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Authors’ abstract

We investigate the problem of moving a convex body in the plane from one location
to another while avoiding a given collection of polygonal obstacles. The method we
propose is applicable when the convex body is not allowed to rotate. If n denotes
the total size of all polygonal obstacles, the method yields an O(n?) algorithm for
finding a shortest path from the initial to the final location. In solving this problem,
we develop some new tools in computational geometry that may be of independent
interest.

John Hershberger and Leonidas J. Guibas



Capsule review

In this paper the authors consider the problem of finding the shortest path by which
a convex plane body—called the robot—can be moved, without rotation, from one
point in the plane to another while avoiding a collection of disjoint simple polygonal
obstacles. Previous researchers have studied special cases of this problem in which the
shape of the robot is a point, a convex polygon, or a disk, and have found shortest-
path algorithms that run in time O(n2), where n is the total number of edges in the
set of obstacles. The algorithm presented in this paper achieves the same time bound
for robots of arbitrary convex shape.

The authors begin by observing that any path of the robot avoiding the obstacles
corresponds to a path of a single point avoiding a collection of fattened obstacles,
which are obtained by replacing each point in each of the original obstacles with an
inverted copy of the robot. A shortest path from point o to point w avoiding the
fattened obstacles may then consist of two kinds of fragments: straight segments each
of whose endpoints is either a, w, or a point of tangency to a fattened obstacle, and
portions of the perimeters of fattened obstacles joining these points of tangency. A
shortest path for the robot can therefore be found by applying a graph-theoretical
shortest-path algorithm to an augmented path graph whose edges are (approximately)
those fragments listed above that are not blocked by fattened obstacles, and whose
vertices are (approximately) a, w, and the various points of tangency.

Unfortunately, the augmented path graph may have ©(n2) vertices and ©(n?) edges.
Finding a shortest path in such a graph may require ©(n?logn) time. The meat of
the paper is devoted to a sequence of constructions which, by taking advantage of
the convexity of the robot, reduce the problem to one of finding shortest paths in a
coalesced path graph having only a O(n) vertices. Shortest paths in such a graph can
be found in O(n?) time by using Fibonacci heaps to implement Dijkstra’s algorithm.
The work of building the augmented path graph and reducing it to the coalesced path
graph is also achieved in O(n?) time, with the constant factor depending on the time
required to perform certain primitive operations, such as constructing the common
tangents of two translated copies of the robot.

Jim Saxe
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1. Introduction

The Euclidean shortest path problem formalizes a common question:
what is the easiest way to move an object from one location to an-
other? An instance of the problem specifies a set of obstacles S and
initial and final positions a and w for the object. The desired solution
is a path from a to w that avoids the obstacles and has minimal Eu-
clidean length, if any such path exists. There are many variants of the
problem: the problem may be posed in two, three, or more dimensions;
the obstacles may be subject to constraints (convexity, for example);
and the moving object may have constraints on its shape or motion.
This paper focusses on the two-dimensional case in which S is a set of
disjoint simple polygons with a total of n vertices.

A number of recent algorithms find shortest paths among polygonal
obstacles in the plane. The methods of Reif and Storer {RS] and of
Asano et al. [AAGHI] take O(n?) worst-case time to find shortest paths
for a moving point. The problem of finding shortest paths for a moving
body of finite size is, however, more difficult. In the special case when
the body is a non-rotating convex polygon of fixed complexity, a simple
extension of the point-motion algorithms runs in O(n?) time. Baker
and Chew propose an O(n? log n) algorithm to find shortest paths for a
disk moving among polygonal obstacles {Ba][Ch]. Reif and Storer give
an O(n?) solution to the same problem. Their method exploits the
geometry of the obstacle space to run faster than O(n?) under some
conditions; we discuss their approach in Section 8.

In this paper we solve a generalization of the disk motion problem.
We show how to find shortest paths for a non-rotating convex body. The
obstacles we consider are disjoint simple polygons, as in the work cited
above; our method is novel because the moving body is not constrained
to be polygonal or round, but only convex. The arbitrary shape of the
convex body is not without its costs, but we defer discussion of these
costs until Section 5.

Our approach uses two ideas from the literature to simplify the
problem of finding shortest paths. The first simplification reduces the
problem of moving a non-rotating convex object among polygons to
that of moving a point (the object’s center) among “fattened” versions
of the obstacles. This idea is due to Lozano-Perez and Wesley [LPW|.
The second simplification, due to Baker and Chew [Ba|[{Ch], reduces the
problem of finding shortest paths for a point among fattened obstacles
to that of finding a shortest path in a graph. Dijkstra’s shortest path
algorithm for graphs [AHU] can be used to solve the reduced problem.

The shortest path algorithm we present builds the graph of Baker
and Chew, then simplifies it before invoking Dijkstra’s algorithm. Each
step takes O(n?) time and space. The visibility graph of the polygons,
obtained using the algorithm of Asano et al. [AAGHI] or Welzl [W],
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forms the basis for constructing Baker and Chew’s graph. If the graph
so constructed has 3(n?) nodes, then running Dijkstra’s algorithm on
it will take 02(n? log n) time, causing a bottleneck. To circumvent this
potential problem, the algorithm reduces the graph to an equivalent
one with only O(n) nodes before running Dijkstra’s algorithm. Using
the Fibonacci heaps of Fredman and Tarjan [FT|, Dijkstra’s algorithm
takes only O(n?) time when applied to the reduced graph.

2. Definitions

This section gives the special notations used in the paper. It also ex-
plains the idea of “fattening” obstacles mentioned in the introduction.

We represent individual points by lowercase letters and sets of
points by uppercase letters. The segment between points p and ¢ is
7§, and the distance from p to ¢ is |pg|. This distance is usually the
straight-line distance between the points, though we sometimes use |pq|
to refer to the distance from p to ¢ along the boundary of a convex re-
gion on which both points lie.

We refer to the moving convex body as the robot and represent it
by the letter A. The robot must avoid obstacles as it moves. These
obstacles are disjoint simple polygons with a total of n vertices. The
robot moves outside all the polygons. (The polygons must be disjoint
to satisfy the preconditions of algorithms we use as subroutines.) The
set of all polygon points, both vertices and points on segments, is S.

The robot A has a center, which is just the coordinate origin in its
frame of reference. In that frame, B is the point-wise reflection of A
through its center. (Note that the center of A need not lie within its
boundary.) We denote the set of points covered by B when its center
is placed at a point ¢ by B? (pronounced “B at ¢”).

To plan the motion of the robot among polygons, we solve the
equivalent problem of moving the robot’s center among fattened ver-
sions of the polygons. To distinguish between the obstacles of the orig-
inal problem and their fattened versions, we refer to the polygons that
the robot avoids as obstacles and to the fattened polygons that the
robot’s center avoids as barriers. Points on the boundaries of barri-
ers are especially important to our algorithm; we will refer to these as
boundary points.

