ; i − j / � t rue

PROOF: By an elementary wlp calculation.

4. jD at(�i j ) ) winp.�i j ; Qij /

PROOF: By 1, 2, and 3.

5 jD .at(�i j ) ^ I 0ži j
/ ) I�i j

PROOF: By 4 and the definitions of I 0ži j
and I�i j .

csi : jD .at(csi) ^
V

j 6Di I 0�i j
/ ) Icsi follows immediately from the definitions of I 0�i j

and Icsi .

²i : jD .at(²i ) ^ I 0csi
/) I²i obviously holds, since I²i equals true.

Proof of Interference Freedom

For each operation − and each operation ¦ in a different process from − , we must prove
that − leaves both in(¦ ) ^ I¦ ^ J− and after(¦ ) ^ I 0¦ ^ J− invariant. As observed in
Section 3.8, to prove that − leaves in(¦ )^ I¦ ^ J− invariant, it suffices to prove that it
leaves either I¦ ^ J− or simply I¦ invariant, and similarly for after(¦ ) ^ I 0¦ ^ J− .

Proof for − D ncsk . We begin by proving that ncsk leaves invariant the “primitive”
predicates, such as Pij , that appear in the annotation. Predicate Pij is a little trickier
than the rest because it contains a winp formula. Also, since Pij and Qij mention the
control state of process j , which is changed by ncsj , the case k D j requires special
consideration.
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NC1. Operation ncsk leaves c[i], Ni , and Qij invariant, for i 6D k and j 6D k.

PROOF: This follows from the Section Hypothesis and OP1.

NC2. Operation ncsk leaves Pij invariant, for i 6D k and j 6D k.

PROOF: Operation ncsk leaveswinp.þj ; i − j / invariant by the Section Hypoth-
esis, the Assignment Rule, and WIN5. It leaves :in(þj ) invariant by CTL4, and
:c[ j ] invariant by the Section Hypothesis and OP1. Rule OP2 then implies that
ncsk leaves Pij invariant.

NC3. Operation ncsj leaves Qij invariant, for i 6D j .

PROOF: Reasoning about control predicates implies

jD .in(ncsj ) _ after(ncsj )/^ .in(
j ) _ in(Žj ) _ in(csj )/ � f alse

Hence, .in(ncsj ) _ after(ncsj )/ ^ Qij is identically true, so OP4 implies that
ncsj leaves Qij invariant.

NC4. Operation ncsj leaves Pij invariant, for i 6D j .

PROOF: The proof is similar to that of NC3.

Using these four results, we can prove that ncsk leaves I¦ and I 0¦ invariant, for each
operation ¦ in process i, where i 6D k. If I¦ contains no winp expression, then invariance
follows easily from NC1–NC4. The proofs for all ¦ containing a winp expression are
similar to the proof for ¦ D ži j , which is given below.

ži j : 1. ncsk leaves Pij invariant.
PROOF: By NC2 and NC4.

2. ncsk leaves after(ži j )) Pij invariant.
PROOF: By 1, CTL4, and OP2.

3. ncsk commutes with ži j .
PROOF: By the Section Hypothesis, the Await Rule, and OP5.

4. ncsk leaves winp.ži j ; Pij / invariant.

PROOF: By 2, 3, WIN3, and the definition of winp.

5 ncsk leaves Iži j invariant.
PROOF: By 4, NC1, and OP2.

6 ncsk leaves I 0ži j
invariant.

PROOF: By 1, NC1, and OP2.
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Proof for − D Þk . We begin by proving the invariance results for Þk that are the
analogs of NC1–NC4. The proofs of Þ1–Þ3 are similar to the proofs of NC1–NC3
and are omitted. The strict analog of NC4 does not hold, since Þj does not leave Pij

invariant. However, in the annotation, Pij always appears conjoined with Ni , so it
suffices to prove that Þj leaves Ni ^ Pij invariant.

Þ1. Operation Þk leaves c[i], Ni , and Qij invariant, for i 6D k and j 6D k.

