16

A Generalization of
Dijkstra’s Calculus

by Greg Nelson

April 2, 1987

clilgliltiall

‘ustems fesearch Cenrer
21 Lviton Avenue
~1lo mito. California 94301

Systems Research Center

DEC'’s business and technology objectives require a strong research program. The Systems
Research Center and two other corporate research laboratories are committed to filling that
need.

SRC opened its doors in 1984. We are still making plans and building foundations for our
long-term mission, which is to design, build, and use new digital systems five to ten years
before they become commonplace. We aim to advance both the state of knowledge and the
state of the art.

SRC will create and use real systems in order to investigate their properties. Interesting
systems are too complex to be evaluated purely in the abstract. Our strategy is to build pro-
totypes, use them as daily tools, and feed the experience back into the design of better tools
and the development of more relevant theories. Most of the major advances in information
systems have come through this strategy, including time-sharing, the ArpaNet, and
distributed personal computing.

During the next several years SRC will explore high-performance personal computing,
distributed computing, communications, databases, programming environments, system-building
tools, design automation, specification technology, and tightly coupled multiprocessors.

SRC will also do work of a more formal and mathematical flavor; some of us will be con-
structing theories, developing algorithms, and proving theorems as well as designing systems
and writing programs. Some of our work will be in established fields of theoretical computer
science, such as the analysis of algorithms, computational geometry, and logics of program-
ming. We also expect to explore new ground motivated by problems that arise in our
systems research.

DEC is committed to open research. The Company values the improved understanding that
comes with widespread exposure and testing of new ideas within the research community.
SRC will therefore freely report results in conferences, in professional journals, and in our
research report series. We will seek users for our prototype systems among those with
whom we have common research interests, and we will encourage collaboration with
university researchers.

Robert W. Taylor, Director

Corrections to SRC-16

Greg Nelson
DEC Systems Research Center
180 Lytton Avenue
Palo Alto, CA 943801

June 5, 1987

Edsger Dijkstra has pointed out two errors in “A generalization of Dijkstra’s
calculus” (SRC-16). In the proof on page 42 that A ; B is continuous in B, I
assumed without justification that wp(A4, ?) was V-continuous (blush). And
in the proof on page 44 that [z | A] is continuous in A, I distributed V over
V (blush, blush).

In fact these operators are not continuous. However, they are monotonic,
and the main results of SRC-16 on recursion and tail recursion can be proved
using monotonicity only, as this note will show. Familiarity with SRC-16 will
be assumed.

First the counterexamples showing that composition and projection are
not continuous. Let A and B; (for ¢ > 0) be n-commands defined by

A = set n to any natural number
Bi=n<i—> n:=0H Loop
Then it is easy to check that

A;B; = n:=01[] Loop for all ¢
(Us:B;) =n:=0
and therefore that
A;(Ud:: BY)
A;n:=0
=n:=0
% Loop [n:=0
= (U :: Loop [] n :=0)
(Ui A;B)
and similarly that
[n|(ue:: Bi)]
= [n|n:=0]

CGN45a-2

Sksp

Skip [] Loop

(Ug :: Skip [] Loop)
(us::n| Bi])

[T Sl

Thus [r | B] is not continuous in B, and neither is A ;B if A is unboundedly
non-deterministic.
Here is the corrected theorem on continuity and monotonicity:

Corrected Theorem 7. The fundamental operators and projection enjoy
the following continuity and monotonicity properties:

P —- A continuous in A

A[] B continuous in A and B

AN B continuous in A and B

A;B continuous in A; monotonic in B

A;B continuous in B if wp(A,?) is V-continuous
[z | A] monotonic in A

The proofs in SRC-16 establish all the continuity claims. The two mono-
tonicity claims follow from the following lemma.

Lemma 4. Let f be a command transformer (that is, a map from com-
mands to commands) and h and hl predicate transformers such that for any
command A and predicate R:

w()p(f(A), R) = hll)(w(Dp(4, R)).

Then f is C-monotonic.

Proof. Note first that A and k! must be conjunctive, since

h(1)(?)
= R (w(Dp(Skip, 7))
= w(lp(f(Skip), 7)
and f(Skip) being by assumption a command, its predicate transformers are

conjunctive.
Now observe that

ACB
= (VR : w(p(4, R) =(<«=) w(l)p(B, R))

CGN45a-3

= {h and hl are monotonic}
(VR : h()(w(Dp(A, R)) =(<=) h())(w()p(B, R)))
= (VR :w(Dp(f(A), R) =(<«) wllp(f(B), R))
= f(4) E 7(B)
Thus f is C-monotonic. |}

The proofs of the monotonicity claims of the corrected theorem follow from
Lemma 4 and the semantic equations

w()p(4; B, R) = wllp(A,w()p(B, R))
w()p([z | A], R) = (Vz : w()p(4, R))

Lemma 4 with w(l)p(A, ?) for h(l) establishes that A ; B is monotonic in B,
and with (Vz :?) for h(l) establishes that [z | A] is monotonic in A. §

Since the operators on commands are only monotonic, not continuous,
the appeal in the proof of Theorem 8 to the Limit Theorem must be replaced
by an appeal to the Generalized Limit Theorem of Hitchcock and Park.

The generalized theorem asserts that the least fixpoint of a monotonic
function f is equal to f*, for some ordinal «, where f* is defined by the
inductive rule

fE=WUB:B<a:f(fP).

See “The generalized limit theorem” (CGN46) for more details. This change
is reflected in an obvious way in the statement of Theorem 8.

Finally, these changes to the Limit Theorem and to Theorem 8 require
a change to the proof of Theorem 9 on tail recursion. Starting in the middle
of page 47, the proof should read as follows:

To show that wp(Xo, R) is the strongest fixpoint, observe that since f is
monotonic, Theorem 8 implies that Xy = f* for some ordinal a. Let P
be any fixpoint of ¢g(?, R); we prove by induction that wp(f*, R) = P for
all . Therefore wp(Xy, R) = P, in other words, wp(Xpy, R) is the strongest
fixpoint. The induction is easy:

wp(f*,R)=> P

wo((UB: B < a: f(f7)), R) = P
(vVB:8<a:wp(f(ff), R)) = P
(VB:8 <a:wp(f(ff), R) = P)
{P is a fixpoint of ¢g(?, R)}

e

CGN45a—4

(VB :8 < a:wp(f(ff), R) = g(P, R))
= {Tail Recursion identity}

(VB:8 < a:g(wp(f?, R), R) = g(P,R))
< {g is monotonic}

(VB:B<a: wp(f?,R) = P)
= {induction}

TRUE

The proof that wip(Xo, R) is the weakest fixpoint is so similar that I won’t
write it out.

The generalized limit theorem

Greg Nelson
DEC Systems Research Center
130 Lytton Avenue
Palo Alto, CA 94301

June 5, 1987

The following theorem is well known:

Limit Theorem. If f is a continuous function on a partially-ordered set in
which every chain has a join, then f has a least fixpoint given by

(Un:n>0: f*(min)),

where min denotes the minimum element—which must exist, since it is the
Jjoin of the empty chain.

Hitchcock and Park [1] have improved this theorem, essentially by weakening
the constraint on f from “continuous” to “monotonic” and extending the
range of n from “the integers” to “the ordinals”. Since I find that I need
their generalized limit theorem in my treatment of recursion in Dijkstra’s
calculus, I am recording in this note my version of their proof.

The reader is assumed to be familiar with the following facts about
ordinals:

An ordinal is a total well-founded order.
For ordinals a and S, the ordinal a + 8 is « followed by 8.
For ordinals a and 3, a < 8 means « is isomorphic to a prefix of §.

The relation < on ordinals is itself a total well-founded order.

AN

There exist ordinals of arbitrarily large cardinality.

As a consequence of 4, induction is valid over the ordinals. (Induction on
ordinals is traditionally called “transfinite induction”—a phrase that makes
me think of vampires.) Point 5 is a consequence of (and is equivalent to) the
Axiom of Choice.

Let f be a monotonic function on a partially ordered set in which every
chain has a join. For each ordinal a, we define an element f* of the partially
ordered set by the rule

fe=Up:B<a:f(fP). (1)

CGN46a—-2

Note that f is defined in terms of f? for 8 < «, so the definition is not
circular. In particular,

f° = empty join = min
fr =55
2 =f0)u f(r1) = f(fY)

o =f(fu f(fHu...

=fO0u fly f2u...
(The ordinal w is the first infinite ordinal, namely the order type of the
natural numbers.)

Note that we have not attempted to define f*(z) for all « and z, since
this will not be possible in general. (In particular, if z and f(z) are incom-

parable.)
I have modified Hitchcock and Park’s theorem slightly: they define

f° = min
fe=fUB:B<a:fP) fora#0

Their definition gives the wrong value (intuitively speaking) for limit ordi-
nals, and introduces an unnecessary case analysis.

Of course we have not yet shown that the join in (1) exists. This will
be one of a series of little results that lead to the generalized limit theorem.
The series is essentially the same as in Hitchcock and Park’s proof.

Lemma 1. If f* and f? are defined and a < 8, then f> C f5.
Proof.
fa
= (Uy:v<a:f(f)
C {enlarging the range increases the join}
(Ur:a<B:f(f)
=ff 1
Lemma 2. f® is defined for all a.
Proof. By induction on a:

f# is defined for 8 < «
= {Lemma 1, totality of < on ordinals}

CGN46a-3

fP and fp' defined and comparable for 8,8’ < a
= {f monotonic}

f(fP) and f(fﬁ') defined and comparable for 3,8’ < a
= {(1), joins of chains exist}

f¢ is defined I

Lemma 3. f**! = f(f*) for all a.
Proof.
fa+1
= (UB:B<a+1:f(fP))
= f(f*)u (UB: B < a: f(fF))
= {U distributes over U}
B:B<a:f(fr)u f(5P)
= {Lemma 1, monotonicity of f}
upBg:B<a:f(f)
= f(f*) &

Lemma 4. For any fixpoint z of f and any ordinal a, we have f* C z.

Proof. By induction on «.

(VB8:8<a: fPLCz)

= {monotonicity of f}
(V8:8 < a:f(f%) T f(x))

= {z is a fixpoint of f}
(V8:8 < a: f(ff)C)

= {join is the least upper bound}
uUB:B<a:f(ff))Cz

= {(1)}
f*Cz 1

Lemma 5. If @ < § and f* = f#, then the common value of f* and f# is
the least fixpoint of f.

CGN46a—4

Proof. Suppose f* = fB. Then

a<p
> a<a+1<pj
= {Lemma 1}
feg fetic fP
= {f* = fP}
fa — fa+1
= {Lemma 3}
f¢ is a fixpoint of f
By Lemma 4, f* C z for any other fixpoint z, so f* is the least fixpoint.
|

Generalized Limit Theorem. If f is a monotonic function on a partially
ordered set in which every chain has a join, then f has a least fixpoint given
by f¢, for some ordinal a.

Proof. Let 4 be an ordinal whose cardinality exceeds the cardinality of the
partially ordered set. Then we must have f* = f? for some a < 8 < 4. By
Lemma 5, f* is the least fixpoint of f. 1

Reference

(1] Peter Hitchcock and David Park. Induction Rules and Termination
Proofs. IRIA Conf. Autom. Lang. & Program. Theory. France, 1972.

A Generalization

Greg Nelson
April 2. 1987

7 ///
% L

.

= ////////////1/{,,

/ ////Z,//’///éy /"¢ G _

of Dijkstra’s Calculus

R W
e / 7 /
\\\\\\\\\ /// ////

\\\\
\\‘\\\\ ///
9\\ //

\//4/ // 9

&\x\\\ /’/,/////’// /)
\‘ \‘ //, / ////

\‘\ /,//////’/
B

by Tl
Ve,
//

i

\\\ i /, ///
N
, \‘\\\\\\ fh
\‘\\\\\\\\ L
\\“\\\\

©Digital Equipment Corporation 1986

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or par-
tial copies include the following: a notice that such copying is by permission of the
Systems Research Center of Digital Equipment Corporation in Palo Alto, California;
an acknowledgment of the authors and individual contributors to the work; and all
applicable portions of the copyright notice. Copying, reproducing, or republishing for
any other purpose shall require a license with payment of fee to the Systems Research
Center. All rights reserved.

Author’s abstract

This paper gives a self-contained account of a general calculus of program seman-
tics, from first principles through the semantics of recursion. The calculus is like
Dijkstra’s guarded commands, but without the Law of the Excluded Miracle; like
extended dynamic logic, but with a different approximation relation; like a relational
calculus studied by deBakker, but with partial relations as well as total relations; like
predicative programming, but with a more standard notion of total correctness. The
treatment of recursion uses the fixpoint method from denotational semantics.