We can draw the barriers by using B as a paintbrush and trac-
ing each polygon’s border; the painted areas are the barriers that the
robot’s center must avoid. The painted region is the Minkowski sum (or
vector sum) of B with the polygons and their interiors.t The boundary

+ The Minkowski sum of two regions X and Y consists of all points
expressible as a vector sum z +y, wherez € X andy €Y. The sumis
symmetric in its arguments—it is the set {z +y |z € X,y € Y}—but
it can also be viewed asymmetrically as | ex Y = Uyey X¥-
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of the painted area is closely related to the convolution of the bound-
ary of B with the polygons in S, as defined by Guibas, Ramshaw, and
Stolfi [GRS].

Any point on the boundary of a barrier must be on the boundary
of BY for at least one polygon point ¢, and it may not lie inside BY
for any other ¢’ in S. Given a barrier boundary point p, we refer to a
polygon point g such that p is on the boundary of B? as a generator of
p and denote the set of generators of p by g(p). Unless the boundary
of B contains a segment parallel to one of the polygon segments, the
number of generators |g(p)| is finite for any point p on the boundary
of a barrier. In fact, of those boundary points p with finitely many
generators, only a finite number have |g(p)| > 1. (We sometimes give

the term generator a slightly broader meaning; we say that ¢ generates
the barrier BY.)

Figure 1. When a convex obstacle polygon is fattened by the
inverted robot B, the outer boundary of the resulting bar-
rier has arcs and segments. The tangent at each of an arc’s
endpoints matches the slope of the adjacent segment. The
tangent’s direction varies monotonically between these two ex-
tremes along the arc.

We can classify each barrier boundary point p by its generator
set g(p). We use the term arc to denote a maximal connected set
of boundary points generated by a single polygon vertex. The barrier
boundaries are composed of arcs, of straight segments whose generators
all lie on a single polygon segment, and of intersection points of these
elements.t Each arc copies a portion of the border of B. If an obstacle
polygon is convex, then, in the fattened polygon, each arc bridges the
difference in slopes between the segments that precede and follow it.
(See Figure 1.) When two arcs or segments intersect other than by
abutment, the point of intersection has multiple generators. (An arc

t These definitions can break down if the boundary of B contains a
segment parallel to one of the polygon segments. In this case, boundary
arcs and segments may not be disjoint. To remedy the problem, we
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and its adjacent segment intersect at their point of abutment, but that
point has only a single polygon vertex as its generator.)

3. The Path Graph

Since combinatorial problems are often easier to solve than geometric
ones, we reduce the shortest path problem to a combinatorial problem
by introducing the path graph. Our path graph is a combinatorial
graph structure obtained from the positions of the barriers and is an
extension of the one used by Baker and Chew. Each path graph edge
corresponds to a path among the barriers. We show that except for its
initial and final segments, any barrier-avoiding shortest path is a subset
of the path graph edges.

The path graph of a set of barriers is very similar to the visibility
graph of a set of polygons. The visibility graph of a set of polygons
records vertex pairs that can be connected by segments whose interiors
are free of polygon points. It is closely related to the visibility polygon
of a query point, which is the polar sequence of polygon points visible
from the query point. (See Figure 2.) Because each non-terminal edge
of a shortest path for a point moving among polygons is a polygon edge
or a visibility graph edge, the visibility graph is important in shortest
path algorithms.

Figure 2. The visibility polygon of query point ¢ is the bound-
ary of the region visible from ¢ in the presence of polygonal
obstacles.

use the technique of e-perturbation: we define the boundary arcs and
segments as if the polygon segment were not parallel to the flat spot on
B, but rotated clockwise by an infinitesimal amount e. This results in
a consistent definition of disjoint arcs and boundary segments.
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The visibility graph records pairs of mutually visible vertices; sim-
ilarly, the path graph records pairs of barriers connected by common
tangents that avoid all other barriers. Because shortest paths for the
robot’s center follow barrier boundaries as well as common tangents, the
path graph has two kinds of edges: portions of the barrier boundaries
and tangent segments.

Definition 3.1. The nodes and edges of the path graph are defined as
follows:

(1) Every maximal straight boundary segment generated by a single
polygon segment is an edge of the path graph, and its endpoints
are path graph nodes. This implies that when a segment generated
by a polygon segment intersects arcs or other boundary segments,
each intersection is a path graph node. Intersections of boundary
arcs are also path graph nodes.

(2) If a line tangent to two arcs does not intersect any barrier between
its points of tangency, the two tangent points are path graph nodes,
and the segment connecting them is a path graph edge. If the
tangent touches an arc at more than one point (the arc contains
a straight segment), we use the tangent point that minimizes the
length of the tangent segment. These edges are called tangent
edges.

(3) Minimal arc sections connecting nodes defined in (1) and (2) are
path graph edges (no two such edges overlap). These edges are
convex curves; some may be straight line segments, but only if the
boundary of B has flat spots.

Path graph edges defined in (1) and (3) are called boundary edges; their
union includes all the boundary arcs and straight segments.

Recall that the path graph of a set of barriers is the analogue of the
visibility graph of a set of polygons. Since the visibility graph has O(n?)
edges, it is reasonable to assume that the path graph also has O(n?)
nodes and edges. The following lemma shows that this assumption is
true.

Lemma 3.1. The path graph defined above has O(n2?) nodes and
edges.

Proof: We begin by bounding the number of path graph
tangent edges. Consider centering a copy of B at each polygon
vertex. These n (possibly overlapping) convex regions have at
most 4('2‘) common tangents, since two translated copies of B
have at most four common tangents. Because tangent edges
are common tangents of boundary arcs, and arcs are generated
by polygon vertices, the path graph tangent edges are a subset
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of the O(n?) tangents. Each tangent edge contributes at most
two endpoint nodes to the path graph.

Kedem et al. [KLPS] show that there are only O(n) nodes
formed by intersections of segments and arcs on the boundary
of the barriers. (As in Figure 3, there can be O(n?) intersec-
tions, but only O(n) of them are on the boundary.) These are
the nodes of type (1).

Every path graph node has exactly two incident boundary
edges. Since there are O(n?) nodes, there are O(n?) boundary
edges. This fact, in combination with the bounds on nodes and
edges already given, proves the lemma. |[i

Figure 3. Although n barriers can intersect in O(n?) points,
only a linear number of the intersections are on the boundary
of the barriers.

An instance of the shortest path problem specifies the initial and
final positions a and w of A’s center, chosen so that A* and A“ avoid
the polygons. Shortest paths among the fattened polygons begin and
end with edges from « and w, but intermediate edges come from the
path graph.

