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Author’s Abstract

When explicit control predicates rather than dummy variables are used, the Owicki-
Griesmethod for proving saf ety propertiesof concurrent programs can be strengthened,
making it easier to construct the required program annotations.

Capsule Review

If the recipe for program verification is reduced to one sentence, it is“Use invariants.”
For aprogram that includes more than one process executing concurrently, the relevant
invariant may involve private variables, shared variables, and the program counters of
thedifferent processes. The simplerecipe becomes hard to follow, because it isdifficult
to factor the invariant into manageabl e pieces.

This paper begins with a self-contained introduction to the basic methods for writing
and verifyinginvariantsof concurrent programs. Thegoa of these methodsisto factor
the global invariant into local pieces that are attached as annotations to pointsin the
program text, and simultaneoudy to factor the proof of invariance into cases. The
standard Owicki-Gries method and a strengthened version of it are considered in some
detail.

Two techniques are available for representing control state in the invariant: control
predicates and dummy variables. At first it seems that the choice between the two is
amatter of technical taste, but the paper argues that control predicates are compatible
with the strengthened Owi cki-Gries method, while dummy variables are not.

Greg Nelson
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1 Introduction

The Owicki-Gries method, an extension to concurrent programs of Floyd's method [ 3]
for proving partial correctness of sequential programs, was developed independently
by Owicki and Gries[11] and by us[8]. These two presentations of the method differed
intwo ways. First, Owicki and Gries used a conventional structured programming lan-
guagewhilewe used aflowchart language. Thiswasapurely syntactic difference.! The
second, more significant difference, involved how control information is represented.

In the Owicki-Griesmethod, as in Floyd'smethod, a program is annotated by attaching
assertionsto control points. Themajor part of the proof invol vesshowing theinvariance
of the annotation [7]. In Floyd's method, the assertions mention only the program’s
variables. However, for concurrent programs, the assertions attached to one process
must aso refer to the control state of other processes—that is, they must be functions
of the values of other processes “program counters’. The presentationsin [11] and
[8] differed in how dependence on the control state was expressed. In [11], Owicki
and Gries avoided explicit mention of the control state by using dummy variables>—
variablesintroduced only for the proof—to encode control information. 1n[8], we used

control predicates—assertions that explicitly mention the control state.

Since control predicates can be simulated by dummy variables, it appears that choosing
between the two approaches is purely a matter of taste. We have preferred to use
control predicates both for aesthetic reasons and because they are necessary for certain
extensions of the method [10]. However, when applying the standard Owicki-Gries
method, there seems to be no basic difference between the two approaches.

In this paper, we show that there is a real difference between control predicates and
dummy variables. Although dummy variables can represent the control state, the
implicit nature of this representation limits their utility. The use of explicit control
predicates allows a strengthening of the ordinary Owicki-Gries method that makes it
easier to write annotations.

Our strengthening of the Owicki-Gries method eliminates a well-known weakness in
the original method. Assertional methodsfor proving safety propertiesinvolve proving
the invariance of an assertion. In the Ashcroft method [1], one writes a single global
assertion; in the Owicki-Gries method, the global assertion is decomposed into an
annotation of the program. It often happens that when the global invariant used in an
Ashcroft-method proof is decomposed in the obvious way, the original Owicki-Gries
method cannot proveitsinvariance; adifferent and often more complicated annotation
must be used. Thisisnot the case withthe strengthened version. If the Ashcroft method
can prove invariance of aglobal assertion, then the strengthened Owicki-Gries method
can provethe invariance of the corresponding annotation.

1The syntax used by Owicki and Gries suggested that they were extending Hoare's method [4], but this
was not the case. See [10] for ageneralization of Hoare’'s method to concurrent programs.
2They have also been called “auxiliary variables’, “ghost variables’, and “thought variables”.



Strengthening the Owicki-Gries method makes it easier to construct proofs; it does
not change what can be proved. The globa invariant used in an Ashcroft-style proof
can always be trand ated into a proof with the original Owicki-Gries method by simply
attaching the global invariant to al control points, though of course this defeats the
whole purpose of the method, which is to decompose the invariant. Moreover, even
though the original Owicki-Gries method fails on one simple decomposition of the
invariant, there may be another equally simple decomposition for which it does work.
What we claimisthat using the strengthened method requires|ess cleverness than using
the original method. Finding the proper annotation to prove a property of aconcurrent
program is adifficult art; anything that makes the task easier should be welcome.