Greg Nelson

Capsule review

This report describes several technical advances in axiomatic semantics. Sections one
through seven present a gentle introduction to an extended version of Dijkstra’s wp-
calculus. The primary technical innovations are the introduction of partial commands,
and the complete characterization of partial commands as predicates, following and
extending Hehner’s work. The final three chapters begin the synthesis of axiomatic and
denotational semantics by presenting the first coherent treatment of general recursion
for an axiomatic semantics. As an example of the power of this characterization, the
semantics of tail-recursion (and thus the primitive control structures of Dijkstra’s
calculus) are derived.

Although partial commands are not executable, they are an important part of this
work. They simplify many of the equations, and reduce the number of primitive oper-
ations. The principal drawback to adopting partial commands is that Dijkstra’s Law
of the Excluded Miracle must be abandoned, thereby eliminating one of the better
theorem names from computer science.

Mark Manasse

Contents

Introductioncciiiiiiiiiiii ittt ittty 1
1 A brief survey of semantic theory i i, 4
2 Commandsasrelations i iiiiiiiiiiiaian., 8
3 Commandsasoperations..........ccoiuieiienrrenncrnnsasnonns 11
4 Preliminaries, mostly about predicates 14
5 Commands as predicate transformers 17
6 Variables i i i it e 22
7 Commandsaspredicatesciiitiiiiiinnrnnnnnns 27
8 Recursionciiiiiiiiiiiiiiieeieeenironanernansnnens 33
9 Iteration and tail-recursion i, 45
10 Concludingremarksc.oiiiiiiiiiiiieriinternneoanonss 49

Acknowledgementsc. ittt 50

Referencesccieiiiiiiieneierneeinnrsneniosssonsonnns 51

Index ..ottt i i ettt e 53

ERRATA

Errors on pages 42 and 44 are corrected in the accompanying notes.

Introduction

There is a remarkable omission from the guarded command language that
Edsger Dijkstra introduced in his classic Discipline of Programming: it
doesn’t have procedures. One of the reasons that he left them out was to
avoid getting tangled in the complexities of recursion, as we can infer from
this remark in his preface: “the semantics of a repetitive construct can be
defined in terms of a recurrence relation between predicates, whereas the se-
mantic definition of a general recursion requires a recurrence relation between
predicate transformers. This shows quite clearly why I regard general recur-
sion as an order of magnitude more complicated than just repetition” [2].

Dijkstra’s remark went against the spirit of the time, which was all for
treating iteration as a special case of recursion. A sample of the reaction was
E. C. R. Hehner’s paper “do considered od” [10], which criticized Dijkstra’s
repetitive control structure and argued that recursion should be used instead.
But, although the paper doesn’t mention it, Hehner’s treatment of recursion
works only for tail recursions, not for general recursions. The technical
difficulty mentioned in Dijkstra’s remark has remained an obstacle to the
treatment of general recursion.

Recent developments suggest a way to get around the difficulty: Hehner
and C. A. R. Hoare have approached programs as predicates instead of pred-
icate transformers, and Dijkstra and others have derived the correspondence
between the two approaches. I call this the cograph correspondence. This pa-
per grew out of my effort to handle general recursion in Dijkstra’s calculus
by using the cograph correspondence to reduce predicate transformer recur-
rences to predicate recurrences. The effort produced the solution described
in sections 7 and 8.

The solution uses the method of fixpoint semantics: define an approxi-
mation relation on guarded commands and prove that the operators of the
language distribute over joins of chains in this relation. This is the method
that Dana Scott used to construct models of the lambda-calculus, laying the
foundations of domain theory and denotational semantics.

The heart of the solution is the definition of an appropriate approxima-
tion relation. The definition vindicates two distinctive features of guarded
commands: nondeterminism and total correctness. At first these features
seem problematical, but in the end they force a definition that is unexpect-
edly simple and symmetric.

The definition is in section 8; here is a preview for readers who are
familiar with Dijkstra’s calculus. For commands A and B, let A C B (read
A approzimates B) mean that for any R,

wp(A4, R) = wp(B,R) and wlp(B,R) = wip(4,R).

2 Introduction

Under this relation, the set of guarded commands forms a domasn in the
sense of denotational semantics; that is, a continuous partial order.

As I worked out the details of this solution, I became more and more
dissatisfied with Dijkstra’s well-known Law of the Excluded Miracle. The
Law states that any command A satisfies wp(A, FALSE) = FALSE; in other
words, no command can establish the postcondition FALsE. This seems hard
to argue with, but I found that the Law was never useful, and it complicated
the cograph correspondence. As we shall see, the technical effect of the Law
is to exclude partial commands; that is, commands that correspond to partial
relations between states and outcomes. It is reasonable to prohibit partial
commands from practical general-purpose programming languages, because
in general they require backtracking to implement. Also, they are tricky to
think about, because their semantics hinge on subtle aspects of nondetermin-
ism. But these are no reasons to prohibit them from the semantic calculus,
any more than we should prohibit fractions on the grounds that whole num-
bers are easier to compute with and understand. In fact, partial commands
provide a useful framework when nondeterminism arises in practice, as in
the parsing of context-free languages.

I concluded that the Law of the Excluded Miracle is like bubble sort: it
is unfortunate that it has a catchy name, because the world would be better
off to forget it. I have dropped the Law and admitted partial commands,
obtaining a general version of Dijkstra’s calculus that is in many ways simpler
than his classical version, just as the rational numbers have simpler algebraic
properties than the integers.

The general calculus includes all the control structure operators of the
classical version. But to avoid violating the Law of the Excluded Miracle,
the classical syntax restricts the use of these operators; for example,

ifP—->A[]Q— Bfi

is allowed, but

(A0B);(P—C)

is not. The general calculus allows the operators to be combined freely. This
is a step forward, since, as a rule, operators are good and syntax is bad.
For example, the syntactic freedom simplifies proofs by structural induction.
A less fundamental difference is that the general calculus includes a new
operator N, a non-commutative version of [], which is needed in the tail
recursions that define if A fi and do A od.

The plan for this paper is to give a self-contained account of the gen-
eral calculus, from first principles through the semantics of recursion. The

Introduction 3

first half of the paper focuses on the nature of partial commands; the last
half on recursion. Technicalities are postponed to the second half whenever
possible. The only prerequisite for reading the paper is the ability to follow
manipulations involving boolean operators and quantifiers.

Section 1 is an essay that introduces the various technical approaches
and semantic models that arise in axiomatic semantics. In sections 2
through 5, we begin the study of the general calculus by considering the
semantics of the fundamental operations for sequencing and testing. To
avoid the confusion that surrounds partial commands, we will approach the
general calculus via several of the techniques explained in section 1: as a cal-
culus of relations, as a calculus of operations, and as a calculus of predicate
transformers, examining the role of partial commands each time. In section 6
we consider the semantics of assignment and local variables, which leads to
the cograph correspondence in section 7. In section 8 we consider general
recursion, and in section 9 the special case of tail recursion and iteration.

The first half of the paper seeks to develop intuition by approaching the
calculus in several ways, but in the latter half of the paper the predicate
transformer approach is taken as basic. People seem to grasp the relational
approach more readily, but serious work goes faster with predicate trans-
formers. In practice, the ingredients of program verification are programs
and predicates; it is therefore desirable to have syntactic rules for manipulat-
ing them directly, without translating in and out of the language of relations.
In fact we will take the most extreme form of the predicate transformer ap-
proach, the axiomatic approach. This means that we will rely only on the
algebraic properties of predicates and not on the definition of a predicate as
a boolean-valued function on a state space. As a consequence, all of the pa-
per’s results hold in abstract algebras of predicates, such as those introduced
by Halmos and by Tarski and his colleagues.

This is not sterile abstraction: the axiomatic approach is simpler than
approaches that are cluttered with unnecessary assumptions. Its only dis-
advantage is that its definitions often seem to be pulled out of a hat—the
definition of the approximation relation is a good example. I will try to
counteract this by motivating each axiomatic definition in the framework of
the more concrete relational approach. This lengthens the paper, but the
emphasis seems well-placed, since finding the definitions is the hard part:
once they are right, the theorems prove themselves.

In addition to Dijkstra, Hehner, Hoare, and Scott, I would like to men-
tion the intellectual debts that this work owes to J. W. deBakker, H. Egli,
David Harel, and Vaughan Pratt. Egli [6] and deBakker [1] studied an ap-
proximation relation that is essentially similar to C. However, their systems

4 Introduction

did not include partial commands. Also, they did not discover the symmetri-
cal definition of C in terms of wp and wlp, probably because they approached
semantics via relations instead of via predicate transformers, and the defini-
tion of C in terms of relations obscures the underlying symmetry. Harel and
Pratt [8, 9] defined a version of Dynamic Logic that contains the same col-
lection of commands as my generalization of the wp-calculus. But they did
not discover the approximation relation at all; their treatment of recursion
uses the subset relation instead. As we shall see, this unnecessarily limits
the recursions that can be handled.

1 A brief survey of semantic theory

This section presents a brief taxonomy of programming logics, initially ap-
proaching them via relations.

The relational approach is connected to the ordinary operational ap-
proach by the following rule: Command A relates state s to outcome o if o
is a possible outcome of activating A from initial state s. Two subtle choices
are left open in this apparently simple rule. First, the set of outcomes may
be the same as the set of states, or it may contain an additional element
to represent the outcome of infinite looping. Second, the relations may be
restricted to total relations (those in which each state is related to at least
one outcome), or partial relations may be admitted. If both the looping out-
come and partial relations are excluded, then there is no way to represent a
looping computation, so this model is uninteresting. The other three models
have all been thoroughly explored.

The earliest model to be explored included partial relations but excluded
the looping outcome. A command that is certain to loop forever from some
input state is modelled by relating that state to no outcome. A problem
with this approach is that it cannot model a command that might loop or
halt from the same input state. The practical consequence is that the model
is useless for proving termination, so we will call it the partial correctness
model. For example, Dynamic Logic (or DL) used this model.

A natural way to avoid the problem is to use what we will call the
total correctness model, which includes the looping outcome and excludes
partial relations. This allows an input state to be related only to the looping
outcome, only to proper (that is, non-looping) outcomes, or to both the
looping outcome and to some proper outcomes. Note that partial relations
are excluded from the total correctness model: in this model each input
state is related to at least one outcome, on the grounds that something must
happen when the command is activated in the input state. (For simplicity,
we will lump run-time errors together with infinite loops.) Dijkstra presented

Section 1: A brief survey of semantic theory 5

his calculus of guarded commands without an explicit relational model, but
(as we shall see) the relational model consistent with his calculus is the total
correctness model. David Parnas’s limited domain relations are a technical
variation on the total correctness model [18].

David Harel and Vaughan Pratt were the first to realize the utility of the
model that includes both partial relations and the looping outcome, which
we will call the general model (8, 9]. They showed that within DL, the way to
reach the general model from the partial correctness model is to add another
elementary predicate transformer [a]* to the previous [c]. In this paper, we
follow the lead of Harel and Pratt by accepting the general model. We will
see that the way to reach the general model from Dijkstra’s total correctness
model (which already has two elementary predicate transformers, wp and
wlp) is to drop the Law of the Excluded Miracle.

The general model raises the question of the operational interpretation
of partial commands. That is, if a command A relates an input state s to no
outcome at all, what does it mean to activate A in input state s? This will
be explained in section 3.

In our taxonomy, we have so far approached the different semantic mod-
els via relations. But each of them can also be approached via predicate
transformers or Hoare logic. Thus there are two dimensions of variation
among semantic systems: semantic model and technical approach. Let us
explore the other technical approaches to the partial correctness model.

Hoare logic is based on primitive assertions of the form { P} A{Q}, where
P and Q are predicates and A is a command, which means operationally that
if A is activated in a state where P is true, then Q is true of any state in
which A might halt. The connection to the relational approach is obvious:
the assertion means that for all states s and &/, if A relates s to s’, then P(s)
implies Q(s’). Thus A as a relation between predicates is determined by A
as a relation between states, and, as is easily shown, the converse holds as
well.

The approach to the partial correctness model via predicate transform-
ers goes as follows. For command A and predicate Q, define wip(4, Q) to
be the weakest P such that {P}A{Q}; that is, the weakest precondition
sufficient to ensure the postcondition Q. Thus the predicate transformer
wlp(A,?) is determined by A as a relation on predicates. (We will write
wip(A,?) to denote the map P — wip(A4, P).) The converse holds as well,
since { P} A{Q} is equivalent to P = wlp(4, Q).

Therefore, in developing the partial correctness model, commands can
be considered either as relations on states, as relations on predicates, or as
predicate transformers, the choice of approach being one of technique. The

6 Section 1: A brief survey of semantic theory

same choices are available for the total correctness model and the general
model, though the looping outcome complicates things somewhat. For ex-
ample, if predicate transformers are used, the effect of the looping outcome is
that a command is determined by two predicate transformers (wp and wlp)
instead of one. The general model requires no new apparatus—the same two
predicate transformers suffice. It simply differs from the total correctness
model by having more commands, namely those commands that violate the
Law of the Excluded Miracle.