In order to use Dijkstra’s algorithm to find the shortest path, we
need a graph whose edges contain all shortest paths from a to w. We
produce such a graph, which we call the augmented graph G,, by adding
nodes and edges to the path graph. If the segment @@ does not intersect
any barrier, it is the shortest path and belongs in G,. If aw is blocked,
we add to the path graph all unobstructed segments passing through
« or w and tangent to some barrier. The endpoints of the added seg-
ments augment the set of path graph nodes. Some boundary edges are
split in two by these additional nodes. Because there are at most 4n
tangents from a and w to barriers, the added nodes and edges leave the
augmented path graph still of size O(n?). The following lemma shows
that G, is useful for motion planning.

Lemma 38.2. Every shortest path from o to w that avoids the barriers
follows edges of the augmented path graph, Ga.
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Proof: Any shortest path is composed of subpaths that al-
ternately follow barrier boundaries and move along straight
lines between barriers. If the endpoints of the segments that
connect barriers are augmented path graph nodes, then the
boundary subpaths are made up of boundary edges. Thus
it suffices to show that every non-boundary segment on the
shortest path is an edge of the augmented path graph.

Suppose that a segment ab lies on a shortest path from o
to w, touches barriers only at its endpoints, and is not an edge
of the augmented path graph. At least one of ab’s endpoints,
say b, lies on a barrier boundary and is not a, w, or a point of
tangency of ab with the barrier. Because b is not a or w, the
path continues beyond b. Some point d on the continuation
must be visible from a point ¢ on ab, since ab is not tangent at
b. But this means that the supposed shortest path could be
shortened by replacing the subpath from ¢ to d via b by the
segment cd, which contradicts the assumption that ab lies on
a shortest path. (See Figure4.) |I

Figure 4. Barrier-connecting segments on a shortest path must
be tangents. The dark path through a, b, and d cannot be a
subpath of any shortest path. Because b is not a tangent point
of ab, the point d on the continuation of the path is visible from
c. Taking the shortcut cd gives a path shorter than the dark
one.



4. Tangent-Visibility

This section deepens the connection between the path graph of a set
of barriers and the visibility graph of the polygons that generate the
barriers. It shows that the path graph tangent edges from an arc are
closely related to the visibility graph edges from the vertex that gener-
ates the arc. The next section exploits this connection to construct the
path graph quickly.

If we are given a set of simple polygons with n vertices and a query
point ¢ outside the polygons, the visibility polygon of ¢ lists in polar
order the polygon points visible from g. (See Figure 2.) Let us denote
this (infinite) cyclic sequence of points by VP(q). We can define a
similar concept for the fattened polygons by sweeping them with a ray
tangent to BY whose endpoint moves along the boundary of B?. If the
tangent point of the ray is not inside a barrier that overlaps B9, we
say that the first boundary point encountered by the ray is tangent-
visible from BY. See Figure 5 for an example. Each query point ¢ has
two sequences of tangent-visible points, since each boundary point of B
has both a clockwise and a counterclockwise tangent. Both sequences
may contain points of tangency that are path graph nodes; since the
two sequences are similar, we discuss only the sequence derived from
the clockwise tangent. Let us denote the sequence of barrier boundary
points swept by the clockwise tangent to B? by VS(g). The generators
of the points in VS(g) form a sequence we call g(VS(g)). (If a point p
in VS(q) has multiple generators, any one of them may appear in the

generator sequence.)
(>

Figure 5. Tangent-visibility. The darkened section of the
boundary of BP and BT is tangent-visible from B9Y.

To help characterize the sequence of generators g(V5(q)), we in-
troduce some special notation. As the tangent to B7 sweeps around,
it points in each direction between 0 and 27 exactly once. Let p be a
point and T a set of points. The point p generates the barrier BP, and
T generates barriers that are the Minkowski sum of T' and B. We use
the notation vr(g, p) to refer to the set of directions in [0, 27) for which
the tangent from B9 hits BP strictly before hitting any other barrier
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B" for r # pand r in T. (It doesn’t matter whether p is in T or not.)
In this notation vg(g, p) is an interval (allowing wraparound across 2)
of measure less than n. The set vr(g,p) shrinks as T grows; that is,
v7u(r}(2,p) € vr(g,p) for any r. The set vs(g,p) can be expressed
as (,es v¢r} (¢, p). For convenience, we let v,(g,p) stand for vir} (9, p).
(See Figure 6 for an example of the notation.) The following lemmas
apply this notation to show that the generators of the tangent-visible
sequence VS(q) are a subsequence of the visibility polygon VP(q).

(a) (b)

Figure 6. Tangent-visibility notation. When no other barri-
ers are present, BP is tangent-visible from B? in the shaded
sector shown in (a). The directions of the rays that bound
the sector define the interval vg(q,p). When barriers B" and
B*® are added, the sector of tangent-visibility is reduced to
the shaded region shown in (b). This sector’s boundary rays

define v(, ,}(g,p).

Lemma 4.1. Ifp' is a point of the tangent-visible sequence VS(q), all
of its generators are in the visibility polygon VP(q).

Proof: Let p € g(p’). If p ¢ VP(q), a polygon point r lies
on the segment connecting p and ¢q. The object B" hides every
point of BP from the sweeping tangent, as shown in Figure 7.
Because v,(q,p) = 0, its subset vs(q,p) is also empty, and p’
cannot be in VS(q).

Lemma 4.2. For any set of barrier generators T, vr(q, p) is an interval.

Proof: Since the intersection of intervals of length less than
7 results in an interval, we need only show that v,(g,p) is
an interval for all r. If v.(q,p) is not an interval for some r,
then let a < b < ¢ be directions in the interval vg(g, p) such
that a and ¢ are in v,(q,p) and b is not. (We have assumed

9



Figure 7. B"™ hides B? from B1.

without loss of generality that vg(g,p) does not include 27.)
In Figure 8, the segments u,v,, Upvp, and U U, have directions
a, b, and ¢. Because directions a and ¢ are part of v,.(g, p), the
barrier B" cannot intersect the segments ©,v, and u.7;, even
at their endpoints.

We show that B™ cannot intersect %#;vp, and hence b is in
v,(g,p). Consider all possible placements of B" that intersect
the shaded region of Figure 8. Note that every placement
that abuts the region without overlapping its interior touches
UgUs OT UcUe. Since the shaded region is narrower than the
parallelogram defined by the outer common tangents to BY
and BP, any placement of B” that overlaps the shaded region’s
interior must also intersect uzv, or U.v.. DBecause UpvUp is
contained in the shaded region, B" cannot intersect it. [

Figure 8. Proof that v.(g,p) is an interval. B" cannot inter-
sect @zvp (block tangent-visibility in direction b) without also
intersecting either u,v, or ucve.

Lemma 4.3. If points p, r, and s are in the sequence ¢g(VS(q)) and
appear in clockwise order around g, then the intervals vs(g,p), vs(q,7),

and vs(q,s) are disjoint and also appear in clockwise order.
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Proof: The intervals vs(q,p), vs(g,r), and vs(q, s) are dis-
joint because p, r, and s all belong to S.

