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Authors’ abstract

Sweeping a collection of figures in the Euclidean plane with a straight line is one of the novel algorithmic
paradigms that have emerged in the field of computational geometry. In this paper we demonstrate
the advantages of sweeping with a topological line that is not necessarily straight. We show how an
arrangement of n lines in the plane can be swept over in O(n?) time and O(n) space by such a line.
In the process each element (i.e. vertex, edge, or region) is visited once in a consistent ordering. Our
technique makes use of novel data structures which exhibit interesting amortized complexity behavior;
the result is an algorithm that improves upon all its predecessors either in the space or the time bounds, as
well as being eminently practical. Numerous applications of the technique to problems in computational
geometry are given—many through the use of duality transforms. Examples include solving visibility
problems, detecting degeneracies in configurations, computing the extremal shadows of convex polytopes,
and others. Even though our basic technique solves a planar problem, its applications include several
problems in higher dimensions.

KEYWORDS: arrangement, topological sweep, amortized complexity, visibility, polytope projection,
convexity, duality, degeneracy.

Herbert Edelsbrunner and Leonidas J. Guibas

Capsule review

Sweep line algorithms are an important paradigm in computational geometry. Given as input some
geometric figures lying in a plane, a sweep line algorithm computes some property of those figures
by performing a discrete-time simulation of a line sweeping across the plane, say from left to right.
Maintaining the event queue for this simulation introduces a logarithmic factor into the time performance
of a sweep line algorithm.

The first half of this paper presents a technique by which this logarithmic factor can be avoided for one
particular problem: that of computing the regions into which the plane is cut by a set of straight lines.
The regions are still processed from left to right, but, instead of a straight sweeping line separating the
processed area from the unprocessed area, the boundary is a jagged wave front. Some new data structures
are needed to flesh out this concept, and a subtle charging scheme is needed to prove that the resulting
algorithm runs fast. The explanations given are concise, but should make sense to a moderately careful
reader.

The rest of the paper is a quick tour through an impressive catalog of problems in which the result above
leads to algorithms with record-breaking performance. The reductions involved are often tricky, and this
portion of the paper will probably be of interest primarily to aficionados.

Lyle Ramshaw
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1. Motivation

Sweeping a collection of figures in the Euclidean plane E? with an undirected (say, vertical)
line is one of the novel algorithmic paradigms that have emerged in the field of computational
geometry [PS, NP|. In general, the sweep is supported by two types of data structures:
one that maintains the figures currently intersecting the sweeping line, and another that
tells the sweeping line when to stop next. Such stops include the times when the set of
intersected figures changes, as well as other events of interest. The stopping-times structure is
most naturally implemented by a priority queue. This common solution, however, inherently
entails the price of maintaining the priority queue, which is logarithmic in its size [AHU].
The purpose of this paper is to demonstrate that, in certain situations, there is a way to
avoid having to pay this additional logarithmic cost factor. The savings will be achieved by
replacing the sweeping line by a “topological line,” that is, an unbounded simple curve that
satisfies properties milder than straightness.

Our specific problem will be that of sweeping a set of (infinite, straight) lines in E?. Let H
be a set of n lines in the plane. The set H dissects E? into a collection of convex regions, each
bounded by edges which are segments of the lines in H. The boundaries of these segments,
in turn, are points where the lines of H intersect. We shall term these endpoints vertices.
We take the regions to be open, and the edges relatively open (with respect to the line they
are on). The regions, edges, and vertices partition the plane into a subdivision known as the
arrangement A(H) [G]. We will assume that A(H) is simple, in other words, that any two
lines intersect at a vertex, but no three do so. We will also assume that none of the lines in H
is vertical. In a later section we discuss how these restrictions can be removed. See Figure 1-1
for an example of an arrangement.

2
\:’z:
3 .-
4
5

Figure 1-1. An example of an arrangement.

Normally a subdivision is specified by listing all the incidence relations between its regions
and edges, and its edges and vertices, in a way consistent with the natural cyclic orderings
of the edges around a region and the edges around a vertex [GS]. A possible choice for an
adequate representation of the arrangement consists of a set of vertex records, each containing
the names of the four edges it is incident to, arranged in counterclockwise order, as well as
a set of edge records, each containing the line the edge lies on, and the names of its left and
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right endpoints. See Guibas and Stolfi [GS] for a fuller account of the representation of planar
subdivisions.

It is clear from the previous discussion that the size of the subdivision associated with A(H)
is ©(n?). This subdivision can be constructed in O(n?logn) time by sweeping with a vertical
straight line [EW)]. Furthermore, the sweep uses only O(n) storage in addition to the space
needed to represent the arrangement. This is advantageous in applications where we are al-
lowed to destroy the vertices, edges, and (implicitly) regions of the arrangement after creation
and inspection. By a more intricate method it is possible to construct the arrangement in
time O(n?), using an incremental approach {CGL, EOS| which involves introducing the lines
of H one at a time. However, in this method O(n?) storage is intrinsic, since no part of the
arrangement may be thrown away until all of it has been computed.

In this paper we will see how to use a “topological sweep” to compute A(H) in O(n?) time, but
with only O(n) eztra storage. As we already mentioned, there are many applications where
the elements of the arrangement (i.e. vertices, edges and regions) need only be examined as
they are built and then may be discarded immediately afterwards. Our method will allow
these applications to run in O(n?) time and O(n) space. Some example applications where

our technique improves existing bounds are listed below; E* denotes Euclidean k-dimensional
space.

(a) Compute the minimum area triangle spanned by three of n points in EZ.

(b) Compute a maximum subset of a given set of n points in E? whose elements define the
vertices of a convex polygon; same question for an empty convex polygon, that is one
containing none of the given points in its interior.

(c) Compute the visibility graph of n non-intersecting segments in E?.
(d) Given n segments in E?, compute a line which intersects as many segments as possible.
(e) Enumerate all faces of an arrangement in Ed, d>2.

(f) Test whether any d + 1 points of a configuration of n points in E4, d > 2, are in special
position (do not span the full space).

(g) Given n non-zero vectors vy,...,v, in E4, compute an assignment of {+1, -1} to coef-
ficients ay,..., o, such that Y a;v; is longest.

(h) Compute the directions of minimum and maximum shadows for a convex polytope in
Ed4 d> 3.

It is remarkable that although our basic technique is strictly planar, there are many appli-
cations to problems in higher dimensions as well.

Besides the applications listed above, the method presented here is noteworthy for two ad-
ditional reasons. One is that it is an illuminating example of amortized complexity analysis,
a methodology that has recently become very popular in the analysis of algorithms [T}.
Secondly, we have implemented our method and it works extremely well in practice, outper-
forming the straight-line sweep even for arrangements of tens of lines.

Here is a quick summary of the structure of this paper: Section 2 contains various geometric
preliminaries that we will employ throughout the exposition. Section 3 presents the topolog-
ical plane sweep and its analysis. In Section 4 we deal briefly with a technique for handling
degeneracies, and then Section 5 expands on the multifarious applications of the topological
sweep, including all the problems mentioned above. Section 6 ends the paper with some open
problems and conclusions.



TOPOLOGICAL SWEEP 3

2. Geometric preliminaries

Let £y,43,...,¢, denote the lines of an arrangement A(H). Without loss of generality we
assume that when so written they are sorted according to slope, from smallest to largest.
Our earlier assumptions about H being simple imply that all slopes are finite and distinct,
so this ordering is well defined. The same assumptions allow us to define an “above” relation
between elements of A(H). We will say that element A is above element B if A and B have
intersecting projections on the z axis and, at each abscissa z of their intersection, all points
of A are above all points of B. It is easy to check that, for any two distinct elements A and B
with intersecting z-projections, either A is above B or B is above A. It is known that the
“above” relation among the elements of a given subdivision is acyclic. For a discussion of this
topic see, for example, the paper by Edelsbrunner et al. [EGS].

