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Authors’ abstract:

Suppose that we want to eliminate the local go to
statements in a PASCAL program by replacing
them with multilevel loop exit statements. There
is a standard technique for doing so that succeeds
if and only if the flow graph of the PASCAL pro-
gram is reducible. This technique assumes that we
don’t allow ourselves either to introduce new vari-
ables or to replicate code, but that we do allow
ourselves to reorder the atomic tests and actions
within the text of the program and to rewrite the
connecting control structures from scratch. In this
paper, we shall investigate the extent to which go
to’s can be replaced with exit’s while preserv-
ing as much as possible of the program’s origi-
nal structure. On the negative side, we shall find
that there are programs whose flow graphs are re-
ducible but whose go to’s cannot be eliminated
without reordering their tests and actions. That

Capsule review:

The controversy that surrounds the use of the go
to statement has spawned several studies of how
go to’s can be replaced by more structured loop
constructs. This paper reports one such study.

Whereas previous works tended to adopt notions
of program equivalence that ignored the structures
of programs, the preservation of program struc-
ture is of paramount importance in this work. In
particular, the author is concerned with the class
of programs for which goto’s can be eliminated by
simply deleting them and replacing in their stead
judiciously inserted repeat loops and multilevel
exit’s. The author proves that this clase contains

is, programs with go to’s can have their atomic
elements in some weird static order, an order that
doesn’t correspond in any structured way to the
dynamic flow of control. We shall analyse this sit-
uation by augmenting our flow graphs with edges
that encode the static order of the atomic elements
and then showing that the augmented flow graphs
of programs with exit’s are always reducible. On
the positive side, given a program with go to’s
whose augmented flow graph is reducible, we shall
show that we can replace its go to’s with exit’s
while preserving essentially all of its structure. In
fact, we can simply delete the go to statements
and the labels they jump to and insert various exit
statements and labeled repeat-endloop pairs for
them to jump out of, without changing the rest of
the program text in any way.

Lyle Ramshaw

precisely those programs whose flow graphs are re-
ducible even when augmented with edges that en-
code the static flow of the program. In the proof,
the author presents a method for eliminating go
to’s from any program in this class.

This paper assumes only an elementary knowledge
of some block-structured programming language.
It is very readable in spite of its theoretical na-
ture: the context is laid out clearly, the flow from
initial lemmas to final results is structured well,
and the paper is sprinkled liberally with intuitive
explanations.

Sheng-Yang Chiu
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Policy Source Target Condition
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Figure 1: Necessary and sufficient conditions for replacing the
source construct by the target construct under the stated policy

1. Introduction

The go to statement was the center of much controversy ten or fifteen years ago [4, 12]. This
controversy spurred several theoretical analyses of the power of the go to statement. Given a source
program with go to’s, can we produce an equivalent target program that renounces go to’s in favor
of more structured control constructs? The first step in tackling this question is to settle the ground
rules: what is the precise meaning of “equivalent” and which control constructs are allowed in the
target program? Different ground rules lead to different results, as summarized in Figure 1.

At the outset, let us agree to ignore the non-local goto statements of such languages as
PASCAL [8], where a go to may jump all the way out of a procedure body to a label in an enclosing
procedure. In this paper, “program” means “procedure body,” and all go to’s are local.

Eliminating go to’s is easy if we choose a lenient definition of equivalence, such as functional
equivalence [16]. Two programs are called functionally equivalent whenever they produce the same
output for all inputs. In particular, introducing new variables in the target program is not ruled
out. By introducing one new variable that acts as a program counter, we can replace all of the
control structures of a program, including its go to’s, with some conditional statements inside a
single while loop. Harel discussed this result as an example of a folk theorem [5]; it is often credited
to Béhm and Jacopini [3], somewhat inaccurately, as Harel points out.

The elimination of go to’s becomes more challenging if we adopt a stricter notion of equivalence.
Two programs are called path equivalent [2, 16] or strongly equivalent [15] if, for all inputs, the
sequences of tests and actions that the two programs perform are identical. Knuth and Floyd [11]
showed that there are source programs whose go to’s cannot be eliminated if we demand path
equivalence and allow, in the target, only the three control constructs begin-end, if-then-else,

and while-do. Some programming languages, such as MODULA-2 [21], supplement these three with
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a “do forever” loop, for which we shall use the keywords repeat-endloop, and a single-level exit
or break statement, a primitive that forces the immediate termination of the innermost enclosing
repeat loop. (By the MODULA-2 rules, an exit statement inside a while loop inside a repeat
loop terminates the entire repeat, not just the while.) Unfortunately, as Kosaraju showed [15],
there are still programs whose go to’s can’t be eliminated under path equivalence even if we allow
repeat loops and single-level exit’s in the target. But we can eliminate all go to’s under path
equivalence if we allow ourselves a multilevel exit, a primitive that can terminate any enclosing
repeat loop [15, 18]; Apaf [20] is one example of a language with a multilevel exit statement. Note
that, once we allow repeat loops with multilevel exit’s, we no longer need to retain while-do as a
separate primitive, since we can simulate a while-do by using a repeat loop whose first statement
is a conditional exit. (This reduction doesn’t work with single-level exit’s because of the tricky
case mentioned in the previous parentheses.)

For completeness, we observe that some researchers chose to study a policy called semantic
equivalence [16] or weak equivalence [15], which is just a bit more lenient than path equivalence.
Semantic equivalence makes the assumption that all tests are free of side effects. It then loosens
the rules by allowing the target program to perform redundant or useless evaluations of tests. From
our point of view, semantic equivalence has the same properties as path equivalence: multilevel
exit’s suffice but single-level exit’s do not [15].

There is a sense in which even the policy of path equivalence is rather permissive: it allows
replicating code. The policy of flow graph equivalence [2] or very strong equivalence [16] closes this
loophole. Two programs are flow graph equivalent if their flow graphs are the same, that is, there
is a one-to-one correspondence between the tests and actions of the two programs that respects
control flow (a fine point: tests and actions in dead code don’t count). Under this policy, even
multilevel exit’s are not powerful enough to replace all go to’s. A flow graph is called reducible if no
cycle can be entered for the first time at two different places [6]. Reducibility precisely characterizes
the power of the multilevel exit statement; that is, every program with exit’s has a reducible flow
graph [6] and every reducible flow graph is the flow graph of some program with exit’s 1, 9, 18].
Hence, under flow graph equivalence, go to’s can be eliminated from a program if and only if that
program’s flow graph is reducible.