Recently E. C. R. Hehner [11] and C. A. R. Hoare [13| have explored a
system called predicative programming, which involves both a new approach
and a new model. We will make use of their approach, but not their model.
In this approach, a command is considered as a predicate on a state space
that includes variables representing both the initial and final states of the
computation. For example, the command z := z + 1 is identified with the
predicate £ = £+ 1, where and £ are the initial and final value of z, respec-
tively. This “commands-as-predicates” approach is still another technical
variation on the other approaches, since there is a natural correspondence
between predicates and conjunctive predicate transformers (which are the
only kind of predicate transformers that matter in this context). A pretty
proof of the correspondence was presented by the Eindhoven Tuesday After-
noon Club [4]. We will call this the cograph correspondence, and make use
of it to reduce predicate transformer recurrences to predicate recurrences.

In addition to the “commands as predicates” approach, predicative pro-
gramming involves a new model, which we will call the HH model, after
Hehner and Hoare. The HH model is based on the principle that if you don’t
care what the outcome of a computation is, then you don’t care whether it
ever terminates. Counter-examples may come to mind (for example, flipping
a coin), but the principle still suggests a model with at least technical in-
terest. Let us approach the model via relations, as we did with the other
models. The HH model discards the looping outcome; replacing it by the
convention that if a command relates an initial state to every final state, it
is considered that infinite looping is also a possible outcome; if even a single
final state is excluded, then infinite looping is forbidden. The HH model
has aroused some controversy, a sample of which may be found in the recent
exchange between Parnas and Hehner in the CACM (19].

Our taxonomy is summarized in Table 1. The plan for this paper is to
drop the Law of the Excluded Miracle from Dijkstra’s calculus, and thereby
arrive at the same place that Harel and Pratt arrived at by adding [a]* to
Dynamic Logic. In the resulting system, we will solve recurrence relations
by using an approximation relation that generalizes the one introduced by

Section 1: A brief survey of semantic theory 7

deBakker and Egli to partial commands. As a technical device, we will

use the cograph correspondence to pass back and forth between predicate
transformers and predicates.

Technical
Approach Semantic Model
Partial Total General HH
Relations on I(_)Irlgma.l
i oare
Predicates Logi
ogic
. Early 1
Relations on Relational Parnas’ LDR"; +
States Models Egli/Debakker | DL
+.
Predicate wp-calculus B}I;-ca’.l 1
DL . 2 culus
Transformers with LEM w/o LEM
Predicative
Predicates Cographs Programming

1 LDR = Limited Domain Relations
2 LEM = Law of the Excluded Miracle

Table 1. Various calculi of programming semantics, classified in rows by technical
approach and in columns by the nature of their semantic model.

The area we have just surveyed is called “axiomatic semantics”. Since a
neighboring research area is called “denotational semantics”, you might think
that axiomatic semantics is not denotational. Not so: all the approaches and
all the models are “denotational” in the sense that the meaning of a command
is a mathematical object and the meaning of an expression is a function of
the meanings of its operands. A better characterization of the difference
between the two areas is that historically, axiomatic semantics has addressed
the problem of change of state, while denotational semantics has addressed
the problem of higher order functions. Axiomatic semantics has made the
assignment statement mathematically respectable; denotational semantics
has made the lambda-calculus mathematically respectable. (The problem
of the assignment statement has also been attacked under the banner of
denotational semantics, but the results are rather operational, and separable

8 Section 1: A brief survey of semantic theory

from the underlying domain theory. At least, so it appears to me.) It
is unfortunate that the names of these areas represent their relationship
so poorly, since the resulting confusion delays their synthesis, which would
be a promising foundation for programming theory. Following Hehner and

deBakker, and more recently Dijkstra, this work is aimed towards such a
synthesis.

2 Commands as relations

We will begin by approaching the general calculus by way of relations. The
connection to the operational approach is given by the rule

Command A relates state s to outcome o
= o is a possible outcome of activating A in initial state s

An outcome is either a state, or the “looping outcome” 1, which represents
infinite looping and run-time errors. Partial relations are allowed.

In order to give examples of this connection it will be helpful to have a
few conventional operational definitions. The alternative construct

ifPL—- A ...[0 P, — A, fi

means: select some P; that is true and execute A;. If all the P’s are false,
the outcome is defined to be L. The repetstive construct

do PL— A []...0 P, — A, od

means: repeatedly select some P; that is true and execute A;, until all the
P’s are false. If the repetition never halts, the outcome is defined to be L.

For example, in the lower right of Figure 1 is an illustration of the
relation associated with the command

ifz=0—-SkipJy=0—y:=1fi,
in which z and y are boolean variables. (The command Skip is a no-op.) To
explain the remainder of the figure, we need some more relational definitions.

We will write G(A) to denote the guard of A, that is, the domain of the
relation A considered as a predicate:

G(A)s = (30: Aso).

If G(A) = TRUE, we say that A is total. Otherwise A is partial.

00 —— 00
01 ——p 01
10 ———p 10
11 —¥ 11

Skip

00 00
01 — o3

10\‘10
11 —» 11
y:=1
xy Xy

00 00
o1 301
10 10
11\11
z=0— Skip
Dy=0—>y:=1

Section 2: Commands as relations 9

xy xy
00 — & 00
01 ——¥% 01

10 10
11 11
z=0— Skip
xy Xy
00 \oo
01 o1
10 \10
11 11
y=0—-y:i=1
Xy Xy
00 00

01 01

10 10

11 11

// M

1

if.'B=0-—+SIcip
D y=0—-oy:=1
fi

Figure 1. The anatomy of a guarded command. The command in the lower right
is composed of the subcommands shown in the rest of the figure.

10 Section 2: Commands as relations

Let A and B denote commands, P a predicate on states, s a state, and

o an outcome. Then the relational definitions of the operators appearing in
Figure 1 are

Skipso=s=o0

(P — A)so = Ps A Aso

(Al B)so = Aso V Bso

(if A fi)so= AsoV (- G(A)s Ao= 1)

That is, the no-op Skip relates each state to itself. The outcomes of P — A
are the outcomes of A from initial states satisfying P. The outcomes of
A [J B are the outcomes of A and of B. The command if A fi is a total
command formed from A by adding a looping outcome from all states that
have no other outcome. The illustration in Figure 1 of the anatomy of an
alternative construct should now be clear.

In the classical calculus, which admits only total commands, if-fi is a
2n-ary operator, and — and [] do not have the status of operators at all.
Partial commands are technically attractive, since they allow — and [] to
be binary operators, and if-fi to be a unary operator.

Here are the relational definitions of some other important operators:

Loopso=o0= 1L

Failso = FALSE

(AN B)so = Aso V (Bso A - G(A)s)

(A; B)so=(3s': Ass’ A Bs'o) V (Aso Ao = 1)

That is, Loop is the command that relates each state to the looping
outcome; Fail is the command that relates no state to any outcome; A ¥ B is
similar to A [] B, but the outcomes of B are included only from those initial
states from which A has no outcome; and A ; B is the composition of A and
B together with all looping outcomes of A. Note that Fasl is an identity
for the operators [] and N, and Skip is an identity for the operator ;. The
importance of the unconventional Fail and ¥ will become clear later.

An apology for unconventional nomenclature: There are some circum-
stances in which it is desirable to extend the space of outcomes still further,
by distinguishing between the looping outcome and other outcomes that rep-
resent runtime errors (for example, in the compiler verification by Manasse
and Nelson [15]). To avoid confusion in those circumstances, we will write
Loop instead of the conventional Abort.

Section 3: Commands as operations 11

We will call —, [], M, and ; the fundamental operators because all
the common control structures can be defined in terms of them by using
recursion. For example, we shall see that do A od is the C-least solution of

X:X = (A;X) N Skip.

We won’t consider the relational definition of do A od, since it is awkward
and, in view of the definitions to be presented in subsequent sections, unnec-
essary.

In order of decreasing binding power, the operatorsare ; — [] K.
For example,

AQP—-B;CHD means (A[(P— (B;C)) HD.

At first it seems that the operator i is mildly unattractive because it is
asymmetric, but a little reflection brings the realization that it is extremely
unattractive because it is not monotonic. That is, adding outcomes to A can
remove outcomes from A § B by masking outcomes of B, so the operator
is not monotonic with respect to the subset relation. Since monotonicity is
essential to the treatment of recursion, this is far worse than asymmetry. My
first reaction was to try to do without M. But this is hopeless, since, as we
shall see, do—od isn’t C-monotonic either! We can’t do without do, so there
is no alternative but to abandon the subset relation and find a new relation
with respect to which all the operators are monotonic. As we shall see, the
approximation relation C does the trick.

3 Commands as operations

Partial commands are technically attractive, but their operational interpreta-
tion is somewhat subtle. What would happen if the command z = 0 — Skip
were executed in a state where z # 0?7 If nothing happens, what is the differ-
ence between the given command and Skip? If an error happens, what is the
difference between the given command and if £ = 0 — Skip fi? Something
else must happen, and the only possibility is to backtrack, as this section
explains in detail.

The operational approach is based on the following scenario: given a
digital machine at rest in some initial state, the activation of a command
produces a sequence of state transitions, the outcome of which is to halt in
some state or to loop forever. There are two important points to discuss:
First, the outcome need not be functionally determined by the initial state—
that is, the command may be nondeterministic. Second, associated with
each command is a predicate called its guard, and a command can only be
activated in states where its guard is true.

12 Section 3: Commands as operations

“But”, you ask, “what would happen if a command somehow got acti-
vated in a state where its guard is false?”. This is not a particularly useful
question. Imagine commanding a typist to press the space bar, then release
it, then release it again. In assigning a meaning to this command, it is no
help to ask, “but what would happen if the typist somehow did manage to
release the space bar a second time?”.

But people will ask the question anyway, since the anthropomorphic
overtones of operational thinking lead us to imagine the machine “trying”
to activate a command whose guard is false. So as not to be without an
answer, let us say that such an attempt fails, whereas if the guard is true
then activation succeeds. Note that if a command cannot be activated, the
attempt to do so will fail without changing the state of the computation. If
any computation is involved in the attempt to activate, it must have no side
effects.

“But”, you ask, “what happens if a true guard leads to a computation
that has side effects and then runs into a false guard?”. The answer is that the
implementation must not let this happen. The explanation of this somewhat
unsatisfying answer brings us to the other important point, nondeterminism.

To avoid confusion, it is usually wise to qualify the word “nondetermin-
ism” with one of the adjectives “blind” or “clairvoyant”. An implementation
of blind nondeterminism is allowed to choose blindly between the alternative
execution paths. For example, if a programming language reference man-
ual declares that arguments to procedures may be evaluated in any order,
it is warning the programmer that the implementation reserves the right to
be blindly nondeterministic. In contrast, an implementation of clairvoyant
nondeterminism is required to choose an execution that “succeeds”, for some
notion of success. For example, in automata theory, a successful computation
is one that accepts its input, and an implementation of a nondeterministic
automaton is required to find an accepting computation if one exists.

Applying these general remarks to the case at hand, we require that
the implementation of our commands be clairvoyant enough to find a com-
putation that succeeds, but allow it to choose blindly between all successful
computations. That is, the implementation must make its nondeterministic
choices in such a way that no command is ever activated in a state where its
guard is false. For example, imagine a typist commanded to press either the
space bar or the shift key and then release the space bar, in an initial state
with all keys up. The typist must be clairvoyant enough to press the space
bar rather than the shift key, since the space bar can only be released when
it is down.

So much for the general framework. Here are the operational definitions

Section 3: Commands as operations 13
of the fundamental operators, together with do—od and if-fi:

A;B activate A, then activate B

Al B activate either A or B

ANB activate A if possible, else activate B
P— A activate A from a state where P is true
do A od activate A until it fails

if A fi activate A until it succeeds

There are several consequences of these definitions worth noting.

First, note that FALSE — A is independent of A; it is the unique com-
mand whose guard is false, which cannot be activated in any state. This
command was introduced earlier as Fail.

The command do Fail od, which activates Fail until it fails, is therefore
a no-op. This command was introduced earlier as Skip.

The command if Fail fi, which activates Fail until it succeeds, evidently
activates Fail forever, and therefore the outcome of this command is to loop
forever. This command was introduced earlier as Loop. An equally valid
operational definition of Loop is do Skip od.

It is now clear that do—-od is not C-monotonic, since Fail C Skip, but
do Fail od Z do Skip od, since Skip € Loop.

