12

Fractional Cascading

Bernard Chazelle and Leo.nidas dJ. Guibas

dJune 23, 1986

clilgliltiall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

DEC’s business and technology objectives require a strong research program. The Systems Research
Center and two other corporate research laboratories are committed to filling that need.

SRC opened its doors in 1984. We are still making plans and building foundations for our long-term
mission, which is to design, build, and use new digital systems five to ten years before they become
commonplace. We aim to advance both the state of knowledge and the state of the art.

SRC will create and use real systems in order to investigate their properties. Interesting systems are too
complex to be evaluated purely in the abstract. Our strategy is to build prototypes, use them as daily
tools, and feed the experience back into the design of better tools and the development of more
relevant theories. Most of the major advances in information systems have come through this strategy,
including time-sharing, the ArpaNet, and distributed personal computing.

During the next several years SRC will explore applications of high-performance personal computing,
distributed computing, communications, databases, programming environments, system-building tools,
design automation, specification technology, and tightly coupled multiprocessors.

SRC will also do work of a more formal and mathematical flavor; some of us will be constructing
theories, developing algorithms, and proving theorems as well as designing systems and writing
programs. Some of our work will be in established fields of theoretical computer science, such as the
analysis of algorithms. computational geometry, and logics of programming. We also expect to explore
new ground motivated by problems that arise in our systems research.

DEC is committed to open research. The improved understanding that comes with widespread
exposure is more valuable than any transient competitive advantage. SRC will freely report results in
conferences and professional journals. We will actively seek users for our prototype systems among
those with whom we have common research interests. We will encourage visits by university researchers
and conduct collaborative research.

Robert W. Taylor, Director

Fractional Cascading

Bernard Chazelle and Leonidas J. Guibas
June 23, 1986

\ M\{'
\,,‘\\ i

AN
o

‘ 1
5 1

£
S ¢ \\V f BPTIN g/; e
r) 5 1 »" |
ﬁ’ [\ik/\(\‘:/;/_84\[m»‘% (L

Publication history

An earlier version of this report appeared in the Proceedings of 12th ICALP Colloquium, 1985, 90-100,
and was published as Lecture Notes in Computer Science, 194, by Springer-Verlag, 1985. This material
will also appear in Algorithmica.

Acknowledgements

Bernard Chazelle is currently on leave of absence from Brown University at Ecole Normale Supérieure.
He was supported in part by NSF grants MCS 83-03925 and the Office of Naval Research and the
Defense Advanced Research Projects Agency under contract N00014-83-K-0146 and ARPA Order No.
4786. Part of this work was done while the second author was employed by the Xerox Palo Alto
Research Center. Contact author’s address: Leonidas J. Guibas, DEC Systems Research Center, 130
Lytton Ave., Palo Alto, Ca. 94301.

Copyright and reprint permissions

This work may not be copied or reproduced in whole or in part for any commercial purpose. Per-
mission to copy in whole or in part without payment of fee is granted for non-profit educational and
research purposes provided that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital Equipment Corporation in
Palo Alto, California; an acknowledgement of the authors and individual contributors to the work;
and all applicable portions of the copyright notice. Copying, reproducing or republishing for any other
purpose shall require a license with payment of fee to the Systems Research Center.

Authors’ abstract

In computational geometry many search problems and range queries can be solved by performing an
iterative search for the same key in separate ordered lists. In Part I of this report we show that, if
these ordered lists can be put in a one-to-one correspondence with the nodes of a graph of degree d
so that the iterative search always proceeds along edges of that graph, then we can do much better
than the obvious sequence of binary searches. Without expanding the storage by more than a constant
factor, we can build a data-structure, called a fractional cascading structure, in which all original
searches after the first can be carried out at only logd extra cost per search. Several results related
to the dynamization of this structure are also presented. Part II gives numerous applications of this
technique to geometric problems. Examples include intersecting a polygonal path with a line, slanted
range search, orthogonal range search, computing locus functions, and others. Some results on the
optimality of fractional cascading, and certain extensions of the technique for retrieving additional
information are also included.

Keywords: binary search, B-tree, iterative search, multiple look-up, range query, dynamisation of data
structures, fractional cascading.

Bernard Chagelle and Leonidas J. Guibas

Capsule review

Suppose we have to search the same key in several sorted lists, each of sise n. The obvious approach —
perform a binary search in each list — requires O(log n) operations for each list. Fractional cascading
is a method of cross-linking those lists in such a way that the O(log n) cost of binary search has to be
paid only once: to locate the key in one of the lists. The cross-links then allow the key to be located
in each additional list with only a constant number of operations.

The first part of the paper describes algorithms for the construction, use, and updating of the fractional
cascading structure. The total number of cross-links (and the time required to build them) is proved
to be linear in the total size of the lists. The second part shows how fractional cascading can be used
to reduce the theoretical complexity of several geometric search problems.

The bias towards geometrically flavored examples here reflects the authors’ background and interests,
and not any intrinsic limitation of the technique. Fractional cascading is a purely combinatorial data
structuring method, and it will certainly be of great value in many other areas.

Jorge Stolfi

Contents

W 0 3 O O b W N =

=
[=

PART I
Introduction .
The Fractional Ca.scadmg Techmque

2.1 Preliminaries: Setting the Stage, Summa.ry of the
Main Result co

2.2 The Fractional Cascading Data Structure
2.2.1 Bridges and Gaps .
2.2.2 A Close-Up of the Data Structure
2.2.3 Answering a Multiple Look-Up Query
The Construction of the Fractional Cascading Structures
3.1 Adding a New Record
3.2 Proof of Correctness .
The Complexity of Fractional Ca.scadmg
4.1 Time Requirement
4.2 Space Requirement .
An Improved Implementation of R'actxona.l Casca.dmg
The Notion of Gateways
Dynamic Fractional Cascading
7.1 Insertions or Deletions Only
7.2 A General Scheme for Efficient Deletlona
General Remarks
Appendix A. How gaps can get bxg

PART II
Introduction
Explicit Iterative Sea.rch

Intersecting a Polygonal Path with a Line

Slanted Range Search

Orthogonal Range Search

Orthogonal Range Search in the Past
Computing Locus-Functions

A Space-Compression Scheme ..
Iterative Search Extensions of Query Problems
Other Applications

Concluding Remarks

References

Index

[S

© O 3 O N

11
13
13
14
15
17
19
20
21
24
24

29
30
32
36
40
43
44
45
47
49
51
53
57

Fractional Cascading: I
A Data Structuring Technique

FRACTIONAL CASCADING: PART I 1

1. Introduction

This paper introduces a new data structuring technique for improving existing solutions

to retrieval problems. For illustrative purposes, let us consider the following three classical
problems in computational geometry:

(a) Given a collection of intervals on the line, how many of them intersect an arbitrary query
interval?

(b) Given a polygon P, which sides of P intersect an arbitrary query line?
(c) Given a collection of rectangles, which of them contain an arbitrary query point?

What do these problems have in common? Except that they each fall into the broader class
of geometric retrieval problems, little seems to relate them together in one way or the other.
Yet, we can speed up the best algorithms known for solving these problems using a single
common technique, which we call fractional cascading. This novel technique is general enough
to speed up the solutions not only of these three problems but of a host of others; we will
give numerous examples in part II of this paper.

In a nutshell, fractional cascading is an efficient strategy for dealing with the following prob-
lem, termed sterative search: let G be a graph whose vertices are in one-to-one correspondence
with a set of sorted lists; given a query consisting of a key ¢ and a subgraph x of G, search
for g in each of the lists associated with the vertices of x. This problem has a trivial solution
involving repeated binary searches. Fractional cascading establishes that it is possible to do
much better: under some weak assumptions, we show that with only linear space it is possible
to organize the set of lists so that all the searches can be accomplished in optimal time, at
roughly constant cost per search.

As the second part of this paper amply demonstrates, iterative search is a fundamental
component of many query-answering algorithms. Let us take Problem (c), for instance: given
a collection of rectangles, which of them contain an arbitrary query point? The data structure
for this problem with the most efficient asymptotic performance {Chl] is a complete binary
tree whose nodes point to auxiliary lists. Answering a query involves tracing a path in the
tree, while searching for a given value (one of the coordinates of the query point) in each
auxiliary list associated with the nodes visited on the path. Here, as well as in many other
algorithms for retrieval problems, iterative search is the main computational bottleneck. For
this reason, it is desirable to treat the problem in an abstract setting, so the results obtained
can be directly applied to as many problems as possible.

Following this approach, we present an optimal solution to iterative search, which we then
apply to a number of retrieval problems. By doing so, we are able to improve upon a host of
previous complexity results. It is worth noting, and this will become even more apparent when
we go into applications of fractional cascading, that this technique can be usefully thought of
as a postprocessing step that can be applied to speed up already existing solutions of various
problems.

Part I of this paper describes and analyzes fractional cascading in a general setting. We
present and discuss the construction of the data structure, its use for query-answering, and
the issues involved in making our solution dynamic. In part II we present a number of specific
applications of the technique, and examine the complexity of iterative search in the light of
fractional cascading. The two parts can be read almost independently of each other. Only
Section 2.1 of this part, which introduces the basic concepts and presents the main resulits,
is necessary for reading the second part.

FRACTIONAL CASCADING: PART I 2

2. The Fractional Cascading Technique

In this section we present a static description of what the fractional cascading structure is
and how it can be used to solve the iterated search problem.

2.1. Preliminaries: Setting the Stage; Summary of the Main Result

We consider a fixed graph G = (V, E) of |V| = n vertices and |E| = m edges. The graph
G is undirected and connected, and contains no loops or multiple edges. In addition to this
classical graph structure, we have associated with each vertex v of G a catalog C,, and
associated with each edge e a range R,.

A catalog is an ordered collection of records, where each record has an associated value in
the set RU {—o0,+00}. The records are stored in the catalog in non-decreasing order of their
value; note that different records may contain the same value. A catalog is never empty: it
always contains one record with value —co and one record with value +co. These special
records play the role of sentinels so as to simplify the algorithms.! A range is simply an
interval of the form [z,y], [—o0,y], [z, +00], or [—00,+00]. In all cases, it is specified by
two endpoints chosen from the linear order. We will refer to our graph G, together with the
associated catalogs and ranges, as a catalog graph. This is the combinatorial structure to
which fractional cascading can be applied.

For notational convenience we make the following assumption: if value K is an endpoint of the
range R(, ,) associated with edge (u,v), then K appears as the value of some record in both
catalogs C, and C,. In fact, if two ranges R(,,) and R(,) have an endpoint in common,
its value will appear twice in the catalog C, of their shared vertex v. This requirement does
not in any way restrict the generality of our discussion and, since G is connected, it provides
a notational advantage. Indeed the space required to store a catalog graph is proportional
to the total size of its catalogs. If 8 = }_ .y |Cyl, then the O(m + n) storage required to
represent the graph structure itself, plus the storage for all the sorted multisets which are
the catalogs, plus that for the intervals which are the ranges, adds in total to O(s).

Next, we give three definitions to introduce some basic concepts. We start with a notion
related to the degree of the vertices because, as we will see, the performance of our data
structure will be very sensitive to high degrees, and more accurately, to high local degrees.

Definition 1. A catalog graph is said to have locally bounded degree d if for each vertex
v and each value z € R the number of edges incident on v whose range includes z is
bounded by d.

Note that if G has bounded degree it also has locally bounded degree, but the converse is not
true in general. From now on, unless specified otherwise, we will assume that G has locally
bounded degree d. The next definition formalizes the intuitive notion of enumerating the
vertices of a subgraph in a “connected” way. The one after that makes precise the type of
query underlying the notion of iterative search.

Definition 2. A generalized path = in G is a sequence of vertices vy,vs,...,vp and corre-
sponding edges e3,.. ., ¢, such that for each vertex v;, { > 1, the edge e; connects v; to
a vertex v, of the path, with 5 <.

1 our assumption that the values are real numbers is only for notational convenience; any linearly ordered
set will do.

FRACTIONAL CASCADING: PART I 3

Since our graph G is connected, it is obvious that there exist permutations of V' that are

generalized paths of G. In general, any connected subgraph of G gives rise to a generalized
path.

Definition 3. A multiple look-up query is a pair (z,x), where z is a key value in R and x is
a generalized path of G. The value z must fall within the range of every edge of x. The
path 7 may be specified on-line, in other words, one edge at a time.

For a catalog C we will denote by o(z,C) the first record in C whose value is greater than
or equal to z; we will call the value of this record the successor of z in C. Computing this
value is equivalent to locating z in the sorted multiset of values represented by C. The main
subject of this work, the sterative search problem, can now be formally stated as follows:

Given a multiple look-up query (z,), look up z successively in the catalogs C, associated
with each vertex v of 7, and in each case report o(z,C,). If x is given on-line, then the
reporting is to be done on-line as well.

The problem which we are confronting is to preprocess a catalog graph G, along with its
associated catalogs and ranges, so as to answer any multiple look-up query efficiently. If we do
no preprocessing whatsoever, the catalog graph takes up O(s) space, as previously observed.
In order to answer a particular query, we look up z in each catalog along x. If this is done
by using binary search in each catalog, the total reporting cost will be O(>, log(ICu:])),
where the sum is over all vertices of .

The strategy adopted by fractional cascading is to do only one binary search at the beginning,
and then, as each vertex v of x is specified, locate z in C, with an additional effort that only
depends on d (the locally bounded degree). If for simplicity we assume that each catalog has
the same size ¢, and that d is a constant, then fractional cascading reduces the query time
from O(plogc) in the naive method to O(p + logc). Of course if the catalogs to be queried
are unrelated, then knowing the position of z in one catalog might not help to locate it in its

neighboring catalogs. So fractional cascading has to build auxiliary structures that correlate
these catalogs.

One way to attain query time additive in log ¢ and p is to merge all the catalogs into a master
catalog M, and then for each catalog C to keep a correspondence dictionary between positions
in C and positions in M. If we do this, we can look up z in M once and for all when a query is
specified, and subsequently, for each vertex of , simply follow the appropriate correspondence
dictionary to locate r in the catalog of that vertex in constant time. Unfortunately the
correspondence dictionaries altogether take up space ((n)_,cy |Cul|), Which is not O(s).
For example, in the special case considered above, the storage required grows from optimal
6(nc) with the naive method, to 8(n?c) when the master catalog is used. An important
accomplishment of fractional cascading is that it attains the query time claimed while still
keeping the overall storage linear.

A side remark is appropriate here: the reason the edges of G have been assigned ranges is
to make fractional cascading more general and unifying. If G has bounded degree, however,
the notion of ranges becomes irrelevant and the requirement “z must fall within the range
of every edge of " (Definition 3) can be dropped altogether, as each range can be taken
to be [—o0o,+00]. The range enhancement is not gratuitous; it will come in very handy in
some of the applications treated later on. Now, before embarking on a fairly long technical
development, let us summarize our main result concerning fractional cascading, as will be
proven in Sections 3 through 5.

FRACTIONAL CASCADING: PART I 4

Theorem S. Let G be a catalog graph of size s and locally bounded degree d. In O(s)
space and time, it 18 possible to construct a data structure for solving the iterative search
problem. The structure allows multiple look-ups along a generalized path of length p to be
ezecuted in time O(plogd + logs). If d is a constant, this is optimal.

So far we have dealt only with static catalogs. In many applications, however, allowing
insertions and deletions of records into or from these catalogs is necessary. Thus Section 7
investigates how fractional cascading can be made dynamic. The results we have obtained
there are less conclusive:

Theorem D. The fractional cascading data structure can be made dynamic with the follow-
ing bounds: If only insertions and look-ups are performed, the amortized time for each
insertion can be O(log s), while the look-up cost remains the same as before. Here we are
amortizing over a sequence of O(8) insertions. The same bounds hold for deletions and
look-ups only. If intermized insertions and deletions are desired, then each of them can
still be done in O(logs) amortized time, but the time required for a query increases to
O(plogdloglogs + log s).

For a discussion of amortized computational complexity the reader is referred to a paper by
Tarjan [Ta).

2.2. The Fractional Cascading Data Structure

There are two key goals that the fractional cascading structure must accomplish: (1) somehow
correlate each pair of neighboring catalogs in the catalog graph so a look-up in one of them
aids the look-up in the other, and (2) keep the overall storage linear. The former goal sug-
gests augmenting each catalog by introducing additional records borrowed from neighboring
catalogs.