Lemma 2.1. There is ezactly one region that is not below any other region (denoted by T

- for “top”) and ezactly one region that is not above any other region (denoted by B -
Jor “bottom).

Proof: Trivial. &
A (vertical) cut is a list (cy,c¢3,...,c,) of edges of A(H) such that

(i) ¢1 is an edge of T and ¢, is an edge of B, and

(ii) for each ¢, 1 < § < n— 1 we have that ¢, and ¢, are both incident upon region R; such
that c; is above R; and c;4; is below R;.

These conditions imply that no two edges of the cut lie on the same line of A(H), so there is
a one-to-one correspondence between the edges of our cut and the lines of the arrangement.
A cut will be our formal analog of the intuitive concept of a “topological line.” Such a line
cuts the arrangement along the edges of the cut, in the given sequence; see Figure 2-1. We let
above(£) and below(£) denote the open half-planes bounded from below and from above by
the non-vertical line ¢, respectively. Note that the region R; referred to above is necessarily
unique, as R; is below(c;) and above(c,+1). Since the “above” relation is acyclic, the same
region cannot be reused in a cut.

We can define an appropriate “left-of” relation among cuts by considering that cut A is left
of cut B if for every line £ of the arrangement A(H), the edge of A on £ is the same as, or
to the left of, the edge of B on £. Among all cuts there is a “leftmost” one, consisting of the
left-unbounded edges of each line £;,4,...,£,, in this order; similarly, there is a “rightmost”
cut, consisting of the right-unbounded edges of ¢;,¢,,...,£,. Our topological sweep of the
arrangement will be implemented by starting with the leftmost cut and pushing it to the
right till it becomes the rightmost cut, in a series of elementary steps.

An elementary step is performed when the topological line sweeps past a vertex of the
arrangement; it corresponds to a transposition in the underlying numbering of the lines as
defined by the order in which they are intersected by the sweeping topological line. Obviously
exactly ('2') elementary steps will be required to sweep the arrangement, in proceeding from
the identity permutation of the lines to its reversal, between the leftmost and rightmost cuts.
See Figure 2-2 for an example.

We next state a lemma that shows that for any cut there always exists an elementary step
that advances it to the right, unless it is the rightmost cut.
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cut

Figure 2-1. A topological line and the associated cut.

Figure 2-2. An elementary step.

Lemma 2.2. There always ezist two consecutive edges of the cut with a common right
endpoint, unless we are considering the rightmost cut.

Proof: An edge c; terminates on the right at vertex v; because an intersection occurs with
another line £. Let c; be the edge of the cut on £ and v; be the right endpoint of ¢;. In fact
there are two cases, as Figure 2-3 shows, depending upon whether ¢ < j or ¢ > 7. In both
cases we can conclude that either v; = v;, or v; occurs to the left of v;.

Now just consider the edge ¢; of the cut with the leftmost right endpoint. Such an endpoint
exists, because our cut is not rightmost. In this case we must have v; = v; and in fact
j=sx1l. 1

The major difficulty in implementing the topological sweep is how to discover where in a cut
an elementary step can be applied. To this end we introduce the auxiliary notion of horizon
trees. Let (my,m3, ..., m,) denote the lines containing the edges (c1,¢32,. .., cn) respectively.
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Figure 2-3. The right endpoint of an edge of the cut.

The upper horizon tree T (C) of the cut C is constructed by starting with the edges of the
cut and extending them to the right. When two edges come together at an intersection point,
only the one of higher slope continues on to the right; the other one stops at that point and
is removed from further consideration. More formally, the upper horizon tree consists of one
segment from each of the lines m;, where a point p of m; belongs to T+(C) if

(i) p is above all lines m; with 5 > ¢, and

(ii) p is below all lines m, satisfying both k < { and having slope greater than the slope of
m;.

Figure 2-4 shows T+ (C) for the cut of Figure 2-1, as well as the symmetrically defined lower
horizon tree T~ (C) (where lines of lower slope are the winners). Observe that the edges of
the cut belong to both trees, but the left endpoints of those edges belong to no tree.

There is an obvious defect in the definition of the upper horizon tree above, since it can turn
out to be actually a forest and not a tree—consider the upper horizon tree of the rightmost
cut in Figure 2-4, for example. To rectify this minor problem we add the dummy vertical line
mg at £ = +oo and consider it as the last line in our list. For the lower horizon tree we add
the same line again, but now consider it as the first in our list.

Lemma 2.3. The (rectified) definition of the upper horizon tree above truly defines a tree

consisting of ezactly one segment s;-" from each line m;; furthermore, s"." contains the
edge c;.

Proof: We have

sf= m n ﬂ above(m,;) N ﬂ below(m;) .
7> -Iopo(mJ-;;:lopc(m.-)
T T i
convex convex convex

Each of the sets above obviously contains ¢;. Their intersection is convex, and therefore
a segment. Such a segment aj’ is terminated when it encounters another segment s;-* of
higher slope. Thus the right endpoints of these segments naturally form a tree.

We are interested only in what happens to the right of the topological line, as what is to the
left has already been swept over. Consider two successive edges ¢; and ¢4 of the cut. Let
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the upper horizon tree

the lower horizon tree

Figure 2-4. The horizon trees.

R;" be the region of the plane to the right of the topological line and delimited by 8§ and
s;"+1 in the subdivision defined by the upper horizon tree. Define R analogously.

As an aside we note that R; = R;" N R, for to the right of the topological line we have

R‘?*' = ﬂ below(m,) N ﬂ above(m;) ,
s 3>4
slope(m ;) 2slope(m;)
R = ﬂ below(m;) N ﬂ above(m;) , and
j<i >
s slope(m ;) <slope(m;)
R = ﬂ below(m;) N ﬂ above(m;) .

§<s >4
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The above relation follows, since the doubly indexed intersection in the formula for R}
simplifies to below(m;), and that in the formula for R;” simplifies to above(m,41). This
relation, and its more obvious analog C = T*+(C)NT~(C) will be useful to us in the sequel.

3. The topological plane sweep

We now come to the central part of this paper, which is the treatment of the updating re-
quired by the elementary steps of the previous section. Our goal is to design data structures
for representing cuts and horizon trees, plus some auxiliary information needed for the im-
plementation of the topological plane sweep. In the following we use a PASCAL-like notation

for expressing these structures. As it turns out, we need only very simple data structures for
this problem.

E[1:n] is the array of line equations: E(i) = (a;, b;), if the sth line of H, £, is
y=a;x+b;.

HTU[1:n| isan array representing the upper horizon tree. HTU [¢] is & pair (A, p;)
of indices indicating the lines that delimit the segment of ¢; in the upper
horizon tree to the left and to the right, respectively. If this segment is
the leftmost on £; we set A\; = —1; if it is rightmost on £; we set p; = 0.

HTL[1:n] represents the lower horizon tree and is defined similarly.

I  is a set of integers, represented as a stack. If { is in I, then ¢; and ¢;4,
share a common right endpoint.

M[1:n] is an array holding the current sequence of indices that form the lines
my,mas,...,my, of the cut.

N{1:n] is a list of pairs of indices indicating the lines delimiting each edge of
the cut. N|[s] thus encodes the endpoints of the edge on M([s}. The same
convention as that above is used for missing endpoints.