Since a failed attempt to activate a command has no effect on the state,
the definition “Activate A until it succeeds” for if A fi is a little odd. It
would have been more natural to write “Activate A unless it fails, in which
case loop”. But if there is more than one process executing concurrently,
these two definitions are not equivalent. Although we will not consider con-
currency in this paper, the definition of if-fi is phrased to accommodate it.
In a concurrent program, if P — A fi has the semantics of a “blocking if”
that waits for P to be true and then executes A. In a sequential program,
the wait will last forever. This interpretation was proposed by Dijkstra in
his account of the Owicki-Gries theory [3].

If B is partial, then the execution of A ; B will in general require non-
trivial clairvoyance, since a wrong choice made while executing A may lead
to an outcome of A that doesn’t satisfy the guard of B. In fact, it is not
difficult to see that a partial command as the second argument to semicolon
is essentially the only construction that requires clairvoyance on the part
of the implementation. Furthermore, do A od and if A fi are always to-
tal, and A ; B is total if A and B are, and similar rules hold for the other
operators. Thus the need for clairvoyance can be removed by simple syntac-
tic restrictions. The restrictions of the classical calculus are sufficient, but
stricter than necessary.

14 Section 3: Commands as operations

As an example of the power of clairvoyant nondeterminism, we will
define a command E that parses simple arithmetic expressions, assuming we
are given a procedure Id that parses identifiers and procedures Op, and Op
that parse the tokens for the operators + and x . By parsing a syntactic
category we mean reading from the input the longest legal instance of the

category, or failing if no prefix of the input belongs to the category. F is
defined recursively:

E = E;Op,;E K E;Op;E K IH.

Note that the use of K instead of [] gives X more binding power than +,
while leaving the associativity of the operators unspecified. This example
reminds us that at least one tool for translating nondeterministic programs
into efficient deterministic ones has been an engineering success: the parser
generator. (It also suggests a simple way of looking at semantic attachments
to grammars, in which inherited and synthesized attributes become in and
out procedure parameters, respectively.)

4 Preliminaries, mostly about predicates

This section presents a few definitions that we will need before going into
our third approach to the system, via predicate transformers.

Functional definitions. A predicate is a total boolean-valued function defined
on some Cartesian product space, the elements of which will be called states.
The symbol = denotes equality between predicates: P = Q means P and @
are equal as functions. The symbol = denotes the strength order between
predicates: P = Q, read “P is as strong as @Q” or “Q is as weak as P” or
“P implies Q”, means that no state is mapped to TRUE by P and to FALSE
by Q.
Boolean properties. It follows that = is a reflexive partial order with a
maximum element TRUE and a minimum element FALSE in which any two
predicates P and Q have a least upper bound P V Q and a greatest lower
bound P A Q, where A and V distribute over one another, and in which
every predicate P has a complement — P satisfying P V =P = TRUE and
P A - P = FaLsE. These properties can be summarized by saying that the
predicates form a boolean algebra.

In order of decreasing binding power, the operators are =~ A V,
followed by the relations = and =.

The existence of TRUE and FALSE depend on the fact that the state space,
being a Cartesian product, is not empty (since the empty Cartesian product
is the singleton containing the empty tuple). This is the only connection

Section 4: Preliminaries, mostly about predicates 15

between the product structure of the state space and the boolean properties
of the predicates. The product structure is more important to the cylindrical
properties, which will be considered next.

Cylindrical properties. The coordinate functions that project the state space
onto its Cartesian factors are called variables. A predicate P is independent
of a variable v (and is called a v-cylinder) if it has the same value at any two
states that differ in the v coordinate only. For any predicate P there exists
a predicate (Jv : P) which is the strongest v-cylinder that is as weak as P,
and there exists a predicate (Vv : P) which is the weakest v-cylinder that is
as strong as P.

Two variables have the same type if the corresponding Cartesian factors
are the same set. If u and v are variables of the same type and P is a
predicate, we define P(u : v) to be the predicate that “says about v whatever
P says about u”; that is, P(u : v) holds of state s if P holds of s’, where s’
is the state which coincides with s in all coordinates except u, where it has
the value v(s). Another common notation for P(u : v) is P¥. For example,
(v < v)(u : w) = (w < v). A pair of the form (u : v) is called a substitution.
Substitutions are boolean algebra homomorphisms. The simple rules for
composing substitutions and distributing them over quantifiers will not be
listed explicitly.

The cylindrical properties of predicates can be summarized by saying
that the predicates form a polyadic algebra in the sense of Halmos [7], a
cylindric algebra in the sense of Henkin, Monk, and Tarski [12], or a predicate
algebra, according to the axiomatization that I like to use [17].

Completeness property. Every set of predicates has a greatest lower bound
under the => order. This is easy to see: the greatest lower bound maps a
state to TRUE if and only if every predicate in the set maps it to TRUE.
Similarly, every set of predicates has a least upper bound.

The aztomatic program. In the axiomatic approach to the semantics of
guarded commands, the boolean properties of predicates are used for treat-
ing the semantics of the fundamental operators, the cylindrical properties
are used for variables and assignment, and completeness is used for iteration
and recursion. The axiomatic view is that the definition of a predicate as a
function on a state space should play no formal role. That is, a calculus of
guarded commands should be definable in any complete predicate algebra,
regardless of whether it has been constructed from a state space.

Miscellaneous notations. Except for the parenthesis convention, the following
notations are due to Dijkstra.

We will use square brackets to denote the following drastic map on

16 Section 4: Preliminaries, mostly about predicates

predicates: [TRUE| = TRUE, and [P} = FALSE for all other P.
We will write

(operation dummies : range : term)

to denote the combination via the given operation of the values assumed by
the given term as the dummies vary over the given range. The operation
must be commutative, associative, and (if the range is empty) possess an
identity. If the range is obvious from the context, it will be omitted. For
example, the greatest lower bound of the set S of predicates is denoted by
(NP:Pe€S:P),or by (AP:: P)if Sis obvious from the context.

A proof of P = Q will often be written in the form

P

= {hint why P = R}
R

= {(hint why R = Q}
Q

A proof of P = Q will be written similarly, except that some of the steps
may use = instead of =. In both cases, unnecessary hints will be omitted.

In order to express formulas involving the two operators wp and wlp
compactly, the parenthests convention will be used: a formula containing
parenthesized expressions represents two formulas, in one of which the paren-
thesized expressions are ignored, in the other of which each parenthesized
expression is either inserted, or substituted for the item to its left, whichever
is suggested by the context. For example, instead of the two formulas

wip((L 4 :: A), R) = (A A :: wip(A4, R))
wp((U A4 :: A), R) = (V A :: wp(4, R))

we will write the single formula

w(p((U A :: A), R) = (V(A) A = w()p(A, R)).

Fizpoint theorems. Next we will consider two classical theorems concerning
complete partial orders that play a central role in the fixpoint method.

Let C be a reflexive partial order on some set, and let M denote meet
(i.e., greatest lower bound) and U denote join (i.e., least upper bound) with
respect to C. A chain is a subset that is totally ordered by C. A function f
on the set is monotonic if £ C y implies f(z) C f(y), and chain-continuous

Section 5: Commands as predicate transformers 17

if f((Uz :: 2)) = (Uz = f(z)) whenever z ranges over a non-empty chain and
both sides are defined. Note that if f is chain-continuous, it is monotonic:

zCy
= {Connection between C and LI}
(zUy) =y
= {Equal arguments map to equal results}

flzuy) = f(y)

= {f is chain-continuous and {z,y} is a non-empty chain}

(f(=)u f()) = f(v)

= {Connection between Ll and C}
f(=) C f(y)

Here are the two classical fixpoint theorems:

Limit Theorem. If (Uz :: z) exists when z ranges over any chain, and f is
chain-continuous, then f has a least fixpoint given by

(Ug:¢>0: f{(min)),

where the superscript indicates iterated composition and min denotes the
minimum element—which must exist, since it is the join of the empty chain.

Knaster-Tarski Theorem. If f is monotonic and ¢ = (Nz : f(z) C z : z)
exists, then q is the least fixpoint of f, as well as the least solution of the
equation z : f(z) C z.

The Limit Theorem is proved in Manna’s text [16]; it is originally due to
Kleene [14]. For proofs of the Knaster-Tarski Theorem, see the original
reference [20] or Dijkstra’s notes [5]. The standard version of the Knaster-
Tarski Theorem requires that every set of elements has a meet, but we will
have a use for our stronger formulation, which requires only that a particular
set of elements has a meet. The proof of the standard version also works
for our strengthened version. The Limit Theorem could be strengthened
similarly, but we won’t bother to do so since the conventional formulation is
all we will need.

5 Commands as predicate transformers

In this section we interpret the general calculus by means of predicate trans-
formers, which are simply maps from predicates to predicates. We consider
only the semantics of the fundamental operators, and therefore rely only on
the boolean properties of the predicates.

18 Section 5: Commands as predicate transformers

In this approach a command A is defined to be a pair of predicate
transformers, written wp(A4,?) and wlp(A4,?), satisfying the pairing cond:-
tion, which is that for any predicate R,

wp(A, R) = wp(A, TRUE) A wip(4, R),

and the conjunctivity condition, which is that wlp(4, ?) distributes over any
conjunction, and wp(A, ?) distributes over any non-empty conjunction.

We will motivate this definition by connecting it to the relational ap-
proach. The basic connection is

the predicate wp(4, P) holds of state s
= every outcome of A from s is proper and satisfies P

the predicate wip(A, P) holds of state s
every proper outcome of A from s satisfies P.

All predicates in this paper are predicates over states, therefore no pred-
icate (not even TRUE) can be said to hold of 1. Also, the “s” in the two
equivalences above can be omitted, since preconditions are understood to be
predicates on states. These two observations allow us to write succinctly

w(l)p(A4, R) = every (proper) outcome of A satisfies R.

Here are two noteworthy consequences of the basic connection:
wp(A, TRUE)(s) = every outcome of A from s is proper.

wp(A, FALSE)(s)

= every outcome of A from s satisfies FALSE

= there is no outcome of A from s.

Thus wp(A, TRUE) characterizes those states from which error-free termina-
tion is guaranteed, while wp(A, FALSE) characterizes those states from which
activation is impossible. Hence

G(A) = ~wp(A, FALSE) .

From this equation we see that Dijkstra’s Law of the Excluded Miracle,
wp(A, FALSE) = FALSE, can be written G(A) = TRUE. That is, the effect of
the Law is to exclude partial commands.

Here is the motivation for the pairing condition:

wp(A, P)
= every outcome of A is proper and satisfies P

|

Section 5: Commands as predicate transformers 19

every outcome of A is proper and every proper outcome of A satisfies P
wp(A, TRUE) A wip(A4, P)

And for the conjunctivity condition:

wip(4, (A1 F))

every proper outcome of A satisfies every P;

for every 1, every proper outcome of A satisfies P;

(A ¢ :: wip(4, P)))

wp(A, (A1 :: F;))

every outcome of A is proper and satisfies every P;

{the range of ¢ is not empty}

for every i, every outcome of A is proper and satisfies P;
(Ai::wp(4, P))

Thus for any relation between states and outcomes, the corresponding

pair of predicate transformers satisfies the pairing and conjunctivity condi-
tions. Conversely, given any such pair wp(4,?) and wlp(A4, ?), the relation
A connected with them is uniquely determined. To show this, we introduce
the notation 3 to denote the co-atomic predicate that is holds of all states
except the state s. Then

1l

A relates s to the proper outcome ¢
- (every proper outcome of A from s differs from t)
~wip(4,1)(s)

A relates s to L

- (every outcome of A from s is proper)

= - wp(A, TRUE)(s)

Thus the “proper part” of A as a relation is determined by wlp(4,?), and

the

“improper part” by wp(A, TRUE).

So much for the motivation of the definition. Here are the definitions of

the commands Fail, Skip, and Loop, and of the fundamental operators:

w(lp(Fasl, R) = TRUE
w()p(Skip, R) = R
w(l)p(Loop, R) = FALSE (TRUE)

20

Section 5: Commands as predicate transformers

w(lp(A [B, R) = wlp(A, R) A w(Dp(B, R)

w(lp(4; B, R) = w(lp(4, wllp(B, R))

w()p(P — A4, R) = -~P Vv wl)p(4, R)

w(l)p(A ¥ B, R) = wlp(4, R) A (6(4) v wllp(B, R))

The equation for K follows from those for — and [] and the formula

ARB = A[] -6(A) — B.

The equations for Fail, Skip, and Loop will be left to the reader. For the other
three equations, we will first give relational motivations, and then prove that
the commands they define satisfy the pairing and conjunctivity conditions.