2.2.1. Bridges and Gaps

Each original catalog C, will be enlarged with additional records to produce an augmented
catalog A,, which too will be a linear list of records whose values form a sorted multiset.
Exactly how this is to be done is explained in Section 3. Here we will be content simply
to describe the desired state of affairs after this augmentation has occurred. A related idea
has been described in [VW]. Augmented catalogs for neighboring nodes in G will contain a
number of records with common values. The corresponding pairs of records will be linked
together to correlate locations in the two catalogs. More formally, for each node u and edge
e connecting u with v in G we will maintain a list of bridges from u to v, Dy,, which will
be an ordered subset of the records in A, having values common to both A, and A, and
lying in the range R,.; in particular, the endpoints of R, are the first and last records in
D,,. We will have a symmetric situation with node v, where we maintain, for each bridge in
D,., a companion bridge in D,,,,. We call D,,, the correspondence dictionary from A, to A,.
Remember that, in order to allow for the occasional presence of duplicates, we distinguish
between a record of a catalog and its value. For example, D,, and D,, have no record in
common, although they have the same set of values. A bridge is most usefully considered
as a variant record in an augmented catalog pointing to a record with the same value in a
neighboring augmented catalog. Bridges respect the ordering of equal-valued records, so they
never “cross”.

In order to disambiguate communication between catalogs of adjacent vertices, we add the
requirement that each bridge should be associated with a unigue edge of G. This means that

FRACTIONAL CASCADING: PART I 5

degree d = 2, 6d-1 = 11

I gap size = 10
o)
gap size=9

o Q I
o) (@]
o9

gap size = 6 I bridge l

Q

/

Figure 1. Bridges and gaps

if a given value in A, is to be used to form a bridge in both D, and D,, then it must be
duplicated and stored in two separate records of A,.

A pair of consecutive bridges associated with the same edge € = (u,v) defines a gap. Let a,
and b, be two consecutive bridges in D,, and let a, (resp. b,) be the companion bridge of a,
(resp. by). Assume that b, occurs after ay in A,. We form the gap of b, by including into it
each element of A, positioned strictly between a,, and b, and each element of A, positioned
strictly between a, and b, (a gap does not contain the bridges which define it). Note that
the gap of b, is the same as the gap of b,. The element b, (or b,) is called the upper bridge
of the gap. Except for the bridges formed by the endpoints of the range R., all other bridges
associated with the edge e are both the upper bridge of some gap and the lower bridge of
another. See figure 1. A key property of the structure built by fractional cascading is that
gap size is kept small. This guarantees that the bridges correlating two adjacent catalogs are
never too far apart. The particular constraint we maintain is:

The gap invariant: No gap can exceed 6d — 1 in size.

FRACTIONAL CASCADING: PART I 6

We will see in Section 4 why the magic bound of 6d — 1 has been chosen. Figure 1 illustrates
the gaps and bridges of the augmented catalogs associated with three vertices on a single
path. We end this subsection with some general remarks, before proceeding to the detailed
description of the data structures needed for fractional cascading

The key to the design of the fractional cascading data structures is maintaining the cor-
respondences between adjacent augmented catalogs, and between augmented catalogs and
the associated original catalogs. The former facilitate the iterative search; the latter allow
positions in the augmented catalogs to be translated into positions in the original catalogs.
About the former correspondence and its implementation via bridges we will have a lot to
say shortly in section 3.

Surprisingly, it is the latter correspondence, that between augmented and original catalogs,
which becomes the bottleneck in the complexity when we need to deal with dynamic catalogs,
where insertions and deletions are allowed. This is so because the records of C, define an
ordered partition of A, into disjoint sets, each corresponding to a range of values between
two successive records of C,; by convention each such range contains its upper endpoint
only. In the dynamization of the fractional cascading structures, we will need to implement
insertions and deletions into both augmented and ordinary catalogs. While augmented catalog
modifications clearly correspond to insertions/deletions of elements into one of the sets of
the ordered partition, original catalog modifications give rise to splits and joins of adjacent
sets in the partition. Thus we will need a data structure for handling the operations of find
(what set contains a given element), insert, delete, split, and join in an ordered set partition.
Maintaining the ordered set partition is an interesting data structure problem in its own
right, which we will examine in Section 7.

For now we are confining our attention to building a static fractional cascading structure,
so the correspondence between augmented and original catalogs can be finessed by just
keeping, for each augmented catalog element, a separate pointer to indicate its successor in
the associated original catalog. Formally, for a record r of an augmented catalog A, with
value z we define its original successor v(r) to be o(z,C,).

2.2.2. A Close-Up of the Data Structure

Original and augmented catalogs will be represented by linked-list structures. Each record in
C, consists of two one-word (used here in the generic sense of a unit of storage) fields (key,up-
pointer). The key field contains the value of the record, while the up-pointer field refers to
the record in C, immediately following the current one in increasing order. The last record
in this chain has a key of +oco and its pointer refers to NIL. The structure for A, is more
complex. It can be described as a doubly-linked list of records containing cross-references to
the records in C, and with additional information stored in nodes that are bridges.

A record in A, consists of five fields; four of these are each one word long. We assume that
a word is large enough to contain a key value, or a pointer to another record, or an integer
count. The fifth field is a single bit used internally by the algorithms. More specifically, the
fields for a record r are:

(1) key: stores the value K of r.

(2) C-pointer: holds a pointer to v(r), the successor of r in C, (thus giving us a constant-time
implementation of the find operation above).

(3) up-pointer: points to the next element in A, (or NIL if last).
(4) down-pointer: points to the previous element in A, (or NIL if first).

(5) flag-bst: a bit used during construction or update of the structure.

FRACTIONAL CASCADING: PART 1 7

Bridge records need to store more specialized information, so they have the following addi-
tional five fields. These are all one word long.

(6) prev-bridge-pointer: if r is a bridge in D, then this field points to the previous (lesser
value) bridge in D,,. A NIL pointer is used to indicate that this record is the lower
endpoint of a range.

(7) companion-pointer: points to the companion bridge.
(8) edge: if r is a bridge in D,,,, then this field stores the label of edge vw.

(9) count: This field stores the number of records in A, that belong to the gap of which r is
the upper bridge. Set to O for the lowest bridge in a correspondence dictionary. Its sum
with the corresponding count field in the companion bridge gives the gap size of this
bridge.

(10) rank: used internally in the construction phase and during updates.

Figure 2 illustrates the data structure on a small example. Note that, aside from catalog-
related information, the structure also contains a full description of the graph G because the
range endpoints become bridges providing the node adjacency information. In the next section
we describe how to answer an incoming query; we postpone discussion of the construction of
the data structure until Section 3.!

2.2.3. Answering a Multiple Look-Up Query

How do we proceed to answer a multiple look-up query (z,x)? The idea is to follow the
generalized path x via the bridges provided in the data structure. Each time a search is
performed in an augmented catalog A, the result of the look-up must be carried over to the

associated original catalog C, as well. The following lemmas provide the two basic primitives
needed.

Lemma 1. If we know the position of a value z in the augmented catalog A,, in other words
a record r with the smallest value greater than or equal to z, then we can compute the
position (in the same sense) of x in C, in ezactly one step.

Proof: Use the C-field of the record to retrieve v(r). §

Lemma 2. If we know the position of a value z in the augmented catalog A,, and e = (v, w)
is an edge of G such that z is in the range R,, then we can compute the position of z in
A, in O(d) time.

Proof: From the position of r = o(z,A,) in A, follow up-pointers until a bridge is found
that connects to A,,. To do so, simply check the edge-field of every bridge visited. Because
of the gap invariant, such a bridge will be found within 6d steps. At this point, follow the
bridge-pointer and traverse A,, following down-pointers until z has been located. Again
because of the gap invariant, both these traversals can be accomplished in at most 6d + 2
comparisons. i

A structure such as the above can easily be built by following the naive approach, mentioned earlier.
Construct a master catalog M by merging all catalogs together and repeating each record as many times
as the degree of the vertex it came from. Then make M the augmented catalog of each vertex. We can
easily choose the bridges so that each gap has sise at most 2d. The interesting task ahead will be how to
avoid the blow-up in storage which this simple-minded approach implies.

FRACTIONAL CASCADING: PART I 8

8I 8 1; I T p|o |vw |3 LS
| 714 1
!
Cv v

Av

Figure 2. A close-up of the augmented catalogs

Lemmas 1 and 2 show that a multiple look-up query (z,7) can be answered very efficiently,
provided that the position of z in A is known, where f is the first vertex in . It is too early
now to describe in detail how to compute the position of z in the initial catalog A ;. If we were
to store A, as a one-dimensional array as well, then we can certainly locate z in it in O(log s)
time. However, this solution is rather inconsistent with our previous list-based structures.
We will show in Section 6 that this initial search for z can be accomplished in O(log s) time
using a technique which preserves the unity and simplicity of the data structure.

To summarize the situation at this point, we can handle any multiple look-up query satis-
factorily, provided that the fractional cascading structures have already been built, and that
efficient search is possible for the first augmented catalog to be considered. In the following
section we show that the fractional cascading structure can be constructed in time O(ds)
and space O(s). One remarkable feature of this data structure is that its size is independent
of d. In the ensuing developments, d is considered a parameter and not a constant. It will
therefore not disappear in the O-notation.

FRACTIONAL CASCADING: PART I 9

3. The Construction of the Fractional Cascading Structures

In order to add motivation to our discussion, we will start by describing an approach which,
although flawed and ultimately inadequate, introduces the basic idea of fractional cascading
in very simple terms. The reader who does not care for motivation at this point may skip
the next paragraph.

Since this discussion is only for motivation, let us be concrete and assume that G is regular
of degree d and each catalog C, has size exactly c. Define a k-sample of a catalog C to be
a maximal subcatalog of C obtained by taking values k apart; we call k the sampling order.
Then A, will be simply C,, together with a (2d)-sample of each neighbor of v one away, a
(2d)%-sample of each neighbor two away, and so on. Here we are counting distances according
to the underlying graph G. The size of A, will be bounded by

1 2r 142
c+d2dc+d(2d) c+ - =2,
and thus the size of all the augmented catalogs is bounded by twice the size of the original
catalogs. Any two adjacent nodes in G differ in their distances to a third node by at most
+1. Therefore any two samples merged into the adjacent catalogs A, and A, may differ
by a factor of at most 2d in the sampling order. This might make us hope that the gap
invariant would also be satisfied. Unfortunately this is not necessarily the case, as the merge
of two k-samples can leave gaps of size 2k. It is this problem that makes the argument above
only a heuristic and not a rigorous construction. To overcome this difficulty we must do the
sampling in parallel with the construction of the augmented catalogs, as described in the
sequel. Specifically, our plan will be to insert one new record at a time, maintaining the gap
invariant as we go along. To ensure this, splitting some gaps into smaller gaps will occasionally
be necessary. Although the time taken by a specific insertion is fairly unpredictable, the
total running time of the algorithm can be made optimal with a careful implementation.
Incidentally, the key idea of propagating geometrically decreasing samples of each catalog to
nodes further away is responsible for the term “fractional cascading”.

We now explain rigorously how, for every vertex v of G, the augmented catalogs A, can
be built efficiently. We will present the construction of the fractional cascading structures
in an incremental fashion. By incremental we mean that we will show how to update these
structures when a new record is added to one of the original catalogs. Starting then from a
graph G with all catalogs empty, we can arrive at the desired state with repeated insertions.

The overall algorithm consists of two nested loops. For each vertex v of G in turn, we consider
the elements of C,, in increasing order and insert them into A, one at a time. Before inserting
an element we make sure that all the gap invariants have been restored since the previous
insertion. Note that even before any element of C, has been inserted into A,, this augmented
catalog is already likely to contain elements originating from other catalogs. Therefore we
must implement the insertion by merging C, into A,. Each insertion of a given element of
C, may cause serious changes in A,, as well as in other augmented catalogs, necessitated by
the restoration of gap invariants. The total cost of these operations, however, will be at most
proportional to the final size of all the augmented catalogs.

3.1. Adding a New Record

We will partition the processing required when inserting a new record into three stages. In
stage 1 we simply insert the new record r into the appropriate place in its augmented catalog
A,. After such an insertion we must update the count-fields of all gaps containing r and
then split excessive gaps into smaller ones. These splits will cause additional insertions in
neighboring catalogs, so count-fields must be checked again, and so forth. The counting of
gap sizes and the splitting of excessive gaps constitute respectively stages 2 and 3. We may

FRACTIONAL CASCADING: PART 1 10

need to loop around stages 2 and 3 several times, but eventually all gap invariants will be
restored and this process will terminate. We now describe these operations in detail.

Stage 1: Insert new record — Let p be the next record from C,, to be inserted into A,. Recall
that p may possibly be the endpoint of a range. Let r’ be the record from C, previously
inserted into A, {or the first record of A,, if none has been). Starting from r’, follow the up-
pointers of A, until the correct position of p has been found. At this point, insert a copy r of p
into A, (breaking ties arbitrarily). The initialization of the first five fields is straightforward;
the flag bit is set to 0. We also add a pointer to r into a set of newly inserted records, called
the count-queue. When the previous insertion was fully processed, the count-queue became
empty, so now its only element is r.

Stage 2 is invoked next to update the count-fields. In the general situation the count-queue
will contain references to several new records created by the gap splitting process of stage 3.

Stage 2: Update count fields — Our task is to find all gaps containing each of the records
referenced by the count-queue and update their count-fields. A simple solution consists of
identifying these gaps, and then traversing each of them in order to evaluate their current
size. The difficulty with this method is that gaps can grow to be very large and these repeated
traversals can be costly. It is not so obvious how such a bad situation can arise, but appendix
A shows that it really does. This forces us to use a cleverer method, which is described below.

We process the pointers in the count-queue twice. In the first traversal we identify the max-
imal groups of new records belonging to the same augmented catalog such that no two con-
secutive new records in the group are further than 6d apart. These groups are called clusters.
Note that no gap can contain new elements in a given augmented catalog that come from
more than one cluster. In the next traversal we visit each cluster and update the count-fields
of the bridge records covered by the cluster. If some gap sizes have overflowed, then these
gaps are added to the wide-gap-queue, which forms the input to stage 3. In more detail, the
traversals work as follows:

First Traversal: For each reference to a new record in the count-queue go to that record
and walk 6d — 1 steps down from it in its augmented catalog. In the process mark the 6d
records thus visited by setting their flag bit to the value 1. In each augmented catalog
the maximal runs of records with flag bits set to 1 define the clusters discussed above.

Second Traversal: Now visit every reference in the count-queue once more, this time
removing each reference from the queue as it is processed. If a reference points to a record
r, in (say) A,, with its flag bit set to O then do nothing: the cluster of A, in which that
record belongs has already been taken care of. Otherwise we must process that cluster.
As long as we see records with their flag bit set to 1, we walk down A, from r to the
last such record, or to the bottom of the catalog, whichever comes first. Let p denote the
bottom record thus identified. We next walk up from p and in the process update the
count fields of all bridges in A, whose gaps contain new records in the cluster of r. We
call this the ranking process.

The ranking process proceeds from p up to 6d steps past the last record encountered
whose flag bit is set to 1. A running count of the records visited during the ascent is
maintained, called the rank. We start out by giving p rank 1. Whenever we come to a
bridge b we take a number of actions. First we store in the rank field of b the current value
of this count. By following the prev-bridge-pointer of b to b’ and looking at the rank field
of that record, we can compute the number 5 of records from A, currently belonging to
the gap of . Let ¢ be the current value of the count-field of b, and k the count-field of
the companion bridge of b. In general 5 > ¢ and the gap of b has increased in size from
§ + k to at least 5 + k (j + k need not be the true size since the other side of the gap
might not have been ranked yet). We now set the count-field of b to j and, if j + k > 6d

FRACTIONAL CASCADING: PART I 11

but ¢ + k < 6d, then add the gap of b to the wide-gap queue for splitting during stage 3.
The conditions above guarantee that a gap is added to the wide-gap queue only the first
time a ranking process shows it has overflowed. Our last action in processing the bridge
b is to set the rank of b’ to 0. When the ranking process has reached its last record, the
rank field of the last bridge encountered is also set to 0. In addition, the flag bit of each
record visited in the process is set to 0—thus marking the cluster as processed.

At the end of stage 2 the count-queue is empty, all count fields of bridges are correct, and
all gaps whose size exceeds 6d — 1 have been placed in the wide-gap queue.

Stage 3: Restore gap invariants — If the wide-gap queue is not empty, remove its top element
and split the gap of the upper bridge to which it points. To do so, merge all the elements of the
gap into a temporary linked list. Let K,,..., K, be a labeling of this list in non-decreasing
order, and let H; be the first group of 3d elements, H; the second group of 3d elements,
etc. chosen from this list. Since the gap count g satisfies g > 6d, we have at least two groups,
and more precisely { = [] of them. If the last group H; contains fewer than 3d elements,
then we merge H; and H;_, together. Let j be the new number of groups (7 = or j =i —1).
We separate H, from H,; by making two copies of the largest element in H;, each to become
a bridge in the augmented catalogs associated with the gap. We then iterate on this process
for the j groups, which leads to the introduction of 2(7 — 1) bridges. All gaps produced have
size exactly 3d, except possibly for the last one, which has size g — 3(j — 1)d < 6d — 1.