Þ2. Operation Þk leaves Pij invariant, for i 6D k and j 6D k.

Þ3. Operation Þj leaves Qij invariant, for i 6D j .

Þ4. Operation Þj leaves Ni ^ Pij invariant, for i 6D j .

1. jD .in(Þj ) _ after(Þj )/^ in(þj ) � at(þj )

PROOF: By reasoning about the control state.

2. jD Ni ) wlp.þj ; i − j /

PROOF: By elementary reasoning about wlp.

3. jD .Ni ^ at(þj )/) winp.þj ; i − j /

PROOF: By 2 and WINP1.

4. jD ..in(Þj ) _ after(Þj )/ ^ Ni ^ in(þj ) ^ c[ j ]/ ) winp.þj ; i − j /

PROOF: By 1 and 3.

5. jD .in(Þj ) _ after(Þj )/^ Ni ^ Pij � .in(Þj ) _ after(Þj )/^ Ni

PROOF: By 4 and the definition of Pij , since jD .A ^ B/) C implies jD A ^
.B ) C/ � A. (Substitute Pij for B) C.)

6. Þj leaves .in(Þj ) _ after(Þj )/ ^ Ni invariant.
PROOF: By Þ1 and OP4.

7 Þj leaves Ni ^ Pij invariant.

PROOF: By 5, 6, and OP4.

We can now prove that Þk leaves I¦ and I 0¦ invariant for all the operations ¦ in process
i, where i 6D k. Only the proofs for ¦ equal to þi and ži j are given; the rest are similar
or else follow easily from Þ1–Þ4.

þi : 1 Þk leaves I 0þi
invariant.

PROOF: By Þ1 and OP2.

2. Þk leaves after(þi )) Ni invariant.
PROOF: By Þ1, CTL4, and OP2.

3. Þk and þi commute.
PROOF: By the Assignment Rule and OP5.
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4. Þk leaves winp.þi ; Ni / invariant.
PROOF: By 2, 3, WIN3, and the definition of winp.

5 Þk leaves Iþi invariant.
PROOF: By 4, Þ1, and OP2.

ži j : We consider separately the two cases j 6D k and j D k. The proof for j 6D k is as
follows.

1 Þk leaves I 0ži j
invariant.

PROOF: Þk leaves Ni invariant by Þ1, and it leaves Pij invariant by Þ2, so OP2
implies that it leaves Ni ^ Pij invariant.

2. Þk leaves after(ži j )) Pij invariant.
PROOF: By Þ2, CTL4, and OP2.

3. Þk commutes with ži j .
PROOF: By the Assignment and Await Rules (since j 6D k) and OP5.

4. Þk leaves winp.ži j ; Pij / invariant.
PROOF: By 2, 3, WIN3, and the definition of winp.

5 Þk leaves Iži j invariant.
PROOF: By 4, Þ1, and OP2.

We now consider the case j D k.

1 Þj leaves I 0ži j
invariant.

PROOF: By Þ4.

2. ži j leaves Pij unchanged.
PROOF: By the Await Rule and OP1.

3. jD win.ži j ; Pij _:after(ži j )/ � Pij _win.ži j ;:after(ži j )/

PROOF: By 2 and WIN4.

4. jD winp.ži j ; Pij / � Pij _winp.ži j ; t rue/

PROOF: By 3 and the definition of winp.

5. jD winp.ži j ; Pij / � Pij _ .:in(Þj ) ^winp.ži j ; t rue//

PROOF: By 4 and propositional logic, since jD in(Þj ) ) :in(þj ) implies
jD in(Þj )) Pij .

6. jD Iži j � .Ni ^ Pij / _ .:in(Þj ) ^ : : :/
PROOF: By 5.

7 Þj leaves Iži j invariant.
PROOF: By 6, Þ4, OP3, and OP2.
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Proof for − D þk . We begin with the analogs of NC1–NC4. The analog of NC3 isn’t
valid because þj does not leave Qij invariant. Since Qij always appears in conjunction
with Pij , it would suffice to prove that þj leaves Pij ^ Qij invariant—but it doesn’t.
However, to prove interference freedom, it suffices to show that þj leaves Jþj^Pij ^Qij

invariant.