Of course there is nothing categorical about these structures.! The same information can be
represented in many equivalent ways. For our example arrangement and cut in Figure 2-1,
the contents of our data structure would be as in Figure 3-1.

E: (a1,b,) HTU: (-1,2) HTL: (-1,0)

(a2’bz) (—175) (_1’1)
(as,bs) (5,4) (5, 1)
((14, b4) (5,0) (5, 3)
(a5,b5) (3’0) (3) 1)

I 4 M:1 N:(-1,2)
1 2 (~1,1)

5 (3,1)

3 (5,4)

4 (5,3)

Figure 3-1. The state of our structures for the arrangement
and cut of Figure 2-1.

! In an actual implementation we need not store the left endpoints of segments in the horizon trees or the
cut. This will save an additional 3n words of storage.
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We begin by describing how the upper and lower horizon trees can be constructed in O(n)
total time for the leftmost cut—under the assumption that the lines of H (i.e., the array E)
have been given to us sorted in slope order. It is easy to see that, for the leftmost cut, the
upper horizon tree consists of a segment on each line extending from left infinity till the first
intersection with a line of larger slope is encountered.

This observation makes the construction of the upper horizon tree easy, if we insert the lines
into our structure one at a time in order of decreasing slope. Assume that lines £;+1,442,...,4n
have already been inserted. These lines form an “upper bay” that £; has to hit. See Figure 3-2.

new line

Figure 3-2. Initialization of HTU.

We can compute where £ hits this bay by traversing it in counterclockwise order. The ad-
vantage of doing this is that each edge we pass over ceases to be part of the bay, so it need
never be looked at again. When we come to the edge that £ hits, we simply have to break it
into two parts and update the bay and HTU structures by inserting the appropriate segment
of ¢; into them. The linearity of this method is obvious.

Note that by combining the information contained in HTU and HTL for the leftmost cut
we can easily obtain in linear time the structures N and I. The leftmost segment of each
line—which is the appropriate edge for the leftmost cut—is the shorter of the segments of
the line in HTU or HTL. Once N is known I can be trivially obtained. Thus initialization
for all our structures is possible in O(n) time.

How is an elementary step to be implemented using our structures? Suppose that we pop the
stack I and get the index . We know that ¢; and c;, share a common right endpoint V,
and therefore we can do an elementary step at V. Denote by o the s segments after the
elementary step. Let us first consider how HTU has to change; see Figure 3-3. The change

from s}, to o is easy: the part of s, to the left of V is simply cut off. The change,
s+1 [} s+1

however, from s] = ¢; to ‘7;:-1 requires a good deal of computation.

Just as in the initialization part, we have to compute where the extension of line m; to the
right hits the bay of the upper horizon tree delimited by ci41 and c;42. And, as during
initialization, we do this by traversing the bay starting at c;42 and proceeding in a counter-
clockwise order, till an intersection of an edge of the bay with m; is encountered. Note that
m; must hit this bay, since ¢4 is below ¢; and therefore below m;, yet the bay in question
connects to a? which is above the line m;, as in Figure 3-3. Once the proper intersection of
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cli]

cli+1]

cli+2] = cfi+2]

Figure 3-3. Updating the upper horizon tree.

m; and the bay above is determined, updating the HTU can be done in O(1) time. Thus
HTU can be updated in a total cost of O(n) per elementary step.

Since ¢; = s N s; (as follows from the remarks at the end of the previous section) the new
N is easily obtained after the horizon trees are available. The same holds for I, while M can
be trivially updated. Thus the overall cost in time for an elementary step is linear in the
worst case (examples attaining this can be readily constructed).

The structures for our example, after an elementary step at ¢ = 4 become (see Figure 3-4):

E:same I:1 HTU: (-1,2) HTL: (-1,0) M:1 N:(-1,2)

(_115) (_111) 2 (_111)
(4,0) (4,1) 5 (3,1)
(3,0) (3,1) 4 (3,1)
(3,0) (3,1) 3 (41)

Figure 3-4. The structures of Figure 3-1, after an elementary
step at 4.

What is the overall cost in time for pushing the leftmost cut all the way to the rightmost?
Since there are O(n?) elementary steps and each step can cost O(n), we get a total bound of
O(n®), which is too large. We desire an O(n?) total bound—or an O(1) bound per update, in
the amortized sense. In order to obtain this bound we will need a few facts about arrangements
first.
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Consider an arrangement A(H) of size n and let £ be a line in H. We will obtain a linear
bound for the total cost of all bay traversals required during updates to the upper horizon
tree which involve elementary steps at points of £. The argument that follows is similar to
that used in {CGL] or [EOS] to prove that in an arrangement the total size of all regions
bordering a specific line, such as £, is linear.

Lemma 3.1. In an arrangement A(H) of n lines, the total number of all edges traversed in

the upper horizon tree while performing elementary steps at the vertices lying on line £
in H is O(n).!

Proof: Consider the particular bay depicted in Figure 3-5 associated with the elementary
step at vertex V on the line £. We traverse the sequence of edges a, b, etc., proceeding
in a counterclockwise fashion, till we come to the edge e intersected by £. How are we to
account for the cost of traversing these edges? The first and last edges of such a traversal,
such as a and e in our example, are easy to deal with. There are exactly n — 1 elementary
steps performed on vertices of £, so the number of bays traversed in total is only n — 1
as well. The first and last vertex of each bay traversal can therefore be charged to the
corresponding elementary step vertex.

Each bay is a convex sequence of edges of monotonically increasing slope, so it contains at
most one vertex where there is a supporting line parallel to £. In our example of Figure 3-5
this is vertex X: all edges of the bay before X have smaller slope than £, and all edges after
X have higher slope than £. We will charge the traversal of an edge m to the line containing
the previous edge if the slope of m is less than that of £, otherwise we will charge it to the
line containing the nezt edge. This leaves the last, and possibly the first, edges of the bay
without anyone to charge, but these edges have already been accounted for separately. In
our example, b charges a, while ¢ charges d, and d charges e.

We now claim that a particular line can be charged at most once in all the bay traversals
associated with £. We deal first with the case of a line such as d, whose slope is greater than
£. Figure 3-5 depicts a situation where line d is charged by a preceding edge c. Suppose
that this is the last time line d will be charged during the traversals under consideration.
Note also that, as a consequence of our charging scheme, any line charging d must have
slope between those of lines £ and d.

By the remark at the end of Section 2, each bay of interest in the upper horizon tree bounds
a region formed by the intersection of the half-plane below £ with all the half-planes above
the lines following £ in the current cut. At the current elementary step, the intersection
Y of ¢ and d, and the intersection of ¢ with £ have not been traversed yet. Therefore, in
all earlier cuts during the topological sweep, lines £, ¢, and d will occur in the cut in that
order. This implies that, during the bay traversals associated with these earlier cuts, the
portion of the line d to the left of Y is shielded by ¢ and therefore cannot be part of any
bay and receive charges. The portion of d to the right of Y cannot be charged either. For
this to happen, there must be a line ¢’ intersecting d to the right of Y, as part of an earlier
bay. But, by our slope condition, ¢’ must intersect £ below the current bay’s intersection
with £ at W. It follows that ¢’ occurs below £ in the current cut and therefore ¢’ shields Y
from being in the current bay — a contradiction.

An entirely analogous argument holds for lines, such as a, of slope less than £. Only now
we look at the first time such a line is charged during the bay traversals associated with
propagating £, and then argue that at no later time can our line be charged again. This
completes our proof of the linearity of the total size of the bay traversals performed during
all elementary steps lying on a given line £. R

1 The implied constant is < 10. See the references mentioned above.
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Figure 3-5. An accounting scheme for bay traversal.