Note that each partitioning element already occurs on one side of the gap. If it is not already
a bridge to another neighbor on either side, then it need be duplicated only on the missing
side. Otherwise it must be duplicated also on the side where it already occurs as a bridge,
because of our convention that a record in an augmented catalog can only function as a
bridge for a single edge. See figure 3 for an illustration of the splitting process. We omit the
details of the initialization of the new records; we just mention that it is imperative to insert
references to them into the count-queue.

At the end of stage 3 the wide-gap queue is empty and no gap has size exceeding 6d — 1,
according to the count fields present in the structure. All new records created from the
splitting are referenced in the count-queue.

We now recapitulate the basic flow of operations. Stage 1 is called to insert a new key. At this
point, stage 2 updates all count fields. Stage 3 is then called to restore the gap invariants.
At termination, all gaps will have acceptable size, if we discount the new elements that stage
3 has created. To remedy this discrepancy, we call stage 2 again to obtain the list of flawed
gaps. Stage 3 is then invoked to fix them, and the process iterates in this way until stage 2
fails to reveal any flawed gaps. It is important to ensure that stage 2 and stage 3 operate
completely separately. All count fields must be correct before restoring any gap invariant and
all gaps must be valid (up to the discrepancies caused by newcomers) before stage 2 is called
again into action.

3.2. Proof of Correctness

Why is this process correct, and why should it always terminate? Let us leave termination
aside for the time being; we first prove the two assertions made earlier: (1) after completion
of stage 2, all count-fields are correct; (2) after completion of stage 3, no gap contains more
than 6d — 1 elements which were also in existence before.

We prove these assertions by induction. The second one follows directly from the description
of the algorithm. Incidentally, note that after stage 3 has started, some splits may occur
with a value of the count-field less than the correct one, because of earlier insertions caused
by this stage. We now turn to stage 2. By the induction hypothesis (stating the correctness
of the previous applications of stages 2 and 3), only the gaps containing the elements in

FRACTIONAL CASCADING: PART I

12

d =2, max. gap size = 11

oid

new

)—
O\
)
NS

z | -

{—
./

Figure 3. The gap splitting process

the count-queue need have their count-fields updated. We will first show that the updating
performed in stage 2 correctly restores the counts of the gaps it touches, and then that all

affected gaps are processed.

Let us concentrate our attention on the augmented catalog A,. We call new any element
on the count-queue just before stage 2; other elements will be called old. The key to the
correctness of stage 2 is that no gap can contain more than 6d — 1 consecutive old elements
in A,. Indeed, this would contradict the induction hypothesis that gaps were valid before the

FRACTIONAL CASCADING: PART I 13

introduction of new elements. Consequently, all new elements in A, within a given gap must
be linked together in stage 2 into one cluster, so the updating cannot miss any of them. The
use of ranks is to identify exactly how many new elements lie in a given gap.

To see that the work in stage 2 is sufficient, we will prove that the algorithm does examine
any gap which contains a new element. Let v be a gap with upper bridge K € A,, and let
K, be the new element positioned highest in A, such that K, occurs within 4. K cannot lie
more than 6d places above K, in A, (by the gap invariant), therefore K will be processed

in that stage when the cluster of the new element K, is handled. This completes the proof
of correctness of our algorithm.

4. The Complexity of Fractional Cascading
4.1. Time Requirement

We now show that the insertion algorithm not only terminates, but that it does so with delay
which is O(d) when amortized over all insertions performed during the construction of the
fractional cascading structures. In order to prove this bound we will use certain accounting
techniques common in amortized complexity analysis [Ta]. The essence of those techniques
is to associate “bank accounts” with parts of the data structure, into which deposits and
withdrawals are made at appropriate instants during the execution of the algorithm. It is

important to realize that these book-keeping operations are only an artifact of the analysis
and not part of the algorithm proper.

Each gap has associated with it a piggy-bank holding some tokens. A token can pay for a
constant amount of computation (recall that O(d) is not interpreted as “constant”). We
choose this amount large enough so as to cover the actual cost in our implementation for
any of the following: (1) creating a record for a new element or a new bridge and properly
linking it into its augmented catalog (stages 1 and 3), (2) processing an element during the
traversals designed to update the count fields in stage 2, and (3) processing an element in
the merge preceding the gap splitting procedure of stage 3. Besides the piggy-banks, we have
a cash-bank associated with each new element in the count-queue. We will make deposits or
withdrawals from these banks in order to cover the restoration costs of an insertion: these
are the costs associated with restoring the gap conditions. We will maintain the following
invariant.

Each gap of size k,0 < k < 6d, holds in its piggy-bank a number of tokens equal to at
least 21 max(0, k — 3d). Each new element contains 6d tokens in its cash-bank.

When an element K of C, is to be inserted into A,, it is given 27d + 1 tokens. Twenty-one
tokens go into the piggy-bank of each gap containing K. Since there are at most d such gaps,
there are at least 6d+ 1 remaining tokens; K keeps 6d tokens for its own cash-bank, uses one
token for the creation of its new record, and throws away the others. All bank conditions are
then satisfied. Except for the double loop which performs the actual updating of the count
fields, the time taken by stage 2 is clearly proportional to dN, where N is the number of new
elements. As to the double loop, its time of execution is O(dN + V'), where V' is the number
of new elements visited during each count update. But because of the locally bounded degree
condition, no new element can be examined more than d times. Therefore the total running
time of stage 2 is still O(dN). By our assumption about the token value, all this can be paid
for with the 6d tokens from the cash-bank of each new element.

Processing each element G in the wide-gap queue during stage 3 takes time proportional to
the size of the gap being split. Consider the new gaps produced during the splitting. We
can distribute the tokens of the old piggy-bank of G into packets. The highest new gap H

FRACTIONAL CASCADING: PART 1 14

is of size between 3d and 6d — 1; it receives a packet containing 21t tokens, where ¢ is the
excess of the size of H over 3d. This packet supplies the (new) piggy-bank of H. Each of
the other gaps can thus receive a packet containing 21 x 3d = 63d tokens. Since, however,
they all have size 3d, their piggy-banks do not need any tokens at all. Now each new gap,
except H, has to pay for the creation of one or two new bridges, as well as the necessary
deposits to the piggy-banks of other gaps that the insertion of these bridges necessitates.
Obviously at most 2(d — 1) other gaps are affected. Thus we need the following: 2 tokens to
create the two new bridge records; 2 x 6d = 12d tokens to deposit into their cash-banks; and
21 x 2(d — 1) = 42d — 42 tokens for deposits to other piggy-banks. Since we have a total of
63d tokens on hand, we can do all that and still have 9d + 40 tokens left over.

We must still account for the work of splitting the gap G. If k denotes the size of G, then
k tokens suffice to pay for splitting. Suppose that G is broken up into H, the highest gap
of size between 3d and 6d — 1, and j other gaps, j > 1, of size exactly 3d. By the analysis
above each of the latter gaps has a surplus of 9d + 40 tokens, for a total of (9d + 40)j. Since
(9d + 40)j > 3jd + 6d — 1 > k, we have enough to pay for the splitting out of the pooled
surpluses.

In conclusion, the entire insertion process can be paid for with (27d + 1)s tokens (recall that
s is the total catalog size) and therefore the preprocessing time of the algorithm is O(ds).
Next, we turn our attention to the storage utilized by the data structure.

4.2. Space Requirement

A space-token, or token for short, will buy 10 words of memory—that is, storage for one
record in A,. We take space tokens to be divisible units and divide each such token into d
equal credits. We maintain the following invariant:

At the completion of each stage, every gap of size g has at least 2 max(0,g — 3d) credits
in its (space) piggy-bank.

To handle an initial insertion (stage 1), we grant each new key three tokens. One of them
covers the storage for the key itself. The other two tokens are exchanged for 2d credits: two of
the credits are then deposited in the space piggy-bank of each containing gap; the remaining
credits are thrown away. Note that this transaction preserves the piggy-bank invariant. To
handle the gap splitting of stage 3, we use the packet argument of the previous section.
This shows that each bridge of a newly created pair receives 6d/2 = 3d credits to use, after
preserving all bank conditions. Two of them are deposited into the piggy-bank associated with
each of the gaps containing the endpoints of the bridge. This still leaves at least 3d—2(d—1) =
d+2 credits per bridge, which is more than one token, so the bridge can then pay for its own
record. As a net result, only 3s tokens must be used to account for all the space used, so this
space is O(s). More precisely, only 30 words of memory are necessary per catalog element
(on the average).

Theorem 1. (Preliminary result) — Let G be a catalog graph of size 8 and locally bounded
degree d. In O(s) space and O(ds) time, it is possible to construct a data structure for
solving the iterative search problem. The structure allows multiple look-ups along a gen-
eralized path of length p to be ezecuted in time O(dp + logs). If d is a constant, this is
optimal.

We conclude by remarking that in our 6d — 1 bound for the gap size invariant, the constant
6 can be reduced to 4 + ¢, for any € > 0. As it turns out, when ¢ goes to zero, the implied
constants in our time and space analysis (in other words, the number of time or space tokens
needed per insertion) go to infinity. Although the analysis breaks down for gap sizes less than

FRACTIONAL CASCADING: PART 1 15

or equal to 4d, the algorithms we have presented continue to work correctly. Figures 4 and 5
show two examples of fractional cascading structures on two simple graphs, where we in fact
used 4d — 1 as the maximum allowed gap size.

d =2, max. gap size = 7

4
}
bridge 1

i $ avg. catalog

] + element

B C, D, E F graph G

Figure 4. Example (1) of fractional cascading structure

d = 4, max. gap size = 15

Figure 5. Example (2) of fractional cascading structure

Although our current result will be improved shortly, it is interesting in its own right because
it does not attempt to modify the combinatorial nature of the graph. We will see in the
next section that by rewriting the graph G in a canonical manner so that it has bounded
degree, the preprocessing time can be reduced to O(s), while the query time goes down to
O(plogd + log s) from O(pd + log s). In practice, on the other hand, d is most likely to be a
small constant, so these asymptotic considerations are immaterial.

5. An Improved Implementation of Fractional Cascading

We have seen that the complexity of the query-answering process is proportional to the degree
d. This is unavoidable given the approach taken here: the gap size must be proportional to the

FRACTIONAL CASCADING: PART 1 16

degree if the overall storage is to remain linear. Through the medium of bridges, the query-
answering process simulates a traversal of a graph of degree d represented by traditional
adjacency lists. This means that in the worst case, to go from node v to its neighbor w, we
may have to look at all d neighbors of v. To avoid this delay, we choose to resolve high degrees
in the graph G by rewriting it in a canonical fashion. This will lead to a graph G* of bounded
degree which emulates G and allows us to go from a vertex v of G to a particular neighbor
w in O(logd) time. Briefly, G* is constructed by adding a small balanced tree at each node,
called a star-tree. We solve the iterative search problem on G by applying fractional cascading
to G*, as described in the previous section.

Definition 3. A star-tree T), is an oriented tree with n leaves (vertices of degree 1), endowed
with a distinguished vertex called its center, and obtained inductively as follows.

(1) The tree T, is a single vertex which, of course, is also its center. The tree T; has two
vertices connected by an edge; one of them is arbitrarily chosen to be the center.

(2) For i > 2, a T; can be obtained from a T;_, as follows: choose a leaf w of T;_; which
has minimum distance to the center of that tree. To form T; attach two new edges
to w and leave the center the same—see figure 6.

® r——
T1 T2

T3

Ti1

Figure 6. The star-trees used to resolve high degrees

Note that this definition is non-deterministic. In all cases, however, Tf‘ has exz.ictly n vertices
of degree one, all interior vertices have degree three, and no vertex is at a distance greater

FRACTIONAL CASCADING: PART I 17

than [lgn] from the center.

Now let ey, ..., ek be the edges of G adjacent to a vertex v of V. If ¢y,...,t4 are the leaves of
some Ty, we will attach each e; to some ¢; so that the leaves of T; have a local degree of at
most 2 in G*. Computing the assignment is straightforward. At the outset, the index of each
t; is inserted into a leaf-queue. We also extract from C, the 2k endpoints of R,,,..., R,, in
sorted order (this does not require sorting, since these endpoints form a subset of C,, which
is itself assumed to be given in non-decreasing order). We perform the assignment by going
through the endpoints in order, as follows. If the endpoint is a lower endpoint of R,,, remove
any index j from the leaf-queue and assign edge e; to leaf t;. If the endpoint is an upper
endpoint of R.,, re-insert back into the leaf queue the index ! of the leaf ¢; to which e; had
- been previously assigned. Because of the locally bounded degree condition, the queue will
always contain at least one label when one is needed. This whole process can be carried out
in O(k + d) time—see figure 7.

The graph G* is obtained from G by replacing each node of G with a copy of Ty. (Actually,
if a particular node of G has local degree f < d, a tree Ty could be used instead to save
space). Each edge e = (u,v) of G becomes an edge in G* connecting the two leaves of the
star-trees corresponding to u and v to which e has been assigned by the previous algorithm.
In the star-tree T' used to replace node u we assign empty catalogs to all nodes, except for
the center to which we assign C,,. Also, each edge of T is given a range [—oo, +o00]. It is now
easy to check that all the nodes of G* have local degree bounded by 3. The graph G* thus
constructed has a number of edges proportional to m, the number of edges in G, and can
clearly be built in time O(s).

Searching for neighbors in G* is trivial. Each tree Ty (or Tf) used in G* has its edges labeled
in a depth-first traversal. This allows us to go from one leaf to another in O(logd) time,
provided that we know the labels of the starting and ending edges. All we have to do then is
provide a correspondence table to translate the name of an edge in G into the local label of its
new adjacent edges (see figure 7). Each edge of G will appear in at most two correspondence
tables.

The emulation catalog graph is now ready for use. Note incidentally that the path of a
star-tree between two of its leaves may avoid the center. Since the center must be visited in
order to retrieve the desired information, we will fork the traversal into two paths: one going
towards the center, the other pursuing its route towards the exit leaf. The emulation path is
obviously still a generalized path. We conclude with an improved version of Theorem 1.

Theorem 2. Let G be a catalog graph of size s and locally bounded degree d. In O(s)
space and time, it 18 possible to construct a data structure for solving the iterative search
problem. The structure allows multiple look-ups along a generalized path of length p to be
ezecuted in time O(plogd + log). If d 1s a constant, this is optimal.

6. The Notion of Gateways

We address here one of the points left open in previous sections: the location of a query value
in the first catalog of the generalized path. The solution proposed earlier consisted of keeping
a copy of each augmented catalog in a table, with the idea of performing a binary search in
one of them in order to get a multiple look-up started. This is unsatisfying for at least two
reasons. For one thing, the solution is inherently static and will support modifications only
with great difficulty. Also, it breaks the unity of fractional cascading by stepping out of the
list-based world in which we have (implicitly) pledged to remain.

FRACTIONAL CASCADING: PART 1 18

o1 e2
e3
el10
10
5 9
€9
o8 6 . 8
e7
7
3
5
center 1 2

4

Correspondence Table

12345678910
1354315345

Figure 7. Using the star-tree To

The answer to these objections will be found in the notion of gateways. To each vertex v
of G, attach an extra edge connecting v to a new vertex g(v), called the gateway of v. The
vertex g(v) will have an augmented catalog attached to it but no catalog per se. The edge
(v,9(v)) is called a transit edge; its range is [—00, +00] — note that these definitions are
made with respect to G and not its emulation graph G*: the transition to G* must come,
as prescribed above, in a postprocessing phase and will ignore differences between edges and
transit edges, etc. The augmented catalog of g(v) is required to have exactly three elements.
When the preprocessing takes place, if A;(,) should end up with less than three elements,

FRACTIONAL CASCADING: PART I 19

it is not created. On the other hand, if it ends up with more than three elements, another
gateway is attached to it. This process might go on for a while, creating a chain of new
vertices emanating from each vertex of G—see figure 8. Only the last vertex in the chain is
called a gateway; all the others are called transit vertices.

transit edge

transit vertex

Gateway

'Figure 8. A gateway

It is clear that every time a new gateway is created, there are enough tokens around to pay
for this creation. This is all the more obvious as the degree of a transit vertex is two. It is
not hard to see that the length of a gateway will be roughly proportional to the logarithm
of the size of the augmented catalog at its attachment to G. To answer a query we perform
the initial search in A, by starting at the gateway of v and proceeding to v. This will take
O(log 8) time.

As it turns out, a gateway chain is quite similar to a B-tree [K]. In a way it corresponds to
a B-tree where all nodes at a given level have been combined into a supernode. The bridges
between adjacent levels play the role of the inter-level links in the tree. The whole fractional
cascading structure can be viewed as a generalization of B-trees. The upper and lower bounds
that must be maintained on the gap size correspond naturally to the upper and lower bounds
on the node size of a B-tree. The main difference, and one of the most intriguing aspects of
fractional cascading as well, is that in the latter the gap splittings (or mergings) can cycle
back to a node previously visited, and so go on for an unpredictable length of time.