þ1. Operation þk leaves c[i], Ni , and Qij invariant, for i 6D k and j 6D k.

PROOF: Follows from the Assignment Rule and OP1.

þ2. Operation þk leaves Pij invariant, for i 6D k and j 6D k.

1. þk leaves :.in(þj ) ^ c[ j ]/ invariant.
PROOF: þk leaves :in(þj ) invariant by CTL4 and it leaves :c[ j ] invariant by
the Assignment Rule and OP1, so OP2 implies that it leaves :.in(þj ) ^ c[ j ]/
invariant.

2. þk leaves winp.þj ; i − j / invariant.

The crucial fact that þk leaves winp.þj ; i − j / invariant cannot be proved. It
must be assumed as an additional hypothesis. This assumption is discussed later.

3. þk leaves Pij invariant.
PROOF: By 1, 2, and OP2.

þ3. Operation þj leaves Jþj ^ Pij ^ Qij invariant, for i 6D j .

1. jD Jþj � .in(þj ) _ after(þj )/ ^ c[ j ] ^winp.þj ; Nj /

PROOF: By WINP2 and the definition of Jþj .

2. jD .in(þj )_after(þj )/^Qi j � .in(þj )_after(þj )/^.:after(þj )_.after(þj )^
winp.þj ; i − j ///

PROOF: By WINP2 and propositional logic, since

jD .in(þj ) _ after(þj )/ ^ .in(
j ) _ in(Žj ) _ in(csj )/ � after(þj )

3. jD .in(þj ) _ after(þj )/ ^ c[ j ] ^ Pij ^ Qij � .in(þj ) _ after(þj )/ ^ c[ j ] ^
winp.þj ; i − j /

PROOF: By 2 and propositional logic, using jD after(þj )) :in(þj ).

4. jD Jþj ^ Pij ^ Qij � Jþj ^winp.þj ; i − j /

PROOF: By 1, 3, and propositional logic.

5 þj leaves Jþj ^ Pij ^ Qij invariant.
PROOF: By 4 and OP2, since the sequential correctness proof showed that
þj leaves Jþj invariant, and the definition of winp implies that þj leaves
winp.þj ; i − j / invariant.
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þ4. Operation þj leaves Pij invariant.

1. þj leaves :in(þj ) invariant.
PROOF: By OP3.

2. þj leaves :c[ j ] invariant.
PROOF: By the Assignment Rule and OP1.

3. þj leaves winp.þj ; i − j / invariant.
PROOF: By the definition of win.

4 þj leaves Pij invariant.
PROOF: By 1, 2, 3, OP2, and the definition of Pij .

We must now prove the interference-freedom condition for − D þk and all ¦ in process
i, with i 6D k. For most operations ¦ , the proof is essentially the same as for − D Þk.
When ¦ D ži j , the proof for − D þk is simpler than the proof for − D Þk , since þj

commutes with ži j and Þj does not. However, the proof for ¦ D �i j is is trickier
because þj does not commute with �i j . We consider the interference-freedom proofs
for − D þk only when ¦ equals þi and �i j , with i 6D k.

þi : We must prove that þk leaves Iþi and I 0þi
invariant. The invariance of I 0þi

follows
immediately from þ1. However, to prove that þk leaves Iþi invariant, we must
show that it leaves winp.þi ; num[i] > 0/ invariant. This cannot be done. We
must assume that þk leaves winp.þi ; num[i] > 0/ invariant. This assumption
is discussed later.

�i j : We must prove that þk leaves Jþj ^ I�i j and Jþj ^ I 0�i j
invariant. The proof when

k 6D j is similar to the proof for − D Þk and ¦ D ži j given above. We consider
only the case when k D j .

1 þj leaves Jþj ^ I 0�i j
invariant.

PROOF: By þ1, þ3, and OP2.