The ray from ¢ to p is parallel to the outer common tan-
gents from BY to BP. Let p; (t for tangent) be the direction of
this ray, and let p, (v for visible) be any direction in vg(q, p).
We define r;, r,, 8¢, and s, similarly. These six directions
occur in some clockwise order, though there may be degenera-
cies. If p; = p,, we order p; and p, such that p, immediately
follows p; in clockwise order. If p, = r;, we order p, and r;
such that r; immediately follows p, in clockwise order. (The
first condition applies to r and s as well, and the second ap-
plies to all pairs taken from {p,r,s}.) See Figure 9 for an
example of this notation. We want to show that if p;, r;, and
s¢ occur in clockwise order, so do p,, ry, and s,.

Figure 9. The tangent directions p;, r¢, and s; and the visi-
bility directions p,, r,, and s,. The cyclic permutation asso-
ciated with these directions is (p: r¢ py ry St Sv).

The following simple condition on the clockwise sequence
of directions is stated using p and r, but it applies to all pairs
drawn from {p,r,s}: At most one of r; and r, occurs after
p: and before p,. If (p;r: 7, py) is a subsequence of the cyclic
sequence of angles, then v,(q,p) is not an interval, since it
includes both p; and p,, but not r,, which lies between them.
This contradicts Lemma 4.2. If (p; ry r: py) is a subsequence
of the cyclic sequence of angles, then at least one of vg(p) and
vg(r) is larger than =, also a contradiction.

Of the possible angle sequences, the only ones that satisfy
the condition also have p,, ry, and s, in order. There are 120
cyclic permutations on {p:, pv,rt,Tv, St,Sv }. Of these, 60 have
pt, 71, and s; in clockwise order. Of the 60, only eleven meet
the condition given above; in all of those, p,, r,, and s, appear
in clockwise order. If we class together permutations that are
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equivalent under renaming of p, r, and s, there are really only
five different permutations that satisfy the condition. They
are given in Figure 10. This proves that the tangent-visible
points generated by p, r, and 8 occur in the same clockwise
order as p, r, and s themselves. |l

p, % p, 1 7/\s
{4
\4
( \r / . (IJ >
r
pl v px v p‘ Sv
s\_/s )

v 4 v

Class 1 Class 2 Class 3

-~

Class 4 Class 5

Example Equivalent permutations
Class 1: (pypyrery ses,)
Class 2:  (pepy re 87y 34) (Pesypyrery 3¢) (Perepy Ty 8 3y)
Class 3: (perepysery8y) (PesuPyresety) (Pesuripyrys:)
Class 4: (p,r¢8epyry 8v) (Perosypure 8t) (PeresyPyry 3¢)

Class 5: (p; sy repy 8:7y)

Figure 10. Five essentially different cyclic permutations satisfy
the condition of Lemma 4.3. The figure shows one example
from each class, and the table lists its equivalent permutations,
normalized to start with p;.
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Lemmas 4.1 and 4.3, taken together, have the following conse-
quence:

Theorem 4.1. The sequence g( VS(q)) is a subsequence of VP(q).

5. Construction of the Augmented Path Graph

Since any shortest path from a to w follows edges of the augmented
path graph, our first step in finding a shortest path is to construct that
graph. The graph has two kinds of edges, boundary edges and tangent
edges, which we find separately. (We need to find only the edges, since
the nodes of the graph are given by edge intersections.)

To find the boundary edges, we construct the boundary of the
barriers, that is, the border of the region where the robot’s center may
be placed. We compute this boundary using the divide-and-conquer
method of Kedem et al. [KLPS], which runs in time O(rn log? n); here
7 is a constant that depends on B and which will be defined later.

To find the tangent edges, we construct the two tangent-visible
sequences from each fattened polygon vertex BY. The sequence VS(q)
and its counterclockwise counterpart give all path graph edges tangent
to BY.

The results of the preceding section provide a way to produce the
visibility sequence VS(g) from the visibility polygon VP(q), which we
can find using the algorithms of Asano et al. [AAGHI| and Welzl [W)].
These algorithms compute the visibility polygon in O(n) time per ver-
tex. (The algorithms require that the obstacle segments be disjoint, as
does the boundary construction of Kedem et al. mentioned above.)

To bound the time it takes to construct VS(q), we introduce some
conditions on B. These conditions are not restrictions on the shape
of B, but rather characterizations of it. Each of the five operations
listed below is used in some phase of our shortest path algorithm; to
bound the algorithm’s performance, we need to bound the complexities
of the basic operations. We therefore assume that each of the following
operations can be performed in time 7, for some 7 dependent on B:

To compute VS(q) from VP(q), we must be able to

(1) Find intersection points of two translated copies of
B,

(2) Find the intersection of a line with B, and

(3) Compute the inner and outer common tangents of
two translated copies of B.

To compute the boundary points visible from the source and
destination points a and w, we must be able to

(4) Find the tangents to B through a point.
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To compute the lengths of path graph edges quickly, we need
to

(5) Compute the perimeter distance between two arbi-
trary points on an arc of B.

(Note that preprocessing of B may be used to speed up dis-

tance computations.)

Because of Theorem 4.1, we are able to compute VS(g) using an
algorithm similar in spirit to the Graham scan convex hull algorithm
[Gr]. Roughly speaking, we replace each vertex and segment in VP(q)
by the barrier it generates, then find the tangent-visible points on the
union of these barriers. Each visibility polygon vertex p contributes
BP to the union, and each segment pF contributes a tube |J, = B*,

i scpr
which we represent compactly by BP". (See Figure 11.)

Figure 11. The tube BP" and its internal parallelogram.

It is convenient to replace the tube BP” by the parallelogram de-
fined by the endpoints of the outer common tangents of B? and B".
This choice removes a possible degeneracy from the construction. Each
arc is generated just once, by a vertex, rather than three times— once
by the vertex and twice by the vertex’s incident segments. Computing
the parallelogram requires operation (3) above.

Each barrier generated by an element 1 in the visibility polygon
VP(q), either vertex or segment, has a range of angles in which it is
tangent-visible from BY if no other barriers are present. This range is
ve(g,1) if ¢ is a vertex; for convenience, we use the notation vp(g,1) to
represent the range when 1 is a segment, too.

If Bf intersects BY, the intersection blocks all tangent-visibilities in
the angular range it covers. The range in which the barrier generated
by ¢ blocks all visibilities is called its blocking interval b(s). If B* and
B9 do not intersect, b(¢) is empty. For clockwise-going tangents to BY,
the intersection of B* and BY is clockwise of the tangent-visible part of
B*. The blocking interval b(¢) immediately follows vg(g,1) in clockwise
order.

When more than one barrier is present, each barrier B' is visible
in some subinterval of vp(g,p). An interval in which a barrier B' is

14



tangent-visible may be followed in clockwise order by a blocking inter-
val. If two blocking intervals b(¢) and b(7) overlap, they can be merged
into a single joint blocking interval. (See Figure 12.) We associate
this joint interval with the tangent-visible barrier B* that precedes it
in clockwise order; note that the blocking interval 4(:) contributes to
the joint blocking interval.