7. Dynamic Fractional Cascading

We now examine how the fractional cascading structures can be made dynamic. When build-
ing the static structure as described in Section 3, we took advantage of inserting the keys
present in each original catalog in increasing order. This sorting allowed us to use a simple
linear scan to locate the position of each new key in the augmented catalog, and at the same
time to set the value of the C-pointer of each augmented catalog element passed over. Both

FRACTIONAL CASCADING: PART I 20

the location problem, and the augmented-to-original correspondence problem are much more
difficult in the dynamic case.

7.1. Insertions or Deletions Only

Let us first tackle insertions only. Suppose a new key K is to be inserted in C,. We must (1)
compute the position of K in A,, (2) update whatever representation we are using to relate
positions in A, to positions in C,, and (3) restore any gap invariants that have been violated
by the new insertion. The similarity between gateways and B-trees makes dynamization
a straightforward operation, at least as regards (1). Unfortunately, the static structure is
grossly inadequate when it comes to problem (2). Too many C-pointers may need to be
changed following a single insertion to allow any hope for a logarithmic update cost. In fact,
what we must solve is an instance of the ordered set partition problem where we allow the
operations find, insert, and split, as described in Section 2.2.1. The find operation replaces
the C-pointers of the static structure, the split operation corresponds to the insertion of a
new key in an original catalog, and the snasert operation is used for the secondary insertions
occasionally necessary for the restoration of the gap invariants. A recent paper by Imai and
Asano [IA] has shown how to solve this particular case of the ordered set partition problem
in constant amortized time per insertion or split, and constant actual time per find. The only
assumption their argument requires is that we start with an empty structure. Finally problem
(3) can be handled — for a change — exactly as in the static case. We must, however, use the
Imai-Asano structure for the secondary insertions associated with stage 3 (the gap splitting).
In conclusion:

Theorem 3. If we allow only insertions, then fractional cascading can be made dynamic
while preserving all the previous bounds for space, preprocessing, and query time. The
cost of an insertion is O(log 8) when amortized over a sequence of s insertions into an
instially empty structure.

It is possible to handle deletions (and only deletions) in a way analogous to that for insertions.
The correspondence between augmented catalogs and original catalogs now requires a solution
to the ordered set partition problem where the allowed operations are merge, delete, insert,
and find. Although not explicitly stated as a result in their paper, Imai and Asano show
in fact how to adapt the Gabow and Tarjan [GT] method to handle the first three of the
operations above in constant amortized time and find in constant actual time. With deletions
a new issue arises. It seems hopeless to try to eliminate all copies of an element being deleted
from the structure at once. On the other hand, leaving these propagated copies lying around
raises the possibility that the structure may no longer remain of linear size in the number of
elements present in the original catalogs. But, as observed by Fries, Mehlhorn, and Naher,
we can allay this fear if we simply impose a lower bound on the gap size as well [FMN].

Lemmma 3. If the minimum gap size is kept to ~d for some v > 2, then the size of the
fractional cascading structure will be O(ys/(y — 2)).

Proof:

Let (v, w) be an edge of G. We use lower case a’s and ¢’s to denote the size of the cor-
responding augmented and original catalogs, b(,,») to designate the number of bridges
between A, and A,, and g(,,.) to designate the number of elements in A, U A, whose
value falls in the range of (v,w). We then have g(, w) > (b(v,w) — 1)7d + 2b(y,w), and
therefore b(y,u) < (9(v,w) +7d)/(7d +2).

FRACTIONAL CASCADING: PART I 21

Since we have made the convention that the original catalogs contain the endpoints of the
ranges of their adjacent edges, we obtain a, < ¢, + E(u,w)e g(b(v,w) — 2). It follows that

Zauszcv+z Z (b(u,w)_z)

vev veV vEYV (v,w)EE

=s+2) (buw) —2)

(v,w)eE

g(u,w)+'7d]
R
(wares L 79+2

2d
~d+ 2 Za.,.

From this the desired result follows. g

<a+

Maintaining both a lower and an upper bound on the gap size gets to be quite intricate. The
accounting has to be modified to leave tokens in the piggy-banks for underflowing as well as
overflowing gaps, following the method described by Fries, Mehlhorn, and Naher [FMN]. We
will not give the details here, but simply state the end result.

Theorem 4. If we allow only deletions, then fractional cascading can be made dynamic
while preserving all the previous bounds for space, preprocessing, and query time. The

cost of a deletion 1s O(log 8) when amortized over a sequence of s deletions leading to an
empty structure.

Next, we will attack the general problem of handling bdoth insertions and deletions at the
same time. Instead of placing a lower bound on the gap size, we let the data structure
degenerate gradually and rebuild it every now and then. The idea is just to mark the deleted
elements, but not expend the effort to remove them right away from the structure. The
obvious problem with this scheme is that since the data structure never decreases in size,
it may become intolerably large compared to the number of live elements it contains after
many deletions. To deal with this difficulty, we could stop the computation when the ratio
of live elements to the total of those present drops below some threshold and re-insert every
element still alive from scratch. But we now face the problem that although this scheme
might have a good amortized performance, the occasional interruptions might be simply too
long to be acceptable. Think for example of an on-line system where requests have to be
handled immediately. The next section will bring an answer to this dilemma.

7.2. A General Scheme for Efficient Deletions

Consider a database reacting to three types of requests: insertions, deletions, and queries.
Each insertion can be performed in v amortized time, and each deletion can be recorded in §
actual time, where v, 5 = O(1). The notion of recording a deletion as opposed to performing
it is the following: an element can be marked off in § time so that queries may go on and
provide correct answers. Recording a deletion, however, does not free any storage, so it is
not a viable alternative in the long run. To prove the following result, we use a dynamization
technique originating in a paper by Bentley and Saxe [BSa|, and one by Overmars [O].

Lemma 4. Consider a data structure in which we can only insert new elements and answer
querses. Let M(s) be the storage used to store s elements, assumed polynomsal in s, and
let v indicate the amortized time for an insertion, assumed to be constant. If the time §

FRACTIONAL CASCADING: PART I 22

to mark off an element to be deleted is also constant (thus ensuring that queries can still
be answered correctly), it is then possible to implement each deletion in constant actual
(non-amortized) time. The storage used is O(M(s)), and the time for inserting a new
element or answering a query is the same as before, up to within a constant factor.

Proof: The idea, as mentioned earlier, is to “mark” the deleted elements as dead, then
periodically garbage collect them to prevent the dead elements from swamping the live
ones. Consider the situation at a generic time t. We always keep two identical copies of
the data structure, so called the query copy and the survival copy. All requests are handled
simultaneously (i.e., in a time-sharing fashion) in the two structures, except for queries,
which are handled exclusively in the query structure. Recall that deletions are handled
by simply recording the event, which will take a total of 2§ time. By keeping counters,
we check that the live elements always outnumber the dead ones. As soon as this is not
the case, we fork two concurrent processes, as described below; in the following, we let A
denote the value of the two counters when they meet.

(1) Process 1 continues to handle all three types of requests in the query structure as
though nothing was happening.

(2) Process 2 consists of two subprocesses, which can pipe information between them.
Subprocess 2.1 will keep a transcript of all incoming requests during the entire lifetime
of process 2. This includes all insertions and deletions but not queries. Subprocess
2.2 will go through three consecutive stages. In the first one, the subprocess re-inserts
every element that is alive in the survival structure into a new survival structure. When
this is done, the subprocess enters its second stage, where it makes a copy of the new
survival structure; from then on the subprocess will work in double, performing the
same operations in both copies of the new survival structure. We will not mention this
duplication of effort in the following. In the third stage, the subprocess goes through
the transcript maintained by subprocess 2.1 and starts responding to each request
in chronological order. As soon as process 1 has spent §A/2 cycles in deletions and
insertions (not counting queries), we complete the current request and immediately
terminate all processes and subprocesses. The query structure is thrown away, and the
two copies maintained by subprocess 2.2 become the query and survival structures.
We will make sure that at this point the number of dead elements cannot exceed the
number of live ones, so we are back to the initial conditions.

The idea is to have process 2 operate faster than process 1. First of all observe that after
a while process 2 mimics process 1, although the duplicating task and the bookkeeping of
subprocess 2.1 make this work about three times as hard. At any rate, giving a little more
than three cycles to process 2 for every cycle of process 1 should be enough for process 2
eventually to catch up with process 1. However, this catching up should not be delayed
too long or we may end up in a forbidden situation where more elements are dead than
alive. Recall that from the moment processes 1 and 2 are triggered, no incoming deletion
is effectively taken into account until the next process fork. !

We will show that setting the speed of process 2 to be 3 4 [8%] times the speed of process
1 satisfies all our conditions. Let I and D be respectively the number of insertions and

Note also that the maintenance of multiple copies of the same structure makes the assumption that elements
can be marked “dead® in constant time a bit tricky to implement. We cannot refer to an element to be
deleted from both the copy and surival structures by a single pointer. We must instead access the element
by naming an insertion or query operation record that referenced that element earlier. This “name” could,
for example, be the serial number of the operation, which would be the same in the two structures.

FRACTIONAL CASCADING: PART I 23

deletions handled by process 1. We have

vI+6D< 5%. (1)

We must show that during these §A/2 cycles of process 1, process 2 has had time to go

through its third stage and handle all I insertions and D deletions. The time necessary for
these operations is

(1) subprocess 2.1: I + D transcript operations which can be generously accomplished in
vI 4+ 6 D time; these constants are chosen for convenience.

(2) subprocess 2.2 (stage 1): going through every element of the data structure cannot take
more time than it would to rebuild it from scratch, so 2v A is an upper bound on the
scanning time. Re-inserting the A elements alive will take ¥ A time.

(3) subprocess 2.2 (stage 2): copying the data structure takes less time than rebuilding it,
that is, at most A cycles.

(4) subprocess 2.2 (stage 3): implementing the I+ D requests twice takes 2(vI + § D) time.

The total running time is dominated by 3(vI + §D) + 4v A, which by (1) is less than
(%8 + 4v)A. This corresponds to a number of cycles in process 1 at most equal to

(36 +4w)A 6A
3+8% 2

Therefore, process 2 and its subprocesses will be complete when process 1 is. Note that
during that time no more than A/2 requests for deletions can be accepted since process
1 lasts only §A/2 cycles. It follows that during the time the processes are active there
are at least A/2 live elements and at most A/2 dead ones. Therefore the initial invariant
is preserved: the dead count never exceeds the live count. Since the function M(s) is
polynomial in s, the space will be at all times proportional to what it could be at best,
that is, M(A/2). The proof is therefore complete. i

Lemma 4 provides a method for the general dynamization of fractional cascading. Whereas
insertions are handled as usual, we use a lazy deletion mechanism to remove elements. This
means ignoring deletions from augmented catalogs altogether, but reacting to deletion re-
quests by just removing the appropriate elements from their catalogs. As in lemma 4 we will
maintain a count of the elements alive and a count of those removed since the last cleanup
operation. All the pieces of this process have been described above, except for the correspon-
dence between original and augmented catalogs. Fries, Mehlhorn, and Naher [FMN] have
shown how to modify the van Emde Boas priority queue [BKZ] so as to reduce the storage
to linear and allow all five operations needed by the ordered set partition problem to be
performed in time O(loglog 8), where s is the total number of elements present in the struc-
ture. This implies that a fully dynamic version of fractional cascading is possible, but at the
expense of increasing the cost per look-up to loglog s from constant:

Theorem 5. If we allow both insertions and deletions, then a fractional cascading structure
can be built whose size is O(s) and where a multiple look-up along a generalized path of
length p costs O(plogdloglogs + log s) in time. Both deletions and insertions can be
handled in amortized time O(log s).

FRACTIONAL CASCADING: PART I 24

8. General Remarks

In part II of this paper we give a large number of applications of fractional cascading to
query problems. In fact, our discovery of this technique is due to noticing that tricks bearing
a certain similarity had been used in a number of published algorithms [Ch1,Co,EGS] to deal
with the problem of iterative search. Examples are the hive-graph of Chazelle [Chl] and the
chain refinement scheme of Edelsbrunner et al. [EGS)]. These connections are developed more
fully in part II.

The most unsatisfactory aspect of our treatment of fractional cascading is the handling of
the dynamic situation. Is our method optimal? Whether it is or not, can it be simplified
to the point of being useful in practice? Even in the insertion-only or deletion-only cases,
our techniques are more of theoretical than practical interest, because of the large constants
involved. We also feel that we do not fully understand the influence of high degree vertices
in G on the method (see also [CG] for some additional comments on this). Can fractional
cascading be applied to graphs, such as planar graphs, of bounded average degree — or does
the presence of a small but non-constant number of high degree vertices really destroy the
sampling /propagation?

We conclude by remarking that the philosophy of fractional cascading can be extended to
other iterative search problems, beyond that of searching in a linearly ordered catalog. The
three main requirements seem to be (1) that two search structures 4 and 8 can be merged
into a joint structure efficiently (spec. in linear space), (2) that once the position of a “key” is
known in the merged structure, its position in the component structures should be computable
efficiently (spec. in constant time), and (3) that an appropriate notion of “sample” exist such
that location of a key in the sample allows efficient (spec. constant time) location in the
original. We hope that this paradigm will yield useful results in other areas as well.

Acknowledgments: We wish to thank Cynthia Hibbard, Ian Munro, Jorge Stolfi, and
Robert Tarjan for many useful comments on the manuscript. We are also grateful to Marc
Brown for programming a preliminary version of fractional cascading in the static case. The
idea for the construction in the following appendix is due to Jorge Stolfi.

Appendix A. How gaps can get big.

It is possible to construct a catalog graph with any given degree d, d > 3, where insertion of
a single record in one catalog ultimately propagates to many insertions into the same gap of
another catalog. In the example we give below, we achieve secondary insertions into the same
gap whose total number is (2(s?), where s is the size of our catalog graph and p is roughly
log2/log(6d). We do not know if this is best possible. This example shows the need for the
careful gap size counting we had to do in Section 3.1.

Our catalog graph will consist of two parts: a multiplier and a concentrator. The concentrator
is just a linear chain of k + 1 nodes, k to be determined later on. Across the last edge e of
this chain there is only one gap (two bridges). This gap overlaps 6d — 1 gaps of the previous
edge ex_;; see figure 9 for an illustration. Now each of these gaps overlaps 6d — 1 gaps of
the previous edge ex_3, and so on. Therefore across the first edge e, there will be (6d)* + 1
bridges. The catalog of the first node contains enough additional records to bring all gaps
across the first edge e; to saturation. The total size of this structure is ©((6d)*).

Consider what happens when we simultaneously insert one new record in each of the gaps
of the first catalog. By simultaneously we mean during the same invocation of stage 3 as
described in Section 3.1. All gaps of e; will split, causing 6d insertions into each gap of the
second catalog. This will cause each gap over e; to overflow and reach size 12d — 1. In the

FRACTIONAL CASCADING: PART 1 25

the concentrator

to avoid overcrowding,
T the figure has been
drawn with a maximum
T gapsizeof 1

the doubling graph D

Figure 9. The concentrator and the multiplier

next iteration through stage 3 these gaps will split and will push two new records to be
inserted into each gap of es (because 12d — 1 = 3d + 3d + 6d — 1). The gaps of eg now will
reach a size of 16d — 1 and will split the next time around, yielding four new insertions into
each gap of e4 (since 18d — 1 = 3d + 3d + 3d + 3d + 6d — 1). This pattern continues, with
the number of insertions into each gap doubling at each iteration. In the last splitting, 2*
secondary insertions will occur simultaneously in the one gap over e;.

The job of the multiplier is to produce in the same stage all insertions needed to start the
above process in the concentrator. It uses a doubling graph D(1) having an entry node u and
an exit node v, and in addition four other nodes arranged as in figure 9. The catalog A, has
only two records, both bridges delimiting the same gap. The catalog A, has three records,
again all bridges delimiting two gaps. The catalogs of the other nodes are easily arranged so
that an insertion into the gap of A, causes an insertion into each of the gaps of A, three
stages later. We need a total of about 12d + O(1) records for this.

If we stack up m copies of these augmented catalogs on top of each other we obtain D(™) a
graph where an insertion into each of the m gaps of A, will cause an insertion into each of the
2m gaps of A,. The multiplier is constructed by concatenating D) D@ . D(™) where

FRACTIONAL CASCADING: PART I 26

n is chosen so that 2" = (64)* + 1. This compound graph produces the grouped insertions
needed to feed the concentrator. The total size of our catalog graph is O((6d)") and the
number of insertions into a sigle gap it produces is 2*. This proves the bound mentioned at
the beginning if we fix k so that s = 6((6d)") and thus completes our construction.