Two programs that are flow graph equivalent are, from the point of view of the back end of
a compiler, essentially identical. But the structurings of the tests and actions with begin-end,
if-then-else, and the like in the two programs can be quite different. The structured programming
movement has shown that this type of program structure is important. Indeed, the inventors of
flow graph equivalence were well aware of the importance of program structure: their prime goal
in eliminating go to’s was to improve the structure of their source programs [1]. Most of them
had no interest, however, in trying to preserve the existing structure of the source. After all, since

the source program had go to’s, how could it have any structure worth preserving? Our goal is
g

t ADAisa registered trademark of the U. S. Government (ADA Joint Program Office).
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somewhat different: we are trying to understand the power of the go to statement. To be thorough,
we must consider the interactions between go to’s and the other local control constructs. To what
extent can go to’s be eliminated while preserving the original structure of the source program?

Peterson, Kasami, and Tokura made a start on this problem in a paper in 1973 [18]. They
introduced a notion of structure-preserving equivalence, which we shall adopt for our investigations,
christening it structural equivalence. A target program is structurally equivalent to a source program
if the source and target have the same flow graph and we can convert the text of the source program
into the text of the target simply by deleting all go to statements and their corresponding statement
labels and then inserting various exit statements and appropriately labeled repeat-endloop pairs,
without rearranging or altering any other statements. Note that this policy allows us to bracket an
existing sequence of statements with a new repeat and endloop, thus forming a new loop and, in
some sense, adding more structure to the program—more levels to the parse tree at least. There
isn’t any hope of eliminating go to’s in general unless we allow ourselves to create new repeat
loops; the source program might not have any repeat loops, and exit statements aren’t any use
unless there are loops for them to terminate. Thus, structural equivalence is about the strictest
policy that leaves much chance of widespread success.

How many go to’s can we eliminate under structural equivalence? It is clear at the outset that
some go to statements are less respectful of program structure than others. The bad ones are the
go to’s that jump into the middle of some structured statement from outside it: those that jump
into a compound statement or loop, those that jump into an arm of a conditional, and the like. Call
such go to statements inward, and call the rest outward. Some languages, such as C [10], permit
both inward and outward go to’s; others, such as PASCAL and ADA, permit only the outward ones.
There is no hope of eliminating inward go to’s in general under structural equivalence. All of the
structured control constructs, including multilevel exit’s, enforce the restriction that control can
enter a statement only at its beginning; but inward go to’s allow control to enter a statement all
over the place. We shall give up on inward go to’s right away.

Peterson, Kasami, and Tokura also gave up on inward go to’s, of course; among outward
go to’s, they focused on the forward ones [18]. Call a go to statement forward if the destination
label follows the go to statement itself in the text of the program; else, call it backward. Peterson,
Kasami, and Tokura gave a transformation that replaces all of the forward, outward go to’s to a
particular label with exit’s by introducing one new repeat loop; we shall call this transformation
the Forward Elimination Rule. By using this rule repeatedly, they were able to eliminate all
forward, outward go to’s. (To be precise, they also handled certain backward, outward go to’s,
but hardly enough of them to be worth mentioning. They allowed only unconditional backward
go to’s whose destination label is at the same level of block nesting. Such go to’s can be replaced
with repeat-endloop pairs in a trivial way.)

We shall begin our investigations by presenting an analogous Backward Elimination Rule
that handles backward, outward goto’s. In Section 2, we introduce two idealized programming
languages called GOTO and EXIT: GOTO has outward go to’s, while EXIT has multilevel exit’s.

3



Section 3 then presents the Forward and Backward Elimination Rules in the context of the languages
GOTO and EXIT. Both of the Elimination Rules involve introducing new repeat loops; in certain
cases, these requests for new loops can conflict with each other. Section 4 defines the concept of a
head-to-head crossing and shows that the two Elimination Rules can handle all of the go to’s in a
GOTO program if and only if that program is free of head-to-head crossings.

One way that head-to-head crossings can arise is when go to statements are used to write a
program in which the static order of the tests and actions in the program text doesn’t correspond
to the dynamic order in which those atomic elements get executed. After reviewing the standard
notion of a flow graph in Section 5, we shall define in Section 6 an augmented form of the flow
graph in which there are edges encoding the static order of the atomic elements as well as the
edges representing the dynamic flow of control. Section 7 then proves that the augmented flow
graphs of EXIT programs are always reducible, augmenting edges and all. This gives us a necessary
condition for eliminating go to’s under structural equivalence: if the augmented flow graph of
a GOTO program isn’t reducible, then we can’t possibly eliminate its go to’s without at least
permuting its atomic elements into a different static order.

The reducibility of the augmented flow graph remains a necessary condition even if we adopt
a policy that is intermediate between flow graph equivalence and structural equivalence. Call two
programs linearly equivalent if their augmented flow graphs are the same; that is, their ordinary
flow graphs are the same and their live atomic elements occur in the same static order. The result
in Section 7 shows that programs (in GOTO or not in GOTO) with nonreducible augmented flow
graphs cannot be translated into EXIT under linear equivalence.

Section 8 completes our analyses of structural and linear equivalence by proving that the
reducibility of the augmented flow graph is also a sufficient condition for eliminating go to’s under
either of the two policies. In Section 9, we show that the property of reducibility simplifies in the
special case of augmented flow graphs to a rule prohibiting certain “conflicting” pairs of edges.
Finally, Section 10 discusses how the ideas in this paper took root during a project to translate the

sources for Donald E. Knuth’s document compiler TEX from PASCAL to MESA.

2. The languages GOTO and EXIT

Local control structure is only one small part of a programming language. In order to avoid
dealing with the other complexities of real languages, we shall work with two idealized languages
called GOTO and EXIT, which distill the essence of outward go to’s and multilevel exit’s.

To be more precise, GOTO and EXIT aren’t programming languages, but rather languages
in which to write uninterpreted program schemata. The atomic actions of a real programming
language are explicit commands to do something, such as assignment statements, input/output
statements, and procedure calls. But in GOTO and EXIT, the actions are just uninterpreted symbols
drawn from the set {action;,actions,...}. Similarly, the tests in GOTO and EXIT are just symbols
from the set {test;,testy,...}.



Both GOTO and EXIT have six types of statements: nulls, actions, conditionals, compounds,
loops, and jumps. Null statements are represented by the empty string. Action statements consist

of a single action symbol. Conditional statements, which we shall write
if (test) then (statement) else (statement) fi,
and compound statements, which we shall write
begin (statement); (statement); ... (statement) end,

are the standard things. The loop statement in GOTO and EXIT is a “do forever” loop, which we

shall write

repeat (statement); (statement); ... (statement) endloop.

The only way out of a loop is to use a jump statement, and jump statements are the one area where
the two languages differ.