Figure 12. The blocking intervals of B?, B" and B*® are merged
into a single joint blocking interval and associated with BP.

Theorem 4.1 has an important algorithmic consequence. Let L =
(f1,...,%k) be a clockwise subsequence of the visibility polygon VP(q).
Each element ¢ in L has associated with it a blocking interval b(z) that
may be a joint interval (larger than the intersection of B* with BY).
Suppose that when the barriers and blocking intervals given by the
elements of L are present, every such barrier is tangent-visible from
B, Let j be a successor of 1y in VP(q); that is, (¢1,...,%k,J) is a
subsequence of VP(g). Theorem 4.1 implies that if B’ is hidden from
B? by barriers and blocking intervals given by elements in L, it is
hidden by the union of B*t, B*, b(i;), and b(¢x). On the other hand,
if B’ hides some of the barriers generated by elements in L, it is visible
itself. Furthermore, B’ and b(s) hide a contiguous initial and final
subsequence of L. That is, if they hide a part of B* for some z in L,
they also hide all the predecessors of z in L or all the successors.

The following algorithm exploits these observations to compute
VS(q). It maintains a double-ended linked list L of visibility polygon
elements. Each element has associated with it an interval of current
visibility v(s) and a blocking interval b(¢). (As the algorithm runs, v(s)
shrinks and b(s) grows.) The list corresponds to the subsequence L
described above. At the top of each for loop, the following invariant
holds: L contains a clockwise subsequence of VP(gq) such that when
only the barriers and blocking intervals given by L are present, every
such barrier is tangent-visible from BY. (At the end of execution, L
contains exactly the elements that generate V.S(g).) During each loop,
a new element of the visibility polygon VP(q) is inserted at the end
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of L. The operations necessary to restore the invariant affect only the
ends of the list.

Set L to be an empty double-ended queue. The functions head(L)
and tail(L) return the elements at the ends of the queue.
for each 1 in VP(q) in clockwise order do
begin
Let b(t) be the interval given by the intersection of B* and BY
while B* and b(:) hide B2*2d(Z) ip the interval v(head(L)) do
begin
Merge b(head(L)) into b(z);
Delete head(L) from L;
end
while B* and b(:) hide B*?il(L) in the interval v(tail(L)) do
begin

Merge b(tail(L)) into b(s);

Delete tail(L) from L;

end

Let U be the set of barriers and blocking intervals Bhead(L)
B**il(L) p(head(L)), b(tail(L)), and b(s);

(The following test uses the primitive operation twice:)

if B* is tangent-visible from BY in the presence of U then
begin

Determine the endpoints of v(s) by comparisons with U;

Adjust the endpoints of v(head(L)) and v(tail(L)) if B* and
b(?) affect them;

Insert ¢+ at the tail of L;

(The barriers generated by ¢, head(L), and tail(L) are all
visible and separate their associated blocking intervals, so
no blocking intervals need to be merged.)

end
else (B* is not tangent-visible)
Merge b(7) into b(tail(L));
end

The algorithm uses just one geometric primitive: Given two ele-
ments of the visibility polygon ¢+ and j and their associated blocking
intervals b(¢) and 5(s), the primitive determines all tangent visibilities
that exist when only the barriers B* and B’ and the blocking intervals
b(s) and b(j) are present. If the barrier B* is not tangent-visible under
these circumstances, we say that b(;) and B? hide B*. The primitive re-
quires a constant number of the tangent- and intersection-finding oper-
ations (1)—(4), and therefore takes O(r) time. (Operation (4) is needed
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because we replaced B* by a parallelogram for each segment ¢ in the
visibility polygon.)

This algorithm runs in O(rn) time. Each execution of the outer
for loop takes O(r) time, exclusive of the time spent in the two inner
while loops. Each time one of those loops is executed, an element of L
is deleted. No more than n elements are ever added to L, so the inner
loops are executed at most n times altogether; each execution takes
O(r) time.

The preceding discussion and algorithm constitute a proof of the
following lemma.

Lemma 5.1. If each of the operations (1), (2), (3), and (4) given above
can be performed in time 7, then the tangent-visible sequence VS(q)
can be produced from the visibility polygon VP(q) in O(rn) time.

When the algorithm terminates, L contains g( VS(g)), the gener-
ators of the barriers clockwise tangent-visible from B?. It is easy to
find the path graph edges clockwise-tangent to B? given the list L. For
each element ¢ € L, if either end of the visible range v(t) is delimited
by a common tangent of B and B, then we add the tangent edge to
the path graph.

We can construct the tangent edges of the path graph, but we still
need to find the edges from a and w that augment the path graph.
However, the ideas used in Section 4 and the preceding lemma apply
to this problem as well.

Lemma 5.2. The edges from a and w that augment the path graph
can be found in O(rn) time.

Proof: Lemmas 4.1 through 4.3 discuss tangent-visibility of
barriers. Similar lemmas are true for visibility of barriers from
a point. For example, if r lies on the segment connecting a
and p, no point of BP is visible from «, which proves a lemma
analogous to Lemma 4.1. Let 1 (g, p) have the same meaning
for visibility from ¢ as vr (g, p) has for tangent-visibility from
BY. Then (g, p) is an interval for any T: as in the proof of
Lemma 4.2, we consider 9.(g,p) for any r and show that B"
cannot intersect gu; in Figure 13 without touching qv, or que.

The analogues of Lemma 4.3 and Theorem 4.1 follow di-
rectly from the modified Lemmas 4.1 and 4.2, and the Graham
scan of Lemma 5.1 is easily modified to handle visibility from
a point, given that B satisfies condition (4) given above. |

This section has described three separate aspects of constructing
the path graph. The method of Kedem et al. finds the boundary of the
barriers in O(n7 log? n) time. The algorithm given above produces the
path graph tangent edges in O(n?7r) time. A variant on the algorithm,
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Figure 13. Proof that 9r(g, p) is an interval; see Figure 8. B"
cannot intersect gu; (block visibility in direction b) without
also intersecting either go, or gv..

sketched in the previous lemma, finds the edges from a and w that
augment the path graph in O(n7) time. The endpoints of these edges,
taken together with the barrier boundaries, give all the boundary edges
of the augmented path graph. The following theorem summarizes these
results:

Theorem 5.1. The augmented path graph G, can be constructed in
O(7n?) time.

6. Pruning the Path Graph

It is possible to find a shortest path by running Dijkstra’s algorithm on
the augmented path graph, G,. However, because the tangent edges
in G, can have {1(n?) endpoints altogether, Dijkstra’s algorithm may
take 1(n2log n) time. To reduce the time to O(n?), we need a graph
with fewer nodes. This section and the following section show how to
produce a graph equivalent to G, that has fewer nodes. This section
deletes unusable tangent edges and their endpoints; the next section
groups nodes together and modifies edges to link the groups.