This lemma implies that the total cost of updating the upper horizon tree during the topo-
logical sweep is O(n2?). An analogous argument holds for the lower horizon tree. Thus we
have shown that we can push our cut from the left all the way to the right in O(n?) time.

At any one time the storage used by our algorithm is O(n), as all our data structures are of
linear size.

Theorem 3.2. The total cost of updating HTU (or HT L) through all the elementary steps
is O(n?). Therefore the topological sweep can be carried out in O(n?) time and O(n)
ezxtra storage.

We remark that the same amortized bound will be obtained if we traverse each bay in the
opposite direction. In the case of the upper horizon tree, for example, we could start at the
elementary step vertex V', and then proceed clockwise around the bay, till the intersection of
the bay with m; is encountered—see Figure 3-3. This requires different and more elaborate
data structures, but the proof of the quadratic bound is somewhat simpler, as we now briefly
explain. In the horizon tree, number the bays associated with the cut as 1 to n — 1, from
top to bottom. Define the weight of an edge bounding a bay from below to be the number
of the bay right above it. The weight of the whole horizon tree is then simply the sum of all
the weights assigned to its edges. For the leftmost cut, the weight of the upper horizon tree
is easily seen to be O(n?). At each elementary step, the traversed edges transfer to a bay
numbered one less, except for the intersected edge that is split among the two bays. The cost
of the step can then be accounted for by a fixed charge per step plus a decrease in the tree
weight. We omit the details.

4. Coping with degeneracies

This section proposes a method that in a fashion eliminates all degenerate cases, such as
parallel lines or multiple concurrent lines, thus relieving the programmer of the tedious task
of coding these cases. Of course, we have to pay something for the elimination, and the price
is carefully written primitive procedures that treat two parallel lines as non-parallel and
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three concurrent lines as non-concurrent. This entails the occurrence of zero-length edges
and vertices at infinity in the arrangement. It is crucial for this method that this simulation
of non-degenerate cases be done in a consistent way. For an earlier occurrence of this general
idea see Edelsbrunner [E].

The primitive procedures use the indices 1 through n assigned to the lines for their compu-
tations. Let line ¢; be given by the equation

aiz + by +¢ =0,
for 1 <1 < n and (a;,b;) # (0,0). We define another line
li(e): aiz+bly+c; =0,

with a} = a; + e b = b + e?"" and et = ¢+ €2”™? for € > 0 small enough. All
decisions, like whether or not £; intersects £, above £; etc., are based on £;(¢) instead of
on #4;. Consequently, the computation simulates the sweep of arrangement A(H (e)), with
H(e) = {l;(¢) | 1 < i < n} and € > 0 but small enough. It is not hard to prove that H(e)
contains no two parallel and no three concurrent lines. All manipulations of coordinates can
be reduced to determining the signs of determinants of the form

! ! !

a;- b;- c;.
det | o by )

a, b ¢

which can be done without specification of any particular value for €. To this end, however,
all multiplications must be performed without any loss in precision; equivalently, we need to
compute the power series expansion in € of the determinant above until we encounter the
first non-zero term. We plan to report elsewhere on the details.

5. Applications

We expect that the idea of topologically sweeping a geometric scene (instead of sweeping it
with a straight line) will have numerous applications in computational geometry; for instance,
Nievergelt and Preparata [NP] have used a similar idea for intersecting two planar convex
maps. It appears that the difficulty of applying the idea successfully to problems other than
sweeping arrangements of lines is the design of efficient supporting data structures. In this
section we address problems that can be formulated in terms of arrangements, or that relate
to such problems by some geometric transformation; in all cases we are able to obtain an
improvement over the previously known space or time bounds.

5.1. Convex subsets of configurations and paths in arrangements

Let H be a set of n lines in general position in E2. A monotone path x of A(H) is a connected
subset of alternating edges and vertices of A(H) such that every vertical line intersects = in
exactly one point. Therefore 7 is unbounded. A vertex p of = is a turn if the two incident
edges are not collinear. We define the length of = as the number of turns plus one.

Problem 5.1.1. Compute a longest monotone path of A(H).

Sharir {Sh| has shown that there are arrangements of n lines with monotone paths of length
Q(n4/n); no non-trivial upper bound is currently known. To compute a longest path, we
sweep A(H) topologically and for each edge e in the current cut we maintain a longest path
which extends from e towards the left: the edge e holds the number of turns of this path and
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c max{c+1,d}

d max{c,d+1}

(a) ¢ and d are the counts of the predecessor edges

c

c>d

(b) the backward pointers

Figure 5-1. Rules for updating longest monotone paths.

a pointer to its predecessor edge on this path. The rules for maintaining this information are
illustrated in Figure 5-1.

Theorem 5.1.1. The length of the longest monotone path in an arrangement of n lines in
E? can be found in O(n?) time and O(n) storage.

It is interesting that the topological sweep does not maintain enough information to allow us
to extract the actual longest path directly, for we cannot afford to keep around the predecessor
pointers for all edges of the arrangement and still have linear storage. Without predecessor
pointers, we can still backtrack by running a complete sweep up to each desired edge. This
clearly is a time-consuming process, so what we do instead is to save various snapshots of the
data structures used by the algorithm at certain moments; in this way we can avoid having
to rerun the algorithm from the beginning for each step of backing up we need to do.

The specific method that we use can be formulated in terms of the problem of backing up
from a state t of the sweep to an earlier state s in the linear ordering of all states visited
by the algorithm. We identify each state with its rank in this ordering. Initially we have
saved states s and t; we now wish to deduce the sequence of nodes defining the longest path
between s and t. Note that if we have saved a state of the sweep, then we can easily extract
the current (last) node of the longest path in this state. Let m denote the state halfway
between s and t. In order to back up from t to s we proceed as follows: first go forward from
8 to m and save state m; then recursively back up from t to m; then output the current node
on the longest path in snapshot m; and finally recursively back up from m to s. To find the
longest path we apply this recursive backing up to the initial and final states of the sweep.

The storage used by this method is the maximal number of buffers needed to hold states at
any one time. The recursive structure of the algorithm makes it clear that we need O(logn)
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buffers: this is the depth of the recursion stack and each invocation needs one buffer to store
the halfway state. So the total space used by this method is O(nlogn). The time for the
whole procedure is of the order of O(n? log n), as follows from a standard divide-and-conquer
recurrence. It is possible to analyze the time cost of this backtracking method for any given
number of buffers. For example, if we are willing to use (n®) buffers (O(n!*¢) total storage),
then we can do the backtracking in O(n?) time. Details of this space/time trade-off will be
presented in a forthcoming paper [Gu].

Theorem 5.1.1A. The longest monotone path in an arrangement of n lines in E? can be
computed in O(n? logn) time and O(nlog n+ k) space, where k is the length of that path.

A monotone path x in A(H) is called concave if each turn of 7 is a left turn when traversed
by a particle moving from left to right.

Problem 5.1.2. Compute a longest monotone concave path in A(H).

To solve Problem 5.1.2 algorithmically, we take the same approach as for Problem 5.1.1; we
adjust only the rules for maintaining longest paths (see Figure 5-2). Even though a concave
(or convex) path has length at most O(n), the previous difficulties with storage arise again
and can be removed again at the expense of a logn factor in time and storage.

c max{c+1,d}

(@)

(b) we go straight or turn left

Figure 5-2. Rules for updating longest monotone concave
paths.