Section 2 examines two simple agorithms. The first illustrates the Ashcroft and
Owi cki-Griesmethods and showswhy control predicates can permit asimpler program
annotation than dummy variables. However, it does not convincingly demonstrate the
need for control predicates because an extralemma allowsthe same proof to be written
with dummy variables. In Section 2.5, another agorithm is considered, and a proof
using control predicatesis given that cannot be so easily rewritten as one using dummy
variables.

To simplify the exposition, we consider n-process programs of the form
cobegin I U ... U IT,,_; coend
with each process IT; consisting of a sequence of statements

(S1); () (&)

where the angle brackets denote atomic operations. The atomic statements (S ) are
either ordinary assignment statements or statements of the form

(whenbdo S)

This is a synchronization primitive that causes the process to wait until the boolean
expression b istrue, whereupon it executes S as an atomic action. Thus, the semaphore
operation P(s) can be represented as

(whens>0dos:=s—1)

Since we are concerned only with safety properties, it does not matter whether one
assumes any fairness properties of the when statement. However, it isimportant that
theevauation of b and, if it evaluatesto true, the subsequent execution of Sare asingle
atomic action.

By restricting attention to such “straight-line processes’, we avoid some irrelevant
issues raised by branching and looping constructs. These constructs are discussed in
Section 3.4.



ai: (X =true);

Bi: (when —xig1 doskip)
cs: (critica section)

8 (X :=false)

Figure1: A simple agorithm—processi’s program.

2 Examples

21 A Simple Example

We begin with a simple agorithm containing two processes, numbered O and 1. The
program for each processi is shown in Figure 1, where & denotes addition modulo 2.
This agorithm is a simplified version of a popular mutua exclusion protocol. (In
simplifying it, we have diminated ailmost all semblance of a real mutua exclusion
algorithm.) We assume that processi’s critica section statement does not modify x; or

Xig1-

The property to be proved for thisprogram isthat both processes are not simultaneously
at their critical sections. For any label A, let at(1) be the control predicate that is true
if and only if the process's control is at the point labeled A. We must prove that

—(at(csy) A at(csy)) isalwaystrue.

In any assertional method, one shows that an assertion P is aways true by exhibiting
aglobal assertion | such that:

1. | istrueof theinitia state.
2. | implies P.

3. | isinvariant—that is, any program step executed with | true leavesit true.

In our example, P isthe assertion —(at(csy) A at(csy)).

2.2 TheAshcroft Method

In the Ashcroft method, one simply writes the global assertion | as a single formula.
For our example, let | bethe assertion

—(at(csp) A at(csy)) A /\ (at(B) v at(cs)) = X (1)
i=0,1

where = denotes logical implication. Initially, both processes are a control point «;
and | istrivialy true, so condition 1 holds. Condition 2 is obvious, so we need prove
only condition 3—theinvariance of 1.



Theinvarianceof | meansthat executing any atomic action of the program starting with
| trueleaves | true. Let (A ) denotethe atomic statement with label A. To prove the
invarianceof | we must prove{l }{ A ){1} for every atomic program statement X, where
{P}{1){Q} isthe Hoare logic formula asserting that if (A ) is executed with P true,
then Q will be true after itsexecution [4]. (By definition of atomicity, an atomic action
can be executed only if it terminates.) Notethat, unlikethe Hoare logic ordinarily used
for sequential programs, weallow pre- and postconditionsto contain control predicates.

Verifying {1 }( ){l} for each atomic operation (A ) in the program of Figure 1 is
easy. There are four atomic operations in each process, so there are eight formulas to
check. However, since the two processes are identical except for the value of i, the
corresponding operationsin both processes can be handled together, leaving only four
formulas to verify. We will verify {I1}{ 8 ){I}, which is the most interesting one; the
reader can check the others.