This section shows how to eliminate some edges of G, that lie on
no shortest path between a and w; we identify these edges using only
local tests. After deleting the edges from G,, we delete any resulting
nodes of degree two and merge their incident edges. The result is a
pruned path graph, Gp.

We have already noted that in the path graph there are both clock-
wise and counterclockwise tangent edges from a barrier arc. There
are inner and outer common tangent edges of both types. Altogether,
the four possible combinations of clockwise/counterclockwise with in-
ner/outer give four classes of path graph edges from each barrier arc.
Within each class all tangents to an arc are cyclically ordered. The
following lemma shows how to identify unusable edges of each class.

Lemma 6.1. Suppose e; and e, in G, are consecutive clockwise outer
tangents going from B9 to barriers BP* and BP* with p; to the right of
the directed line from q to p;. If BP* and BP? intersect, the continuation
of e, intersects BP!, thus defining a bay. (See Figure 14.) Then edge
e2 cannot appear on a shortest path unless o or w lies in the bay.
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Figure 14. Because BP' and BP? intersect, edge e; cannot
appear on a shortest path unless & or w lies in the shaded bay.

Proof: The continuation of e; must intersect BP*; otherwise
it would separate BP* and BP2. If neither a nor w lies in the
bay, any path that enters the bay can be shortened by re-
routing it to avoid the bay. Any path that uses e; has no
forward continuation (wrapping around the corner), because
all such continuations enter the bay. |

Similar conclusions hold for pairs of consecutive edges from the
other three classes: clockwise inner tangents, counterclockwise outer
tangents, and counterclockwise inner tangents.

The preceding lemma gives a way of pruning the augmented path
graph to remove unneeded edges. The following lemma shows that the
pruning can be performed in O(rn?) time overall.

Lemma 6.2. All prunable edges from arcs generated by a polygon
vertex ¢ can be found and discarded in O(rn) time.

Proof: Each pruning test takes only O(r) time. Suppose
that e; and e, are consecutive edges of the same class tangent
to BPt and BP2?. If BP* and BP? intersect, we can find the
points a, b, and ¢ shown in Figure 15 using O(r) time. Since
a and w lie outside the barriers, a or w lies in the shaded bay
if and only if it lies in the triangle Aabc, which can be checked
in constant time. If neither a nor w lies in Aabe, then edge e,
may be removed.

To check whether an edge needs pruning, we need only
test it against edges of the same class whose endpoints precede
or follow it on the same arc. When an edge is pruned, two
edges that were not neighbors become neighbors and must be
tested. However, because there are O(n) path graph edges
of each class from arcs generated by g, only O(n) tests are
needed for each polygon vertex q. |
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Figure 15. Point «a or w is in the bay if and only if it is in
Aabe. If neither a nor w lies in Aabec, then e; can be pruned.

If two successive edges of the same class go to overlapping trans-
lated copies of B and neither o nor w lies in the bay reached by the
inner edge (ez in Figure 15), the inner edge is pruned. In cases like
the one shown in Figure 16, many unnecessary edges can be pruned.
After pruning, at most two pairs of successive edges go to overlapping
barriers. (Each unpruned inner edge defines a bay containing a or w.)
The following lemma, which is used in the next section, shows that if
barriers reached by successive edges of the same class do not overlap,
neither do barriers reached by non-successive edges.

Figure 16. In this example, pruning removes many useless
edges. Of the edges shown, only the leftmost can appear on
a shortest path, since neither a nor w lies in any of the bays
formed by the other edges.
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Lemma 6.3. Let E be a subset of the edges in Gp that connect BY to
arcs of other barriers, chosen so that all edges in E have the same class.
Let U be the set of polygon vertices that generate the arcs reached by
edges of E. The angles of the edges in E give a cyclic ordering on the
elements of U. If BP N B*® is empty for all consecutive generators p and
s, then BP N B® is empty for all distinct p and s in U.

Proof: Suppose to the contrary that B? N B* is non-empty
for some p and s in U. Choose p and s such that p precedes s
and the size of the subset of U between p and s is minimized.
By hypothesis this subset contains some element r. Since the
common tangent from B? to B" reaches a visible point, the
point of tangency is in the shaded region (see Figure 17). This
implies that B" extends beyond (in Figure 17, to the right
of) any line passing through the intersection of BP and B*
and tangent to BY. To get out of the shaded region without
overlapping BP or B®, B" must cross the tangent from BY
to B?, and hence that edge cannot be in the path graph, a
contradiction. |

Figure 17. Neighbor non-intersection implies global non-intersection.
The tangents from B? to BP, B", and B’ occur in clockwise
order. If BP and B* intersect, but B" intersects neither of
them, then B" blocks the tangent to B*.
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7. Node Coalescing in the Pruned Path Graph

We have shown that any shortest path from a to w follows edges of
the pruned path graph, G,. Because G, may still have {2(n2?) nodes,
Dijkstra’s algorithm may require f1(n?logn) time when applied to it.
In this section, we show how to modify the graph so that Dijkstra’s
algorithm takes only O(n?) time when applied to the result. Because
nodes of G, are coalesced during the modification, we call the resulting
graph the coalesced graph G..

The modifications of this section group consecutive nodes on the
boundaries of barriers. To describe the modifications better, we first
characterize barrier boundaries. Every boundary between a maximal
connected barrier region and the barrier-free region is a ring of path
graph nodes and edges. (A barrier may have several such rings if it
has holes.) Any subpath of a shortest path that uses edges from one
of these rings follows them in a consistent direction, either clockwise
or counterclockwise. A ring is entered and left via tangents to it, and
these connections are consistent with the orientation of the ring. See
Figure 18. Any path in G, that traverses rings in a single direction and
connects to them consistently is called forward-going.

7,

Figure 18. A forward-going subpath.

An edge of the pruned path graph can be traversed in either direc-
tion, since the path graph is undirected. As the first step in forming the
coalesced graph, we transform G, into a directed graph, replacing each
undirected barrier boundary ring by two oppositely directed copies of
itself. Each tangent edge is replaced by two oppositely directed copies
of itself, and each copy is connected to the ring consistent with its di-
rection. The procedure of duplication and connection is depicted in
Figure 19. Path graph edges from o and w are replaced by directed
edges (outgoing from a, incoming to w) whose other endpoints are con-
nected to the appropriate directed rings. In this directed graph, which
we call G4, only forward motion is possible. Every shortest path from
a to w is present in Gg4.

To help define the nodes of the coalesced graph, we introduce dis-
tinguished nodes, which form a subset of the nodes of G4. (We show
how to select this subset later.) The distinguished nodes have three
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Figure 19. Construction of G4. Each path graph edge is re-
placed by two oppositely directed edges; the edges are linked
up to allow only forward-going paths.

properties that we use presently. First, all arc endpoints are distin-
guished nodes. Second, the tangents to consecutive distinguished nodes
on a single arc differ in direction by at most w/2. Third, every tangent
edge that ends between two consecutive distinguished nodes on a single
arc is at least as long as the interval between the distinguished nodes,
measured along the barrier boundary.