2. �i j leaves Qij unchanged.
PROOF: By the Await Rule and OP1.

3. jD winp.�i j ; Qij / � Qij _winp.�i j ; t rue/

PROOF: By 2 and WIN4, which imply that win.�i j ; Qij _:after(�i j )/ equals
Qij _ win.�i j ;:after(�i j )/.

4. jD winp.�i j ; Qij / � Qij _ .:in(þj ) ^ winp.�i j ; t rue//

PROOF: By 3 and predicate calculus reasoning, since jD in(þj ) ) :.in(
j ) _
in(Žj ) _ in(csj )/, so jD in(þj )) Qij .

5. jD Jþj ^ I�i j � .Jþj ^ Ni ^ Pij ^ Qij / _ .:in(þj ) ^ : : :/
PROOF: By 4 and the definition of J�i j .

33



6 þj leaves Jþj ^ I�i j invariant.
PROOF: By 5 and OP2, since þ1 implies that it leaves Ni invariant, þ4 implies
that it leaves Jþj^Pij^Qij invariant, and OP3 implies that it leaves:in(þj)^: : :
invariant.

Proof for − D 
k . As usual, we begin with the analogs of NC1–NC4. The statements
and proofs of 
 1 and 
 2 are similar to the ones for NC1 and NC2 and are omitted.


 3. Operation 
j leaves Qij invariant, for i 6D j .

PROOF: Follows from OP4,the Assignment Rule, OP1, and OP2, since jD after(
j ))
in(Žj ) implies that .in(
j )_ after(
j )/^ Qij equals .in(
j )_ after(
j )/^ .i − j /.


 4. Operation 
j leaves Pij invariant.

PROOF: By OP4, since jD .in(
j ) _ after(
j )/ ) :in(þj ) implies that .in(
j ) _
after(
j )/ ^ Pij equals in(
j ) _ after(
j ).

The proof of the individual interference conditions for − D 
k are similar to the proofs
for − D Þk and are omitted.

Proof for − D žkl (k 6D l). The proof begins, as usual, by stating and proving ž1–ž4,
the analogs of NC1–NC4. Their proofs are essentially the same as the proofs of 
 1–
 4.
The interference-freedom conditions follow easily from ž1–ž4, WIN3, and OP2, using
the Assignment and Await Rules and WIN5 to show that žkl commutes with Þi , þi , ži j ,
and �i j , for i 6D k.

Proofs for − D �kl (k 6D l) and − D csk . These proofs are similar to the proofs for
žkl and ncsk , respectively, and are omitted.

Proof for − D ²k . This proof is similar to, but simpler than, the proof for þk . Like
that proof, it requires two additional assumptions—namely, we must assume that ²k

leaves winp.þj ; i − j / and winp.þi ; num[i] > 0/ invariant, for i 6D k and j 6D k.

4.2.2 Correcting the Proof

The proof above relied upon two extra assumptions:

ž þk and ²k leave winp.þi ; num[i] > 0/ invariant, for k 6D i.

ž þk and ²k leave winp.þj ; i − j / invariant, for k 6D i and k 6D j .

The first assumption is satisfied ifþi always sets num[i] greater than 0, regardless of how
the value of num[k] changes while executing the operation. One can devise a “legal”
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implementation of þi that does not satisfy this assumption, but such an implementation
would be contrived. It seems quite reasonable to incorporate the assumption into the
definition of statement þi .

For the second assumption to be satisfied, modifying the value of num[k] must leave
winp.þj ; i − j / invariant. However, there is no reason why it should. Here is a
perfectly reasonable implementation of þj , where the variables tjl are local to process
j :

cobegin l 6D j þ1jl : tjl := num[l] coend;
þ2j : num[ j ] := 1Cmaxftjl : l 6D j g

Consider a state s in which all the tjl equal 0, all the num[l] equal 0 except num[k] D
num[i] > 1, and control is at þ1jk and after þ1j i . (It is possible to reach such a state in
a normal execution of the bakery algorithm.) Completing the execution of þj starting
in state s will set num[ j ] to 1C num[k], which equals 1C num[i], making i − j true.
Therefore, s jD winp.þj ; i − j / is true. However, if the state is changed by setting
num[k] to 0, completing the execution of þj will set num[ j ] to 1, making i − j false.
Hence executing ²k makes winp.þj ; i − j / false, so this predicate is not left invariant
by ²k. Moreover, since þk could temporarily change num[k] from a nonzero to a zero
value, þk need not leave winp.þj ; i − j / invariant either.