Fractional Cascading: II
Applications

FRACTIONAL CASCADING: PART II 29

1. Introduction

As we saw in part I, fractional cascading is an algorithmic technique for searching several sets
at once. This generalized form of searching often arises in the solution of query problems.
Imagine that you come upon a word of unknown origin, which you wish to identify. One
solution is to look up the word in as many dictionaries as it will take to find it. Fractional
cascading gives you a way out of this repetitive search. It offers you the following alternative:
look up the word in one dictionary, and from then on jump directly into each of the other
dictionaries in constant time. To make this happen, the dictionaries will have to be somehow
reorganized, and linked together by some appropriate mechanism. We showed in part I that
all this rearrangement can be done at fairly little cost.

The goal of this second part is to present a number of problems whose solutions can be
significantly improved by using fractional cascading. Most of the algorithms presented are
short and simple. We believe that fractional cascading is a speed-up mechanism of practical
as well as theoretical relevance. One goal of this part will be to justify the first part of this
belief. From now on, we will assume that the reader is familiar with the basic terminology of
fractional cascading, such as sterative search, catalogs, multiple look-ups, etc. For convenience,
let’s recall the main findings of part 1.

Fractional Cascading: Let G be a catalog graph of size 8 and locally bounded degree
d. In O(s) space and time, it is possible to construct a data structure for solving the
iterative search problem. The structure allows multiple look-ups along a generalized path
of length p to be executed in time O(plog d+log 8). If d is a constant, this is optimal. The
data structure is dynamic in the following sense. If only insertions are performed, the
amortized time for each insertion will be O(log 8); the same holds for deletions. Arbitrary
insertions and deletions can also be done in O(log s) amortized time, but the query time
becomes O(plogdloglog s + log s).

How is this part organized and what will we find in it? The applications we consider in this
part all revolve around the notion of a query problem. In each case, one must design a database
to answer efficiently certain types of queries relative to some given objects. This will lead us
to examine problems of intersecting a line with a fixed polygonal path (Section 3), reporting
points lying inside a trapezoidal region (Section 4) or a hyperrectangle (Section 5}, performing
range search in the past (Section 6), computing locus-functions (Section 7), compressing
segment trees (Section 8), and extending query problems (Section 9). The reader puzzled by
these rather vague descriptions can skip to the appropriate sections for clarification. On the
last application, however, we wish to say a little more at this point. Section 9 concerns a
fairly general principle which best illustrates the power of fractional cascading.

In a standard query problem, call it IT, a query specifies a certain subset of the given objects,
and the goal is to compute this subset as fast and economically as possible. Often, however,
the objects themselves are pointers to files which, once identified, must then be searched
in a later stage[D. We call the resulting problem an IS-eztension of Il (iterative search
extension). What we will show in Section 9 is that with the use of fractional cascading
(almost) any solution to a query problem can be transformed into a solution to its IS-
extensions with little or no degradation of performance. This touches on a central aspect of
fractional cascading: its use as a postprocessing device. Most often, fractional cascading is
applied to a data structure at the very end stage of its development. What is remarkable is
that its applicability depends on syntactical rather than semantic characteristics of the data
structure. To have the basic appearance of a catalog graph is what really matters, and not
so much the particular mathematical domain within which the data structure’s semantics is
defined. This feature grants fractional cascading great versatility.

FRACTIONAL CASCADING: PART II 30

The notion of iterative search comes in two flavors. It is called explicit if the problem to be
solved makes explicit reference to a collection of catalogs. Queries are specified by a subset
of this collection along with a search key. In the applications we just mentioned, however,
iterative search is implicit. That is to say, the problems do not make mention of it in their
statements; they don’t even allude to it. It is only in the specific solutions chosen that iterative
search shows its face. For practical reasons, implicit iterative search is what justifies the use of
fractional cascading. We may still legitimately ask ourselves: how well understood is explicit
iterative search? We study this problem in the next section. In particular, we examine the
sensitivity of fractional cascading to the presence of high degree vertices in the catalog graph.

2. Explicit Iterative Search

Let S = {C},...,Cp} be a collection of p catalogs, and let s = EKKP |C:| be the combined
size of the catalogs. Ezplicit iterative search is the following problem: given a query of the
form (g, H), where q is a real number and H is a subset of {1,...,p}, compute the successor
of ¢ in C; for each ¢ € H (recall that the successor of ¢ in C; is the smallest element in
C; U {+oo} larger than or equal to g). We solve this problem by setting up the conditions
necessary for fractional cascading. Let G be a complete binary tree on p nodes, each associated
with a distinct catalog: G is called an emulation graph of S. For convenience, we refer to the
elements of H as nodes of G.

The idea is to apply fractional cascading to the emulation graph and answer the query by
traversing the minimum spanning tree T of H (figure 1). Each node of G will have a flag for
marking purposes. We compute T by iterating on the following process. Initially, all nodes of
G are unmarked. For each node v of H, traverse the path from v to the root, marking each
node along the way, and stopping as soon as a node already marked is encountered. At the
end of this process, the set of marked nodes forms a spanning tree of H. It is not necessarily
minimum since it always contains the root. We must now remove the branch joining the root
of G to the lowest common ancestor of the nodes of H. Let v be the root of G;ifvis not a
node of H and has a single marked child w, then unmark v and iterate with respect to w,
else stop. With T in hand, we can answer the query by performing multiple look-ups in the
catalogs attached to the nodes of 7.

-
-
- -

Figure 1. The emulation graph

A simple analysis shows that the time taken by the construction of T' as well as the search in
each catalog is O(|T|+1log). Let vq,...,v,, be the vertices of H sorted by increasing inorder
ranks. Let /; be the lowest common ancestor of v; and v;4 (1 < ¢ < m), and let h; denote the

FRACTIONAL CASCADING: PART II 31

number of ancestors of /; in G. A rough analysis shows that |T| < 237, . ,n_; (logp — h;).
Since fewer than 27 vertices among the I;’s can have fewer than j ancestors, we have

Yo (ogp-h)< > 2(logp-7),

1<i<m—-1 1<5< log m]

and therefore |T'| = O(m + mlog £). We conclude that the running time of the algorithm is
O(|H|log TI%T +log s).

The next question to decide is whether this result is optimal. After all, fractional cascading
allows us to use any graph of bounded degree as a supporting search structure, so one might
wonder whether a fancier catalog graph with, say, cycles to provide shortcuts can yield a
better performance. We show that this is not the case.

Lemma 1. Among all emulation graphs of S of bounded degree, the complete binary tree
on p nodes 18 asymptotically optimal.

Proof: Let G be an emulation graph of degree < d, and let H be a subset of m vertices
carefully chosen so as to make the minimum spanning tree T' of H as large as possible.
Let the distance between two vertices v and w be defined as the number of edges on the
shortest path between v and w. Let | = |logy | ~ 1. Pick a vertex v in G and mark
off all vertices at a distance less than or equal to [from v (this includes v). Next, pick a
non-marked vertex and iterate on this process until all vertices are marked. Since G has
bounded degree d, each iteration will mark at most d'*! vertices, therefore at least m
vertices will be picked in the process. Let H = {v1,...,Um} be the chosen vertices and let
T be any spanning tree of H. For each v;, there must exist at least one vertex w; in T at a
distance |//2| from v;. Let p; be the path in T between v; and w;. By construction of H,
the paths p,,...,p,, are vertex-disjoint, therefore the size of T' is at least the added size of

the p;, that is, Q(|H|log]—%[) |

Lemma 1 shows that our choice of G is adequate, but it still falls short of proving the
optimality of the technique. Why can’t a different method be used that perhaps bears no
relation with fractional cascading? What we will show is that no improvement can be expected
in a pointer machine model [T}, if H is given as a set of indices and not as a set of addresses.
Why is that so? Let’s ask ourselves: how many different collections of dictionaries can be
identified by taking t steps on a pointer machine? A single step gives a choice of at most ¢
memory accesses, for some machine-dependent constant c. Therefore “at most c* collections”
is the answer. But there are (:.) possible sets H, so t must be at least on the order of log, (;) .
As long as m = o(p%/4), we have the elementary asymptotic formula

3 3

(”) = ’E:—_%’;u +0(1)).

m
Using Stirling’s approximation

m! = m™e”™V2rm(1 + o(1)),
we find that ¢t must be at least on the order of

1 1
),

1 4

logc

FRACTIONAL CASCADING: PART II 32

that is, (mlog '%) This shows that, at least for m = o(p3/4), our algorithm is optimal. Keep
in mind, however, that this argument assumes that the catalogs are referred to by indices
and not by addresses.

Theorem 1. Let Il be an explicit sterative search problem involving p catalogs of combined
size 8. There ezists a data structure for solving Il such that any query can be answered
in O(mlog £ + logs) time, where m is the number of catalogs involved in the query.
The data structure requires O(s) space and can be constructed in O(s) time. Within the
contezt of fractional cascading, this result is optimal.

The naive method requires O(mlog 8) response time, so the scheme of Theorem 1 is superior
whenever the size of the catalogs exceeds their number (s > p), a situation of great likelihood
in practice. The solution is optimal when the number of catalogs queried is at least a fixed
fraction of the total number of catalogs (p = (2(m)).

We now turn our attention to implicit iterative search. Ironically, the problems for which
fractional cascading seems the best suited do not even suggest the notion of iterative search
in their statements. Their solutions, however, are inherently dependent on iterative search.
This situation occurs in many query problems, as we will see.

3. Intersecting a Polygonal Path with a Line

In this section we investigate the following problem: we are given a polygonal path P and wish
to preprocess it into a data structure so that, given any query line £, we can quickly report
all the intersections of P with £. The obvious method for solving this problem simply checks
each side of P for intersection with £. This method requires storage S = O(n), where n is the
length of P, and has query time Q = O(n). We desire a method with a query time of the form
Q = O(f(n) + k), where f(n) = o(n) and k is the number of intersections reported. Using
fractional cascading we are able to develop a technique that gives Q = O((k +1)log F%)
When k is a small constant, the running time is O(log n), which is optimal. When k = Q(n),
the running time is O(k), and this is also optimal. For intermediate values of k, the expression
of the query time suggests that the discovery of each intersection incurs the cost of a binary
search. This is actually a fairly accurate reflection of the searching strategy. Our solution
represents partial progress towards the desired goal.

The storage requirement of the method is O(nlogn), but in the case where the polygonal path
is simple, it can be reduced to O(n). This is another instance of an interesting phenomenon in
computational geometry, where the simplicity of a polygon reduces some required resource for
an algorithm by a factor of log n. Computing the convex hull is another well-known example.

The technique we propose in this section is based on the recursive application of the following
observation:

Lemma 2. A straight-line £ intersects a polygonal line path P if and only if £ intersects
the convez hull CH(P) of P.

Proof: Obvious. §

Let F(P) and S(P) denote respectively the first and second halves of the path P, that is,
the subpaths of P consisting of the first {n/2| and second [n/2] edges. Then our algorithm
is expressed very simply recursively as:

FRACTIONAL CASCADING: PART II 33

Intersect(P, £)

begin
if |[P| = 1 { single edge } then
compute P N £ directly
else if £ does not intersect C H(P) then exit
else
begin
Intersect(F(P), £)
Intersect(S(P), £)
end
end

Since we are allowed to preprocess P, it is to our advantage to precompute and store all
the convex hulls we may need. We can do this by a recursion similar to that above, where,
after obtaining CH(F(P)) and CH(S(P)), we compute CH(P) by any one of a number
of linear-time algorithms for computing the convex hull of two convex polygons [PH|. The
overall data structure that we thus build is best thought of as a binary tree T whose n leaves
are the edges of our path P (which coincide with their own convex hulls and from left to
right occur in the same order as in P). Interior nodes of the tree correspond in an obvious
way to subpaths of P and store the convex hull of their respective subpaths (figure 2).

A0

cn(s(P))

/I

Ocn(r(m
N

Figure 2. The convex hull decomposition

The tree T of convex hulls clearly takes O(n log n) space to store. The total time for computing
it is also O(n log n) since, by the discussion above, this time satisfies a recurrence of the form

T(n) = 7(|3)) + T([51) + O(n).

We must now look more closely at the implementation of our intersection algorithm. We
decide whether to descend into a subtree by testing for intersections between the convex hull
stored in its root and the line £. Even if we were to report only one intersection, the total
cost of all these tests would be

a(Zlog %) = Q(log? n),

FRACTIONAL CASCADING: PART II 34

since it costs O(logm) to test for intersection between a convex polygon of m sides and a
line, and in T’ we must trace at least one path down to the intersected edge. This is already
too expensive, so some additional weaponry must be brought into the battle. This is where
fractional cascading comes in.

The underlying tree T is a perfectly good graph of bounded degree. However, how are we to
view the “two-dimensional” (convex polygon, line) intersection problem as one of a iook-up
in a one-dimensional catalog? The answer is given by a simple observation. Let ¢;,...,cp,
be the vertices of a convex polygon given in clockwise order, and let ¢;x be the horizontal
ray emanating from c; towards z = +o0o. We define the slope of an edge c;c;;; as the
angle Z(c;z,c;ci41) € [0,2x). It is well-known that since C is convex there exists a circular
permutation of the edges of C such that the sequence of slopes is non-decreasing. This
sequence is unique, and is called the slope-sequence of C.

Lemma 3. Let s and &' be the two slopes of £ obtained by giving the line its two possible
orientations; if we know the positions of s and s' within the slope-sequence of a convez
polygon C, we can determine whether C and £ intersect in constant time.

Proof: In effect the positions in the slope-sequence tell us the vertices of C where the
tangents parallel to £ occur. The line £ will intersect C if and only if it lies between these
two tangents. §

Thus we view each node z of T as containing a catalog consisting of the slope-sequence of the
convex polygon associated with z. To these catalogs over T we apply fractional cascading.
The result is a more elaborate structure, but one still only requiring space O(nlogn). The
data structure allows us to implement all the (convex polygon, line) intersection tests required
by our algorithm, except for the one at the root, in constant time per test. By the previous
lemma, any time we need to decide whether to descend into a subtree, we just look up the
slopes of £ in that subtree’s root catalog and find the answer in constant time! There is, of
course, an O(logn) cost at the root of T to get the whole process started.

As a net result, the cost of our intersection algorithm is now reduced to O(log n+ size of
subtree of T actually visited) since, once we pass the root, we spend only constant effort
per node visited. Our claimed query time bound of O((k + 1) log #31) now follows from the
following lemma.

Lemma 4. Let T be a perfectly balanced tree on n leaves and consider any subtree S of T
with k leaves chosen among the leaves of T. Then,

|S| < k[logn] — k|logk| + 2k — 1.

Proof: In S there are k leaves and k — 1 branching nodes (outdegree 2). The size of S is
maximized when all the branching nodes occur as high in T as possible. Then the number
of remaining non-branching nodes in S is at most k([logn] — |logk]). B

We have finally shown,

Theorem 2. Given a polygonal path P of length n, it is possible in time O(nlogn) to build
a data structure of size O(nlogn), so that given any line £, if £ intersects P in k edges,

then these edges can be found and reported in time O((k + 1)log ;—'—'ﬁ)

We next show how the storage used can be reduced to O(n) when P is known to be simple
(i.e., non self-intersecting). The key lemma is

FRACTIONAL CASCADING: PART II 35

Lemma 5. If P is simple, then CH(F(P)) and CH(S(P)) have at most two common
tangents (figure 3).

Proof: Consider CH(P); the interior of this polygon is partitioned by the simple path
P into a number of simply connected regions: CH(P) \ P = U;R;. The regions R; are in
one-to-one correspondence with the edges of CH(P) that are not edges of P, except for
possibly the interior of P, if P is closed. To see this, note that for any point in CH(P)\ P
(except for points inside P, if P is closed) there is a path to infinity that avoids P. Thus,
regions containing such points must have on their boundary edges of C H(P) that are not
part of P. Furthermore, a particular region R can never have more than one such edge on
its boundary because P is connected.

(P}

midpoint

Figure 3. Sharing common tangents

Let us now examine the remaining boundary edges of this region R. Naturally, they are all
edges of P. Since they form a connected set, they must form a subpath of P. The order of
the edges along the subpath corresponds to the order of the same edges around R, with
one exception. That arises when the initial or final vertex of P is interior to R. In these
cases an initial or final segment of P may occur on the boundary of R twice.