The distinguished nodes break the barrier boundary rings into in-
tervals. (Note that each point on the boundary of a barrier belongs to
two intervals: one for each direction of traversal.) Somewhat unconven-
tionally, we view the distinguished nodes as single-point closed intervals
distinct from the open intervals they separate. The set of all such inter-
vals (both open and closed) forms the node set of the coalesced graph
G..

The edges of the coalesced graph connect the intervals defined by
the distinguished nodes. An edge linking two intervals is assigned a
weight (roughly equivalent to length) as if it went from the forward
point of one interval (as defined by the ring orientation) to the forward
point of the other.

We first assign weights to tangent edges. Each tangent edge of
Gq links intervals (either open or closed) delimited by distinguished
nodes. In Figure 20, the edge from a to b links the intervals (a’,a’’)
and (¥',b"). We assign the corresponding edge in G, the weight |ab| —
la”a] + |bb"”|, where distances |a”a| and |bb"| are measured along the
barrier boundary. This is the distance registered on the odometer of a
hypothetical car that backs up from a” to a along the arc, goes forward
along ab, and then advances from b to b" along that arc. (The fifth
condition on B means that the length computation takes O(r) time.)
Since there is at most one edge of G4 from one arc to any other, there
is at most one tangent edge connecting any pair of intervals. Because
la’a’| and |b'b"| are no greater than |ab|, the edge linking the intervals
of @ and b in the coalesced graph has non-negative weight.

We now assign weights to boundary edges. The distinguished nodes
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Figure 20. The edge of G corresponding to the directed edge
from a to b is assigned weight |ab| — |a"a| + |bb"|.

break each barrier boundary into a ring of intervals. These rings are a
coarsening of the rings of boundary edges in G4. From a single-point
interval {a’,a’] to its open successor (a’,a”’) we create an edge with
weight |a’a”’|. An edge of weight O goes from the open interval (a’,a")
to its closed successor [a”,a’”]. Note that each edge joining adjacent
intervals has weight equal to the distance between the forward points
of the intervals.

If we are to use the coalesced graph to find shortest paths, we
must show that shortest paths in G, correspond to shortest paths in
the augmented path graph.

Lemma 7.1. Any minimum weight path from a to w through the
coalesced graph G. corresponds to a shortest path in the augmented
path graph of the same length.

Proof: The proof has two parts. We first show that every
path in G4 maps to a path in the coalesced graph G, with the
same length. Next we show that every path in G, that does
not correspond to a forward-going path has weight greater
than the length of the shortest forward-going path.

A shortest path through G is also a shortest path in the
augmented path graph, since a shortest path is a forward-going
path. When the nodes of G4 are coalesced into the intervals
of G, the lengths of forward-going paths are preserved. The
coalesced edge weights are calculated so that when a path
travels forward along a barrier boundary, the perimeter length
is accounted correctly. For example, in Figure 21, the forward-
going path from s to f has length |sa| + |ab| + |bf|. In G the
path has two edges, one from s to the interval (a’,a”) and one
from the interval to f. These edges have weights |sa| + |aa”/|
and |bf| — |a’’b|, which sum to the correct value.

Grouping edge endpoints into intervals allows some paths
in G, that are not derived from forward-going paths. These
are subpaths that enter an interval, back up, and then leave,
as in Figure 22. The edge weights of such a subpath in G add
up to less than the Euclidean length of the path. However, we
show that the total weight of a path in G, from a to w that
includes such a subpath is still greater than the length of the
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Figure 21. Forward-going paths are charged accurately in the
coalesced graph. The path from s to f has weight (|sa| +
laa”|) + (|bf| — |a’'b]), which is equal to |sa| + |ab| + |6f], the
Euclidean length of the path.

Figure 22. Loops are undercharged, but not too much. The
path s - a — b — f has weight |sa| + |bf| — |ab|, which
is less than its length, but more than the length of the path
8 — £ — f. This latter path is longer than the shortest path
from s to f, so the loop cannot be mistaken for a shortest
path.

shortest path in Gg.

The subpath in Figure 22 has weight (|sa|+|aa”|)+(|bf|—
|a”b|) = |sa| + |bf| — |ab|, which is less than |sa| + |ab| + |bf],
the actual length of the subpath. However, because |sa| and
|bf| are both greater than |a’a”| and the difference between the
tangent directions at b and a is at most 7/2 (£szf > 7/2), the
edges 3a and bf intersect at z. Since |ab| is measured along
a convex barrier boundary, |az| + |zb| > |abl. Though the
weight of the subpath is less than its actual length, it is still
more than |sz| 4 |zf|, the length of the subpath that follows
3Z to z and then follows zf. Because of the open corner at z,
this second subpath cannot be part of any shortest path.

The preceding analysis assumes that the loop z — a —
b — z is isolated from any other such loop. We now show that
the assumption is valid. If an edge ba connects two loops as
in Figure 23(a), the two loops are independent: the subpath
containing them has weight at least |sc| + |cd| + |df] in G,
the length of an easily identified subpath. If intersections ¢
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and d appeared in opposite order, the two loops would not
be independent: the lower bound would be |s¢| + |df| — |ed],
which corresponds to no recognizable subpath. However, be-
cause /sca and Zfdb are at least w/2, the interlocking loops
of Figure 23(b) are impossible.

(a) (b)

Figure 23. Two loops connected by a single edge; (a) possible
and (b) impossible configurations. Because angles /sca and
Lfdb are at least 7/2, the points a, d, ¢, and b occur in that
order along ab.

Any path from a to w in G, that includes instances of
doubling back, as in Figure 22, has weight greater than the
length of the shortest path in G4. Consider replacing each
instance of doubling back by the shortcut corresponding to the
subpath in Figure 22 that follows 3Z to z and then follows zf.
The length of the resulting barrier-avoiding path is less than
the weight of the path through G. from which it is derived.
The resulting path is not a shortest path from a to w, since
short-cutting the corner corresponding to Zszf gives a shorter
path. This means that no path through G, that is not forward-
going can be mistaken for a shortest path. ||

The proof of the preceding lemma uses the three properties of

distinguished nodes mentioned earlier. We now show how to select the
distinguished nodes so that these properties hold. (The properties, once
again, are the following: all arc endpoints are distinguished nodes, the
tangent directions at consecutive distinguished nodes differ by at most
7 /2, and every tangent edge is at least as long as the intervals containing
its endpoints.) There are a number of ways of selecting distinguished
nodes; the one that we adopt here is perhaps the simplest nontrivial

method.
Our approach characterizes the robot with two parameters. We

take [ to be the diameter of B, that is, the maximum distance between
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two points of B. This is also equal to the maximum separation of two
parallel supporting lines of B. The minimum separation w of two such
lines is called the width of B.