By the duality discussed in [CGL], Problem 5.1.2 corresponds to a problem studied in combi-
natorial geometry. Let S be a set of points in E? which is dual to H so that the slopes of the
lines determine the z-coordinate of the points (i.e., map line y = az + b into point (a, —b)).
Let T = {(a1,b1),--.,(ax,bx)} be a subset of S such that a; < a;41. We say T is a concave

. cp big1—bs bipa—bit1 . s osp biga1—bs biya—biy1
chain of length k if =2+ < 2=, and T is a convez chain if J2 =20 > Jo0—2, for
1<i<k-2
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Problem 5.1.2A. Compute a longest concave (or convex) chain of S.

Erdés and Szekeres [ES1, ES2] have shown that every non-degenerate set of at least (2:_";) +1

points in E? has a convex or concave chain of length k, but this is not true for (2:::) points.
By duality, the points in a convex (or concave) chain correspond to the lines that support
edges of a monotone concave (or convex) path in the dual arrangement.

Theorem 5.1.2. The length of the longest concave (or convez) chain in a set of n points
in E? can be found in O(n?) time and O(n) storage. To eztract the actual path an eztra
log n factor must be paid in both time and storage. Alternatively, we can extract the actual
path by paying an eztra factor of O(n) in time while keeping the storage linear.

Building on this result, we attack a related problem. If S denotes a non-degenerate set of
n points in E2?, we call a subset T of S convez if each point of T appears as a vertex of
the convex hull of T'. Again Erdds and Szekeres [ES1, ES2] have demonstrated the existence
of 2¥=2 points in E? without a convex subset of cardinality k. They conjecture that every
non-degenerate set of 2¥~2 + 1 points contains such a convex subset.

Problem 5.1.3. Compute a largest convex subset of S.

Suppose that p is the leftmost point of a convex subset T of S. There is a projective trans-
formation which maps p into a point with infinite y coordinate and T — {p} into a concave
chain. Conversely, if subset U maps into a concave chain then U U {p} is a convex subset of
S with leftmost point p. To solve problem 5.1.3 we thus solve n instances of Problem 5.1.2A.
To extract the actual largest convex subset, we use the brute-force backtracking strategy,
but only for the “winning” leftmost point p. This backtracking takes O(n®) time, since the
largest convex subset consists of at most n points. This improves the storage bound in the
result of Chvatal and Klincsek [CK] who gave an algorithm that runs in O(n®) time and
O(n?) storage.

Theorem 5.1.3. The largest convez subset of a set of n points in E? can be found in O(n®)
time and O(n) storage.

A convex subset T of S is called empty if no point of S belongs to the interior of the convex
hull of T. By a result of Harborth [Ha], every 10 points (no three collinear) in E? have an
empty convex subset of size 5, and by Horton [Ho] there are sets with arbitrarily many points
but without an empty convex subset of size 7. The largest known set without an empty convex
subset of size 6 comprises 20 points and was found using an algorithm that finds the largest
empty convex subset of n points in O(n®) time and O(n?) storage; see Avis and Rappaport
[AR].

Problem 5.1.4. Compute a largest empty convex subset of S.

Let T be an empty convex subset of S with leftmost point p. By the same projective trans-
formation as that used above, p is mapped into a point with infinite y coordinate and T
is mapped into an empty concave chain, that is, the image of no point in S lies vertically
above any edge of the chain. So we try to compute a longest empty concave chain of S. An
edge e = (p,q) is forbidden if there is a point r vertically above e. In dual space p, ¢ and r
correspond to three lines p’, ¢/, ' such that p’ and ¢’ intersect above r' and the slope of r/
lies between the slopes of p’ and ¢'. To compute a longest empty concave chain, we use the
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same algorithm as for Problem 5.1.3 with one modification: a turn (in the dual arrangement)
is taken only if it is allowed, that is, if it does not correspond to a forbidden edge in S. Fig-
ure 5-2A shows a forbidden turn and illustrates how we can efficiently distinguish between
forbidden and allowed turns: for each line h remember the steepest line less steep than h
whose intersection with h was processed—call it f(h). A left-turn from line g to line A is now
forbidden if and only if f(h) is steeper than g.

f(h)

Figure 5-2A. A forbidden turn from g to h.

Maintaining this extra information for each line costs constant time per edge, which implies

Theorem 5.1.4. The largest empty convez subset of a set of n points in E? can be found
in O(n3) time and O(n) storage.

5.2 Stabbing line segments

Let S be a set of n closed and bounded line segments in E2, not necessarily disjoint. For
clarity and convenience, we assume that the 2n endpoints are in general position. We consider
two stabbing problems for S:

Problem 5.2.1. Find a line that cuts the maximal number of segments in S.

Problem 5.2.2. Find a line that cuts no segment and such that the absolute value of the
numbers of segments above the line minus the number of segments below is a minimum.

In dual space a segment (with two endpoints) corresponds to a pair of lines; a line cuts the
segment if its dual point lies in a specified double wedge of the two lines. (If the mapping
above is used, then the point belongs to the double wedge which avoids the vertical line
through the intersection of the two lines; see Figure 5-3.)

Let H be the set of 2n lines dual to the endpoints of the segments in S. If the dual points
of two lines {; and {, fall into the same region of arrangement A(H), then [, and l; intersect
the same segments, and therefore the same number of segments. To solve Problem 5.2.1 we
compute for each region of A(H) the number of segments cut by a line dual to a point of
the region. This piece of information is best computed when the region is first encountered
during a topological sweep (see Figure 5-4 for the five cases occurring). Each manipulation
can be carried out in constant time. Therefore we can improve results obtained in [EOW] by
a factor of n in storage.
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line

segment

Figure 5-3. The dual of line segment

Figure 5-4. The number of segments cut by a line in dual
space.

Theorem 5.2.1. A line that cuts the mazimum number of n given line segments in E? can
be found in O(n?) time and O(n) storage.

To solve Problem 5.2.2, we compute for each region the number of segments in $ which lie
above a corresponding line and the number which are cut by this line. Again, this information
can be propagated in constant time from one region to the next during the topological sweep.

Theorem 5.2.2. A line that avoids all of a given set of n segments in E* and produces a
best balance between the numbers of segments on either side can be found in O(n2) time
and O(n) storage.

It is interesting to note that the methods above do not work for the following seemingly
related problem originating in Lee and Preparata [LP]: For n segments in E? find a direction
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(if it exists) such that no two shadows intersect if light is shed from this direction. Sweeping
the dual arrangement with a topological line, instead of a straight one, is not an adequate
substitute in this case.

5.3 Visibility problems for non-intersecting line segments

Let S be a set of n relatively open, bounded and pairwise non-intersecting segments in E?2,
and P the set of their 2n endpoints. We define the visibility graph Vs as follows:

(i) the endpoints of the segments are the nodes of Vs, and

(ii) for endpoints v, w the undirected edge {v,w} is an edge of Vs if the straight segment
connecting v and w avoids all segments in S (see Figure 5-5).

Figure 5-5. Visibility graph for five segments.

Visibility graphs have been used for computing shortest paths between points that avoid all
segments in S [L, AA]: the single-source shortest path algorithm of Dijkstra [AHU| gives
a method for finding such a path between two arbitrary points in time proportional to the
number of edges in Vs (see also [FT]). To construct Vs, we follow the approach of Welzl (W],
which can be described intuitively as follows.