Sincestatement ( B; ) can beexecuted only if at(5;) istrue, and at(cs ) must betrue after
it isexecuted, to prove {1 }( 8 ){1}, it suffices to prove {I A at(8i)}{ B ){I A at(cs)}.
Simple logical manipulation shows that

I Aat(Bi) = at(Bi) AX Af@(Bigr) V at(CSe1)) = Xig]
I Aat(cs) = at(cs) A X A —at(CSe1) A (at(Bigr) = Xig1)
We must therefore show

{at(Bi) A Xi A [(at(Big1) V at(CSg1)) = Xig1l} (Bi)
{at(cs) A X A —at(CSe1) A (@(Big1) = Xie)} 2

Executing ( 8; ) does not change the value of any program variable or of the control
state of processi @ 1, so the only part of the postcondition that is not immediately
obviousis —at(csg1). Statement (8 ) can be executed only when X;q; equals false,
and the preconditionimpliesthat, inthiscase, at(csg1) Mmust also befalse. Hence, after
executing ( i ), at(csq1) isfase, which proves (2). Formal proof rules for deriving
thiskind of formulaare given in Section 3.1.

2.3 The Strengthened Owicki-GriesM ethod

In the Owicki-Gries method, the invariant is written as a program annotation. An
annotation in which, for every A, assertion | * is attached to control point A represents
the assertion

/\(at(/\) = 1) (3
A

To reformul ate the proof above in the Owicki-Gries method, using control predicates,
we must write the invariant (1) in the form of (3). Using the equivaence

—(at(cso) A at(es)) = /\ (at(cs) = —at(CSign))
i=0,1

4



ai: (X =true);
{xi} Bi: (when —Xig1 do skip)
{x; A —at(csg1)} cs: (critical section)
8i: (X :=false)

Figure 2: Annotation of processi’s program.

(2) can be written as

/\ @t(B) = x) A (at(cs) = (i A —at(CSe1)))
i=0,1

This assertion is expressed as the program annotation of Figure 2.

In the original Owicki-Griesmethod, the invariance of the assertion | defined by (3) is
proved by verifying the followingtwo conditionsfor each atomic statement ( A ), where
AT denotes the control point immediately following (A ).

Sequential Correctness: {I1*}( 1 ){1*"}

Interference Freedom: For every control point v in a different process from A:

{17 AT O

Sequential correctness assertsthat executing ( A ) startingwith | * (the assertion attached
to ) truemakes | ** true. Interference freedom asserts that, for any control pointv ina
different process, if (1 ) isexecuted startingwith both 1* and 1"V (the assertion attached
to v) true, then the execution leaves 1V true. Since execution of (A ) is possible only
when control isat A, and that execution leaves the process’'s control at A+ and does not
changethe control point of any other process, so thesetwo conditionsimply {1}(x ){1}.
Thus, proving these conditionsfor every statement ( 1. ) provestheinvariance of |.

Proving sequential correctnessfor all theatomic actionsin aprocessinvolvesastandard
Floyd-method verification of that process's annotation. For our example annotation
of Figure 2, proving sequentia correctness for ( 8; ) requires proving the following
verification condition:

{Xi} (Bi) {xi A —at(cse1)} (4)

This cannot be proved. Looking only at processi, thereis no reason why an execution
of ( B ) starting with x; true should finish with at(cs ;) fase.

The Owicki-Griesmethod can be strengthened by all owingthe use of the other process's
annotation in proving sequentia correctness. To prove sequential correctness for a
statement ( A ) of one process, we may assume, asthe preconditionfor ( A ), not just that
I * istrue but that the assertion | defined by the entire annotation istrue. In particular,
we can assume that each other processis at a control point whose attached assertion is
true. Let |; be the assertion determined by process j 's annotation, so

li = @tBj) = xj) A (at(Ccs) = (Xj A ~at(CSe1)))



ai: (X =true);

{xi} Bi: (when —Xg1 doacs :=true)

{x; A macsg1} cs: (critica section; acs :=false)
8i: (X :=false)

Figure 3: Annotation of processi with dummy variables.

When proving sequentia correctness for ( 5 ), we may assume the truth of l;g1, the
annotation of processi @ 1. Therefore, instead of proving (4), we need prove only the
weaker condition:

{Xi A lig1} (Bi) {Xi A —at(CSg1)} %)

This condition can be verified, since lig; implies that if X;g; is fase (the only case
inwhich (8 ) can be executed) then at(cs 1) must aso be false. In fact, except for
lacking the obvious hypothesisat(; ), the precondition of (5) isthe same asthat of (2),
and the postcondition of (5) is part of the postcondition of (2).