We can fix the proof by replacing winp.þj ; i − j / with a predicate Rij having the
following properties.

(i) Rij is left invariant by þj .

(ii) jD .after(þj ) ^ Rij /) i − j .

(iii) jD .at(þj ) ^ num[i] > 0/ ) Rij .

(iv) Rij does not access any set of variables that contains neither num[i], nor num[ j ],
nor any variable local to þj .

We leave it to the reader to check that if Rij satisfies these properties, then the invariance
proof above works with Rij substituted for winp.þj ; i − j / in the definition of Pij .
(Perhaps the most difficult part of this proof is verifying þ3, which is done by using
property (ii) to show that jD Jþj ^ Pij ^ Qij � .Jþj ^ Rij / _ .after(þj ) ^ : : :/.) We
also leave it to the reader to check that, for the implementation of þj given above, we
can define Rij to be

[.in(þ1j i ) _ after(þ1j i )/) winp.þ1j i ; tj i D num[i] > 0/]

^ [.in(þ2j ) _ after(þ2j )/) winp.þ2j ; i − j /]

thereby proving that the algorithm is correct with this implementation of þj . (Property
(i) is proved by applying the nonatomic Owicki-Gries method to the one-process
program þj .)
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The following is an example of a valid implementation of þj for which there is no such
predicate Rij , and for which the bakery algorithm is incorrect.

hnum[ j ] := 0 i;
hmj := j i;
for kj := 1 to n do hif num[kj ] > num[mj ] then mj := kj i;
hnum[ j ] := 1C num[mj ]i

There is nothing in Figure 3 to prohibit such an implementation of statement þj ; it
would be a fine implementation if þj appeared in a sequential program. We leave it
to the reader to construct a scenario demonstrating that the bakery algorithm does not
satisfy the mutual exclusion property with this implementation of þj .

4.3 Another Example

Thus far, we have used win to reason about statements with an unspecified grain
of atomicity. In our final example, we use sin to replace behavioral reasoning with
assertional reasoning. The example may seem contrived, but it is abstracted from the
part of the minimum spanning tree algorithm of Gallager et al. [6] that computes the
minimum-weight external edge of a fragment. For this example, we just sketch the
programs and proofs, omitting details.

Consider a tree of processes, each one communicating with its parent and its children
by sending messages. Each node p has a value val[p], and the goal of the algorithm
is for the root process, denoted by r, to compute the minimum of all these values.
The algorithm is obvious—every process finds the minimum of its value and that of
its descendants, and reports that value to its parent. Each process p maintains three
variables:

Q[p]: a queue of received messages.

mini[p]: the minimum of val[p] and the values reported by p’s children.

cnt[p]: the number of children of p who have not yet reported

For simplicity, assume that another process sends a message to process p by simply
inserting the message in Q[p]. All queues are initially empty except for Q[r], which
contains a find message. The initial values of the other variables are unspecified. Each
process p executes the following two actions.

find.p/: If there is a find message in Q[p], then remove it from Q[p] and set mini[p]
to val[p]. Set cnt[p] to the number of children p has, and add a find message to
every child’s queue. If p has no children and p 6D r, then add a report.val[p]/
message to the queue of p’s parent.
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receive.p/: If there is a report.v/ message in Q[p], then remove it from Q[p], set
mini[p] to the minimum of itself and v, and decrease cnt[p] by one. If this makes
cnt[p] zero and p 6D r, then add a report.mini[p]/ message to the queue of p’s
parent.