>

w(l)p(4A [B, R)
every (proper) outcome of A[] B satisfies R
every (proper) outcome of A satisfies R

every (proper) outcome of B satisfies R
w(p(4, R) A w)p(B, R)

wip(4; B, R)
every proper outcome of A ; B satisfies R

from every proper outcome of A, every proper outcome of B satisfies R
wip(4, wlp(B, R))

wp(4; B, R)
every outcome of A ; B satisfies R

every outcome of A is proper and satisfies wp(B, R)
wp(A, wp(B, R))

w(l)p(P — A, R)

every (proper) outcome of P — A satisfies R

{if -~ P holds then there is no outcome of P — A}

— P V every (proper) outcome of A satisfies B

The proofs of the pairing and conjunctivity conditions are straightfor-

ward calculations. One fact that will be used several times is that in any
boolean algebra, finite disjunction distributes over arbitrary conjunctions.

HE]

Section 5: Commands as predicate transformers

w()p(A; B, (A R :: R))
w()p(4, w(lp(B, (A R :: R)))
w(l)p(4, (A R :: w(lp(B, R)))
(A R =z w(lp(4, w(lp(B, R)))
(AR ::w(p(A; B, R))

w(lp(P — A, (A R :: R))
- PV w(p(A, (AR :: R))
- PV (AR:wlp(4,R))
(AR =P v wlp(4,R)
(AR wlp(P — A, R))

wl)p(Al B, (A R :: R))

w(l)p(4, (A R :: R)) Aw()p(B, (A R :: R))
(A R ::w()p(A, R)) A (A R::w(l)p(B, R))
(AR ::w()p(4,R) A w(lp(B, R))

(AR :=wlp(A[l B, R))

wp(A4; B, R)

p(A, WP(B’R))

p(A, wp(B, TRUE) A wip(B, R))

p(A, wp(B, TRUE)) A wp(A, wip(B, R))
(
(
(

g

b

g

£

)
p(A, wp(B, TRUE)) A wp(A, TRUE) A wip(4, wip(B, R))
p(A, wp(B, TRUE)) A wip(4, wip(B, R))

wp(A4; B, TRUE) A wip(4 ; B, R)

=

wp(A[]l B, R)

wp(A, R) A wp(B, R)

wp(A, TRUE) A wip(4, R) A wp(B, TRUE) A wlp(B, R)
wp(A[] B, TrUE) A wip(A] B, R)

wp(P — A, R)
- PV wp(4,R)
- PV (wp(A, TRUE) A wip(4, R))

21

4

22 Section 5: Commands as predicate transformers

(- PV wp(A, TRUE)) A (- P V wip(4, R))
wp(P — A, TRUE) A wip(P — A, R)

From the precondition equations we derive the following guard equa-
tions, using the identity G(A) = —wp(A, FALSE):

G(Fail) = FALSE

G(Loop) = TRUE

G(Skip) = TRUE

G(P — A) = P A G(4)
g(AlB)=G(A) v §(B)
G6(AHWB) = G(4) v §(B)
G(A; B) = —~wp(4, ~ §(B))

Note that the last equation implies that G(A ; B) = G(A) whenever B is
total.

An important consequence of the conjunctivity of wp and wip is mono-
tonicity. The proof is very similar to the proof that chain-continuity implies
monotonicity:

P=Q
= {connection between => and A}
PAQ=P

= {equal postconditions have equal preconditions}
w(lp(4, P A Q) =w()p(4, P)
{w(D)p is conjunctive}
w(lp(4, P) A wllp(4, Q) = w(llp(4, P)
= {connection between A and =}
w()p(4, P) = w)p(4,Q) 1

68 Variables

This section describes two new operations, assignment and projection. To
handle them we will rely on the cylindrical properties of the predicates, as
well as the boolean properties necessary for the fundamental operations.

If z and y are variables of the same type, the assignment z := y is a
command that relates each state s to the state s/, where s’ coincides with s

Section 6: Variables 23

in all coordinates except z, where it has the value y(s). The corresponding
predicate transformer is substitution:

wllp(z:=y, R) = R(z:y).
Here is the motivation for the equation:
w(lp(z := y, R)

every (proper) outcome of r := y satisfies R

what R says about z is true of y
R(z:y)

Here is the proof that assignments satisfy the pairing condition:

wp(z := y, TRUE) A wip(z :=y, R)
TRUE A R(z : y)
wp(z :=y, R)

The fact that assignment satisfies the conjunctivity condition follows
from the fact that in any predicate algebra, substitution distributes over
unbounded conjunctions. To prove this, we need a lemma.

Il

il

Lemma 1. For any predicate R and variables z and y,

R(z:y) = (Vz:z#yV R).
Proof. By the substitutivity of equality,

R(z:y) > z#uVR.

The left side is independent of z, hence, by the definition of V, the implica-
tion can be strengthened to

R(z:y) = (Vz:z#yV R).
The proof of the converse is:

(Vz:z#yV R)
= {substitutivity of equality}
Vz:z#yV R(z:y))
{R(z : y) is independent of z}
(Vz:z#y)V R(z:y)
= {reflexivity of equality}
R(z:y) 1

24 Section 6: Variables

Here is the proof that substitution distributes over arbitrary conjunc-
tions:

(AR :: R)(z:y)
{Lemma 1}
(Vz:z#yV (AR:R))
{predicate calculus}
(NR: (Vz:z#yV R))
{Lemma 1}

(AR :: R(z : y))

So much for assignment. Next we consider the use of local variables,
which requires laying some groundwork.

To indicate that R is independent of all variables except z, we will say
R is an z-predicate. Similarly, an zy-predicate is one independent of all
variables except z and y.

Note that the number of variables on which a predicate depends will vary
with the choice of coordinates on the state space. If R is an zy-predicate, it
is not “two dimensional” in any fundamental way: had the two components
z and y been treated as a single component z (with subcomponents z.z and
z.y), then R would be a z-predicate. We will therefore feel free to take all
the variables on which a predicate depends and lump them together into a
single variable, whenever this is convenient.

A command is called independent of a variable if it neither tests nor sets
the variable. In the next section we will make this definition precise, but it
will do for now. If A is independent of all variables except z, it is called an
z-command. An zy-command or zyz-command is defined similarly.

The operation for delimiting the scopes of variables is projection: if A
is an zy-command, then by [z | A] we denote the y-command resulting by
dropping the £ components from all state-outcome pairs of A. (The looping
outcome projects to itself.) Operationally, [z | A] means “extend the state
space with a new component named z with arbitrary initial value, then
execute A, then retract the new component”. The precondition equation is

w(lp([z | A], R) = (Vz: wl)p(4, R)).
Note that if R is a y-predicate, then as far as R’s value is concerned, we can

specify a state by the value of the variable y. We will use this notational
liberty in the following motivation of the precondition equation:

Section 6: Variables 25
wp([z] 4], R)(y)

every (proper) outcome of [z | A] from initial state y satisfies R

I

for every initial value of z, every (proper) outcome of A from initial
state (z,y) satisfies R

(Vz : wll)p(4, R)(y))

{y-substitution commutes with z-quantification}

(Vz: w(lp(4, R))(y)

The fact that projection satisfies the conjunctivity condition follows from
the fact that universal quantification commutes with unbounded conjunction.
Here is the proof that projection satisfies the pairing condition:

il

wp([z | A], R)
= (Vz: wp(4,R))
= (Vz : wp(A, TRUE) A wip(4, R))
= (Vz : wp(A4, TRUE)) A (Vz : wip(4, R))
wp([z | A], TrUE) A Wip([z]| A], R)

In the expression [z | A], the variable z is a dummy. In case the
postcondition is dependent on z, the dummy must be renamed to avoid
capture before the precondition equation can be used. For example:

wp([t|t:=z;2:=y;y:=t],z<t)
= wp([u|ui=z;z:=y;y:=ul,z<t)
= Vu:wplu:=z;z:=y;y:=u, z<t))
(Vu:(z <t)(y:u)(z:y)(uv:z))
(Vu:y <t)
y<t

A common construction in programs has the form
if (3z : P) then let z satisfy P ;... end.

The repetition of £ and P are awkward. One longs to write something like
if z such that P then ... end,

where the scope of z includes the ... as well as the P. Dijkstra calls such
constructions “initializing guards”; they are easily constructed out of partial
commands and the projection operator. Note first that

26 Section 6: Variables

(=1 4D
= - (wp([z | A], FALSE))
- (Vz : wp(A, FALSE))
- (Vz: = G(4))
= (3z: §(4))
Thus if A is total, then the guard of
[zIP—A]

is (3z : P), and consequently it can be activated in the same states as
(3z: P) — A,

but in the first case the scope of z includes A. Thus we have constructed an
initializing guard.

As a more concrete example, here is a command that decomposes the
list ¢ and rebuilds it in reverse order in b, where lists are represented as
nil-terminated nests of ordered pairs in the usual way:

b:=nil ;do [u,v|a=(u,v) > b:=(u,b);a:=v] od

The guard on the loop tests if a is an ordered pair and, if it is, introduces
u and v as names for its components. (It would show more respect for
the virtue of infix operators to simply write z | A instead of [z | A], and
dropping the brackets is especially tempting in the case of initializing guards.
But it is conventional in programming to delimit name scopes with explicit
brackets.)

Finally, a few words about undefined terms. An assignment operation
z := E, where E is an expression, is considered to be syntactic sugar for

if[u|ju=FE—-z:=u]fi,

where u is a fresh variable. Note that this command loops in states where E
is undefined, since in such states (Ju : v = E) is FALSE. We will abbreviate
this formula to def(E).

In predicate algebras the substitution (z : E), where E is an expression,
is defined by the equation

P(z:E)= (Ju: u=E A P(z:u)),

where u is a fresh variable. With this definition we have in general that

Section 7: Commands as predicates 27

wp(z:= E, R) = R(z: E)
wip(z := E, R) = ~def(E) V R(z : E)

Note that these are not definitions, but theorems that follow from the seman-
tics of substitution, projection, and if-fi. In proofs by structural induction,
expressions can generally be ignored.

(A note about the introduction of function symbols into abstract predi-
cate algebras: a function f is defined by giving the meaning of the equation
“u= f(u1,...u,)” as a predicate. For any values of the v’s, there must be

at most one value of u satisfying the predicate. For example, division can be
defined by

u=v/w = wFO A urxw=uv.

Therefore, if E is not a variable, a predicate expression of the form u = E

can be reduced to an expression in which the outer function symbol has been
eliminated.)

A final note: by means of the projection operator, predicate transform-
ers can be introduced that are not V-continuous. That is, wp([z | 4], ?)
may not distribute over infinite joins of chains of predicates, even though
wp(A, ?) does. This discontinuity occurs for commands that are unboundedly
nondeterministic, in the sense that they relate some input state to infinitely
many outcomes. For example, let £ and y have the same type, and consider
[z |y:= z], which assigns y an arbitrary value. For a y-predicate P,

wp([z |y :=z], P)
(Vz: P(y: z))
[P]

1l

(Recall Dijkstra’s [| operator from section 4.) The [] operator is obvi-
ously V-discontinuous, since the join of a chain of predicates may be TRUE,
although none of them is TRUE. But unbounded nondeterminism will not
trouble us: although wp([z | A], R) may be a discontinuous function of R,
we will show that [z | A] is a continuous function of A, which justifies the
use of projection in recursive definitions.

7 Commands as predicates

Our next goal is the cograph correspondence. As mentioned in the introduc-
tion, the correspondence came out of the predicative programming approach
taken by Hehner and Hoare. In this approach, a command is a predicate on
a state space that includes variables representing both the initial and final

28 Section 7: Commands as predicates

states of the computation. More precisely, if A is an z-command, and z’ is a
variable of the same type as z, then the correspondence between this point
of view and the operational view is given by

A as a predicate holds of (z,z’)

= z’ is a possible proper outcome of A as a command activated from initial
state z.

For example, the command z := z+1 corresponds to the predicate 2’ = z+1.
Looping outcomes are simply ignored in the usual expositions of this point of
view. Our strategy will be to ignore the looping outcomes temporarily, and
then recover them by relying on the pairing condition. Instead of (z,z’), the
initial and final values are usually named (%, £), but we will stick to (z,z’),
since this simplifies the description of the connection between predicative
programming and predicate transformers. This connection is captured ex-
actly by the following theorem.

Theorem 1. If A is an z-command, then for any predicate P,
wip(A, P) = (V' : wip(A,z # z') vV P(z : z)) .

The English translation of the theorem is

A’s proper outcomes all satisfy P
= for each state z’, either A never produces z/, or z’ satisfies P.

Hence the z-predicate transformer wlp(A, ?) is completely determined by the
zz'-predicate wip(4, z # z'). For example, wip(z := z+1, ?) is determined
by wip(z := z+ 1, z # z'), which is 2’ # z + 1.

The predicate wip(A, z # z') is simply the complement of the predicate
that represents A in the predicative programming point of view. Theorem 1
is essentially the work of the Eindhoven Tuesday Afternoon Club {4]; I have
modified their theorem to deal with wlp instead of wp, and modified their
proof to be axiomatic. To prepare the way for the axiomatic proof, we need
one definition and two lemmas.