Imagine that each point p in P is equipped with a ray r(p) rooted at p and rotating
around p counterclockwise through 180°, from pointing down to pointing up. At each
point in time, p stores the segment s(p) that intersects r(p) closest to p. When r(p) sweeps
over a point ¢ in P then s(p) may possibly change. (If we assume that no collinearities
are present among the points in P, then four cases can occur; see Figure 5-6.)

Algorithmically, it is straightforward to distinguish the four cases (given p, g, s(p) and s(q))
and to make the necessary changes in constant time, given that s(p) and s(q) are correct
when the ray r(p) reaches q. We are left with a scheduling problem: how to schedule the
crossings of all 2n rays over all 2n points in such a way that s(p) and s(q) are correct when
the crossing of r(p) over ¢ is processed. Fortunately, if we look at the dual, the consistency
requirement becomes simply the left-to-right rule satisfied by the topological sweep.

We write p — ¢ for the event that r(p) crosses over ¢. Thus, the algorithm processes a
sequence (eg,...,em) of events, with m < (22") Let z be the last point encountered by
r(g) just before it becomes parallel to the line through p and ¢, and let y be the first one
encountered after that. If e; = [¢ — z] is scheduled before e; = [p — ¢| and this is scheduled
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o) r(p)

s(p)
(@) (b)

s(p)

pe]
=~
he)
-~

s(p)

(c) (d)

Figure 5-6. The situations when s(p) may change. In cases
(c) and (d), s(p) remains unchanged; in case (a), the segment
with endpoint ¢ becomes the new s(p), and in case (b), the
second closest segment becomes s(p).

before ex = [g — y| (that is, if § < 5 < k) then s(g) will have the correct value when p — ¢
is processed.

Let now H be the set of 2n lines which are dual to the pointsin P. An event p — ¢ corresponds
to the intersection of the lines that correspond to p and ¢. For a point p let (I;,...,l3,_1) be
the sequence of lines connecting p with other points such that the slope of I/; is smaller than
that of {4, for 1 <1 < 2n — 2. This sequence corresponds to the sequence of intersections of

the line dual to p with the other 2n — 1 lines in H, sorted from left to right. The restriction
above on schedules of events thus translates to:

If v and w are two vertices of A(H) which lie on a common line of H and v is further
left than w, then the event defined by v is to be processed before the one defined by w.

Let G be the directed graph with the vertices of A(H) as nodes and an arc from v to w if v
and w are endpoints of a common edge in A(H) and v is further left than w. Any topologically
sorted sequence of G’s nodes (see [Kn]) gives a sequence of events that allows us to process a
single event in constant time, as illustrated above; the sweep algorithm of Section 3 provides
exactly such a sequence. The theorem below improves the result of Welzl and Asano et al. [W,
AA] as far as the amount of storage is concerned: their methods need quadratic storage since
they construct A(H) explicitly.

Theorem 5.3.1. The visibility graph of a set of n non-intersecting segments in E* can be
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constructed tn O(n?) time and O(n) storage (not including the storage needed for the
edges of the graph).

We now turn to a problem that can be solved by methods similar to the ones used to construct
the visibility graph Vg:

Problem 5.3.2. Identify the segments of S that are hidden from another segment so.
Proof: Omitted. I

Formally, we say that a segment s is hidden from 8¢ if there is no relatively open line segment
which avoids S and has its endpoints on the closures of s and 8o. For an endpoint p of any
segment in S and every angle , 0 < a < 2, we let r,(p) be the ray that starts at p and
forms an angle o with the z-axis. Then we define s,(p) as the segment in S U {80} which
intersects r,(p) closest to p (if such a segment exists).

Lemma 5.3.2. Segment s of S is not hidden from so if and only if so 1s visible from an
endpoint of s or there 1s an endpoint p of another segment in S and an angle o such that
8 = 8,(p) and 8o = s_,(p).

For each endpoint p of any segment in S, the algorithm maintains two rays leaving p in
opposite directions together with the segments hit first by these rays. If so is one of these
segments then the other one is not hidden from so. All details in the maintenance of this
information are as in the construction of the visibility graph. This process in fact lets us
compute the visible pieces from s of each segment.

Theorem 5.3.3. The segments of S hidden from segment so can be identified in O(n?) time
and O(n) storage.

5.4 Minimum area triangles

Let S be a set of n points in E2. Any three points p, g, r of S define a triangle t, 4, with
area Apq,r. We consider

Problem 5.4.1. Determine points p, ¢, r of S such that Ap 4, is minimum.

If points p and q are fixed then r is a point closest to the line £ through p and q. It follows
that £ can be moved continuously into a position where it contains r without passing through
any point of S. In the dual arrangement the line £ containing p and ¢ corresponds to a vertex
v and point r corresponds to a line that bounds a region with v on its boundary. Following
[CGL, EOS], we propose the following algorithm: for each region of the dual arrangement,
test all vertex-edge pairs on the boundary, that is, compute the corresponding triangle and
record it if its area is the current minimum. As shown in [CGL, EOS], O(n?) triangles are
tested. In terms of the sweep algorithm in Section 3, a region is examined when it is entered;
at this point, the edges and vertices of the region can be derived in constant time each from
the two horizon trees.
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Theorem 5.4.1. The minimum area triangle defined by n points in E? can be determined
in O(n?) time and O(n) storage.

This improves the O(n?) time and storage algorithms of [CGL, EOS] and the O(n? log n) time
and O(n) storage algorithm of [EW|. Note that the area of the determined triangle vanishes
if S contains three collinear points. A more general approach to finding degeneracies in point
sets follows in subsection 5.6.

5.5 Enumerating faces in d-dimensional arrangements

Even though we do not know how to generalize the topological sweep directly to higher
dimensions, a number of problems in E¢ can be attacked by using only the planar methods
we have developed. In this subsection we look at the problem of listing all faces of various
types in a d-dimensional arrangement.

Let H be a set of n hyperplanes in E4. For convenience, we assume that H is non-degenerate,
that is, each s-face of arrangement A(H) belongs to exactly d — i hyperplanes and any j
hyperplanes intersect in a (d — j)-flat (i.e., a (d — j)-dimensional linear subspace). It is also
convenient to assume that H contains no hyperplanes parallel to the last coordinate axis
z4; we visualize this axis as being “vertical”. Many problems in computational geometry,
including those in the sections below, can be solved efficiently by visiting all faces of various
dimensions in A(H) and computing some piece of information for each face. We will show
how to use topological sweeps of two-dimensional arrangements for efficiently computing this
information for each cell (i.e., d-face) of a d-dimensional arrangement. If i-faces (2 < ¢ < d)
are to be visited, then we may use the same method applied to all s-flats determined by the
hyperplanes. Vertices and edges can be visited by sweeping all planes (i.e., 2-flats) in the
arrangement.

To visit all cells of A(H), we sweep all two-dimensional subarrangements and make use
of a correspondence between cells and vertices of A(H). For a non-vertical hyperplane h
given by the equation z4 = hyzy + -+« + hq_31z4_; + hg define the subspaces At : z4 >
hizy + -+ hg_1724_1 +hgand h™ : z4 < h1zy1 + -+ + ha—1Z4—1 + hg. We associate with
each cell its “lowest” vertex.

(1) For £ a cell in A(H), define v(§), the canonical vertex of £ to be the vertex u of the
boundary of £ that has the smallest z4 coordinate among all points of £. If there are
multiple such vertices then we choose the one with smallest 4.1 coordinate, and so on.
If no such vertex exists, then v(§) is undefined.

(ii) For v a vertex in A(H), let c(v), the canonical cell of v be the cell with ¢(v) € A~ if
veh~ and c(v) € ht if v € hor v € ht, where h ranges over all hyperplanes in H. This
cell is always uniquely defined because of our assumption that H contains no vertical
hyperplanes.