Let us use the term block to denote either a compound statement or a loop. In GOTO, any
top-level statement of any block may be labeled. If L labels some top-level statement of a block,
the phrase “go to L” becomes a legal statement throughout that block, and its effect is to transfer
control to the statement labeled L. Multiple labels on a single statement are allowed, as are multiple
statements given the same label (as long as they are not top-level statements of the same block).
When there are top-level statements labeled L in several blocks containing a “go to L”, the label
in the innermost enclosing block determines the destination of the jump.

Note that one can’t jump into a block from outside it in GOTO, because the jump statement
“go to L” is defined only inside that block of which the label “L:” labels a top-level statement. One
can’t jump into a conditional from outside it or jump from one arm of a conditional to the other
because only top-level statements of blocks may be labeled. Thus, the language GOTO permits
only outward go to’s.

In EXIT, it is loops that may be labeled, rather than statements. We shall use a postfix “L”

for loop labels, in contrast to the prefix “L:” used for statement labels:
repeat (statements possibly including “exit L”) endloop :L.

Anywhere within a loop labeled L, the phrase “exit L” is a legal statement, and its effect is to
terminate the loop immediately. As in GOTO, we shall allow multiple labels on a single loop and
multiple loops given the same label. If there are several loops labeled L, each “exit L” statement
terminates the innermost such loop that encloses it.

Statements in GOTO or EXIT are almost programs in their own right. The only difficulty is that
they may contain dangling jumps, go to’s or exit’s to labels that are not bound by the surrounding

text. We shall dignify those statements that are free of dangling jumps by calling them programs.
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Source block in GOTO Target block in EXIT

begin
begin actiony;
action;; actions;
actiongy; repeat
if testg then go to L else fi; if tests then exit L else fi;
actionyg; actiony;
if tests then go to L else fi; if tests then exit L else fi;
actiong; actiong;
: actiony; exit L;
end endloop :L;
actiony;
end

Figure 2: An example of the Forward Elimination Rule

3. The Forward and Backward Elimination Rules

Our goal is to translate GOTO programs into structurally equivalent EXIT programs. Suppose
that only one of the top-level statements of a block in GOTO is labeled and that this label is only
gone forward to. Following Peterson, Kasami, and Tokura [18], we can produce a structurally
equivalent block in EXIT by the technique shown in Figure 2, which we shall call the Forward
Elimination Rule. Note that no statement in the new, labeled loop will be executed more than
once, despite the presence of the keyword repeat. We could make the Forward Elimination Rule a
little simpler if EXIT allowed compound statements to be labeled and exited as well as loops. But
it is traditional to restrict exit to exiting only loops, and we have no compelling reason to break
with this tradition.

The end of the new loop in the EXIT program has to go in the same gap between statements
as the label “L:” in the GOTO program. But we have a certain amount of freedom about where to
put the beginning of the new loop. In Figure 2, for example, we could have started it either one or
two statements earlier. In general, we can place the keyword repeat in any gap between top-level
statements that precedes the first such statement containing a dangling “go to L”.

With just a little more work, we can also handle a block in GOTO with a single label that is
only gone backward to, as shown in Figure 3. We shall call this technique the Backward Elimination
Rule. We could get away with only one new loop in this rule instead of two if EXIT had a multilevel
next or continue statement, a primitive that could force a new iteration of any enclosing loop
to begin immediately. But, once again, we shall resist the temptation to clutter up EXIT with
unnecessary features.

In the Backward Elimination Rule, it is the location of the beginning of the new loops that
is precisely determined by the location of the label “L:”. The terminating boilerplate, the phrase
“exit L; endloop :LL; endloop :L;”, can be placed in any gap between top-level statements that
follows the last such statement containing a dangling “go to L”.

In general, more than one of the top-level statements of a block in GOTO may be labeled, and
each of these labels may be gone to from various places. If we try to eliminate all of these go to’s

6



Source block in GOTO Target block in EXIT

begin
actiony;
begin repeat
actiony; repeat
L: actiongy; actiony;
if testg then goto L else fi; if tests then exit LL else fi;
actiong; actiony;
if tests then goto L else fi; if test; then exit LL else fi;
actiong; exit L;
actiony; endloop :LL;
end endloop :L;
actiong;
actiony;
end

Figure 3: An example of the Backward Elimination Rule

begin begin

action;; action;;

if test; then goto L else fi; L i if test; then goto M else i; [M

if tests then goto M else fi; M L: actiong; \
L: actiong; M: if tests then goto L else fi; L
M: actiong actiong

end end

Figure 4: Conflicts between requests for new loops

by using the two Elimination Rules, the resulting requests to introduce new loops may conflict with
one another. Two simple cases of conflict are shown in Figure 4.

In the left-hand example, we have two forward go to’s, the first of which jumps into the interior
of the second, that is, into the middle of the region that the second jumps over. A naive attempt
to apply the Forward Elimination Rule to both of these labels runs into a conflict. But this conflict
can be resolved quite easily by making the new loop introduced for the label M longer than it would
otherwise have to be—in particular, just long enough so that it completely contains the new loop
for the label L. We shall call this process stretching the M loop.

The right-hand example in Figure 4 is a more stubborn case. The two go to’s here jump into
each other’s interiors. Remember that only one end of each new loop can be stretched. In this case,
the stretchable ends are both on the outside. Whether we stretch them or not, these two requests
for new loops will always remain in conflict.

Diagrams with lines and arrows, as in Figure 4, are quite helpful in studying conflicts between
requests for new loops; we shall call them go to graphs. Suppose that we are given a block B in the
language GOTO, some of whose top-level statements are labeled. The go to graph of B is a directed
graph (multiple edges allowed, but no self-loops). The vertices of the go to graph correspond to the
gaps between top-level statements of B; they are drawn as horizontal lines in Figure 4. The edges,

drawn as vertical arrows, are derived as follows. For each top-level label L that is gone forward

7



to, we add an arrow whose head is the statement gap containing the label “L:” and whose tail is
the gap just before the first top-level statement of B, call it S, containing a dangling “go to L”.
Note that the dangling go to itself may appear anywhere in S, possibly inside one or more nested
blocks; the arrow’s tail is the statement gap in B just preceding S, whether or not such nested
blocks exist. The arrows for backward go to’s are similar; for each label L that is gone backward
to, we add an arrow whose head is at “L:” and whose tail is just after the last top-level statement
of B containing a dangling “goto L”. Each arrow represents the extent of the shortest new loop
that we could insert to handle go to’s of that direction to that label.