A command A is independent of a variable z if

(+) for any predicate R, w(l)p(A4, R) is independent of z
(#%) for any z-predicate R, wip(A,R) = wip(A, FALSE) V R.

Condition (¢) implies that A doesn’t test z, and condition (i+) implies
that A doesn’t set z. We will motivate these claims by arguing in terms of

Section 7: Commands as predicates 29

relations on the state space of (z,y) pairs. First we argue that condition (1)
implies that for any values z,, z2, and y; and any outcome o,

i.e.,

A(.’El,yl)o = A(:’:Za yl)oa

the outcome is indifferent to the initial value of . The proper and

improper cases are treated separately:

te.,

A(zlayl)-L
- Wp(A, TRUE) (221 , y1)

{(+)}
- wp(A, TRUE)(z2,y1)
A(z2,y1)L

A(zy,y1)0
{assume o proper}
- wp(A4,9)(z1,y1)
{()}

- wp(A4,90)(z2,y1)
A(z2,y1)o0

Next we argue that condition (#7) implies that for any z;, z2, y1, and yz,

A(z1,y1)(Z2,¥2) = 71 = 23,
in no outcome is = changed:

A(z1,v1)(z2,v2)

= ~wip(4, (z2,¥2))(z1,¥1)

i

~wip(4, z # 3 V y # y2) (21, 1)

{wlp is monotonic, — is anti-montonic}
~wip(4, z # z2)(z1,31)

{(#%%), z # z is an z-predicate}

Ty = Iy

So much for the motivation. A command and predicate are said to be

independent if there is no variable on which both are dependent. Note that
in this case, clause (1) of the definition above applies to them.

30 Section 7: Commands as predicates

Lemma 2. If command A and predicate C are independent, then
wip(4, PV C) =wlp(4,P)V C.

Proof. Since wlp is not disjunctive, it is not obvious how to get the proof
started. There is a roundabout attack that succeeds in this case, as in many
similar ones. Compute first that

TRUE
= wlp(A,FALSE) VC V - C
{A and C are independent}
wip(4,C) v wlp(4,-C)
= {wlp is monotonic}
wlp(A4,C) v wip(A, PV = C)
and then that

wip(4, PV C)
wip(4, PV C) A (wlp(4,C) V wip(4, PV - C)
{ A over V; conjunctivity of wlp}
wip(A4,C) V wip(A, P)
= {A and C are independent}
wlp(A, FALSE) V C V wip(A, P)
= {monotonicity of wip}
C Vv wip(A,P) 1

Lemma 3. If predicate P is independent of z', then
P=(Vi':2 #zVv P(z:2')).
Proof. This is a trivial consequence of Lemma 1:
(Vz': 2’ #zV P(z : 2'))
= {Lemma 1 with R := P(z:z')}
P(z:z')(z' : z)
= {P is independent of z'}
P 1

Section 7: Commands as predicates 31

Finally we are ready for the proof of Theorem 1, which is now very
simple:

wlp(4, P)

= {Lemma 3}
wip(4, (Vz': z # 2’ v P(z : £)))
{conjunctivity of wip}
(V' : wip(A4, z # 2’ V P(z : z)))
= {Lemma 2}
(V' : wlp(A, z#2')V P(z: ") &

Given Theorem 1, the construction of the cograph correspondence is routine:

Definitions. For an z-command A, define

H(A) = wp(A, TRUE)
G(A) = wip(4,z # =)
cog(4) = (H(4),G(4))
Note that G(A) holds of (z,z') if z’ is not a possible outcome of A from z,

and H(A) holds of z if L is not a possible outcome of A from z, so that

cog(A) (read “cograph of A”) represents the complement of the graph of A
as a relation.

Inversely, if H is an z-predicate and G is an zz'-predicate, define the com-
mand com(H, G) by the rules

wlp(com(H, G), R) = (Vz' : GV R(z : z))

wp(com(H,G), R) = H A wlp(com(H, G), R)
Obviously com(H,G) satisfies the pairing constraint. The fact that it also
satisfies the wlp conjunctivity constraint follows from the fact that substitu-
tion, finite disjunction, and universal quantification all distribute over arbi-
trary conjunctions. For the wp conjunctivity constraint, one uses in addition

the fact that finite conjunction distributes over arbitrary non-empty conjunc-
tions.

Theorem 2. The operators cog and com are inverses.

Proof.
H(com(H,G))
= {definition of H}

32 Section 7: Commands as predicates

wp(com(H, G), TRUE)
= {definition of com}
H

G(com(H,G))
= {definition of G}
wlp(com(H, G), z # z')
= {definition of com, use z"’ instead of z’ to avoid capture}
(V" : G(z' : ") V (z # 2')(z : =)
(V" : G(z' : z") v " #£ 2')
{Lemma 3}
G

Hence cog(com(H,G)) = (H,G). To show com(cog(A)) is A, we will show
they have the same wlp’s for arbitrary postconditions, and the same wp’s for
TRUE.

wp(com(cog(A)), TRUE)
= {definition of cog}
wp(com(H (A), G(A)), TRUE)
{definition of com}
H(A)
{definition of H}
wp(A, TRUE)

wip(com(cog(A)), R)

{definition of cog}

wip(com(H (A4), G(4)), R)
{definition of com and of G}
(Vz' : wip(4, z # ') V R(z : z'))
{Theorem 1}

wip(4,R) 1

As a further illustration of the cograph correspondence, Table 2 lists the
commands whose cographs contain only the simple predicates TRUE, FALSE,
and £ # z'. Our old friends Fail, Skip, and Loop are present, and also a

Section 8: Recursion 33

new command Havoe, which was not mentioned before because it is not very
useful. It relates each initial state to every proper outcome. Its precondition
equation is

w(lp(Havoc, P) = [P].

In the HH model that is usually associated with the programs-as-predicates
approach, Havoc can be described (it corresponds to the zz’-predicate TRUE),
but Loop cannot. Because of this, Hehner [11] bestows upon Havoc by fiat
properties that Loop enjoys naturally. For example, he defines semicolon so
that Havoc ; z := 0 = Havoc. With the ordinary semicolon, we would have
Havoc; z := 0 = z := 0 (assuming we are talking about z-commands), while
of course Loop;z := 0 = Loop. One consequence of this is that the semicolon
becomes non-associative. This can be fixed by adding a distinguished vari-
able to represent termination; but then the HH model reduces to the general
model, with the distinguished variable playing a role similar to L.

A H(A) G(A)
Fail TRUE TRUE
Loop FALSE TRUE
Havoc TRUE FALSE
Loop[] Havoc FALSE FALSE
Skip TRUE z#z
Skip [] Loop FALSE z#z

Table 2. Some commands with simple cographs.

8 Recursion

Finally we come to the problem with which this research started: to apply
the cograph correspondence and the fixpoint method to general recursion
in the calculus of guarded commands. To handle recursion we will rely on
the completeness of the predicate algebra, in addition to the boolean and
cylindrical properties we have relied on up till now.

Here is an operational description of the fixpoint method. Let B be
some command, and for each n let A, be the command “execute B for at
most n steps, abandoning any longer computations and classifying them as
loops”. It should be clear that in some sense, each A,, is an approximation
to B, and that the approximation improves as n increases. The key to the
fixpoint method is to define this notion of approximation without reference
to computation sequences.

34 Section 8: Recursion

This is straightforward enough. We consider a relational definition first,
then switch to predicate transformers. In the relational model, we wiil say
that A approximates B if A can be obtained from B by replacing some of
B’s proper outcomes with the looping outcome. This condition is equivalent
to the following two constraints, in which s and ¢ range over states and o
ranges over outcomes:

() (Vs,t: Ast = Bst)

(12) (Vs,0: Bso = (Aso V Asl))

Condition (z) says that every proper outcome of the approximation A is a
proper outcome of the limit B. Condition (1) says that every outcome of

the limit is either an outcome of the approximation, or is represented in the
approximation by the looping outcome.

Translating into the language of predicate transformers, we have from
() (again using the notation 3 for the co-atomic predicate that holds for all
states except s)

(Vs,t : Ast = Bst)

(Vs,t : ~wlip(4,%)(s) = - wlp(B,t)(s))

(VR : R co-atomic : wip(B, R) = wip(A4, R))

{every predicate is a conjunction of co-atoms, conjunctivity of wlp}
(VR : R a predicate : wip(B, R) = wip(4, R))

and from (17)

(Vs,0: Bso = (Aso V Asl))
(Vs: = Asl = (Vo: Bso = Aso))
(Vs:— Asl = (- BsL A (Vt: Bst = Ast)))
wp(A, TRUE) =
wp(B, TRUE) A (VR : R a predicate : wip(4, R) = wlp(B, R))
= (VR : R a predicate : wp(4, R) = wp(B, R))

-

il

Thus we have derived the pleasantly symmetrical definition

where
ACyp B = (VR :wp(A,R) = wp(B, R))

Section 8: Recursion 35

and
ACuwip B = (VR : wip(A, R) = wip(B, R)) .

The partial order C is the required approximation relation. Note that both
Cwp and Ewip are transitive and reflexive. These properties are preserved
under inversion and intersection; hence C, which is the intersection of Ewp
with the inverse of C,p, is also reflexive and transitive. Furthermore, if
AL Band BEC A, then A and B have the same wp’s and wlp’s for every

predicate; therefore they are the same command. Hence C is a reflexive
partial order.

The next step in the method of fixpoint semantics is to consider the joins
of chains in the approximation order. The axiomatic program requires that
we base our proof of the existence of joins upon the completeness of the set of
predicates. The two requirements are most easily met by using the cograph

correspondence. We therefore investigate the approximation relation C in
this representation.

Definition. For cographs (H,G) and (H',G'), we define (H,G) C (H',G")
to mean

(H=>H)YA(G'=>G)AN(HAG=>G).
Theorem 3. For cographs (H,G) and (H',G’),

(H,G) C (H',G")) = (com(H,G) C com(H',G")).

Proof. Assume first that (H,G) C (H',G'). Then, first, for any R

wp(com(H, G), R)
= wp(com(H,G), TRUE) A wip(com(H, G), R)
= HA(V2' : GV R(z : £'))
= {H=>H', HAG = G'}
H' A (V2': G'V R(z : 2'))
= wp(com(H',G’), R)
and, second, for any R
wlp(com(H',G'), R)
= (Vz': G’V R(z : 2'))
= {G'= G}

36 Section 8: Recurston

(Vz!' : G vV R(z : z'))
= wip(com(H,G), R)

and therefore com(H,G) C com(H’,G').
To prove the converse, let A and B be commands such that A T B.

Then first,
H(A)
= wp(A, TRUE)
= {ACwp B}
wp(B, TRUE)
= H(B)

and second,

G(B)
= wlp(B, z # z')
= {B ;wlp A}
wip(A, z # ')
= G(A)
and third,
H(A) A G(A)

wp(A, TRUE) A wip(4, z # z')
{pairing condition}
wp(A4, z # =)
> {ACup B)
wp(B, = # ')
= {pairing condition}
wlp(B, z # z')
= G(B)

and therefore (H(A),G(A)) C (H(B),G(B)). 1

From the formula in Theorem 3, we can easily derive and verify a formula
for the join of a chain.

Section 8: Recursion 37

Theorem 4. Any chain has a join, which is given in the cograph represen-
tation by the formula

(UH,G: (H,G) =((v H,G=H), (AH,G:G)).

Proof. To show that the given cograph is an upper bound, let (H, G) be any
cograph in the chain, and check first that

H= (vH,G: H),
and second that
(AH,G:G)= G,
and third (observing that H A G = G’ follows both from (H,G) C (H',G")
and from (H',G') C (H,G)) that
HAG=> (ANH',G =G
= (ANH',G':HAG= G
= {(H,G) and (H’',G’) are in the chain; observation above}

TRUE

and therefore the given cograph is an upper bound for the chain. Now let
(H',G') be some other upper bound, so that for any (H, G) in the chain,

(1) H= H'

(#H) G'=> G
(1) HAG = G’

We must prove that

(vH,G:H),(NH,G:G))C (H',G"),

which we do by observing first that
(VH,G: H)= H'
(NH,G:: H= H')
{()}

TRUE

(

and second that

38 Section 8: Recursion
G'= (ANH,G ::G)
(NH,G::G' = G)
{(s)}

TRUE

and third that

il

(VH,G:H)A(ANH,G:G)=>G'
(VH,G: HAG)=>G'
(NH,G:HAG=G')

{(¥)}

TRUE

il

which completes the proof. |

Note that if a command has no looping outcome, then it is a maximal
element under the approximation order: the only command it approximates
is itself. Thus there are many maximal elements, and therefore no maximum
element. Thus the empty set does not have a meet. But, as it turns out,
any nonempty set does have a meet. This result will allow us to apply our
version of the Knaster-Tarski Theorem when we need it in the proof of the
final theorem on recursion.