Now let z be the midpoint of P that is the vertex separating F(P) from S(P). If an edge
e of CH(P) is a common tangent of CH(F(P)) and CH(S(P)), then e cannot be an edge
of P. The boundary of the region R of C H(P) bounded by e, with e removed, is a subpath
of P joining F(P) to S(P). Therefore z is on the boundary of R. Since z can be on the
boundary of at most two regions, there can be at most two common tangents. Note that
the regions on either side of z can be the same region R. In that case the edge e of C H(P)
associated with R is an edge of either CH(F(P)) or CH(S(P)), since z is encountered
twice when walking along the boundary of R. This implies that there are no common
tangents of CH(F(P)) and CH(S(P)): one is fully enclosed in the other. Note also that
one of the common tangents can be degenerate, in case z is on CH(P). B

Since CH(P) can be obtained from C H(F(P)) and CH(S(P)) by drawing the two common
tangents (if any exist) and then throwing away the interior segments of the convex hulls of
the parts, it follows that the total number of distinct edges used by all the convex hulls of T
is at most n + 2(n — 1) = 3n — 2. Therefore an algorithm with O(n) storage may be feasible.
Of course, a particular edge e may appear in many convex hulls. If we are to store it only
once, where should we store it? The answer is: “at the highest node of T whose associated
hull contains e”. It is easy to check that this node is well-defined. A similar trick has been

FRACTIONAL CASCADING: PART II 36

used by Lee and Preparata for edges that appear on many separators in their classic point
location paper [LP]. Thus, at each node of T only a certain subset of the edges of its convex
hull is stored, namely those that do not appear in hulls higher up in the tree. This particular
choice has a fortunate consequence.

Lemma 6. If we store each edge in the highest node in T in whose convez hull this edge
appears, then all the edges stored at a particular node form a contiguous interval of the
cycle of edges forming the convez hull of the node.

Proof: The edges stored with a node v of T' are exactly those which are not also edges of
the parent of v in T'. By the previous lemma, v and its brother have common hulls with at
most two common tangents. The assertion follows. j

Thus we can view the stored edges at each node as a catalog of slopes, and apply fractional
cascading. The lemma above implies that if the slope of a line £ we are looking up falls outside
of the stored catalog of a node v, then the answer we want is the same as what we get for the
parent of v. Again, we can in constant time per node locate the two tangents of the convex
hull associated with the node and parallel to £ (root excepted). So we have shown,

Theorem 3. Given a simple polygon path P of length n, it is possible in time O(nlogn) to
build a data structure of size O(n), so that given any line £, if £ intersects P in k edges,
then these edges can be found and reported in time O((k+ 1) log ;;‘_—1)

4. Slanted Range Search

Let E? be the Euclidean plane endowed with a Cartesian system of axes (Oz,0y). We will use
the term aligned rectangle to refer to the Cartesian product [a,8]x [0, c], for some positive reals
a,b,c. The aligned range search problem involves preprocessing a set V' of n points so that
for any aligned rectangle R, the set V N R can be computed efficiently. McCreight [M2] has
described a data structure, called a priority search tree, which allows us to solve this problem
in optimal space and time. The data structure requires O(n) space and offers O(k + logn)
response time, where k = |V N R| is the size of the output. Can the priority search tree be
extended to solve a more general class of range search problems? For example, consider adding
one degree of freedom to the previous problem. We define an aligned trapezoid as a trapezoid
with corners (a,0), (b,0) and (a,c),(b,d), with a < b, ¢ > 0, and d > 0. In the slanted range
search problem, the set to be computed is of the form V N R, where R is an aligned trapezoid.
Figure 4 illustrates the difference between the two problems. Note that slanted range search
is strictly more general than aligned range search. Informally, the “roof” of the range is now
of arbitrary slope. For this reason the priority search tree is inadequate. Instead, we turn to a
slightly more complicated data structure, which we develop in two stages. First, we outline a
data structure of linear size. Its response time is O(log? n + klog n), where k is, as usual, the
number of points to be reported. Then we show how to improve this solution by application
of fractional cascading.

A special case of slanted search has been solved by Chazelle, Guibas and Lee [CGL): given a
query line L, report all points of V' on one side of L. The algorithm, which is optimal in both
space and time, is intimately based on the notion of convez layers, a structure obtained by
repeatedly computing and removing the convex hull of V. This preprocessing partitions the
point set into a hierarchy of subsets, each of which lends itself to efficient searching. For the
purpose of slanted range search, we add a recursive component to the construction of layers.
To begin with, observe that without loss of generality we can assume that all points in V have

FRACTIONAL CASCADING: PART II 37

Aligned range search Slanted range search

Figure 4. Two cases of range searching

distinct z-coordinates. If this is not the case, we store each group of points with the same
z-coordinates in a linked list sorted by increasing y-coordinates. In this way, we may ignore
every point that is not first in its list. Each time a point is reported, the corresponding list is
scanned until we run into a point falling outside of the range. Of course, we can assume that
all points with negative y-coordinates have been removed. Next, we introduce the notion of
lower hull of the point set V', denoted L(V). If a4,...,a:,8+1,...,a; are the vertices of the
convex hull of V, given in counterclockwise order with a; (resp. a;) the point with minimum
(resp. maximum) z-coordinate, L(V) is defined as the sequence of points ay,...,a;. f V
consists of a single point, then L(V) =V.

We are now ready to describe the data structure. It is constructed recursively by associating
the list D(v) = L(V) with the root v of a binary tree G. Let W be the points of V' not in
L(V), and let v.l and v.r denote respectively the left and right children of node v. The data
structure D(v.l), associated with v.l/, is defined as the sequence of points L(W'), where W'
is the leftmost half of W. A data structure D(v.r) is defined similarly with respect to the
rightmost half of W (figure 5). The recursion stops as soon as W is empty, so G is finite:

its size is trivially bounded above by n. The construction procedure is executed by calling
BUILD(V root).

Build(C, v)

begin

if C = ¢ then stop

D(v) « L(C)

W « C\ L(C)

Let o be the l—J-vzﬂ]th largest z-coordinate in W.
Build(W N {z < a},I(v))

Build(W n {z > a},r(v))

end

Each data structure D(v) is now refined as follows: let D(v) = {(z1,¥1),...,(Zm,¥ym)} be
the lower hull at node v, with £; < 23 < ... < Zm. The two pieces of information of interest
at node v are:

(1) Abs(v) = {z1,...,Zm}, the sorted list of z-coordinates in D(v);

FRACTIONAL CASCADING: PART I1I 38

Figure 5. A tree of convex hulls

(2) Slope(v) = {azun | Ym—¥m=L} the sorted list of edge-slopes in D(v).
For explanatory purposes, we describe the query-answering process in two stages. A phase
preliminary to the query-answering process marks selected vertices of G using two colors,
blue and red. The red vertices are then used as starting points for the second stage of the
algorithm, where the remaining candidate vertices are examined. We successively describe
the algorithm, prove its correctness, and examine its complexity. As a convenient piece of
terminology, we introduce the notion of an L-peak. Let L be the line passing through the two
points (a,c) and (b,d), and let L™~ be the half-plane below L. We define the L-peak of D(v) as
the point of L~ N D(v) whose orthogonal distance to L is maximum (break ties arbitrarily).
The L-peak of D(v) is 0 if L~ N D(v) = ¢.

Stage 1: The algorithm is recursive and starts at the root v of G. In the following, D(v)

is regarded as the polygonal line with vertices (z1,1),...,(Zm;ym). The query trapezoid
R = {(a,0),(b,0),(a,c),(b,d)} falls in one of three positions with respect to D(v):

(1) D(v) intersects the vertical segment r, = {(a,y)|0 < y < c} at some edge [(zi=1,¥i-1),
(i, 9i)]: as long as the point (z;,y;) is defined and lies in R, report it and increment s
by one. If D(v) does not intersect r, but intersects the segment r, = {(b,y)|0 < y < d}
at some edge [(z;,y;),(Z;4+1,¥;+1)], then perform a similar sequence of operations. As
long as the point (z;,y;) is defined and lies in R, report it and decrement j by one. As
a final step, mark v blue. If v is a leaf of G then return, else recur on its children (figure
6, case 1).

(2) D(v) is completely to the left or to the right of R, that is, zm < a or z; > b: return
(figure 6, case 2).

(3) None of the above: mark v red and return (figure 6, case 3).

Stage 2: As long as there are some unhandled red vertices left in G, pick any one of them, say
v, mark it “handled” and compute (z,,y;), the L-peak of D(v). Next, perform the following
case-analysis:

(1) The L-peak of D(v) lies in R: report it, and initialize j to ¢ + 1. As long as the point
(z5,y;) is defined and lies in R, report it and increment j by one. Next, re-initialize j to
¢ — 1; as long as the point (z,,y;) is defined and lies in R, report it and decrement j by
one.

FRACTIONAL CASCADING: PART II 39
4
[
L .
~—p
case 1 I l
[b

_~

case 2

case 3

Figure 6. The various cases
(2) The L-peak of D(v) does not lie in R: mark red the children of v (if any).

The description of the algorithm will be complete after a few words on the implementation
of its basic primitives. The case-analysis of Stage 1 is performed by binary search in Abs(v)
with respect to a and b. In Stage £, the L-peak of D(v) is computed by performing a binary
search in Slope(v) with respect to the slope of L.

The correctness of the algorithm is established with the following observations. First of all,
it is clear that each point computed by the algorithm lies in R and is reported only once.
Secondly, for each node v examined, all the points of D(v) NV are reported. It then suffices
to show that each lower hull contributing a point in R is indeed examined. Let U denote the
set of vertices that must be examined by a correct algorithm, i.e., U = {v|D(v) contributes
at least one point to V N R}. Set

Uy={veU|D(v)Nnr,=¢ and D(v) Nry,= ¢}

and
U, ={veCG|D(v)Nr, #¢ or D(v)Nr, # P}

The sets U; and U; contain respectively red and blue vertices. Clearly (U \ U;) € Ua, and
this inclusion may often be strict. We omit the proof that: ’

(1) the path from any vertex of Uy to the root of G is a sequence of vertices in U, followed
by a sequence of vertices in U, (the latter sequence possibly empty);

FRACTIONAL CASCADING: PART II 40

(2) the path from any vertex of U to the root of G consists exclusively of vertices in U,.

These two remarks show that the algorithm visits each vertex of U 1 and U,, and is therefore
correct. Note that the computation of U; may fail to contribute any point to the output,
although it provides an important guiding mechanism, quite similar to the scheme followed
by the priority search tree. In particular, if a red node v has no intersections with the
trapezoid, then we never descend in G below v. This allows us to bound the number of such
“fruitless” visits by 2(|U;|+ |Us|). The recursive definition of nested lower hulls ensures that
U, consists of at most two paths, each of length O(log n). Since each visit of a vertex in
U, provides at least one output point, we easily bound the running time of the algorithm
by O(log2 n + klogn), where k is the output size. The storage required by the algorithm
is clearly O(n). The preprocessing time can be kept down to O(nlogn), provided that the
points of V' are sorted by z-coordinates at the outset of the computation. Repeated Graham
scans will provide each lower hull in linear time.

But we now have the stage set for fractional cascading. Visiting vertex v of G involves a
binary search in either Abs(v) or Slope(v). The keys to be searched are a, b, or the slope
of L. The graph G is of bounded degree and its traversal always involves a subgraph whose
vertices are examined in a connected sequence. We immediately conclude.

Theorem 4. Given a slanted range search problem on n points, there exists a data structure
of size O(n) that allows us to answer any query in O(k +logn) time, where k is the size
of the output. The data structure can be constructed in O(nlogn) time and is optimal.

5. Orthogonal Range Search

Let R¢ be the real d-dimensional Euclidean space endowed with a Cartesian system of refer-
ence (Ozy,...,0z4). A d-range R is a set specified by two points (ay, ..., aq) and (by,...,bq),
with a; < b;: we have

R= [al,bl] X [az,bgl X ... X [ad, bd]

Let V be a set of n points in R%. The orthogonal range search problem can be stated as
follows: given a query d-range, report all points of V N R. We direct our interest here to data
structures that require only O(nlog®n) space, for some constant ¢, and provide a response
time of O(log n+output size). As yet, such a data structure has been found only for the case
d = 2 [Ch1,GBT,W|. We show that one also exists for the case d = 3. The algorithm relies
on successive reductions to easier problems. We will proceed from the bottom, treating the
easy cases first. The desired result is approached through a series of subproblems in which
each new subproblem builds on the previous one.

Subproblem P1: Let V be a set of n points in ®? and let (Oz,Oy) be a Cartesian system
of reference. Consider the problem of computing the set V' (a,b) = {(z,y) € V|z < a and
y < b}, given any query point (a,).

This problem can be solved by a number of known data structures, including the priority
search tree of McCreight [M2]. To prepare the ground for fractional cascading, however, we
must choose a different approach. Consider the set of n vertical rays emanating upward from
the points of V. This set consists of the unbounded segments of the form [(z,y), (z, +0)],
obtained for each point (z,y) of V. To compute V (a, b), it suffices to identify all intersections
between these rays and the ray H = [(—o0,}),(a,b)]. We accomplish this task by using the
hive-graph structure described by Chazelle {Chl]. This data structure allows us to compute
all desired intersections in optimal time and space. Briefly, the hive-graph is a subdivision of
the plane built by adding horizontal segments to the original set of rays. Figure 7 illustrates

FRACTIONAL CASCADING: PART II 41

this construction. Dashed lines correspond to added edges. Without going into the details
of the structure, we must mention an essential feature of the query-answering process. To
find the intersections between the rays and the segment s, the hive-graph will first ask us to
compute the successor of b in some given catalog. The result of the search will then trigger
the report of each intersection at unit cost per report. The data structure requires O(n) space
and can be constructed in O(nlogn) time.

pecea

The | |ecccccancaa.
catalog {

Figure 7. The hive-graph

Subproblem P2: Next, we turn to a restricted case of three-dimensional range search, one
where the query R is of the form [a;,b;] X [0, b3] X [0, bs] (figure 8.1). We say that subproblem
P2 is based on the two halfspaces z > 0 and y > 0.

Let V' be a set of points {(z1,y1,21),.--,(Zn;¥n, 2n)}, given by their coordinates in a Carte-
sian system of reference, (Oz,Oy,Oz). We use Bentley’s notion of range tree [B] to reduce
this problem to O(logn) instances of subproblem P1. In O(nlogn) time, relabel the points
of V so that z; < z3 < ... < z,, and set up a complete binary tree T whose n leaves
correspond respectively to (z1,y1,21),...,(Zn; Yn, 2n) in left-to-right order. Each leaf of T
has a key, which we define as the z-coordinate of its associate point. We organize T as a
search tree, so that any successor of an arbitrary value among {z;,...,z,} can be computed
in O(logn) time. For each vertex v of T, let U(v) be the subset of V' induced by the leaves
descending from v. Let P(v) be the projection of U(v) on the plane z = 0. For each set P(v)
we construct the data structure described in the solution of subproblem PI1. Following the
paradigm of the range tree, we can decompose R into a logarithmic number of canonical
pieces. To do so0, we search for a; and b; in T'. Let v, be the leaf whose key is the successor
of b;. Symmetrically, consider the leaf whose key is the successor of a;, and let v, be its
predecessor. For simplicity, we assume that all these nodes are well-defined (special cases can
easily be integrated in a unified framework, but to preserve the continuity of the exposition,
we will not attempt to do s0). Let w, and wy be respectively the left and right children of the
lowest common ancestor of v, and v;. We define W as the set of nodes of T that are either
right children of nodes from v, to w,, or left children of nodes from v, to w;. Our original
problem can be solved by solving it with respect to the point sets associated with the nodes
of W. The benefit of this multiplication of work is that each subproblem is of lesser dimen-
sionality. So, the original query can be answered by applying the solution of P1I to each of
the sets { P(v)|v € W}. Note that the two-dimensional query for P! is specified by the point
(b, bs) in the yz-plane. Straightforward analysis shows that the time to preprocess the data

FRACTIONAL CASCADING: PART II 42

structure is O(nlog? n), the space used is O(nlogn), and the response time is O(k + log? n),
where k is the size of the output.

A
y
b3 i
I i
] L]
[]]
b2) :
............ § R A
,
4’
’
rd
4
4
4
0 : >
L3 b1
Figure 8.1
3
A
y
[)
]
b \
Y iR O g
t D A, -
] "
:
2 it 7
l" ,“
l' ’, > x
0 ' 51
Figure 8.2

Figure 8. Reducing the dimensionality of the query

FRACTIONAL CASCADING: PART II 43

Subproblem P3: Next, we generalize subproblem P2 by considering queries of the form
[a1,b1] x [as,b2] X [0,bs] (figure 8.2). P3 is said to be based on the halfspace z > 0.

The same complete binary tree T defined in the previous paragraph is used here, but in a
somewhat different way. Let vy (resp. vz) be the left (resp. right) child of the internal node
v € T, and let d(v) be any number at least as large as any z-coordinate in U(v,) and at
least as small as any in U(vz). Associate with v the data structure of P2 defined with respect
to U(v,) (resp. U(v;)) and based on (z > 0,z < d(v)) (resp. (2 > 0,z > d(v))). The data
structure can be constructed in O(nlog® n) time and requires O(nlog? n) space. How do we
answer a query? Starting at the root of 7, we compare d(root) against a; and a,.

(1) If a; < d(root) < a3, then we can apply the solution of P2, using the two data structures
associated with v. The computation will thus be complete.

(2) If d(root) < a;, then we iterate on this process by branching to the left child of the root.

(3) If d(root) > a3, then we iterate on this process by branching to the right child of the
root.