Stretching an arrow in a go to graph means moving its tail from one vertex to another so as to
make the arrow longer. We shall draw a stretched arrow by a dotted extension of the arrow’s shaft.
The various possible stretched versions of an arrow correspond precisely to the various possible
stretched loops that we could insert to handle the corresponding go to’s. If there is some way to
stretch the arrows that gets rid of all conflicts, we can use that stretching as a recipe for applying
the Elimination Rules to eliminate all of the go to’s to top-level labels of the block B.

In general, a GOTO program will have many blocks, nested inside of each other, and each block
will have its own go to graph. Note that we can apply the stretching technique and the Elimination
Rules to each block separately; different blocks don’t interfere with each other. Thus, if we can
stretch the arrows in all of the go to graphs of a GOTO program so as to eliminate all conflicts,
we can translate from GOTO to EXIT while preserving structural equivalence. It behooves us to

consider the combinatorial problem of stretching arrows.

4. Stretching arrows to get rid of crossings

Abstractly, a goto graph is a directed graph together with a total ordering on its set of
vertices. Since self-loops are forbidden, each edge in a goto graph can be classified as either
forward or backward. Each pair of edges can be classified as either disjoint, nested, or crossing, as
shown in Figure 5. (In this section, we shall draw our go to graphs rotated 90 degrees.) If two
edges share an endpoint, we shall count that pair as either disjoint or nested; in order for a pair
to cross, four distinct vertices must be involved. There are four types of crossing pairs, depending
upon the directions of the two arrowheads. We shall call them forward-forward, backward-backward,
head-to-head, and tail-to-ta:l

Our goal is to stretch the edges of a go to graph so as to eliminate crossings. As we noted
above, stretching moves can’t eliminate head-to-head crossings. On the other hand, we shall find

that stretching moves are powerful enough to eliminate all other crossings.

Proposition 1. Given a go to graph that is free of head-to-head crossings, it is possible to stretch

its arrows so as to eliminate all crossings of any kind.

To see that Proposition 1 is not trivial, consider the situation in Figure 6. If we were to stretch
the tail of the forward arrow f back past the head of the backward arrow b, we would turn a
nested pair into a head-to-head crossing. No further stretching would ever be able to eliminate

that head-to-head. Thus, we can’t eliminate all crossings just by stretching arrows heedlessly.
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Figure 5: Classifying pairs of edges in a go to graph
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Figure 6: A head-to-head crossing caused by careless stretching
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u v w T Y z

Figure 7: The case of a forward-forward crossing in the proof of Lemma 2

On the other hand, Proposition 1 isn’t too subtle either. As long as we are careful not to
introduce any head-to-head crossings, stretching arrows heedlessly does just fine. This observation
is due to Susan Owicki; it forms the basis of her simpler proof of my Proposition 1. By the way,
Susan Owicki also deserves credit for the good idea of drawing the vertices of a goto graph as

parallel lines rather than as points.

Lemma 2. If a goto graph contains at least one crossing but no head-to-head crossings, then

some arrow in it can be stretched without introducing any head-to-heads.

If we can prove this lemma, Proposition 1 follows at once: just keep applying the lemma as
often as possible. There are only a finite number of states that we could ever reach by stretching
moves, since the go to graph contains only a finite number of vertices and edges. Furthermore,
every stretching move increases the sum of the lengths of the edges; therefore, we won’t be able to
keep applying Lemma 2 forever. When it no longer applies, the graph must be free of all crossings.

To prove Lemma 2, we shall consider several cases. First, suppose that at least one of the
crossings that remains is forward-forward, like the crossing of f and g in Figure 7. In such a
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Figure 8: The case of a tail-to-tail crossing in the proof of Lemma 2

situation, we shall stretch the tail of the arrow f back to meet the tail of g. Could this stretching
introduce any head-to-head crossings? Any arrow that crossed the stretched f but not the original
J would have to have one endpoint in the interval (u,w] and the other either less than u or greater
than y. In order for such a hypothetical arrow to end up head-to-head with the stretched f, it
would have to be a backward arrow b with its tail at some vertex z with z > y and its head at some
vertex v with u < v < w. But no such arrow b can exist, since such an arrow would have already
been in head-to-head conflict with g. Thus, even though stretching f may introduce new crossings
of various kinds, it can’t possibly introduce any head-to-head crossings.

If any backward-backward crossings remain, we proceed symmetrically.

If there are crossings, but none of them are head-to-head, forward-forward, or backward-
backward, they must all be tail-to-tail. In this case, we have a lot of choice about what to do. To
keep things simple, we shall pick one tail-to-tail pair of arrows, call them a and f, and stretch the
tail of f back to the head of a. If we wanted, we could stretch a instead, or we could stretch both a
and f—it doesn’t matter. But stretching f makes this case, shown in Figure 8, very similar to the
forward-forward case. Could stretching f introduce any head-to-heads? By the same argument as
before, the only type of arrow that might cause trouble is a backward arrow like b, with its tail at
a vertex z with z > y and its head at a vertex v with u < v < w. But, if such an arrow b existed, it
would form a backward-backward pair with a, and we would have employed the backward-backward
case instead. Note that stretching f might very well introduce new crossings of other types, such as
forward-forward crossings between the stretched f and arrows like the reverse of b. But stretching
f can’t introduce any head-to-heads, and that is enough to complete the proofs of Lemma 2 and
of Proposition 1.

Putting Proposition 1 together with the Elimination Rules, we have the following corollary.

Corollary 3. Let P be a program in GOTO. The Forward and Backward Elimination Rules suffice
to eliminate all of the go to’s from P, producing a structurally equivalent EXIT program, if and
only if the go to graphs of all of the blocks of P are free of head-to-head crossings.

Disclaimer: the presence or absence of head-to-head crossings is not the key to writing well-
structured programs in GOTO. In fact, it seems quite clear that backward-backward pairs are at
least as bad as head-to-heads in terms of program structure—probably worse: jumping backward
into the middle of a loop seems at least as ill-advised as jumping forward into the middle of one.

Good program structure is too subtle a property to be captured by any simple test.
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Figure 9: The GOTO program While, its flow graph, and its step graph

5. Step graphs, flow graphs, and reducibility

Before we can make further progress, we have to become precise about the notions of “flow
graph” and “reducibility.” As a first step in this direction, we shall define the semantics of a GOTO
program by constructing the state diagram of an interpreter, which we shall call the program’s
step graph. When building the step graph, we shall pad out the text of the program by adding the
special symbols start and stop at the beginning and end. Figure 9 shows a sample GOTO program
along with its step graph.

The nodes of the step graph correspond to the tokens of the program text. We shall write a
node by putting brackets around the corresponding token. Nodes come in four classes: [start] is
the initial node; [stop] is the final node; each action or test is an atomic node; and the rest of the

program text is broken up into glue nodes from the list
[if], [then)], [else], [fi], [begin], [end], [repeat], [endloop], [;], [L:], and [goto L],

where L denotes any label.