Sequentia correctness for the other atomic operations is easily verified, and the only
nontrivial interference-freedom condition to be proved isthat executing ( 8; ) does not
fasify the assertion attached to csq1. Thisinvolvesverifying

{Xig1 A —at(cs) A X} (B ) {Xigr A —at(cs)}

which is true because (8 ) cannot be executed when Xig is true. (The formula
{P}{ 1 ){Q} asserts that every possible execution of ( A ) starting from a statein which
P is true terminates with Q true, so it is vacuoudy valid if (A ) cannot be executed
when P istrue.)

24 TheOwicki-GriesMethod with Dummy Variables

Let us now try to reformulate the proof above using dummy variables instead of
control predicates. The first problem we encounter is that our correctness condition,
that —(at(cs) A at(csy)) is awaystrue, is a control predicate. We therefore have to
introduce a dummy boolean variable acs to represent the control predicate at(cs ),
where acs is set true by () and set fase by (cs ). This leads to the annotated
program of Figure 3.

Let usconsider the proof of sequential correctness for statement ( 8; ). The verification
condition corresponding to (5) is

{Xi A lig1} (Bi ) {Xi A —aCSe1) (6)
where lig; isthe assertion

(@t(Big1) = Xig1) A [at(CSgp1) = Xig1 A —acs)]



that corresponds to the annotation of Figure 3 for processi 1. We cannot verify (6).
The assertion ;g1 impliesthat at(csg:) isfase when ;g isfalse; it does not imply
that acs g, isfase when x;q1 isfase. Even though we introduced the variable acs g1
torepresent the control predicateat(cs g1 ), they areformally different. Theimplication
at(csg1) = Xig1 can be obtained directly from the annotation of processi @ 1. The
implication acsg1 = Xig1, Which is needed to prove (6), is not obtainable directly
from the annotation.

There aretwo waysto correct thisproblem. Thefirst isto attach to each control point of
the program the additional assertion acsg1 = Xig1. (More precisdly, this assertion is
conjoined with each of the assertionsin the annotation, including theimplicit assertion
true at control pointsa; and §;.) The resulting annotation can then be verified with the
origina Owicki-Gries method.

One can adways convert an Ashcroft-method proof to a proof in the original Owicki-
Gries method with dummy variables by strengthening the assertions. Indeed, this
can be done quite trivialy by attaching the global invariant to every control point,
replacing control predicates with dummy variables. However, the whole point of the
Owicki-Gries method is to break the large global assertion of Ashcroft’s method into
thesimpler local assertions of the annotation, making the invariant easier to understand
and to verify. If this requires more complicated local assertions, then the Owicki-
Gries method may not offer any advantage. In our example, most people would
probably prefer the Ashcroft proof to the Owicki-Gries proof with the extra assertion
acsg1 = Xig1 added to dl control points.

The second way to fix the problem is to prove a lemma stating that, if the program
is started in a proper initial state, then acsg1 = Xig1 iS always true. Such alemma
is easily proved with the original Owicki-Gries method. This is the better approach
because, in the spirit of the Owicki-Gries method, it breaks the proof into small parts.
The use of such lemmas is described by Schneider in [12]. However, while possiblein
this case, an Ashcroft method proof cannot always be converted by a simple lemmato
an Owicki-Gries method proof with dummy variables. In the next section, an example
is given in which the use of dummy variables instead of control points forces one to
use a different annotation.

2.5 Another Example

Our second exampleisa highly simplified version of a mutual exclusion protocol used
in[6]. Itisan n-process program, with processes numbered 0 through n — 1, whoseit"
process is given in Figure 4 with its annotation. The shared variables x and y are of
typeinteger, with y initially equal to —1. The assertion P, in the annotation of processi
is defined to equal

Vi #i 1 (matcs)) A [@) v atd)) = x # ]

With the ordinary Owicki-Griesmethod, proving sequential correctness of thisannota



aj: {(X:=i)
Bi: {(wh eny:—ldoskip)
v (y:=i)
{Xx=i=y#-1} §: (whenx =i doskip)
{R} cs: (critical section)
(P} @ (y:=-1)

Figure4: Processi of another mutual exclusion algorithm.

tionfor statement (§; ) requires proving the following condition:

x=i=y#-1}(a) (R}

Thisis not directly provable, since the postcondition asserts (among other things) that
in no other process j iscontrol at control point cs;, which cannot be inferred from the
precondition. However, in the strengthened method, we are allowed to assume in the
preconditionthat the assertion determined by every other process j’sannotationistrue.
Letting I; denote thisassertion, so

l; = [at@j) = (x = = y# —D] Alat(cs) = P Alat(e) = B]

it suffices to prove the weaker condition

{(x=i=y#-Drat@)A A i8R}

Thisformulafollowsfrom the observationthat at(si) A I; impliesthat, if at(cs) istrue,
then x # i and statement ( §; ) cannot be executed.