The first distinguished nodes we choose are those path graph nodes
that are intersections of arcs or boundary segments with each other,
including the junctions between arcs and segments at their endpoints.
Kedem et al. [KLPS] show that there are only O(n) such intersections.
We add distinguished nodes to each arc so that no interval on an arc
is longer than I. We then add distinguished nodes to guarantee that
tangent directions at successive distinguished nodes differ by at most
n/2. (Note that these two conditions on intervals need only be met if
the interval contains an endpoint of a tangent edge. If an interval is
too long or turns by more than 7 /2, but has no tangent endpoints in it,
there is no need to break it in two with a distinguished node. Therefore
all distinguished nodes can be taken to be path graph nodes.) So far,
we have chosen O(n) distinguished nodes. Now we add to the set of
distinguished nodes the endpoints of all tangent edges shorter than
[. This guarantees the non-negativity of all edge weights in G.. The
following lemma bounds the number of distinguished nodes added in
the final step.

Lemma 7.2. Let w be the width and | the diameter of B. The pruned
path graph G, has O(nl/w) edges shorter than .

Proof:

The proof concentrates on the barriers connected to BY
by tangent edges. It uses Lemma 6.3 to divide the barriers
into four sets, each of them free of overlaps. For each set,
the subset connected to BY by edges shorter than [ lies in a
relatively small region close to BY. Area arguments show that
there are only O(l/w) barriers in each such subset.

As in Lemma 6.3, let the set U contain the generators of
the arcs reached from BY by tangent edges of a single class in
the pruned graph G,. The elements of U are cyclically ordered
by the angles of the edges. At most two pairs of consecutive
vertices in U generate overlapping barriers. If we remove from
U any vertex (there are at most two) whose corresponding
edge leads to a bay containing « or w, Lemma 6.3 implies that
the barriers generated by the remaining vertices are pairwise
disjoint.

Let R be the region consisting of all points closer than 2/
to BY. The area of R is O(1?). Every vertex in U correspond-
ing to a tangent edge shorter than ! generates a barrier that
is entirely contained in R. (See Figure 24.) These barriers
are non-overlapping, and each has area (lw); hence there are
at most O(l/w) of them. This argument applies to all four
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tangent edge classes, and so for each polygon vertex ¢, there
are O(l/w) edges in Gp tangent to B? and shorter than .
Summing over all vertices proves the lemma. ||

Figure 24. The barriers reached from B? by tangent edges of
a single class in the pruned path graph are non-overlapping
(with at most two exceptions). Those connected to B? by
edges shorter than [ lie completely inside the region closer than
2l to B? (the shaded region). This region has area O(/2), and
each barrier has area (}(/w), so the number of short edges is

ol /w).

Our algorithm finds shortest paths by producing a graph on which
Dijkstra’s single-source shortest path algorithm will run quickly, then
invoking that algorithm. Sections 5 through 7 show how to construct
the coalesced graph G, in O(rn?) time. Dijkstra’s algorithm takes
O(n? + min(n,l/w)nlogn) to find the shortest path in G., which cor-
responds directly to the shortest path in the original setting. (The
min function is present because there are at most O(n?) tangent edges
shorter than ! in the path graph.) Overall, our algorithm uses time
O(rn? + min(n,!/w)nlogn) and space O(n?). If l/w is O(n/logn),
then the algorithm takes O(rn?) time. If B is independent of n, as
in the important special case when B is a disk, the algorithm finds
shortest paths in O(n?) time. This concludes the proof of the following
theorem:

Theorem 7.1. Given a non-rotating convex body A, a set S of simple
polygons with a total of n vertices, and two points a and w, it is possible
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to find a shortest polygon-avoiding path for A from a to w in O(n?)
time, where the implied constant depends on the complexity of A.

8. Conclusions and Open Questions

In this paper we have presented an algorithm to find shortest paths
for a non-rotating convex body moving among polygonal obstacles. We
first reduced the problem to the equivalent problem of moving a point
among “fattened” obstacles [LPW]|, [GRS]. We then introduced the con-
cept of tangent-visibility to describe the sequence of barrier boundary
points swept by a tangent ray continuously rotating around a place-
ment of B, the inverted robot. This concept allowed us to compute
efficiently the path graph of the barriers, which contains the edges of
all shortest paths. Unfortunately the path graph may contain 1(n?)
nodes, so that Dijkstra’s shortest path algorithm runs in superlinear
time when applied to it. By pruning certain path graph edges and then
coalescing the remaining nodes into distinguished nodes, we were able
to reduce the total number of nodes to O(n) and thus get a shortest
path algorithm that runs in O(n?) time.

Perhaps the least satisfying feature of this algorithm is its depen-
dence on the aspect ratio //w of the object to be moved. According to
our bounds, the algorithm could require 2(n2 log n) time to find short-
est paths for an ellipse whose aspect ratio is a linear function of n. This
is disturbing, since in the limit such an ellipse becomes a segment, for
which shortest paths are easy to find.

Our algorithm uses O(nl/w) distinguished nodes in the construc-
tion of G.. However, this upper bound on the number of necessary
distinguished nodes is very crude. If we omit inner common tangents
from the path graph, we can show that only O(n log(l//w)) distinguished
nodes are needed to construct G.. We have not yet been able to extend
this bound to allow inner common tangents, though we believe such an
extension is possible.

Both upper bounds mentioned are local bounds: we prove that no
fattened polygon vertex needs to have more than O(!/w) or O(log(!/w))
distinguished vertices on its boundary. Such bounds fail to consider the
interactions of multiple barriers. It seems quite possible that a global
argument could bound the number of necessary distinguished nodes by
O(n?/logn) or something even smaller.

The gap between upper and lower bounds is large; we can construct
an example using only outer common tangents in which Q(+/log(l/w))
distinguished nodes are needed on a particular fattened vertex, but we
have no super-linear global lower bounds. Improvements to either our
lower or upper bounds would be welcome.

The algorithm we have presented does not process S before a and
w are given. However, it might be possible to construct approximations
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to the whole progression of graphs from G to G, before a and w are
given, then modify them in O(rn) time once the source and destination
are known. The most difficult preprocessing task would be pruning
edges and simultaneously building a structure to identify the pruned
edges that must be added back once a and w are known. This is an
interesting problem, but it is probably not worth working out the details
so long as the final step of the algorithm has to run Dijkstra’s algorithm,
which may take 02(n?) time.

An alternative approach to shortest paths in the presence of poly-
gons is taken by Reif and Storer [RS|. They avoid the Dijkstra step in
their O(n(k +logn)) shortest path algorithm for a point moving among
polygons (k is the number of obstacle polygons). Their method factors
the shortest path problem into two parts. First they use O(n(k+logn))
time to compute a triangulation based on the source point a. Then the
length of the shortest path to any point w can be found in O(logn)
time using an optimal point location method. The path itself can be
found in additional time proportional to the number of turns along it.
The Reif and Storer algorithm can be extended to plan the motion of
a disk in the same time bound.
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