The edges of the step graph are determined by a straightforward set of rules. Most nodes
have a single outgoing edge leading to the node for the following token. This rule applies to the
initial node [start], to all atomic action nodes, and to the glue nodes [if], [then], [fi], [begin],
[end], [repeat], [;], and [L:]. Atomic test nodes have two outgoing edges. One of them is labeled
“true” and goes to the matching node [then]; the other is labeled “false” and goes to whatever
node immediately follows the matching [else]. The false branch has to start just after [else] rather
than at [else] since the node [else] itself functions as the end of the true branch. This convention
also implies that the edge leaving the node [else] jumps straight to the matching [i]. Each node
[endloop] has one outgoing edge to the matching [repeat|. Each node [go to L] has one outgoing
edge to the matching [L:]. Finally, the node [stop] has no outgoing edges.

11



Note that a step graph may contain nodes that cannot be reached by following paths from
[start]. We shall call the reachable nodes live and the unreachable ones dead. The step graph in
Figure 9 has two dead nodes, both of which are glue nodes: the first [;| and the [else].

Compiling a GOTO program instead of interpreting it involves preprocessing the step graph in
order to eliminate chains of glue nodes. We might as well delete the dead nodes at the same time.
The resulting simpler graph is called the flow graph of the program. Figure 9 also shows the flow
graph of its sample program. We shall call this program While, since it has the same flow graph
as “while test; do action,”.

The nodes of the flow graph are just the live, non-glue nodes of the step graph. The edges
of the flow graph correspond to paths in the step graph from one live non-glue node to another
through a sequence of glue nodes. Since all glue nodes have out-degree one, there is never any choice
about how to build such paths. There is one unpleasant possibility, however: we might get caught
in a cycle of glue nodes, such as those in the step graphs of “repeat endloop” or “L: go to L”. We
shall call such cycles subatomic. If this ever happens, we shall add a second final node called [spin]
to the flow graph, and we shall represent paths that enter subatomic cycles as edges to [spin].

The step graphs and flow graphs of EXIT programs are defined completely analogously; the
edge leaving the glue node [exit L] goes to the matching loop label node [:L]. We can also define
the step graphs and flow graphs of statements in GOTO or EXIT that include dangling jumps, that
is, jumps to unbound labels, by treating the dangling jumps as final nodes instead of as glue nodes.

Step graphs are tied to a particular programming language, but we can define the notion of flow
graph independent of any language. A flow graph is a directed graph (multiple edges and self-loops
both allowed) with certain properties. Each node of a flow graph has a label drawn from the set
of symbols {start, stop, spin, action;, actiong, ..., testy, tests, ... }. There must be exactly one
node [start], with no incoming edges and exactly one unlabeled outgoing edge. All nodes of the
flow graph must be reachable from [start]. There must be at most one node [stop] and at most
one node [spin]; if these nodes exist, they must have out-degree zero. Each action node must have
exactly one unlabeled outgoing edge. And each test node must have exactly two outgoing edges,
one labeled “true” and the other “false”.

As a first exercise in the use of these concepts, we can prove that every flow graph is the flow
graph of some GOTO program. Given a flow graph, label all of its nodes other than [start] with
distinct identifiers. For each node, we can write a fragment of GOTO program that captures the
computation at that node. If the node [action;] is labeled L and its outgoing edge goes to the node
labeled M, we write “L: action;; go to M;”. If the node [test,] is labeled L and its successors are
labeled M and N, we write “L: if test; then go to M else go to N fi;”. The node [start] is written
“goto A;”, where A is the label of its successor. If a node [stop] is present and labeled Z, it is
written “Z:”, a null statement labeled Z. If a node [spin] is present and labeled Y, we write it
“Y: repeat endloop;”. We can then concatenate these fragments together in any order, as long as
[start] goes first and [stop] goes last, and wrap them up into a compound statement with a begin

and end. The result is a GOTO program with the specified flow graph.
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Unlike programs in GOTO, programs in EXIT can’t have arbitrary flow graphs. As we noted in
Section 1, previous research has shown that the flow graphs of EXIT programs are precisely those
that have the graph-theoretic property called reducibility. The concept of reducibility is blessed
with many equivalent definitions [7]. We shall use a definition that restricts the ways that cycles
in the graph can be first entered. Define a simple cycle in a flow graph to be a cycle that doesn’t
visit any node more than once. If v is a node on a simple cycle C, we shall call v a gateway to C
if there is some path from [start] to v that avoids all other nodes of C; that is, it is possible to
enter C for the first time at v. A flow graph is called reducible if no simple cycle has more than
one gateway.

Beware: a gateway is not the same thing as an entry node. A node z in a set of nodes S is
called an entry to S if z is the head of some edge whose tail lies outside of S. Every gateway to a
cycle is also an entry to that cycle, but not every entry is a gateway. As Hecht and Ullman noted [6],
reducible flow graphs, like the example in Figure 10, can have cycles with multiple entries: both of

the nodes of the cycle consisting of [action;] and [test;] are entries. But only [action;] is a gateway.

6. Augmented flow graphs and linear equivalence

Given a GOTO program with no head-to-head crossings, the Elimination Rules can translate
it into EXIT under structural equivalence. In particular, this means that the flow graph of such
a program must be reducible. The Elimination Rules are stumped, however, by head-to-head
crossings. We can’t fault the Elimination Rules for failing on programs whose head-to-heads are
associated with a nonreducible flow graph; there isn’t any hope of eliminating the go to’s from
such programs while preserving even their flow graphs, much less their program structure. But
what about the programs in the middle, the ones that have reducible flow graphs despite having
head-to-head crossings? One example of such a program is While, the sample program in Section 5.
A glance at the program text of While in Figure 9 shows that While does have a head-to-head in the
go to graph of its only block, but the flow graph of While is certainly reducible. As a consequence
of this reducibility, there are EXIT programs with the same flow graph as While; the simplest such
is

repeat if test; then action; else exit L fi endloop :L.

This EXIT program is flow graph equivalent to While, but not structurally equivalent. Can we
eliminate the go to’s from While under structural equivalence, or not?

We can’t. In the text of While, the atomic element “action;” comes before the element “tests”.
We shall prove below that the test comes before the action in every EXIT program with this flow
graph. Since the static order of the atomic elements is one of the flavors of structure that structural
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equivalence preserves, the go to’s in While cannot be eliminated under structural equivalence. The
proof involves encoding this static order in a program’s flow graph by adding extra edges.