The verification of the other sequentia correctness conditionsand of interference free-
domisstraightforward and is | eft to the reader.

In this example, the proof of sequential correctness for (§; ) requires assuming that, if
another process j isat control point cs;, thenthe attached assertion P; istrue. However,
sequential correctness for (§; ) provesthat B istrue when processi reaches control
pointcs . Thus, weare using an inductionargument, showingthat if every other process
that has aready reached control point cs; did sowith P true, then B will be truewhen
processi reaches cs.

In the previousexampl e, the information contai ned in the annotation of another process
needed to prove sequential correctness could be established separately as a simple
lemma. We now indicate why thisis not the case here. In the sequentia correctness
proof, the information obtained from the annotation of process j is exactly the result
we are trying to prove for process i. Assuming the truth of the assertion I in the
sequential correctness proof for process i is analogous to assuming, in an ordinary
proof by mathematical induction, that the desired result istruefor all j < i and proving
that it istruefor i. Trying to replace the assumption thet I; holdsfor j # i by alemma
would be liketrying to replace the induction assumption that the theorem istrue for all



j < i by alemma, which cannot be done because proving the lemmais equivaent to
proving the original theorem.

The correctness of the annotation of Figure 4 cannot be proved with the origina form
of the Owicki-Gries method, and thus this proof cannot be trandated into one using
dummy variablesinstead of control predicates. A different annotationis required when
dummy variables are used.

In writing a proof of this algorithm for the original version of [6], we were unable to
find a simple annotation that could be proved invariant with the original Owicki-Gries
method, and we were forced to introduce the extended method to give a simple proof.
Afterwards, J. Misradiscovered a proof as simple as ours using dummy variables and
the original Owicki-Gries method [2]; we intend to use his proof in the next version
of [6]. We do not know if it is aways possible to construct a simple proof with the
ordinary Owicki-Gries method, but we do know that it is not always easy.

3 TheFormalism

The discussion of the examples in the preceding section included an informa expla
nation of how one applies the Owicki-Gries method using control predicates in the
annotation. In this section, we develop a formalism that justifies our informal reason-
ing. For now, we continueto consider only simple strai ght-linemultiprocess programs.
Section 3.4 discusses the extension of the formalism to other control structures.

3.1 HoareLogicwith Control Predicates

To prove that a program I leaves invariant a global assertion |, one must prove the
Hoare logic formula {1}( A ){I} for every (atomic) statement (A ) of I1. (This can be
viewed as either the definition of invariance or an application of the Decomposition
Principle of [10].)

The presence of control predicatesin P and Q makes the formulas {P}{ A }{ Q} fun-
damentally different from ordinary Hoare triples. The Control Predicate Hoare Logic
(CPHL) for reasoning about these formulasis therefore different from ordinary Hoare
logic. Consider the statement
aj: (x:=i ) from the program of Figure 4. If the assertion P does not mention
the variable x, then the ordinary Hoare formula { P}x :=i{P} isvalid, but the CPHL
formula{P}{«; ){P} need not be valid. For example, even though the predicate at(«;)
does not mention x, the formula{at(e;)}{ e J{at(ej)} isvaidonlyif j # i; itisinvaid
when j = i because executing («; ) makes at(«;) false.

CPHL subsumes ordinary Hoare logic through the following rule.

Subsumption Rule: For the statement A.: ( S), the validity of the ordinary Hoare



logicformula{P}S{Q} (where P and Q do not contain control predicates) implies
the vaidity of the CPHL formula{P}{ 1 ){Q}.

Using the subsumption rule, we can derive the following CPHL rule from ordinary
Hoarelogic:

when Rule: For the statement A: (when b do S), the validity of the ordinary
Hoare logicformula {P}S{Q} impliesthe validity of {P v =b}{ 1 }{ Q}.

Given the axioms and rules of ordinary Hoare logic, the subsumption rule captures
the semantics of atomic language constructs. Ordinary Hoare logic also has rules that
are independent of the language constructs. These rules, as listed below, are included
in CPHL. (They differ from the corresponding rules of ordinary Hoare logic only in
allowing control predicates in the pre- and postconditions.)