The algorithm terminates when cnt[r] D 0 and Q[r] is empty, at which time mini[r]
is the result. We wish to prove the partial correctness property jD P ) 2Q for this
algorithm, where P asserts the initial condition on the queues and Q asserts that if the
termination condition holds then mini[r] has the correct value.

Define a process to be active if there is a report message in its queue or any message
in the queue of any descendant, and to be finished if it is not active and there is no find
message in its queue or in the queue of any ancestor. Let I be the predicate asserting
that for every process p:

1. If there is a find message in Q[p], then (i) it is the only message in Q[p] and
(ii) the queue of every descendant of p is empty.

2. If p is active, then (i) cnt[p] equals the number of unfinished descendants of p
plus the number of report messages in Q[p], and (ii) the minimum of mini[p]
and all v for which there is a report.v/ message in Q[p] equals the minimum of
all val[p0] with p0 equal to p or a finished descendant of p.

3. If p is finished, then mini[p] is the minimum of all val[p0] for p0 equal to p or a
descendant of p.

The reader can check that jD P ) I , jD I ) Q, and I is left invariant by every
program action, proving that jD P ) 2Q.

Thus far, our example has been a simple exercise in assertional reasoning. We now
complicate matters by allowing the tree of processes to grow dynamically. We assume
a larger collection of processes, only some of which are initially in the process tree,
and add a new action addchild.p; q/ that makes process q a child of process p. This
action may be executed only when the following conditions hold: q is not the parent
or child of any process, Q[q] is empty, and val[q] is greater than the minimum of all
val[p0] for processes p0 currently in the tree.

The following simple operational argument shows that the modified algorithm, with the
addchildactions, satisfies the same correctness property P ) 2Q. If an addchild.p; q/
action is executed before the find.p/ action, then the effect is the same as if q were part
of the original process tree. On the other hand, if the action is executed after the find.p/
action, then the effect is the same as if q were added to the process tree after the algorithm
had terminated. Hence, we may pretend that each addchild action occurs either before
or after the algorithm is executed. It is clear that executing an addchild.p; q/ action
at the beginning does not change P, and, since the action is executed only if val[q] is
greater than the minimum value among existing tree processes, executing it at the end
does not change Q. Hence, the modified algorithm satisfies P ) 2Q.
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Although the modified algorithm satisfies the same partial correctness property as the
original algorithm, a different proof is required because the modified algorithm does
not leave I invariant. For example, an addchild.p; q/ action can make condition 3 of
I false. One can find a new invariant for the modified algorithm, but it would be nice
to reason directly from the correctness of the original algorithm, as in the behavioral
argument.

Let us write each addchild.p; q/ action as the union of the two actions preadd.p; q/
and postadd.p; q/, where a pair .s; t/ is in preadd.p; q/ if process p is neither active
nor finished in state s, otherwise it is in postadd.p; q/. (Formally, we modify the set
5 of actions but leave the union of all actions unchanged, so we obtain an equivalent
program.) The reader can check that every preadd action leaves I invariant; it is the
postadd actions that may falsify I .

Let ¦ denote the set of all postadd actions. We show that sin.¦; I / is the invariant
that proves the correctness of the modified algorithm. To do this, we must prove
jD P ) sin.¦; I /, jD sin.¦; I /) Q, and the invariance of sin.¦; I /.

As we observed above, every addchild action leaves P and Q invariant, so every
action of ¦ does also. Hence, jD sin.¦; P/ � P and jD sin.¦; Q/ � Q. By SIN2,
jD P ) sin.¦; I / and jD sin.¦; I /) Q then follow from jD P ) I and jD I ) Q.