Define an augmented flow graph to be a labeled, directed graph whose edges are partitioned
into two classes: dynamic and static. If the static edges are deleted, what remains must be an
ordinary flow graph. In addition, the static edges must form a path, called the augmenting path,
that begins at the node [start] and then visits each atomic node exactly once. The augmenting
path must not visit any of the final nodes. The order in which the augmenting path visits the
atomic nodes encodes the static order of the corresponding live atomic elements in the program
text. Note that, since dead atomic elements are deleted when building the flow graph, their static
order is not encoded by the augmenting path. Figure 11 shows the augmented flow graph of the
GOTO program While, with the two static edges drawn dashed. This graph is not reducible; both
of the nodes [action;] and [test;] are gateways to the cycle.

Given a GOTO or EXIT program, we can construct the corresponding augmented flow graph.
Furthermore, every augmented flow graph is the augmented flow graph of some GOTO program.
To produce such a program, we need only assemble the program fragments that we constructed in
Section 5 in the order specified by the augmenting path. What about EXIT programs? In Sections
7 and 8, we shall prove that the augmented flow graphs of EXIT programs are precisely the reducible
augmented flow graphs. In particular, every EXIT program for a while loop must have the test
before the action.

Call two programs linearly equivalent if their augmented flow graphs are the same. In addition
to demanding that their ordinary flow graphs be the same, this policy demands that the live atomic
elements in the two programs occur in the same static order. We can rephrase the result claimed
in the last paragraph as follows: all goto’s can be eliminated from a program under the policy
of linear equivalence if and only if that program’s augmented flow graph is reducible. Note that
there is no need to restrict the source programs to have only outward go to’s in this result; inward
go to’s or even weirder control structures could be allowed in the source program, since only the
augmented flow graph of the source matters.

There are several fine points in our definition of flow graph that deserve comment. First,
most people distinguish one of the atomic nodes of their flow graphs as the initial node, instead
of adding a separate node [start]. Note that the nonreducibility of the augmented flow graph of
While depends upon the existence of the separate [start]. Second, the careful reader might be
curious about why we have chosen to leave the dead code out of our augmented flow graphs. We
had to leave the dead code out of our ordinary flow graphs, since all of the nodes in any flow graph
must be accessible from [start]. But we could have chosen to put the dead code back in when
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Figure 12: An EXIT program, its augmented flow graph, and the nonreducible
graph that would result if dead code were included in augmented flow graphs

building the augmented flow graph, since the augmenting path itself would have been enough to
guarantee that all nodes were accessible from [start]. The trouble is, if we had put the dead code
back in, there would have been EXIT programs whose augmented flow graphs weren’t reducible.

One example of such a program is given in Figure 12.

7. Exploiting the structure of exit’s

Proposition 4. The augmented flow graph of every EXIT program is reducible.

We shall begin by proving that the ordinary flow graphs of EXIT programs are reducible. This
result has been known for some time [6], and the proof that we shall give is the standard one. We
shall then extend the proof to show that adding the static edges doesn’t foul up the reducibility.

Fix an EXIT program and consider some simple cycle C in its ordinary flow graph; we want to
demonstrate that C has only one gateway node. Note that C can only include atomic nodes, since
the initial node [start] has in-degree zero while all final nodes have out-degree zero. Each edge
in the cycle C thus corresponds to a path from one atomic node to another through glue nodes
in the step graph of the EXIT program; consider the cycle C' in the step graph formed by these
paths. Note that the only control primitive in EXIT that moves control to the left in the program
text is the backward jump from an [endloop] to the matching [repeat]. Since C' is a cycle, it must
include at least one such backward jump.

Consider the set of backward jumps from [endloop)’s to their matching [repeat]’s that occur as
we traverse the entire cycle C'. Any two of them must be either disjoint or nested; they can’t cross
because they arise from the block structure of the program. Thus, this set of backward jumps forms
a forest. Furthermore, there can’t be more than one tree in this forest, because there would be no
way for control to move backward from one tree to another. We deduce that the set of backward
jumps in C’ forms a single tree, the root of which is a backward jump whose repeat loop, call it

R, contains all of the nodes of C. We shall denote this root jump by [endloopg] — [repeat Rl
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Suppose that we begin at the glue node [repeaty] of the step graph and follow edges; let y
be the first non-glue node that we come to. Note that we can’t enter a subatomic cycle, because
the cycle C’ includes the edge [endloopy] — [repeaty]. In fact, the node y must be an atomic
node that belongs to C and lies in R. The only way into a repeat loop in EXIT from outside it
is to sequence in through the repeat; thus, the node y is the only entry to R in the flow graph.
This implies that y is also the only gateway to C: any path from [start] to any node of C' must
enter R, and can do so only by visiting y. Therefore, the ordinary flow graphs of EXIT programs
are reducible.

We want to extend this proof to handle augmented flow graphs; how does the presence of the
static edges change things? First, a simple cycle C in an augmented flow graph may traverse static
edges, and they don’t correspond to paths in the step graph. Note that all of the static edges go
forward in the program text, however. Thus, all of the backward edges of C must be dynamic
edges, and each of them will lift to a path in the step graph. Arguing as before on the edges in
this set of paths, we deduce that there exists a repeat loop R in the program with two properties:
R includes all of the nodes of C and C includes an atomic node y that is the first non-glue node
reached by following edges in the step graph from [repeaty]. —

Next, consider a path in the augmented flow graph from [start] to any node of C; in particular,
consider how that path first enters the loop R. We already know that all of the dynamic edges
that enter R from outside it have y as their head. What about static edges? Since the loop R
is a contiguous chunk of program text, the nodes in the augmented flow graph that correspond
to atomic elements in R occur as a contiguous subpath of the augmenting path. Hence, there is
exactly one static edge that enters R from outside it, and its head is the node corresponding to
the leftmost live atomic element in the text of R. We will be done if we can show that the node y

defined above is also the leftmost live atomic element in R.

Lemma 5. If a statement S in EXIT contains any live atomic elements, then the first atomic
element to be executed when S is executed is also the leftmost live atomic element in S; that is,

the dynamic and static successors of [start] in the augmented flow graph of S are the same.

The proof is by structural induction. Let S be a statement in EXIT that contains at least one
live atomic element, and let d denote the dynamic successor of [start} in the flow graph of S. Since
S contains live atomic elements, the node d must be atomic rather than final. We want to show
that the atomic node d is also the static successor of [start]. Of the six types of statements in
EXIT, the statement S can’t be a null statement or an exit, since S contains d. If S is an action
statement, d must be that action; if S is a conditional, d must be the associated test. In either
case, it is clear that d is also the leftmost live atomic element in S. The remaining two cases are
compounds and loops. In these cases, the node d must lie in some top-level statement T of S. Since
d is the dynamic successor of [start] in S, the top-level statements of S preceding T must each
have the trivial flow graph [start] — [stop]. In particular, none of these statements can contain

any live atomic elements. Also, the node d must be the dynamic successor of [start] in T. By
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induction, we can conclude that d is the leftmost live atomic element in T, and hence also in S.