A note on notation: since we are using = for the equality relation on
predicates, we use = as the equality operation. That is, P = @ means
(-PVQ)A(PV-Q).

Theorem 5. Let (H;,G;) be a non-empty indexed set of cographs, where 1
ranges over an anonymous index set. Define H' and G’ by

H' = (A1,7 = Hi A (Gi = GYy))

G'=(Vi:G)
Then (H',G') is the greatest lower bound for the set (H;, G:) in the £ order.
Proof. Here is the proof that (H’,G') is a lower bound:

(H',G') C (H;,Gy)

(H' = H;)) A (Gi = G') A (H' AG' = Gy)
= {H'= (A1 Hy) = Hy}

(Gi = G)AN(H' NG = Gy)

{Gi= (Vi G;) =G'}

Section 8: Recursion 39
HAG > G;
< {weaken H'}
ANL,J:Gi=G)A(Vi:G;) = Gy
= {the G’s are equal and one is true = any is true}
TRUE

To show that (H',G’) is the greatest lower bound, let (H,G) be another
lower bound; thus for each ¢,
(/) H= H;
(n) G;=G
(i) HAG = Gi
To show that (H,G) C (H’,G'), check first that

H=H
H= (/\ 1,7 2 H; A (G,‘ = Gj))
(Ad,juuH=H;A(G;i =G
{(:)}
(A, H= (G; =Gj
= (A1,7 wHA G = Gj)
< {(22)}

(A, HAG= Gy)
= {(¢12)}

TRUE

(i
Il

—

)

and second that

G'=>G
=(ViuGy) =G

and finally that
HAG= G

=HAG= (Vi:G))

<= (Vit HAG=>G))

40 Section 8: Recursion
= {(1¢1)}
(V1 :: TRUE)
= {i ranges over a non-empty set}
TRUE

which completes the proof. |

Next we consider the distribution properties of wp and wlp over joins of
chains.

Theorem 6. Let A range over any chain of commands, then for any predi-
cate R,

w(Dp((U 4 :: A), R) = (V(A) A :: wlp(A4, R)).

Proof. In the following, (H,G) ranges over the chain of cographs correspond-
ing to the chain of commands that A ranges over. Here is the proof of the
formula for wlp:

wlp((L A :: A), R)

wlp((U H,G :: com(H,G)), R)

{Theorem 4}

wip(com((v H,G :: H),(A H,G :: G)), R)
= {def. of com}

(Ve': (NH,G :G)V R(z : =’
(V' : (NH,G : GV R(z: z')
(NH,G :: (Vz' : GV R(z : ')
{def. of com}

(A H,G :: wip(com(H, G), R))
= (A A wlp(A4, R))

)
)
)

]

The two directions for the formula for wp are proved separately:

wp((U A :: A), R)

wp((U H,G :: com(H, G)), R)

{Theorem 4}

wp(com((V H,G :: H),(A H,G :: G)), R)

= {pairing condition, def. of com}
(vH,G:H)A(Vz': (ANH,G:G)V R(z: 1'))

Section 8: Recursion 41

= (VH,G:HA{Nz': (AH,G:G)V R(z: z'))
= (VH,G:: HA (Vz': GV R(z: "))
(v H,G :: wp(com(H, G), R))

= (V A:wp(4,R))

The proof of the other direction is

(Vv A::wp(4,R)) = wp((U A :: A), R)
(A A:wp(4,R) = wp((LU A :: A), R))
= {AC (U A: A)}
TRUE

This completes the proof. |

Theorem 7. The fundamental operators, assignment, and projection are all
chain-continuous in their command arguments.

Proof. In order to express the proof compactly, the parenthesis convention
will be used repeatedly. So will the principle that two commands are equal
if they have the same w(l)p’s for any postcondition.

Here is the proof that [] is chain-continuous in its first (hence also in its
second) argument:

w(p((u A :: A)[J B, R)

w(lp((L A :: A), R) A w()p(B, R)
(V(A) A 2 w()p(A, R)) A w)p(B, R)
(V(A) A :: w()p(A, R) A wlp(B, R))
(V(A) A ::w(Dp(A[l B, R))

w(p((L A :: A[l1 B), R)

The proof that — is chain-continuous in its second argument is very similar:

w(lp(P — (U A4 :: A), R)
~P Vv w()p((L A A), R)
~PV (V(A) A :w(l)p(A, R))
(V(A) A :: =P Vv w(llp(4, R))
(V(A) A :: wDp(P — A, R))
= wlllp((L A :: P — A), R)

Here is the proof that the operator ; is chain-continuous in its first argument:

42 Section 8: Recursion

wl)p((U A :: A); B, R)
w(lp((L A :: A), w(lp(B, R))
(V(A) A :: w)p(4,w(Dp(B, R)))
(V(A) A ::w()p(4; B, R))

= wllp((u A :: A; B), R)

And in its second argument:

w()p(A; (L B :: B), R)

w(lp(4, w(lp((U B :: B), R))
w(lp(A4, (V(A) B :: w(lp(B, R)))
{explanation below}

(V(A) B :: wlp(A, w(l)p(B, R)))
= (V(A) B :: w(l)p(4 ; B, R))

= w()p((L! B :: A; B), R)

Explanation of the step above: the wlp case is a simple consequence of wip’s
conjunctivity. The wp case is less obvious, since wp is not disjunctive in
general. But it is easy to show that if B1 = B2, then wp distributes over
the disjunction B1 VvV B2. Since the B’s range over a chain, any two values
of wp(B, R) will be comparable by =>. Therefore the step is also valid in the
WD case.

Before considering N, observe that

G((L Az 4))

-wp((U A :: A), FALSE)
=(V A :: wp(A, FALSE))
~(V 4::-6(4))

(A A G(4))

For the first argument to |, we consider the wp and wlp cases separately.
The wlp case is easy:

I

wlp((L A :: A)¥ B, R)
wip((U 4 = 4), B) A (§((U

(n Az wip(4, R)) A (A 4 = 6(4) v wip(B, B))
(A A :: wip(4, R) A (G(A) V wip(B, R)))

Az A)) vV wip(B, R))

Section 8: Recursion 43

(A A::wip(AH B, R))
wip((Ll A :: AN B), R)

The wp case is harder:

wp((U A :: A)H B, R)
= wh((u 4 4), B) A (6((U A 4)) Vw5,)
= (VA= wp(A, R)) A (A 4= G(4)) v wp(B, B))
(v A5 wp(4, B) A (A 4 2 G(4)) V wp(B, R)))
= {explanation below}
(V A:wp(A,R) A (G(4) Vv wp(B, R)))
= (VA:wp(AK B, R))
= wp((U A :: AN B), R)

Explanation of the step above: To show that (A A :: G(A)) may be replaced
by G(A) in the context in which it appears in the step above, we just need
to show that for any A’ such that AC A’ or A’ C A,

wp(4, B) A G(4) = G(4).

This follows from two observations. First, that

A'C A= (6(4) = §(41),
since

G(A) = ~wp(A,FALSE) = —wp(A’,FALSE) = G(4').
Second, that

AL A= (G(A) A wp(4, TRUE) = §(4')),
since

G(A) A wp(A, TRUE)
—wp(A, FALSE) A wp(A, TRUE)

IH

{pairing condition}
- (wp(A, TRUE) A wip(4, FALSE)) A wp(A, TRUE)
= {boolean algebra}
~wip(A, FALSE) A wp(4, TRUE)
= {AC A’}

44 Section 8: Recursion

—wip(A’, FALSE) A wp(A', TRUE)

{pairing condition again; boolean algebra again}
- wp(A’, FALSE)
g(4")

The second argument to X is easier:

w)p(AH (U B :: B), R)
= w(l)p(4, R) A (6(4) v w(llp((u B :: B), R))
w(lp(4, R) A (G(4) v (V(A) B :: w()p(B, R)))
w(p(4, R) A (V(A) B :: (G(A) v wlp(B, R)))
(V(A) B :: wDp(A, R) A (6(A4) v wllp(B, R)))
(V(A) B :: w()p(A ¥ B, R))
= w(l)p((U B :: AR B), R)

i

The projection operator is easy:

wlp([z | (WA A)], R)
(Vz : wlp((LA :: A), R))
(Vz : (V(A) A :: w(Dp(4, R)))
(V(A) A :: (Vz : w(p(A, R)))
(VIN) A = wDp([z| A], R))
wllp((UA = [z | A]), R)

TR 1 111

The assignment operator is continuous in all its command arguments,
because it doesn’t have any.
This completes the proof of the theorem. 1

All of the pieces are now in place for the proof of the final theorem
concerning the existence of fixpoints.

Theorem 8. Let f be a map from commands to commands defined by an
expression of the form f(X) = £, where £ is an expression built from the
fundamental operators, assignment, projection, the command parameter X,
and any number of fixed commands and predicates. Then f has a least
fixpoint under the T relation, equal to (Ut : ¢ > 0 : f*(Loop)), and to
(NX: f(X)C X : X).

Proof. Theorem 7 shows that the operators are continuous, therefore f is
continuous. Theorem 4 shows that any chain has a join in the approximation

Section 9: Iteration and tail-recursion 45

order. Thus the conditions of the Limit Theorem are satisfied. The formula,
from the Limit Theorem justifies the first formula in the theorem, since, as
is easily seen, the command Loop is C-minimal. Thus f has a fixpoint, so
the meet in the theorem’s second formula is non-empty, and therefore exists
by Theorem 5, and equals f’s least fixpoint by the Knaster-Tarski Theorem.
|

Note that the theorem equates the fixpoint both to an infinite meet and
to an infinite join. Each equation has its uses, although in this paper we will
use only the join equation.

No new difficulties are created by mutual recursion. For example, a
mutually recursive definition of two commands A and B will have the form

(4,B) = (f(4,B),9(4, B)),

where f and g are chain-continuous. This can be treated as a fixpoint equa-
tion over the universe of command pairs, for which a suitable approximation
relation is defined by

(A,B)C (A',B') = AL A' A BCB'.

The details are left to the interested reader.

Once mutual recursion is available, we can add do-od to the list of
operators in the theorem, since iteration can be eliminated in favor of tail-
recursion. The details of this elimination are the subject of the next section.

9 Iteration and tail-recursion

In this section, we will see that if do-od and if-fi are defined recursively,
their semantics agree with Dijkstra’s direct definitions. To show this, we will
prove a general formula for the preconditions of a tail recursion.

We begin by comparing the two definitions of do-od. Since unrolling a
loop doesn’t change its meaning, the equation

doAod = A;do A od K Skip
is valid. Thus do A od is a solution of the equation
X = A; X K Skip. (1)
Appealing to Theorem 8, we define do A od as the C-least solution of the

equation. Since the right-hand side is a chain-continuous function of X, the
least solution exists.

46 Section 9: Iteration and tasl-recursion

Without Theorem 8, Hehner [10] proceeded as follows. For any X sat-
isfying (1), and any postcondition R, we have

wlp(X,R) = wDp(4,w(Dp(X,R)) A (6(4) V R) (2)

by applying the precondition equations for the right-hand side. Thus
w(l)p(do A od, R) is a solution for P of the predicate equation

P = wlDp(4,P) A ($(A) V R). (3)

Hehner defined wp(do A od, R) as the strongest solution of the equation,
and wip(do A od, R) as the weakest solution of the equation. He also proved
that this definition agreed with Dijkstra’s original definition in Discipline of
Programming, and Dijkstra has subsequently adopted Hehner’s definition [5].

Note that Hehner’s definition uses predicate recurrences; predicate
transformer recurrences are not needed. His technique works because of
the special form of (1): when the precondition of the right hand side of the
equation with respect to R is taken, the only occurrences of X are in expres-
sions of the form w(l)p(X, R). This allows the step from (2) to (3), where
these occurrences are replaced by P. In other words, the technique works
for the recursion X = f(X) provided that w(Dp(f(X), R) can be written as
a function of w(l)p(X, R). We call such recursions tail recursions, and prove
in the following theorem that Hehner’s technique works for all of them, and
therefore in particular for do-od.

Theorem 9. Let f be a chain-continuous totality-preserving function from
commands to commands such that for some conjunctive predicate transform-

ers g and gl, the following identity holds for all predicates R and all total
commands X:

w(p(f(X), R) = ¢g)(wDp(X,R), R). (4)
Let Xo be the C-least fixpoint of f. Then for any predicate R,
w(p(Xo, R) = the strongest (weakest) fixpoint of g(D)(?, R) .
To apply the theorem to the semantics of do A od, let

f(X)=A; XK Skip
g (P, R) = wl)p(A, P) A (G(A) V R)

Section 9: Iteration and tail-recursion 47

Then the conditions of the theorem are satisfied. (Note that the assumption
that X is total is required to guarantee the equivalence of G(A; X) and

G(A).) The theorem implies that
w(l)p(do A od, R) = the strongest (weakest) fixpoint of g()(?, R),

which is exactly Hehner’s formula for do-od.