There are two unpleasant properties of this association. First, even though for any vertex v,
v(¢(v)) = v, it is not the case that for any cell £, c¢(v(£)) = £. The reason is that the same
vertex could be the lowest point of several cells. However, no vertex can be the canonical
vertex for more than 24-! cells, since we have assumed no degeneracies are present. So we
can actually store with each vertex references to all the cells of which it is the canonical
vertex. Among them, the one “right above” the vertex is its canonical cell. Second, it is clear
that cells which are unbounded from below have no canonical vertex. We can deal with this
problem by carrying out 2d runs of the sweep Rj,...,Ra4, where the positive (negative)
z;-axis is treated as the positive z4-axis in run Rg;_; (R3:), thus assuring that all cells will
be reached.
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Suppose that we sweep a two-dimensional subarrangement in plane g which is the intersection
of d — 2 hyperplanes in H. Let v and w be two vertices in this arrangement incident to a
common edge; then v and w belong to d — 1 common hyperplanes (i.e., (d — 1)-flats). Let A,
and h,, be the hyperplanes not common to v and w, but which contain v and w respectively.
If we assume that v already stores the necessary information I(v) (where I is application
dependent) for c(v) then the information I(w) for ¢(w) can be computed in constant time

from I(v), hy, hy, v and w. As an example let I(v) denote the number of hyperplanes below
¢(v). Then

I(w)=1I(v) ifveh}andweh), orveh, andweh,,
I(w)=I(v)+1lifve h} andw e h;, and
I(w) = I(v) - 1if v € hy and w € h}.

In this problem I is the same for all cells having the same canonical vertex. A simple example
illustrating the various possibilities in the plane is shown in Figure 5-7.

h[w hiv}

h[w] h{v] h{w] hiv}

c(w) c(v)

Figure 5-7. Illustration of the four cases in E2.

To initialize the sweep of g, we might complete the information for each vertex of the initial
cut using a trivial method. If we assume that a single step in the sweep costs constant
time and that O(n) time is needed for each vertex, then an entire sweep costs O(n?) time.
The hyperplanes in H determine (,”,) = O(n%~?) planes, which amounts to O(n?) time
altogether. Thus it is possible to visit all faces of arrangement A(H) in time proportional to
its size. A fuller description is contained in a forthcoming book [E1].

5.6 Degeneracies in configurations

Geometrical algorithms often become complex when they have to deal with degenerate
situations—the topological sweep is no exception. As we will see in this subsection, however,
we can use the techniques we have developed to detect and even enumerate the degeneracies
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present in a configuration of points. This might be useful knowledge before our point set is
processed by other algorithms. We start with some definitions.

A set of { + 2 points in E9%, 0 < § < d, is called an t-degeneracy if it belongs to an s-flat but
to no (¢ — 1)-flat. A set S of n points in B¢, d > 2, is degenerate if for some 1,0<i<d,it
contains an i-degeneracy.

Problem 5.6.1. Decide whether or not S is degenerate.

To detect s-degeneracies for ¢ < d — 2, we simply test all subsets of size { + 2 in O(n%) time;
so assume that S contains no degeneracies other than possibly of dimension d — 1. Assume
also that no d points of S lie on a common vertical hyperplane (we can perform d — 1 extra
runs Ry,..., R4 of our algorithm, with coordinates z4 and z; exchanged in run R;, to
guarantee that the common hyperplane is non-vertical at least once). If d + 1 points of S
belong to a common hyperplane (i.e., they are a (d — 1)-degeneracy) then the corresponding
d + 1 hyperplanes in the dual arrangement (point (py...,p4) is mapped into hyperplane
Tq = 2p1Z1 + -+ + 2pa_1T4—_1 + pa) meet in a common point v. Let g be a plane obtained by
intersecting d — 2 of these hyperplanes. Then v appears as the intersection of at least three
lines in the two-dimensional subarrangement in g. It is worthwhile to note that the technique
of Section 6 which simulates non-degeneracy during a sweep can still be applied. To detect
degeneracies, however, the technique must be accompanied by a test which checks for edges
of length zero.

Theorem 5§.8.1. In O(n?) time and O(n) storage we can decide whether or not n points in
E? are degenerate, for d > 2.

We can test for points lying on spheres by testing for planar degeneracies among certain
transformed points. Call a set of ¢ + 2 points in E¢ an i-cosphericality if these points are
equidistant from a common point and belong to a common s-flat but to no (i — 1)-flat, for
O <1 £ d. We can use the algorithm above in order to decide whether or not a set S
of n points in E? contains a cospherical subset: For point p = (p1,---,pa), define point
' = (p1,...,pd,p} ++--+ p?) in E4*1. A subset of 1 + 2 points in S is an s-cosphericality if
and only if the corresponding ¢ + 2 points in E4*! are an i-degeneracy; see Guibas and Stolfi
[GS] for more details of this lifting map.

We now address briefly the problem of reporting all degeneracies present in S. A subset T of
S i8 i-degenerate if every ¢ + 2 points in T define an i-degeneracy; it is proper if there is no
point p with T — {p} (¢ — 1)-degenerate; and it is mazimal if it is not contained in another
t-degenerate subset of S. The proper and maximal degenerate subsets of S imply in a trivial
way all others. Furthermore the number of such subsets can be only O(n?) (see [El]), so
there is hope of reporting them efficiently.

Problem 5.6.2. For 0 < t < d, enumerate all proper and maximal s-degenerate subsets of
S.

Edelsbrunner [E1] shows how to accomplish this in O(n?) time and space. We can decrease
the storage cost to O(n + k), where k is the total size of reported proper and maximal
degenerate subsets, by using the techniques of this paper.

For example, when d = 2, we are looking to report all lines containing at least three points
of S. In the dual arrangement this corresponds to reporting all vertices where three or more
lines are concurrent. We can find those by modifying the algorithm of Section 3 so that the
stack I contains as entries ranges of indices, where range [i, j] indicates that (c,...,c;) have
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a common right endpoint. In the representation of HT'U or HT L our convention will be that
we record the highest slope line terminating a tree segment s"f or 8; . This corresponds to
perturbing the highest slope line by moving it parallel to itself a small distance to its left,
then perturbing the next line in slope by moving it to its left by a much smaller distance,
etc. An elementary step sweeping over such a multiple vertex [f,j] is now easy to handle.
In updating HTU we just find the intersection of the bay from s;?' to °;+1 by propagating
each of the lines supporting ¢;,...,c;—1 in turn. In each case we can start the search from
where the previous intersection was detected. We omit here the details of this method and
its counterpart in higher dimensions; our plan is to report on it elsewhere.

5.7 Computing ranks of points

Let S be a non-degenerate set of n points in E4, d > 2. For a point p in S and a halfspace U
that contains p, we define r(p, U) as the cardinality of (S—{p})NU. Then p(p) = min{r(p,U) |
U is a halfspace that contains p} is called the rank of p. Applications of ranks of points can
be found in statistics and other fields.

We now translate the notion of a rank into dual space. Let H be the set of dual hyperplanes,
and let h € H correspond to point p in S. Consider the (d — 1)-dimensional subarrangement
of A(H) in h. For each facet (i.e., (d — 1)-face) f of A(H) in h define

o(fy={he H|fehT}|, and
b(f)={he H|f€h™}|

By definition of rank, we have p(p) = min{a(f),b(f) | f is a facet of A(H) contained in h}.
Section 5.5 now implies:

Theorem 5.7.1. In O(n®) time and O(n) storage we can compute the ranks for each one
of a set of n points in E4.