The running time of this algorithm will be O(logn) + t(n), where t(n) is the time to solve
two instances of subproblem P2. This brings the time complexity to O(log? n+ output size).

Subproblem P4: We are ready to return to the original problem: R is now specified by two
arbitrary points in ®3.

We modify the solution of P8 in the obvious manner. Each node of T becomes associated
with two data structures for solving not P2 but, of course, P3. A similar analysis shows that
the storage and preprocessing time leap up to O(n log® n) and O(nlog* n), respectively. The
response time remains O(log? n+ output size).

Let’s examine the data structure in its full expansion. What we have is essentially an in-
terconnection of hive-graphs. If we ignore the hive-graphs for a moment, but just concern
ourselves with their associated catalogs, we obtain a graph (actually a tree) of degree at
most five; a typical node is adjacent to one parent, two children, and two roots of auxiliary
structures. This gives us a perfect example of implicit iterative search. Or does it really? To
be consistent, we must provide catalogs to all the nodes, and not just a happy few. We can
do so by supplementing empty catalogs with a single key (+00). We are now in a position to
apply fractional cascading to this resulting catalog graph. An immediate savings of a factor
log n in query time will follow.

Theorem 5. There erists a data siructure for three-dimensional orthogonal range search
that allows us to answer any query in optimal O(k + logn) time, where k is the size
of the output. The data structure requires O(n log® n) space and can be constructed in
O(nlog! n) time.

6. Orthogonal Range Search in the Past

This section does not make use of fractional cascading per se but of its geometric counterpart,
the hive-graph [Chl], already mentioned in Section 5. As we will see in Section 10, however,
a hive-graph is a special case of fractional cascading, so the relevance of this material makes
its inclusion compelling. Consider the problem of querying a database about its present state
as well as about configurations it held at previous times. This task, traditionally known as
searching in the past, has already been well-researched [DM,0,Ch2,Co]. The question which
we ask in this section, however, has not been addressed before. Briefly, it concerns the problem

FRACTIONAL CASCADING: PART II 44

of recording the previous states of a data structure for orthogonal range search. The question
is not only of theoretical interest. Consider the case of a personnel database, where each
point of V' represents an employee’s record. Coordinates indicate attributes such as sex, age,
or salary. Over time, employees might be hired, fired, or simply have their records updated
(not the first attribute, we hope). A query will then become a pair (R,t), with the meaning:
report all points of V' that were inside the d-range R at time t. The time range stretches
from —oo to the present. The input is represented as a set V of n points in R¢; each point p
is assigned an interval [a,,b,| indicating its lifetime.

Our solution to this problem will be defined in two stages. For the time being, assume
that d = 2 and disregard the notion of time. The query range R is the Cartesian product
[%1,Z32] X [y1,y3]. Using Bentley’s range tree [B], we can perform two-dimensional range
searching in O(nlogn) space and O(k + log® n) time, where k is the size of the output. The
structure is similar to the one defined in the solution of subproblem P2 (Section 5). As usual,
each vertex v of T is associated with the set U(v) C V formed by the leaves descending from
v. The difference is that with each node v we associate a list C(v) of the points in U (v) sorted
by increasing y-coordinates. To answer a query, we perform two binary searches in the tree
and retrieve the nodes of the canonical decomposition of the query range R. For each such
node v, we compute the points of C(v) whose y-coordinates fall between y: and y,.

All this is very well-known, so where is the novelty of our structure? The key observation
is that since within each list examined only y-coordinates are relevant, we can free the z
dimension and use it to represent the lifetime of each point. The lifetime of a point p = (p,, Py)
will be represented now by a horizontal segment [(a,, p,), (bp, py)]. Instead of searching the
list C(v), we must now report all the segments of {[(a,,p,), (bp,p,)]lp € C(v)} that intersect
the vertical segment ((t,y1), (¢, y2)]. To do so, we use a hive-graph. This allows us to find all
desired ¢, intersections in time O(logn +t,). Constructing a hive-graph for p segments takes
O(plog p) time and O(p) space [Ch1], so preprocessing time and storage for the overall data
structure amount respectively to O(nlog? n) and O(nlogn). The query time is O(logn +
t,) per node, which gives a total of O(log® n + k), where k is the number of points to be
reported. Generalization to higher dimensions is straightforward, using Bentley’s technique
for multidimensional divide-and-conquer [B].

Theorem 6. It is possible to perform range searching in the past over a set of n d-
dimensional points in O(k + log® n) time and O(nlog®™! n) space, where k is the size of
the output. The preprocessing time s O(n logd n).

7. Computing Locus-Functions

Let V' be a set of n 2-ranges in the Euclidean plane R2, which we assume endowed with a
Cartesian system of reference (Oz,0Oy). A 2-range is the Cartesian product of two closed
intervals (recall the definition of a d-range in Section 5). We wish to compute functions of
the form
f:peR = f(p)€{0,...,n},

where f(p) might be defined as the number of 2-ranges containing p or as the index of
the largest (smallest) 2-range containing p; the notion of large or small refers to the area,
perimeter, width/height ratio, or any other suitable function of 2-ranges. We characterize
this class of functions as follows: a function G : 2V — {0,...,n} is called decomposable if
for any partition of a subset X C V into Y and Z, G(X) can be computed from G(Y) and
G(Z) in constant time [BSa]. We restrict our attention to these so-called locus-functions. Let

FRACTIONAL CASCADING: PART II 45

V (p) be the set of 2-ranges containing p; f is a locus-function if there exists a decomposable
function G such that f(p) = G(V(p)), for any p € R3.

Note that the problem of computing V (p), given any query point p, has been solved optimally
in [Chl]. The fact that f is single-valued makes the problem of computing locus-functions
more difficult. For this reason, we resort to a slightly redundant data structure, inspired by
Bentley and Wood’s segment tree [BW). We assume that the reader is familiar with this
notion. Let {z,...,Z3n} be the z-coordinates of the 2-ranges of V', sorted in non-decreasing
order. We construct a (2n — 1)-leaf complete binary tree G, placing the ith leaf of G' from
the left in correspondence with the interval [z;,z,41]. Each vertex v of G has a span, I(v),
defined as the union of all intervals associated with leaves descending from v. G induces a
canonical decomposition of each 2-range of V into O(log n) canonical parts. With each node v
distinct from the root, we associate the subset R(v) C V made of 2-ranges whose projections
on the z-axis contain the span of v but not the span of v’s parent. Vertex v is assigned a
catalog C(v) containing the y-coordinates, in sorted order, of all the 2-ranges in R(v). Note
that each 2-range in R(v) contributes two entries to the catalog.

Let p = (pz,py) and let f,(p) denote the restriction of f to the subset of 2-ranges in R(v).
Within the vertical slab {(z,y)|z € I(v)}, fu(p) can be computed in O(logn) time by per-
forming a binary search in C(v) for the key p,. To do so, it suffices to store the proper
answer in each entry of C(v) in preprocessing. We can now respond to any query as follows:
in O(logn) time, compute the set n(p) = {v € G|p € I(v)} by performing a binary search
in G for the key p,. The value of f(p) is obtained by combining together the partial an-
swers {f,(p)|v € x(p)}, at a total cost of O(log” n) operations. We omit the analysis of the
preprocessing time because of its dependence on the particular function f we are dealing
with. If f(p) denotes the number of 2-ranges that contain p, then it is trivial to guarantee an
O(nlog n) preprocessing time by scanning each C(v) linearly and updating partial counts on
the fly. If f is more exotic, this on-line method might not work, however.

Once again, using Bentley’s technique for multidimensional divide-and-conquer [B], we easily
generalize this scheme to higher dimensions. All definitions, necessary facts, and algorithms
are extended in a straightforward manner to the computation of locus-functions on d-ranges.
Each increase of one in dimension adds a factor of logn in storage and search time.

With the algorithm now described, we identify its iterative search component and apply
fractional cascading to improve its performance by a logarithmic factor. For the sake of
generality, we consider the case where V' consists of n d-ranges. The structure G consists of
d— 1 levels of nested binary trees. Each vertex is adjacent to at most four other vertices (one
parent, two children, one root of a structure of lesser dimension). The trees at the lowest
level do not have pointers to other tree structures but, instead, have a catalog associated
with each of their vertices. For consistency, vertices with no catalogs are assigned dummy

catalogs {+o0}. Each traversal of G clearly satisfies the connectivity requirement of fractional
cascading; we conclude.

Theorem 7. Given a set of n d-ranges in R?, it 18 possible to compute any locus-function
in O(log® ™! n) time, using a data structure of size O(nlog® ! n).

8. A Space-Compression Scheme

Data structures such as segment-trees [BW| and range trees [B] are suboptimal, space-wise.
It is possible to eliminate some of their redundancy and thus save storage, but this entails
some degradation in response time. Fractional cascading can be used, however, to slow down
the rate of degradation. We illustrate this point by returning to the problem of computing

FRACTIONAL CASCADING: PART II 46

locus-functions in two dimensions (see Section 7). We will show that the storage can be
reduced by a factor log log n, while increasing the query time by a factor log® n. We confess
that this result is of rather academic interest, and we would not have included it, had it not
illustrated the versatility of fractional cascading in such a simple way, as we will see now.

We borrow notation from Section 7. Let {z1,...,Z2n} again be the z-coordinates of the
2-ranges of V', sorted in non-decreasing order, and let a be a positive integer. Construct a
(2n—1)-leaf complete a-ary tree G by placing the ith leaf of G from the left in correspondence
with the interval [2;,z;,1]. The span of vertex v is defined as before: I(v) is the union of all
intervals associated with leaves descending from v. As usual, R(v) C V designates the set of
2-ranges whose projections on the z-axis contain the span of v but not the span of v’s parent.
Unfortunately, storing all these sets is too expensive, so a redefinition of R(v) is in order. Let
V1,...,Vq be the children of v from left to right and let R be any 2-range of V' that appears in
at least one R(vx) (k=1,...,a). Note that the indices k such that R € R(v) (if any) form
a consecutive interval (s, j]. In general, we will have either = 1 or j = . The inequalities
1 <1 < j < acan take place only at the highest node used in the canonical decomposition
of R. For this reason, we can spend freely in the latter case, but we must show restraint in
the others. We construct the sets R;(vi), R,(vi), R:(vk) as follows:

(1) If i = 1, include R in R;(v;).
(2) If j = a, include R in R,(v;).
(3) 1 <i<j<a,include Rin Ry(v;),..., R:(v;).

It is easy to understand the whys and wherefores of this construction. Given the interval-
like occurrences of R among brother vertices, the collection of sets Ri(vi), Rr(vi), Re(vi)
provides an implicit representation of the collection of sets R(vi). With each set R.(vi), we
associate the catalog C.(vi) defined in Section 7. Note that except for one level each 2-range
R can appear at most twice at each level of G. This contributes O(n%ﬁ%) to the storage.
The exception corresponds to the highest-level occurrences of R, which come in batches of

at most a. Consequently, the data structure requires O(n}%ﬁ—:—‘ + an) space.

To answer a query p = (ps, py), we first collect all vertices whose spans contain p. For each
such vertex, we consider the children of its parent in left-to-right order, vy,...,vq. Let v;
be the vertex in question. For obvious reasons, f,,(p) can be computed by searching for Py
in the catalogs C,(vy1),C,(v2),...,Cr(v), and Ci(v;),Ci(vit1),-..,Ci(va), and if 1 < ¢ < a,

also C;(v;). This scheme yields an overall O(al—l‘-’c{‘——a'l) response time.

A standard binary representation of G allows us to apply fractional cascading (see Knuth [K],
for example). Let vy,...,v, be the children of v from left to right. We remove all pointers
from v to vs,..., v, and replace them by pointers from v; to v;4;, for s = 1,2,...,a —~ 1
(figure 9). To each node v, we now attach a little chain of three consecutive nodes, assigned
to the catalogs C;(v), C,(v), and C;(v), whenever these are well-defined. The data structure
forms a catalog graph of bounded degree. Application of fractional cascading immediately
takes the running time down to O(a:%g% + logn). Setting a = |(logn)¢|, we obtain the
following result.

Theorem 8. Given a set of n 2-ranges in R? and any positive real €, it is possible to

compute a locus-function in O(log'** n) time, using O(n loLolo:n space.

FRACTIONAL CASCADING: PART II 47

FAVAVAVAVAVAN

Figure 9. Putting each node in normal form
9. lterative Search Extensions of Query Problems

In practice one is often faced with query problems which are not quite the standard prob-
lems studied in the literature, but natural generalizations thereof. A typical occurrence of
orthogonal range search (Section 5) can be found in a personnel division’s database. A query
involves retrieving the names of all employees whose attributes fall in a certain range. What
is often desired, however, is not so much the names of the employees but additional infor-
mation about them. To satisfy this request will involve looking up some files (or catalogs)
associated with each employee. Unfortunately, this extra work cannot be nicely integrated
within a more general range search problem. The only recourse is then to search separately
the files of each employee selected by the range search. In the best case, this may multiply
the running time of the algorithm by a logarithmic factor.

We will show that with a little care asymptotically no extra work need be done in order to
retrieve the complementary information desired. This result does not apply only to range
search but to a host of other query problems. One advantage of our approach is its general-
ity. We investigate a number of algorithms for query problems and show that by a generic
modification each can be made to accommodate the additional requests mentioned above.
Before proceeding any further, we must formalize this notion of additional request.

Consider the following class of problems: let V' be a data set, @ a (finite or infinite) query
domain, and P a predicate defined for each pair in V' x Q. Preprocess the set V so that the
function ¢ defined as follows can be computed efficiently:

9:9€Q—g(q)€2Y; g(q) = {veV|P(v,q) is true }.

In the orthogonal range search problem, V is a set of points in R3, ¢ is a d-range and g(q)
is the set V N q. For any query problem II we define an iterative search problem II*: each
element v € V is associated with a distinct catalog C(v) defined over a totally ordered set
X. A query for IT* is a pair (¢, z) in Q@ X X; the problem is to compute the successor of z in
each catalog of {C(v)|v € g(q)}.

FRACTIONAL CASCADING: PART II 48

Definition . Problem II* is called the IS-eztension of problem II.

The term “IS-extension” is a short-hand for iterative search extension. One nice feature
shared by many algorithms for query problems is that they operate on graph structures.
The memory is often organized as a tree, a dag, or more generally a graph of bounded
degree, which the algorithm traverses in a connected manner when answering a query. This
feature allows us to transform these algorithms generically via fractional cascading. We next
characterize the class of algorithms to which these transformations apply. This leads to the
definition of a retrieval reference algorithm or RRA for short. Let A be an algorithm for
problem II; we say that 4 is an RRA if and only if:

(1) The underlying data structure of 4 is a graph G of bounded degree. Each vertex of G
is associated with at most one element of V, but elements of V may appear in several
vertices.

(2) The output of 4, i.e., {v € V|P(v,q) is true }, is a subset of the data stored at the
vertices visited during the computation.

(3) The computation is modelled by a sequence of stages, each of which corresponds to one
or several actual steps of the algorithm. To each stage t corresponds a vertex v(t) € G;
for each v(t) (except for at most a constant number of them) there exists an edge of the
form (v(t'),v(t)) with ¢/ < ¢.

(4) The mapping between v(0),v(1),... and the steps of the algorithm is trivial. Transform-
ing the algorithm so that it outputs the name of the current vertex v(t) at each step can
always be done without slowing down the algorithm by more than a constant factor.

Note that these requirements do not in any way define a model of computation. These are
only necessary and sufficient requirements for an algorithm to be an RRA. We will find that
although a number of algorithms for query problems can be immediately seen as RRA’s,
many others have to undergo minor transformations in order to be readily recognized as
such. Here are some examples of query problems which admit of RRA’s. This list is given for
illustrative purposes and is not meant to be comprehensive.

(a) Interval Overlap: Given a set V of intervals and a query interval g, report the intervals
of V' that intersect ¢ [Chl,E,M1,M2].

(b) Segment Intersection: Given a set V of segments in the plane and a query segment g,
report the segments of V' that intersect ¢ [Ch1,DE,EKM].

(c) Point Enclosure: Given a set V of d-ranges and a query point ¢ in R, report the
d-ranges of V that contain ¢ [Ch1,E].

(d) Orthogonal Range Search: Given a set V of points in R and a query d-range g,
report the points of V that lie inside ¢ [B,Ch3,GBT M2,W].

(e) Rectangle Search: Given a set V' of d-ranges and a query d-range ¢, report the d-ranges
of V that intersect ¢ [Ch3,GBT].

(f) Triangle Retrieval: Given a set V' of points in E? (resp. E®) and a query triangle (resp.
tetrahedron) ¢, report the points of V' that lie within z [CY,EH,EW,Y].

(g) Circular Range Query: Given a set V' of points in E? and a query circle g, report the
points of V' that lie within ¢ [CCP)].