Rule of Consequence: If {P}{ 1 )}{Q}, P’ = P,and Q = Q, then {P’'}{A }{Q'}.

Digunction Rule If  {PHA)Q} and {P}A)NQY, then
{PVvP}A{QV QY.
Conjunction  Rule: If  {(PHAYQ} and {P'HA)QY, then

{PAPHANQA QL

Thusfar, al our CPHL rules are derived from ordinary Hoare logic rules. Reasoning
about control predicates requires the following additional rules and axioms. Their
soundnessisself-evident. Recall that A denotesthe control point immediately follow-
ing statement ( A ).

Control Axiom: {at(1)} (A ) {at(A ™)}

Noninterference Axiom: If v isa control point in a different process from (1),
then {at(v)} (1) {at(v)}

Locality Rule: If {P A at(A)} (1) {Q A at(A™)} then {P}{ 1 ){Q}.

Note that the converse of the Locality Rule follows from the Control Axiom and the
Conjunction Rule.

In addition to these rules and axioms, we need axioms for proving simple formulas
about state predicates. For example, we must be able to prove that, if v and u are
different control pointsin the same process, then at(v) A at(u) = false. Such axioms
aregivenin [7] for amore complicated language; we do not consider them here.

Observe that CPHL has no equivaent to the Rule of Composition of ordinary Hoare
logic—therule for reasoning about the “;” construction. The semantics of the“;” are
given by the Control Axiom, together with the implicit rule for calculating A*. (For

10



example, in the program of Figure 4, we know that o;" = g;.) Aswe shall see, it
is characteristic of CPHL that flow of control is specified by relations among control
predicates rather than by the special inference rules of ordinary Hoare logic.

Asanillustration of how the rules of CPHL are applied, we sketch the formal proof of
(5) from our first example. By the Rule of Consequence and the definition of jg1, it
suffices to prove

{Xi A (at(Cse1) = XigD)} (Bi ) {Xi A —at(CSe1)}

Expressing the precondition as adig unction and applying the Digjunction Rulereduces
the problem to proving the following two conditions:

{Xi AXig1} (Bi) {Xi A—at(CSg1)} (7)
{Xi A —at(Csg1)} (Bi) {Xi A —at(Csae1)} (8)

Formula (7) followsfrom the Rule of Consequence and the formula

{Xie1}( B ){ false}

which isa consequence of the when Rule (with fal se substituted for both P and Q).
To prove (8), we apply the Conjunction Ruleto bresk it into the two conditions:
{xi} (Bi) {xi}
{—at(Csig1)} (Bi) {—at(Cse1)}

Thefirst follows from the proof rule for thewhen statement. To prove the second, we
use the equivaence

—at(CSgp1) = at(@ig1) V at(Big1) V at(Sig1) V after (Sig1)

and the Digjunction Rule, and we apply the Noninterference Axiom four times.

3.2 The Strengthened Owicki-GriesM ethod

We assume an n-process program IT with processes Iy, . . ., [Th—1. Welet v € TT mean
that v isa control point of IT, and similarly v € IT; means that v is a control point of
process IT;.

In the Owicki-Gries method, theinvariant | hastheform

/\ at(v) = 1" 9)

vell

where |V isthe assertion attached to control point v. Let I; denote A, . at(v) = 17,
the assertion represented by the annotation of process IT;. If (1) is a statement of
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process IT;, then

a) Al = at(h) A I*/\/\ I
j#i
aGvH Al = a(hHAl* A /\ I
j#i

Thus, by the Locality Rule, the Control Axiom, and the Conjunction Rule, to provethe
invariance condition {1 }{ A }{1} it suffices to prove:

{2 AN i O AN i (10)
In the standard Owicki-Gries method, one applies the Conjunction Rule to break the
verification of (10) into two parts:

(o0 07 (11)
Vi#iVvell: {I"A@tw) = 1M} (1) {atw) = 1"} (12)
Condition(11) issequentia correctnessfor ( A ). Toverify (12), wewriteat(v) = 1' as

I'Vv —at(v) and apply the Digjunction Rule and the Rule of Consequenceto decompose
it into the problem of verifying the foll owing two conditions:

Vi#iYvel: {I* A1} () {1} (13)
Vi #iVvell: {-atv)} (1) {—at(v)} (14)
Condition 13 is interference freedom. Since —at(v) = \/M ,at(u) (because

control must be somewhere in process j), formula (14) follows from the Digunction
Rule and the Noninterference Axiom.