5.8 Best assignment for vectors in E¢

Let V = {v;,...,v,} be a set of n non-zero vectors in E4, and let A be the set of all
ordered n-tuples (ay,...,an), termed assignments, with a; € {+1,-1} for 1 < 1 < n. For
an assignment a = (ay,...,a,), we define

s(a) = Z ov;,
=1
and let |s(a)| be the (Euclidean) length of vector s(c).

Problem 5.8.1. Given V, a set of n non-zero vectors in E4, determine an assignment « for
V with |s(a)| maximum.

By reduction to arrangements in E4-1 we can show that out of the 2" assignments only
O(n?~!) need to be considered. For vector v; in V let h; denote the hyperplane through the
origin with normal v;, and let hj' and h; denote the two (open) halfspaces bounded by h;, of
which hf is the one into which v; points. Hyperplanes h;, for 1 <t < n, cut E? into various
cones all with apex at the origin. Let now p = (u1,...,H#a) be an optimal assignment for V
(i.e., |s(u)| is maximal), and let C denote the cone that contains the endpoint p = p(u) of

s(u)-
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Lemma 5.8.1. For1<i<n,peh} if py;=+1 andpeh; if yy = —-1.

Proof: Assume the existence of an index j such that p belongs to h+ but p; = -1.
Define ¢ = p + 2v;. Note that ¢ is the endpoint of s(u’'), where u’ (p»l, cyBi—1, —Hj,
Bj41y...9M4n). Since p € h , we have a fortiori that q € h"' Now ¢ is further from the

origin than p since p lies in the positive halfspace h+ and ¢ = p+ 2v,. This contradicts the
optimality of u. A similar argument holds in the other case. i

It follows that only one assignment ac = (ay,...,a,) needs to be checked for each cone C,
namely the one with a; = +1if C C h"-" and o; = —1 if C C h;. Furthermore, if s(ac) is
known and D is a cone separated from C only by hyperplane h, so that, say, C C h;-* and

D C h; then s(ap) = s(ac) — 2v;. Therefore s(ap) can be computed in constant time from
8(ac). Finally note that only one of each pair of two opposite cones needs to be considered
and that a hyperplane that avoids the origin cuts each pair of opposite cones in a bounded
(d—1)-face or two unbounded (d— 1)-faces of an arrangement of n (d — 2)-flats in h. Sweeping
all two-dimensional subarrangements of this arrangement and inspecting all cells yields the
theorem below; the nlogn term is there to handle the sorting needed when d = 2.

Theorem 5.8.2. For n vectors in E%, we can find in O(n%~! + nlogn) time and O(n)
storage an assignment a with |s(a)| mazimum.

It is interesting to note that the choice of assignments checked does not depend on the lengths
of the vectors at all. It is not hard to see that exactly the vectors that give rise to a vertex
of the convex hull of {s(a)|a € A} are checked (this convex hull forms a zonotope about
which more can be found in [E1]). Consequently, the algorithm works even if {s(c)| no longer
denotes the Euclidean length of s(a) but some other norm.

5.9 Extremal shadows of convex polytopes

Let P be a fixed convex polytope in E?, that is P is the convex hull of some finite set of n
points in a d-dimensional Euclidean space with d > 3. For z a non-zero vector, the orthogonal
projection of P onto the hyperplane A through the origin with normal vector z is called P’s
shadow S (z) from direction z. We define p(z) as the (d — 1)-dimensional measure of S(z) (in
E®, u(z) is the area of the two-dimensional shadow). Obviously, u(z) = u(-z).

For each facet f of P, let vy be the outward directed normal vector with length equal to
the (d — 1)-dimensional measure of f, and let h; be the hyperplane through the origin with
normal vector vs. These hyperplanes cut E4 into cones with the origin as apex. Each cone
can be thought of as a collection of directions of projection for which the “set of visible facets”
is the same. More formally, let C be a cone thus defined and z a point in C distinct from the
origin. We define F(C) as the set of facets f of P with C in h} (where the latter is defined

as the halfspace bounded by hs on the side defined by vy). It is not hard to verify that

p(x)-——;l:- Z <xv,>-ﬁ Z vp> .

IGF(C) feF(C)

Let us define vg = 3, feF(c) ¥f and let C be the cone such that vs has maximum length. By

a result of McKenna and Seidel [MS|, vs belongs to C; consequently, S(vs) has maximum
measure among all shadows. This maximizing cone C can be found by a method akin to
that used in the previous application 5.8. Each crossing of a hyperplane to visit an adjacent
cone either brings a new facet “into view,” or takes one out, so vc changes only locally. As
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a matter of fact, vy is actually maximum even among all sums of the form FeF Vs where
7 is any subset of the facets of P. Therefore we can also find this maximum by solving an
optimal assignment problem on the vectors vs by the method of the previous subsection (this
is a {0,1} assignment which is linearly related to a {+1,—1} assignment).

For the shadow with minimum measure we can restrict our attention to directions determined
by the intersection of d — 1 of the hyperplanes hy, for otherwise we can move our direction
onto some hyperplane and reduce the sum vc. As in Section 5.8, the measure of all shadows
in the specified directions can be computed in contant time per direction. The observations
above improve the algorithms in McKenna and Seidel [MS] which take either O(n®~!) time
and storage or O(n%!logn) time and O(n) storage.

Theorem 5.9.1. The minimum and mazimum shadow of a convez polytope in E* with n
facets can be computed in O(n?~! + nlogn) time and O(n) storage.

A number of other variants of this problem are possible. For example, by analogous techniques
we can compute in the same time bounds the direction(s) of view that maximize or minimize
the number of “visible vertices.” A slightly more challenging problem is that of computing
the direction of view from which a convex polytope in E® has the most or least vertices on
its silhouette. The only difficulty in these problems is that as we cross one of the hyperplanes
discussed above, the information associated with the current cone changes by more than a
constant amount. For example, in the silhouette problem we are essentially “xor”ing into our
current set of silhouette vertices those of the facet coming in/out of view. However, during
the execution of the sweep through all cones, a particular facet cannot come in/out of view
more than n times (a sweep crosses a line of a two-dimensional arrangement n — 1 times), so
it contributes to the total updating cost proportionally to n times its size. A simple argument
now shows that this still leaves the total time cost of our algorithm O(n?).

6. Open problems and conclusions

There are several open questions associated with the problems discussed in this paper. Among
them are the following:

(a) Can the vertices of an arrangement of n lines in E? be sorted in z-order from left to
right in O(n?) time? This problem is at least as hard as the classical problem of sorting
X + Y, which also remains open [Fr].

(b) Can the idea of topological sweep be extended to higher dimensions?

(c) Can the topological sweep yield improved results for the problem of computing all inter-
secting pairs among n line segments in E?*?

(d) Can the method of Section 5.1 of trading time for space be either completely avoided in
that context, or improved?

(e) How fast can we compute the shadow of a polytope in E* of minimum/maximum perime-
ter?

In conclusion, this paper has presented a new technique for sweeping a two-dimensional
arrangement that allows us to visit all elements of the arrangement in a consistent ordering.
The technique is extremely simple to implement: nothing beyond simple arrays (or linked
lists) is needed. It is fast in both practice and theory, where it improves either the space or
the time performance of previously known methods. The technique has many applications to
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planar as well as higher dimensional problems in computational geometry. Since point sets
are the duals of arrangements, many problems about collections of points in a Euclidean
space can be attacked by using the topological sweep. Numerous examples have been given
in this paper.
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