This completes the proofs of Lemma 5 and Proposition 4.

Corollary 6. If a GOTO program is free of head-to-head crossings, then its augmented flow graph
is reducible.

Proof: In the absence of head-to-head crossings, we can use the Elimination Rules to produce a
target EXIT program that is structurally equivalent to the source GOTO program and, consequently,
has the same augmented flow graph. This common augmented flow graph must be reducible by
Proposition 4.

8. Dealing with the go to pathologies

We have made progress, but we aren’t done yet. Proposition 4 explains the failure of the
Elimination Rules on all GOTO programs whose augmented flow graphs aren’t reducible. But there
are GOTO programs with reducible augmented flow graphs that, nevertheless, have head-to-head
crossings in their goto graphs. Can such programs be translated into EXIT under structural
equivalence, or not? In this section, we shall find that they can.

How can a program have a head-to-head crossing when its augmented flow graph is reducible?
The most likely way in practice is probably jumps to jumps. Suppose that the destination of the
jump statement “go to L” is itself an unconditional jump, of the form “L: go to M;”. We wouldn’t
change the augmented flow graph any if we replaced the statement “go to L” with “go to M”. But
this change could easily eliminate a head-to-head. There are at least three other, more devious
ways that head-to-heads can arise. First, one of the go to’s involved in the head-to-head might
be dead. Second, one of the go to’s might jump to a label L that labels a subatomic cycle, as in
“L: repeat endloop;”. In this case, we might as well dive off the deep end right away, replacing
the statement “go to L” with “repeat endloop”. Third, the two labels involved in a head-to-head
crossing might be redundant; that is, they might refer to the same atomic element even though
they label different statements, as in the example “L:; M: action;;”. In this case, we could eliminate
the head-to-head by choosing one of the labels and making both of the go to’s jump there.

All of these pathologies can be handled without destroying structural equivalence; unfortu-
nately, the proof is a bit tedious. We shall describe four preprocessing phases that can be applied
to a GOTO program to fight the pathologies. Then, we shall prove that these four phases get rid of
all of the head-to-head crossings in any GOTO program whose augmented flow graph is reducible.
Once the head-to-heads are gone, the Elimination Rules can finish the job of translating into EXIT.

Phase 1 just cleans up the program somewhat, so that later phases won’t be bothered by
scoping problems because one identifier is used more than once as a label. To keep things as simple
as possible, we begin Phase 1 by inventing a brand-new label for every top-level statement of every
block. We then replace the old label in each go to statement with the carresponding new label.
Finally, we delete all of the old labels. This leaves us with a GOTO program in which every labelable

statement has exactly one label and all of the labels are distinct.
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At this point, it is helpful to classify goto statements in yet another way. Consider the
statement “goto L”, and follow the path A in the step graph that starts [goto L] — [L:] — ---.
The path A is uniquely determined as long as it travels through glue nodes, since glue nodes have
out-degree one. If A enters a subatomic cycle, we shall call the statement “go to L” a looping go to.
Otherwise, we shall end the path A at the first non-glue node [ that it visits, and we shall call the
node [ the arrival node. If [ = [stop], the go to is halting; otherwise, | must be atomic, and we
shall call the go to atomic as well.

Phase 2 deals with the go to’s that loop or halt. The looping ones are easy: we just replace
them with the statement “repeat endloop”. The halting go to’s are a little more trouble. We
are trying to simplify things by making go to’s jump more directly to their destinations. But the
language GOTO doesn’t allow the padding symbol stop to be labeled. Let GOTO* denote the
extended language in which stop may be labeled. Phase 2 deals with halting go to’s by producing
a program in GOTO; in particular, Phase 2 labels stop with yet another distinct label, say Z, and
then replaces all halting go to’s with “go to Z”. When all four preprocessing phases are done, the
Forward Elimination Rule will be able to replace each “goto Z” with “exit Z” by wrapping up
the whole program into a loop labeled Z. Thus, moving from GOTO to GOTO" in Phase 2 won’t
cause us any trouble later on.

Phase 3 has the trickier job of simplifying the atomic goto’s. It would be nice if we could
arrange that every atomic go to jumped in one step directly to its arrival node. Unfortunately, a

go to can arrive at an atomic node that is hidden inside a nested block, as in the example
begin ... goto L ... L: begin action;; ... end ... end.

The only way to jump directly to [action;] would be to use an inward go to, which GOTO forbids.
We shall deal with this problem by lowering our expectations. Call the atomic go to statement
“go to L” concise if its arrival node lies somewhere inside the statement labeled L. A concise go to
may not jump directly to its arrival node, but it can’t wander around too much. By convention,
we shall say that a halting go to is concise only if it jumps directly to [stop] and that no loop-
ing go to is concise. Phase 2 eliminated all looping goto’s and, in our new terminology, made
the halting go to’s concise; Phase 3 will make the atomic go to’s concise. To do so, we shall de-
fine a reduction process. Given an atomic go to that isn’t concise, we can replace it by another
go to that arrives at the same atomic node and passes through fewer glue nodes along the way.
Phase 3 repeats this reduction process as often as necessary to make all of the atomic goto’s
concise.

How do we reduce a goto? Suppose that the jump “goto L” arrives at the atomic node I.
Let S, be the statement labeled “L:”, and let By, be the block of which Sy, is a top-level statement.
If [ lies in S, the go to is already concise. If not, let ¢ denote the first node on the path A from
[go to L] to I that does not lie in St.. There are two possibilities: control either trickles off the end
of Sy, or it jumps out of the middle of Sy, with a go to.
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First, suppose that control leaves Si, with a goto. In this case, the node ¢ will be a label
node, call it [K:], that lies outside of S1, while the preceding node on the path A will be a [go to K]
within Sp,. This implies that K must label a top-level statement of the block By, or of some block
containing By. Since Phase 1 eliminated all name conflicts between labels, the scope of K must
include all of By; in particular, the identifier K won’t be reused as a label in some block nested
inside of By. Since the “goto L” that we are reducing certainly lies in By, we can achieve a
reduction by replacing “go to L” with “goto K”.