Formulas (11) and (13) represent the sequential correctness and interference freedom
conditionsof the standard Owicki-Griesmethod. Since our goal isto prove theinvari-
ance of |, it iseasy to see that we can weaken these conditions (by strengthening their
preconditions) as follows:

Weak Sequential Correctness: {1 A A i} (1) {1}

Weak Interference Freedom: Vj # i Vv € I1;j :
{1 A1 Aatw) A Nz j Ik (2) {17

It is this weak sequentia correctness condition that we used in our two examples.
The weak interference freedom condition is weaker than (13) because, to prove that
executing the statement (1 ) of processi leaves invariant the assertion |V attached to
process j, we are allowed to use the additional hypothesisthat, for any third processk,
the assertion Iy defined by the annotation of process k istrue.

We did not need the weak interference freedom condition in our two examples. (In-
deed, except for the extra hypothesisat(v), it isthe same as the original condition (13)
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when there are only two processes, asin our first example.) 1n most of the concurrent
algorithms that we have studied, safety properties can be proved by considering the
processes two at a time, so the stronger postcondition employed in the weak interfer-
ence freedom condition does not help. However, as the examples indicate, the weak
sequential correctness condition isvery useful.

3.3 Equivalenceto the Ashcroft Method

We now show that the strengthened Owi cki-Griesmethod i s as powerful asthe Ashcroft
method. More precisdly, we prove that, given an assertion | of theform (9), the CPHL
formulafl }{ A ){I} that must beverified (for all 1) withthe Ashcroft method isprovable
if and only if the weak sequential correctness and interference freedom conditionsfor
A are provable. The proof assumes the ability to prove simple logical equivaences
among predicates. This means that, barring some pathol ogical weakness in the ability
to reason about predicates, an annotation can be proved correct with the strengthened
Owicki-Gries method if and only if the corresponding global assertion can be proved
invariant with the Ashcroft method.

We showed above that the two weak verification conditions of the extended Owicki-
Gries method imply the Ashcroft method condition {I}{x ){l1}; we now show the
converse. Recall that Ij = A\, (at(v) = 1"),s01 = /\; I;. Our proof isbased upon
the equivaence

= \/ @w Al (15)

vell;
which followsfrom the observation that (\/Vel.[j at(v)) = trueand, forany v, u € II;
withv # u: at(v) A at(un) = false.
Assume {1 }{ A }{1}. From the Control Axiom, the Conjunction Rule, and the observa
tionthat I; A at(x) = 1* A at(r), weinfer

{1 Aat) A A A1) (16)

The weak sequential correctness condition now followsfrom the Locality Rule and the
Rule of Conseguence.

To prove the validity of the weak noninterference condition, we use (15) to substitute
for 1j and apply the distributivelaw for the logical operatorsto rewrite (16) as

{Aven, 1% Aat) ATV Aatv) A Vi I () (1)

The weak noninterference condition now follows from the Locality Rule and the Rule
of Consequence.
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3.4 Other Control Structures

To indicate how sequentia control structures are handled, we consider first the while
statement. Suppose a process contains

while 8:(b) doo:Sod; y: ...

where 8, o, and y arelabelsand Sis any sequence of statements. The angle brackets
indicatethat the eval uation of theexpression b isasingleatomic action. The evaluation
of b is one of the atomic operations of the program; to prove the invariance of an
assertion |, we must show thisevaluation leaves | true. In other words, we must prove
the CPHL formula {1}{ 8 ){1}, where { 8 ) denotes the evaluation of the condition in
the while statement.

Ordinary Hoare logic includes only formulas { P}S{Q} in which Sisacomplete state-
ment; it has no such formulasas {1}( 8 ){1} where { 8) isawhile-statement test. The
need for these formulas is not surprising, since the Owicki-Gries method generalizes
Floyd’'s method rather than Hoare's method, and Floyd’'s method has a proof rule for
flowchart “test” boxes. (The generalized Hoarelogic of concurrency, described in[10],
does not have these Floyd-likerules.)