The condition of Theorem 9 can be summarized by saying that fis
a chain-continuous total tail recursion. We will call (4) the tail recursion
identity.

Proof of Theorem 9. To show that w(l)p(Xo, R) is a fixpoint of g()(?, R),
observe that

g()(wDp(Xo, R), R)
= {tail recursion identity}

w(lp(f(Xo), R)
= {Xo is a fixpoint of f}
w(lp(Xo, R)

To show that w(l)p(Xo, R) is the strongest (weakest) fixpoint, observe first
that since f is chain-continuous, Theorem 8 yields

Xo = (Un: f*(Loop)),
and therefore, by Theorem 6,
w(l)p(Xo, R) = (V(A) n :: w(Dp(f™(Loop), R)).
Let P be any fixpoint of ¢(?, R), then
wp(Xo,R) = P
(V n:: wp(f™(Loop), R)) = P

(A n :: wp(f™(Loop), R) = P)
{induction below}

TRUE

The induction is easy: if n = 0, wp(f"(Loop), R) is FALSE, which is as strong
as P. Also,

wp(f"(Loop), R) = P
=> {g is monotonic}

48 Section 9: Iteration and tasl-recursion

g(wp(f"(Loop), R), R) = ¢(P, R)
= {tail recursion}
wp(f™*1(Loop), R) = ¢(P, R)
= {P is a fixpoint of g}
wp(f"**1(Loop), R) = P
The proof of the other half of the theorem is essentially the same, but

the parenthesis convention is not powerful enough to allow the two halves to
be folded together. Let P be any fixpoint of ¢i(?, R). Then

I’:>Whﬂ2%,R)
P = (A n :: wip(f"™(Loop), R))
(A n 2 P = wip(f™(Loop), R))

= {induction below}

TRUE

The induction is easy: if n = 0, wip(f™(Loop), R) is TRUE, which is as weak
as P. Also,

P = wlp(f"(Loop), R)
= {gl is monotonic}
4i(P, R) = gi(wlp(f*(Loop), B),)
{tail recursion}
gl(P, R) = wip(f™+'(Loop), R)
{P is a fixpoint of gl}
P = wip(f™*1(Loop), R)

il

This completes the proof of the theorem. 1

Tail recursion can be used to define if-fi as well as do-od. Let if A fi
be the C-least solution of

X: X=AKX.

This equation can be justified by unrolling the operational definition “acti-
vate A until it succeeds”. Then Theorem 9 applies, and simple arguments
yield the precondition equations for if-fi:

wp(if A fi, R) = G(A) A wp(4, R)
wlp(if A fi, R) = wip(4, R)

Section 10: Concluding remarks 49

10 Concluding remarks

It is not difficult to show that the Limit Theorem remains true if the con-
straint on f is weakened from “continuous” to “monotonic”, and the range
of ¢ in the expression (Ll :: f*(min)) is changed from “the integers” to “the
ordinals”. Thus if any useful operations on commands turn up that are
monotonic but discontinuous, they can still be included in recursive defini-

tions, since Theorem 8 can be modified to rely on the more general form of
the Limit Theorem.

A partially ordered set is directed if it contains an upper bound for
every pair of its elements. A directed set is a generalization of a chain, and
Theorems 4 and 6 are true for directed sets as well as chains.

The commands of the general calculus form a denotational semantic do-
mazin, that is, a continuous partial order. At least, this is true modulo some
technicalities, which will now be explained. Let A < B mean that for any
chain, if B approximates the join of the chain, then A approximates some
element of the chain. (For simplicity we continue to use chains instead of
directed sets.) The formula A <« B is read “A is way below B”; its opera-
tional meaning is that A is one of the approximations that can be obtained
by executing B for a finite number of steps and classifying any uncompleted
computations as loops. (This interpretation may be misleading if B is un-
boundedly nondeterministic, but operational interpretations of unbounded
nondeterminism are bound to be paradoxical.) The interpretation suggests
that a command should equal the join of those commands that are way below
it; if this is in fact true for all commands, the partial order C from which <
is constructed is said to be continuous.

A standard example of a discontinuous partial order is the implication
order = in a complete atomless predicate algebra. In such a predicate al-
gebra, the approximation relation C constructed from => will not be con-
tinuous, either. But I have proved that if = is continuous (as it is in most
predicate algebras of practical importance, including the algebra of boolean
functions on a state space), then so is C. In summary: if the underlying
predicate algebra is continuous, the commands of the general calculus form
a denotational semantic domain.

My final conclusion is that Dijkstra was right: general recursion is more
complicated than simple iteration.

50 Section 10: Concluding remarks

Acknowledgements

I am grateful to Kathleen Sedehi, who typeset the paper; to Martin Abadi,
Cynthia Hibbard, Jim Horning, and Lyle Ramshaw for helpful comments
on the exposition; and to Mark Manasse and Lyle Ramshaw, for helpful
discussions about the contents. Lyle suggested the fine word “outcome”.

References 51

References

(1] J.W. deBakker. Semantics and termination of nondeterministic recursive
programs. Automata, Languages, & Programming, Edinburgh, 1976.

[2] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[3] Edsger W. Dijkstra. A personal summary of the Gries-Owicki theory
(EWD554, 1976). Printed in Dijkstra’s Selected Writings on Computing:
A Personal Perspective, Springer-Verlag, 1982.

[4] E.W. Dijkstra and others. From predicate transformers to predicates.
Manuscript EWD821. April, 1982.

[5] E.W. Dijkstra. Lecture notes “Predicate Transformers” (Draft). Manu-
script EWD835. November, 1982.

[6] H. Egli. A mathematical model for nondeterministic computations.
Zurich, ETH (1975). Cited by deBakker [1].

[7] Paul R. Halmos. Algebraic Logic. Chelsea, 1962.

[8] David Harel. First-Order Dynamic Logic. Lecture notes in computer
science 68. Springer-Verlag 1979.

[9] David Harel and Vaughan R. Pratt. Nondeterminism in logic of pro-
grams (preliminary report). POPL Proceedings, Tucson, Arizona 1978.

[10] Eric C.R. Hehner. do considered od: a contribution to the programming
calculus. Acta Informatica 11, 1979.

[11] Eric C.R. Hehner. Predicative Programming I. CACM 27 2, 1984.

[12] Leon Henkin, J. Donald Monk, and Alfred Tarski. Cylindric Algebras,
North-Holland. Part I, 1971, Part II, 1985.

(13] C.A.R. Hoare. Programs are predicates. In Mathematical Logic and
Programming Languages, edited by C.A.R. Hoare & J.C. Shepherdson,
Prentice/Hall International, 1985.

[14] S.C. Kleene. Introduction to Meta-mathematics. D. Van Nostrand,
Princeton, 1952.

[15] M.S. Manasse & C.G. Nelson. Correct compilation of control structures.
Bell Labs Technical Memorandum, 1984.

(16] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill,
1974.

[17] Greg Nelson. Predicate Algebra. Manuscript CGN5, 1983.

[18] David Lorge Parnas. A generalized control structure and its formal def-
inition. CACM 26 8, April 1983.

[19] David L. Parnas. Technical Correspondence in CACM 28 5, 1985.

[20] A. Tarski. A lattice-theoretic fixpoint theorem and its applications. Pa-
cific J. Math 5, 1955. Cited by [15].

Indez 53

Index

alternative construct 8
approximation relation
defined 1
derived 34
mentioned 4
assignment operation 22, 44
axiomatic semantics 7
axiomatic approach 3, 15

boolean properties, of predicates 14

Cartesian product 14
chain, defined 16
chain-continuity
defined 16
implies monotonicity 22
of various operators 41
co-atomic predicate 19
cog 31
cograph correspondence 1, 31-33
com 31
commands-as-predicates approach 6
completeness property, of predicates 15
conjunctivity condition
defined 18
implies monotonicity 22
clairvoyant nondeterminism
introduced 12
example of 14
classical calculus 2
cylindric algebra 15
cylindrical properties, of predicates 15

deBakker 3

denotational semantics 7, 49

Dijkstra’s calculus (also called classical calculus) 1, 2, 4-5
directed, defined for partially ordered set 49

domain 2, 49

do—od 8, 11, 13, 45, 46, 47

Dynamic Logic 4, 6

Egli, H. 3
Eindhoven Tuesday Afternoon Club 6, 28

54 Indez

Fail 10, 13, 19, 32
fixpoint method 1, 16, 33, 44
fundamental operators 11, 41

general calculus
advantage of, over classical calculus 2
approached via predicate transformers 17-22
approached via relations 8-11
approached operationally 11-14

general model (of Harel and Pratt) 5

guard, defined 8

Halmos 3, 15

Harel, David 3, 5

Havoc 33

Hehner, E.C.R. 1, 3, 6, 46, 47
HH model 6, 33

Hoare, CAR.1,3,6

Hoare logic §

if-fi operator 8, 10, 13, 45, 48
independence, defined in relation to
commands 24, 28, 29
predicates 15, 29
initializing guards 25

joins of chains 17, 35, 40
Knaster-Tarski Theorem 17, 38, 45

lambda-calculus 1, 7
Law of the Excluded Miracle
defined 2
mentioned 5, 6, 18
Limit Theorem 17, 45, 49
Loop 10, 13, 19, 32

monotonicity
defined 16
mentioned 11, 22, 49

nondeterminism 1, 2
blind 11
clairvoyant 11, 14
unbounded 27, 49

Index 55

operational approach (see also calculus of operations) 4
to partial commands 11
Owicki-Gries theory 13

pairing condition, defined 18
parenthesis convention, defined 16
parsing

as example of nondeterminism 14
partial commands

defined 10

introduced 2

mentioned 4, 11, 13
partial correctness model 4-5
Parnas, David 5
polyadic algebra 15
Pratt, Vaughan 3, 5
predicate

algebra 15

boolean properties of 14

cylindrical properties of 15

defined 14

independent of a variable 15
predicate transformer approach 4, 5, 14, 17, 19
predicative programming 6
projection operation 22, 44

relational approach (see also, calculus of relations) 4, 5, 8-11
repetitive construct 8

Scott, Dana 1, 3

Skip 8, 10, 11, 13, 19, 32

states, defined 14

subset relation 4, 11
substitution, concept defined 15

tail recursion 2, 45, 46, 47

Tarski 3, 15

total correctness 1

total correctness model 4, 6
Parnas’s variation on 5
difference from general model 6

total relations, defined 4

type 15

56 Indez

variables
defined 15
type, of a 15

wlp 18
wp 18
wp-calculus 1

SRC Reports

“A Kernel Language for Modules and Abstract Data

Types.”
R. Burstall and B. Lampson.
Research Report 1, September 1, 1984.

“Optimal Point Location in a Monotone
Subdivision.”
Herbert Edelsbrunner, Leo J. Guibas, and Jorge
Stolfi.
Research Report 2, October 25, 1984.

“On Extending Modula-2 for Building Large,
Integrated Systems.”

Paul Rovner, Roy Levin, John Wick.

Research Report 3, January 11, 1985.

“Eliminating go to’s while Preserving Program
Structure.”
Lyle Ramshaw.
Research Report 4, July 15, 1985.

“Larch in Five Easy Pieces.”
J. V. Guttag, J. J. Horning, and J. M. Wing.
Research Report 5, July 24, 1985.

“A Caching File System for a Programmer’s
Workstation.”

Michael D. Schroeder, David K. Gifford, and Roger

M. Needham.
Research Report 6, October 19, 1985,

“A Fast Mutual Exclusion Algorithm.”
Leslie Lamport.
Research Report 7, November 14, 1985.

“On Interprocess Communication.”
Leslie Lamport.
Research Report 8, December 25, 1985.

“Topologically Sweeping an Arrangement.”
Herbert Edelsbrunner and Leonidas J. Guibas.
Research Report 9, April 1, 1986.

“A Polymorphic A-calculus with Type:Type.”
Luca Cardelli.
Research Report 10, May 1, 1986.

“Control Predicates Are Better Than Dummy
Variables For Reasoning About Program
Control.”

Leslie Lamport.
Research Report 11, May 5, 1986.

“Fractional Cascading.”
Bernard Chaselle and Leonidas J. Guibas.
Research Report 12, June 23, 1986.

“Retiming Synchronous Circuitry.”
Charles E. Leiserson and James B. Saxe.
Research Report 13, August 20, 1986.

“An O(n?) Shortest Path Algorithm for a Non-
Rotating Convex Body.”
John Hershberger and Leonidas J. Guibas.
Research Report 14, November 27, 1986.

“A Simple Approach to Specifying Concurrent
Systems.”
Leslie Lamport.
Research Report 15, December 25, 1986.

alilgliltlall

Systems Research Center
130 Lutton Avenue
Palo Alto, Califormia 94301

winerant Ramn An