FRACTIONAL CASCADING: PART II 49

(h) k-Nearest-Neighbor: Given a set V of points in E? and a query of the form (g, k);
q € E?, k integral > 0, report the k points of V' closest to ¢ [CCP}.

Retrieval reference algorithms are best understood in the broader context of the pointer
machine model [T]. This model includes most algorithms free of address calculations: this
rules out, for example, hashing, radix sort, and operations on dense matrices. In the pointer
machine model, the memory is represented by a directed graph with one vertex per piece of
data and one edge per pointer. The computation involves visiting vertices of the graph in such
a way that going from one vertex to another requires the presence of a directed edge from the
origin to the destination. New pointers are provided by requesting new memory cells from
a free list; they cannot be created by arithmetic operations. Sometimes, solutions to query
problems do require address calculations to perform binary search in linear arrays. This is
not a major handicap, however, since it is easily fixed by substituting balanced search trees
for arrays. With these remarks, checking each of the references accompanying the problems
listed above leads to the straightforward conclusion:

Lemma 7. All solutions to the eight problems referenced above (which include the most
efficient known to date)} are of the type RRA.

The main result of this section states that any RRA for a query problem II can always
be generically transformed into an algorithm for solving its IS-extension. To alleviate the
notation, we make the simplifying assumption that the catalogs are each of the same size m.

Theorem 9. Let Il be a query problem defined over a set V of size p, and let A be an RRA
for solving I1. Assume that A requires O(f(p)) space and has O(g(p) + k) response time,
where k is the size of the output. Let TI* be the IS-extension of Il obtained by associating
a catalog of size m with each element in V. Then there exists a data structure for solving
I1*, which requires O(mf(p)) space and O(logm + g(p) + k) response time.

Proof: Let G be the graph used in modelling £ as an RRA. To each vertex of G corresponds
at most one element of V', hence one catalog (possibly reduced to +oo if the vertex does
not store any element). Since T has bounded degree, we can apply fractional cascading to
its associated set of catalogs. To answer a query, look up the search key z in the catalog
associated with v(0); at any subsequent step ¢ > O retrieve the relevant successor in the
catalog associated with v(t). B

Since both interval overlap and point enclosure can be solved in optimal space and time, so
can their IS-extensions [Chl]. If m = O(n), the algorithms for each of the other problems
mentioned above have the same complexity as the algorithms for their IS-extensions. In
general, note that since the function f grows at least linearly, the storage used for solving
II* is also O(f(n)), where n = pm is the size of the input. The naive algorithm for solving
T* consists of applying 4 and looking up the search key z in each of the k catalogs found.
This scheme uses only O(n + f(p)) space but may need as much as O(g(p) + klogm) time.

10. Other Applications

To illustrate the wide applicability of fractional cascading, we wish to report briefly on other
related work. The idea of propagating fractional samples has already been used in a number of
different specific contexts [Ch1,Co,EGS). Interestingly, in all three cases, fractional cascading
provides a unifying framework in which to understand these results. Let’s take the case of
the hive-graph, for example. We briefly recall this technique (see [Ch1] for details). Given a

FRACTIONAL CASCADING: PART II 50

set of horizontal segments, construct a planar subdivision by adding, for each endpoint p, the
longest vertical segment passing through p that does not properly intersect any horizontal
segment. This is our base subdivision (figure 10). We refine it by adding new vertical segments,
so that every face ends up with at most a constant number of vertices. As we can see, it is
not immediate that such a property can be ensured without adding a quadratic number of
segments. The novelty of [Chl] was to show that by propagating only every other vertical
segment, the size of the planar subdivision remains linear.

s s (M) e

a (vy)

('5)

(V‘)

Figure 10. The base subdivision

How can we interpret this result in terms of fractional cascading? Every horizontal segment
corresponds to a node of the catalog graph; catalogs are made of the z-coordinates of the

FRACTIONAL CASCADING: PART II 51

vertices on each segment; edges connect nodes whose corresponding segments are visible from
each other (where segment a is visible from segment b if there exists a vertical segment that
connects a and b, and does not intersect any other segment). In figure 10, for example, node
vy is adjacent to vs, vs, and vy. Its catalog is the list of z-coordinates {g,a,b, f}.

Other results that can be interpreted in terms of fractional cascading or that make explicit
use of it include algorithms for

(a) Planar point location: locate a point in a planar subdivision [Co,EGS].
(b) Point enclosure: find d-ranges containing a query point [Chl].

(c) Homothetic range search: report the points falling in a query 2-range of fixed aspect-ratio
[CE].

(d) 8d-Domination search: range search in R* for queries of the form [0,a] x [0,5] x [0, ¢]
[CE].

(e) Intersection search: find the intersection of a polygon with a query segment [CG].
11. Concluding Remarks

The contribution of this paper has been to show the versatility of a new data structuring
technique, called fractional cascading. The technique seems simple and general enough to
have many practical applications. Besides those studied in this paper, one should mention
the relevance of fractional cascading to external searching in general. Since it works on a
pointer machine, fractional cascading can handle situations where the collection of catalogs
is very large, but where each of them can be stored on one or a small number of pages. It
would be interesting to determine if such a scheme can outperform hashing techniques in
practice,

One of the most interesting open problems is to determine whether fractional cascading
extends to higher dimensions. Imagine that a catalog is a planar subdivision, and the “suc-
cessor” of a query point is the name of the face that contains it. Can iterative search be
speeded up? As usual, we may try to merge all the subdivisions into one master subdivision.
The catch is that merging together two subdivisions of respective size [and m may result
in a subdivision of size ©(Im). This contrasts with the nice property of linear lists: merging
two of them only adds their sizes. Why is this extension so important, anyway? Various data
structures for near-neighbor problems involve a hierarchy of Voronoi diagrams. A query in-
volves selecting a few of them and performing repeated point locations. Results similar to the
ones we have obtained with fractional cascading would bring about dramatic improvements
to the best solutions known to date.

Acknowledgments: We wish to thank Bob Tarjan for his many helpful comments and
suggestions. The proof of Lemma 1, in particular, is due to him. We also thank Cynthia
Hibbard for her many suggestions that improved the exposition.

FRACTIONAL CASCADING 53

References

[B]

[BKZ)

[BSa]

[BS]

[BW]

[Ch1]

[Ch2

[Ch3)

Bentley, J.L. Multidimensional divide-and-conquer, Comm. ACM, 23, 4 (1980), 214~
229,

van Emde Boas, P., Kaas, B., and Zijlstra, E. Design and implementation of an effi-
cient priority queue, Math. Syst. Theory 10, 1977, pp. 99-127.

Bentley, J.L., Saxe, J.B. Decomposable searching problems I: static to dynamic trans-
formations, J. of Algorithms 1 (1980), 301-358.

'Bentley, J.L., Shamos, M.I. A problem in multivariate statistics: Algorithms, data
structures and applications, Proc. 15th Allerton Conf. Comm., Contr., and Comp.
(1977), 193-201.

Bentley, J.L., Wood, D. An optimal worst-case algorithm for reporting intersections of
rectangles, IEEE Trans. Comput., Vol. C-29 (1980), 571-577.

Chazelle, B. Filtering search: A new approach to query-answering, Proc. 24th Ann.
Symp. Found. Comp. Sci. (1983), 122-132. To appear in SIAM J. on Computing,
1986.

Chazelle, B. How to search in history, Information and Control, 1985.

Chazelle, B. A functional approach to data structures and its use sn multidimensional
searching, Brown Univ. Tech. Rept, CS-85-16, Sept. 1985 (preliminary version in 26th
FOCS, 1985).

[CCP] Chazelle, B., Cole, R., Preparata, F.P., Yap, C.K. New upper bounds for neighbor

[CE]

[CG]

[CGL)

[Col

searching, Tech. Rept. CS—84-11 (1984), Brown Univ.

Chazelle, B., Edelsbrunner, H. Linear space data structures for a class of range search,
to appear in Proc. 2nd ACM Symposium on Computational geometry, 1986.

Chazelle, B., Guibas, L.J. Visibslity and intersection problems in plane geometry, Proc.
1st ACM Symposium on Computational Geometry, Baltimore, MD, pp. 135-146, June
1985.

Chazelle, B., Guibas, L.J., Lee, D.T. The power of geometric duality, BIT, 25 (1),
1985. Also, in Proc. 24th Ann. Symp. Found. Comp. Sci. (1983), 217-225.

Cole, R. Searching and storing similar lists, Tech. Report No. 88, Courant Inst., New
York Univ. (Oct. 1983). To appear in J. Algorithms.

FRACTIONAL CASCADING 54

[CY] Cole, R., Yap, C.K. Geometric retrieval problems, Proc. 24th Ann. Symp. Found.
Comp. Sci. (1983), 112-121.

[DE] Dobkin, D.P., Edelsbrunner, H. Space searching for intersection objects, Proc. 25th
Ann. Symp. Found. Comp. Sci. (1984).

[DM] Dobkin, D.P., Munro, J.I. Efficient uses of the past, Proc. 21st Ann. Symp. Found.
Comp. Sci. (1980), 200-206.

[E] Edelsbrunner, H. Intersection problems in computational geometry, Ph.D. Thesis, Tech.
Report, Rep. 93, IIG, Univ. Graz, Austria (1982).

[EGS| Edelsbrunner, H., Guibas, L.J., Stolfi, J. Optimal point location in a monotone subdi-
viston, to appear in SIAM J. Comp. Also DEC/SRC research report no. 2, 1984.

[EH] Edelsbrunner, H., Huber, F. Dissecting sets of points in two and three dimensions,
forthcoming technical report, IIG, Univ. Graz, Austria, 1984.

[EKM]Edelsbrunner, H., Kirkpatrick, D.G. Maurer, H.A. Polygonal intersection search, In-
form. Process. Lett. 14 (1982), 74-79.

[EW] Edelsbrunner, H., Welzl, E. Halfplanar range search in linear space and O(n%-6%%)
query time, Tech. Report, F-111, IIG, Univ. Graz, Austria (1983).

[FMN] Fries, O., Mehlhorn, K., and Naher, St. Dynamization of geometric data structures,
Proc. 1st ACM Computational Geometry Symposium, 1985, pp. 168-176.

[GBT) Gabow, H.N., Bentley, J.L., Tarjan, R.E. Scaling and related techniques for geometry
problems, Proc. 16th Ann. SIGACT Symp. (1984), 135-143.

[GT] Gabow, H. N., and Tarjan, R. E. A linear-time algorithm for a special case of disjoint
set union, Proc. of 24-th FOCS Symposium, 1983, pp. 246-251.

(IA] Imai, H. and Asano, T. Dynamic segment intersection search with applications, Proc. of
25-th FOCS Symposium, 1984, pp. 393-402.

(K] Knuth, D.E. The art of computer programmming, sorting and searching, Vol. 3, Addison-
Wesley, 1973.

[LP] Lee, D.T., Preparata, F.P. Location of a point in a planar subdivision and its applica-
tions, SIAM J. Comput., Vol. 6, No. 3, pp. 594-606, Sept. 1977.

[M1] McCreight, E.M. Efficient algorithms for enumerating intersecting intervals and rect-
angles, Tech. Rep., Xerox PARC, CSL-80-9 (June 1980).

FRACTIONAL CASCADING 55

[M2]

O]

[PH]

[Y]

McCreight, E.M. Priority search trees, Tech. Rep., Xerox PARC, CSL-81-5 (1981).

Overmars, M.H. The design of dynamic data structures, PhD Thesis, University of
Utrecht, The Netherlands, 1983.

Preparata, F.P., Hong, S.J. Convez hulls of finite sets of points in two and three
dimensions, Comm. ACM, vol 20, (1977), 87-93.

Tarjan, R.E. Amortized computational complezity, SIAM J. on Comp., to appear.

Tarjan, R.E. A class of algorithms which require nonlinear time to maintain disjoint
sets, J. Comput. System Sci., 18 (1979), 110-127.

Vaishani, V.K., and Wood, D. Rectilinear line segment intersection, layered segment
trees, and dynamization, J. Algorithms, vol. 3, 1982, pp. 160-176.

Willard, D.E. New data structures for orthogonal queries, to appear in SIAM J. Com-
put.

Yao, F.F. A 8-space partition and its applications, Proc. 15th Annual SIGACT Symp.
(1983), 258-263.

FRACTIONAL CASCADING

57

Index

aligned range search: 36

aligned trapezoid, defined: 36
amortized complexity analysis: 13
amortized time: 4, 23

augmented catalog,
defined: 4
representation in the data structure: 6
role in answering a multiple look-up query:
7-8
role in dynamic fractional cascading: 19-24
role in constructing the fractional cascad-

ing structures: 9-13
binary search: 3, 39, 40, 44
bridges,
defined: 4
mentioned: 10, 11, 14, 16
properties of: 7
B-tree: 19,20

catalog, (see also augmented and original)
defined: 2
mentioned: 29

catalog graph,
defined: 2

emulation catalog graph:
mentioned: 31
preprocessing of: 3

10, 13
companion bridge: 4
24-26

32-36

convex layers: 36

17, 30, 31

clusters:

concentrator:
convex hull:

correspondence dictionary: 4
emulation catalog graph: 17, 30, 31

field (in a record),

C-pointer: 6
companion-pointer: 7
count: 7

down-pointer: 6
edge: 7

flag-bit: 6

key: 6

prev-bridge-pointer: 7

rank: 7

up-pointer: 6
fractional cascading, concept introduced: 1
fractional cascading data structure,

complexity of: 13-15
construction of: 9-13
dynamization of: 19-24

goals it must accomplish: 4

hive-graph as special case of: 49-51

implementation requirements when made
dynamic: 6

important accomplishment of: 3

key property of, in relation to gap size: 5

key to design of: 6

main result summarized: 3

static description of: 2-4

use as postprocessing device: 29

use in solving iterated search problem:

versatility illustrated: 46

3-4

gap, defined: 5

gap invariant: 5,7,9, 11, 13, 14
gateways,
defined: 18-19

mentioned: 20
generalized path, defined: 2

hive-graph: 24, 40-41, 43, 44, 49-51

iterative search,
example of: 1
explicit flavor:
implicit flavor:
mentioned: 29
problem, formally defined: 3

48, 49

30-32
30, 32, 43

iterative search extension:

L-peak: 38
leaf-queue: 17
locally bounded degree, defined: 2

FRACTIONAL CASCADING

58

locus-functions,
computing: 44-45
defined: 44
problem of computing, revisited: 45

lower hull: 37, 40

multidimensional divide-and-conquer:
45

multiple look-up query,
answering a: 7-8
defined: 3
mentioned: 29

multiplier: 24-26

original catalog: 4, 6,7

orthogonal range search problem,
defined: 40
example of: 47

priority search tree: 36

query answering: 38, 41, 44
query copy, of data structure: 22

query problem,
introduced: 29
iterative search extension of: 29, 48, 49

range, defined: 2

range enhancement: 3

range search problems: 36, 40, 43
range tree: 41,44

rank: 10

ranking process: 10

records,
adding a new record: 9-11
properties of, in augmented catalog: 6
properties of, in original catalog: 6
role of: 2

retrieval reference algorithm: 48-49

sampling order: 9

slanted range search problem: 36, 40
slope sequence, defined: 34

star tree, defined: 16

survival copy, of data structure: 22

44,

transit edge: 18
transit vertices:

up-pointer field:

19

6

SRC Reports

“A Kernel Language for Modules and Abstract Data
Types.”

R. Burstall and B. Lampson.

Report #1, September 1, 1984.

“QOptimal Point Location in a Monotone
Subdivision.”
Herbert Edelsbrunner, Leo J. Guibas, and Jorge
Stolfi.

Report #2, October 25, 1984.

“On Extending Modula-2 for Building Large,
Integrated Systems.”

Paul Rovner, Roy Levin, John Wick.

Report #3, January 11, 1985.

“Eliminating go to’s while Preserving Program
Structure.”
Lyle Ramshaw.
Report #4, July 15, 1985.

“Larch in Five Easy Pieces.”
J. V. Guttag, J. J. Horning, and J. M. Wing.
Report #5, July 24, 1985.

¢A Caching File System for a Programmer’s
Workstation.”
Michael D. Schroeder, David K. Gifford, and Roger
M. Needham.
Report #86, October 19, 1985.

“A Fast Mutual Exclusion Algorithm.”
Leslie Lamport.
Report #7, November 14, 1985.

“On Interprocess Communication.”
Leslie Lamport.
Report #8, December 25, 1985.

“Topologically Sweeping an Arrangement.”
Herbert Edelsbrunner and Leonidas J. Guibas.
Report #9, April 1, 1986.

“A Polymorphic A-calculus with Type:Type.”
Luca Cardelli.
Report #10, May 1st, 1986.

“Control Predicates Are Better Than Dummy
Variables For Reasoning About Program
Control.”

Leslie Lamport.
Report #11, May 5, 1986.

clilgliltiall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

seqinn ‘p sepIUoaT| pue ajjazey") pieulag Aq