The proof rulefor thewhiletest ( 8 ) iscomplicated by the fact that, after itsexecution,
control is either at o or at y. Hence, there is no unique successor control point g+,
It is useful to define the control predicate after (1) to be true if and only if control is
immediately after the statement or test (1 ). For an assignment or when statement,
after (1) = at(A™). However, for the while statement above, after(8) = at(o) v at(y).
The control axiom is strengthened to

{at(2)} (1) {after(1)}

which is equivalent to the one given above when (1) is an assignment or when
Statement.
All our rules for reasoning about concurrent programs, including the strengthened
Owicki-Griesmethod for proving invariance, remain valid if we define

17" = (at(o) = 19) A (at(y) = 17)

when ( 8 ) isthewhiletest above. To enable usto prove CPHL formulasfor the atomic
action 8, we need the following axiom:

while Test Axiom: If P contains no control predicates, then

{PY(B){(@at(c) A PADb)V @t(y) A PA=b)}

Thisaxiom does not completely define the semantics of the while statement; additional
axioms are needed to specify the flow of control. We already mentioned one such
axiom: after(8) = at(o) Vv at(y). This asserts that, after executing the test, control
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goesto either o or y. We a so need to specify that, after executing S, control goes back
to B. Define after(S) to be after (1), where A: ( S,) isthe last statement in thelist S
of atomic statements. The axiom after (S) = at(8) asserts that control loopsback to g
after executing the body of the while statement. The semantics of the while statement
are captured by the while Test Axiom and these two axioms about control predicates.

Other sequential control structures are handled similarly. For example, consider the
Statement

if g:(b) then o:Sfi; y: ...

Theaxiom for thetest ( 8 ) inthisstatement isidentical to thewhile Test Axiom above.
Theflow of control axioms are: after(8) = at(o) Vv at(y) and after(S) = at(y).

Observe that the only difference in the axioms for the while and if statements are in
the axiom for after(S). Thisreflects the fact that the only difference between the two
statements is that, after executing S, the while loops back to the beginning and the if
continuesto thefollowing statement. In CPHL, flow of control isdescribed by relations
among control predicates, not by special inference rules.

One can a so extend the Owi cki-Griesmethod to programshaving any process structure
that can be expressed with nested cobegin statements. In this case, the interference
freedom condition must be generalized by letting v range over al control pointsin
concurrently active processes. (These control points are determined syntactically.)
Control predicate axioms assert that control is at the beginning of each clause (process)
when it is at the beginning of the cobegin, and control is a the point immediately
following the coend when it is a the end of each clause. Care must also be exercised
indefining I+ and 1% for the control pointsimmediately before and after the cobegin
when applying the method.

4 Discussion

We have shown how the Owicki-Gries method can be strengthened by using weaker
sequential correctness and interference freedom conditions. The significant changeis
theweaker sequential correctness condition, which permitsthe use of information from
other processes’ annotations. Thisstrengtheningisuseful only when control predicates
appear in the annotation; it is of no benefit if the control predicates are replaced by
dummy variables, as in the method originally advocated by Owicki and Gries. Unlike
the original Owicki-Gries method, the strengthened version has the property that it
worksfor any annotation that represents an invariant assertion.

When expressed formally, the weak sequential correctness and interference freedom
conditions are more complicated than the original ones (11) and (13). However, this
is a welcome complication because it adds hypotheses to the precondition of a Hoare
formula. In practice, one adds only those extra hypotheses that are useful. (Formally,
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this means applying the Rule of Consequence.)

The significant distinction between control predicates and dummy variables is not
between predicates and variables, but between control and “dummy”. When proving
properties of concurrent programs, one must reason about the control state. Although
dummy variables can be used to represent the control state, the lack of a formal
connection between these variables and the control predicatesthat they represent limits
thelr utility.

Asmentionedin[9], control predicates can be viewed asimplicit variables. (We prefer
the term “implicit” to “dummy” or “auxiliary” because these variables represent a
part of the program state that isjust as red as that represented by ordinary variables;
they differ from ordinary variables only in that the programming language provides no
explicit mechanism for representing their values.) Relations among control predicates,
such as after(8) = at(o) Vv at(y), become diasing relations among these variables.
Our Control Predicate Hoare Logic can be obtained by extending the ordinary Hoare
logicto handlediasing relations(asin [9]) and assertions containing implicit variables.
Considering control predicates to be implicit variables can provide a more elegant
formal jugtification of the Owicki-Gries method, but it does not change the way the
method is used to reason about specific programs. This forma approach works best

withthe generalized Hoare logic of concurrency. It providesone of the techniques used
in[5] to define aformal semantics for concurrent programming languages.
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