Finally, we show that sin.¦; I / is an invariant. It is obviously left invariant by any
action in ¦ , so we must show that it is left invariant by every other action. By SIN3,
it suffices to show that every action not in ¦ left commutes with a postadd.p; q/
action. It is clear that the action postadd.p; q/ commutes with every action not in
¦ except for the following: preadd.p0; p/, preadd.q; q 0/, find.p/, and find.q/. We
prove left commutativity by showing that, if ¾ is any one of these four actions, then
postadd.p; q/¾ is the empty action. (Recall that ¾ left commutes with¼ iff ¼¾ � ¾¼.)

preadd.p0; q/: The composition postadd.p; q/preadd.p0; p/ is empty because an
addchild.p; q/ action can be executed only if p is already in the process tree, in
which case the preadd.p0; p/ action cannot be executed.

preadd.q; q 0/: postadd.p; q/preadd.q; q 0/ is empty because the composition
addchild.p; q/addchild.q; q 0/ can be nonempty only if the two addchild ac-
tions are either both postadd or both preadd actions.

find.p/: postadd.p; q/find.p/ is empty because an addchild.p; q/ action cannot be a
postadd action if Q[p] contains a find message.

find.q/: postadd.p; q/find.q/ is empty because an addchild.p; q/ action can occur
only if Q[q] is empty.

This completes the proof of invariance of sin.¦; I /.
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5 Discussion

Although we have provided rigorous, step-by-step proofs in our first two examples, we
have not tried to be completely formal. We did not give the rules for reasoning about
control predicates needed to prove such obvious relations as jD .in(žjl )_ after(žjl )/)
:in(þj ) for the bakery algorithm. We believe that if a formalism is to be useful, it
must be possible to use it rigorously but informally, without having to prove obvious
properties. Experience with the atomic Owicki-Gries method indicates that it can
be used in this way, and we believe that the same is true of the nonatomic version
employing win and sin.

In judging the utilityof win and sin, it is instructive to consider why previous correctness
proofs of the bakery algorithm did not discover its hidden assumptions. The original
proof in [9] is an informal behavioral one, so it is not surprising that it is incorrect. The
proof in [11] utilizes a set of axioms for reasoning about behaviors involvingnonatomic
operations. While the use of axioms gives an appearance of extreme rigor, the method
ultimately reduces to the unstructured, informal reasoning of ordinary mathematics.
The undetected assumptions in the bakery algorithm provide one more example of the
unreliability of such reasoning.

A rigorous Owicki-Gries method proof is given in [10]. However, since the original
Owicki-Gries method requires that all atomic operations be specified, it was necessary to
translate the bakery algorithm into one with explicit atomic operations. The translation
effectively specified a particular class of implementations of the algorithm—a class that
includes only implementations satisfying the hidden assumptions. This proof illustrates
the danger in trying to replace one program with an equivalent one, if the equivalence
has not been proved formally. Without a formal justification of the single-action rule,
even its use should be regarded with suspicion.

The bakery algorithm’s two hidden assumptions are that þi sets num[i] to be (i) positive
and (ii) greater than num[ j ], even if it is executed while the value of num[k] is being
changed, for k 6D i; j . Although the algorithm has been rather widely studied, we know
of only one other person who independently discovered assumption (ii). We discovered
assumption (i) only when expanding an earlier version of our win proof to its present,
more rigorous, form. We knew about assumption (ii) before writing this article, but we
are confident that attempting the proof would have led to its discovery anyway.

Assertional methods, including the Owicki-Gries method, reduce a proof of correctness
to a collection of small steps—each of which involves reasoning about a single opera-
tion. Previous assertional methods require that each operation be atomic. The win and
sin operators permit the generalization of these methods to allow nonatomic operations.
However, much work remains in assessing the practical utility of these operators and
developing their formal theory. We believe that our rules for reasoning about win pro-
vide a relatively complete method for proving P ) 2Q formulas for simple cobegin
programs, where the semantics of nonatomic operations are defined by the Assignment
and Await Rules, but a detailed proof of this result has not yet been written. Moreover,
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we expect a formal system for reasoning about nonatomic operations to be much more
sensitive to the semantics of the particular language constructs than one for reasoning
about atomic operations, so no far-reaching conclusions can be drawn from a single
completeness result. In particular, nonatomic communication primitives have yet to be
studied.
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