On the other hand, control might leave Si, by sequencing out past its last token. There are six
possible tokens that can immediately follow a statement in GOTO: [;], [end], [endloop], [else], [fi],
and [stop]. The node ¢t must be of one of the first three types, since Si is a top-level statement
of Br. If t = [;], let M be the label of the statement following the semicolon. Because of Phase 1
again, the scope of M must include all of By; hence, we can replace “goto L” with “go to M”,
thereby reducing the jump. Similarly, if t = [endloop], we can achieve a reduction by jumping
to the first statement of that loop instead of the last. In the remaining case, we have t = [end],
meaning that Sy, is the final statement of a compound. What node could follow t on the path A?
Since t itself ends a statement, it must be followed by one of the six types of nodes listed above.
Both [end] and [fi] nodes themselves end statements, while the edge leaving an [else] goes directly
to a [fi], which ends a statement. Proceed along the path A from ¢ to the first node following ¢
that isn’t [end], [fi], or [else]. This node can’t be [stop], since A arrives at the atomic node [.
Thus, it must be either [;] or [endloop]. We can achieve a reduction by jumping either to the
statement following the semicolon or to the first statement of the loop. We conclude that every
non-concise atomic go to can be reduced, which shows that Phase 3 can make all of the atomic
go to’s concise.

Phase 4 is quite simple: we replace all of the dead go to statements in the program with null
statements. We waited until now to get rid of the dead go to’s because the rewriting involved in
making go to’s concise might cause formerly live go to’s to become dead.

These four phases suffice to banish all pathologies. In particular, whenever the augmented flow
graph of a GOTO program is reducible, the four phases will transform that program into a GoTot

program that is free of head-to-head crossings, as the following proof demonstrates.

Proposition 7. If all of the goto’s in a GoTo*' program P are live and concise, and if the
augmented flow graph of P is reducible, none of the go to graphs of P can contain any head-to-

head crossings.

To prove this, suppose that all of the goto’s in P are live and concise, but that the go to
graph of some block of P has a head-to-head crossing. We shall prove that the augmented flow
graph of P has a cycle C with two gateways.

Among the blocks of P that include head-to-head crossings, choose a block B that is minimal
in the sense that all of the blocks nested inside of B are free of head-to-heads. Let L and M be the
labels of two top-level statements Sg, and Sy of B that are involved in a head-to-head crossing of
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the form

...gotoM...;L:...;M:...gotoL...,

and let A and y denote the paths to the corresponding arrival nodes | and m. Neither ! nor m can
be [stop], since all concise halting go.to’s jump directly to [stop]; thus, both [ and m are atomic
nodes. By conciseness, the atomic element [ lies inside of S, and m lies inside of Sm.

Since the node [go to L] is live, we can choose a path o in the step graph of P from [start]
to [go to L); we might as well choose a to be simple. The path a must enter the block B at some
point, and the only way to do that is to sequence through the first node of B, which will be either
a begin or a repeat—we shall write it [bgn/rptg]. Since « is simple, it can visit [bgn/rptg]
only once; thus, we can decompose « into the two paths # and « where

a = [start] %v [bgn/rptg] % [goto L],
a9

every node of 8 except the last lies outside of B, and every node of 4 lies within B.
The path v might include go to edges of the form [go to K] — [K:]; we claim, however, that
~ must visit some atomic node after traversing any go to edge. Suppose, on the contrary, that «

has the form

v = [bgn/rptg] 3 [go to K] — [K:] —:r [goto L]

where § is free of atomic nodes. From the node [go to L], the path X takes us through glue nodes
to the atomic node /; hence, the jump “go to K” will arrive at I. By conciseness, the label K must
label some statement Sk containing [. The statements Sk and S, can’t be disjoint, since they both
contain /. Could we have Sk C Sp? If so, the node [L:] would lie outside of Sk. This would mean
that the path starting at [goto K] would jump to [K:], then enter Sk, then leave Sk somehow
to get to [L:], then reenter Sk again to get to . But a path of glue nodes can’t enter the same
statement twice without being caught in a subatomic cycle, which would preclude arriving at I.
Therefore, we must have Sx D Si,. But this can’t happen either; since Sy, is a top-level statement
of B, the relation Sk D Sy, would imply [K:] ¢ B, contradicting the fact that 4 lies entirely in B.
Our next claim is that the path v must visit at least one atomic node and that the last atomic
node it visits must lie after [M:] within B. To see this, note that 4 manages to get from [bgn/rptg|
to [go to L] while remaining within B. In particular, it starts to the left of [M:] and ends to the
right of [M:]. It might go back and forth across [M:] several times; but consider the last time that
~ crosses from the left of [M:] to its right. It is enough to show that 4 must visit some atomic node
after this last cross. To achieve this cross, v must either visit [M:] or else jump forward across [M:]
by traversing a go to edge; the only other forward edges in the step graph of a GOTO program
are the ones that skip forward over branches of conditionals, and such edges can’t carry v past a
top-level label like [M:]. If 4 visits [M:] itself on the last cross from its left to its right, it must then
follow the path u to the atomic node m before continuing on to [go to L]. Thus, in this case, v

does visit an atomic node after the last cross. Suppose, on the other hand, that v achieves the last
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cross by jumping over [M:] with a forward go to. By the result in the last paragraph, v must visit
some atomic node after traversing this go to edge, so our claim holds once again.

Let n denote the last atomic node that « visits; we have just shown that n lies after [M:],
which we shall write [M:] < n. Let C denote the simple cycle in the augmented flow graph of P
that consists of the static edges from [ to n followed by the dynamic edge from n back to [. The
augmenting path shows that ! is one gateway to the cycle C. We intend to show that the node m
lies on C and is also a gateway to C.

Since the cycle C consists exactly of the nodes from I through n inclusive, the problem of
proving that m lies on C reduces to the problem of showing that | < m < n. We know, in fact,
that | < m, so the first inequality holds. We also know that [M:] < n, which means that n lies
either in the statement Sy or in some succeeding statement. If n doesn’t lie in Sy, we must have
m < n. Suppose, on the other hand, that both m and n lie in Sy. The statement Sy might contain
dangling go to’s, but it can’t contain any head-to-head crossings, by the minimality of B. Thus, we
can use the Elimination Rules to replace all of the non-dangling go to’s of Sm with exit’s. Apply
Lemma 5 to the resulting statement in EXIT (the resulting statement isn’t really in EXIT because
it has dangling go to’s instead of dangling exit’s, but that doesn’t affect the proof of Lemma 5).
We conclude that the node m, which is the dynamic successor of [start] in Sm, must also be the
leftmost live atomic element in Sp. Since the node n is live and, by our current assumption, lies
in Su, we must have m < n. Thus, in either case, the node m must lie on the cycle C.

It remains to show that m is a second gateway to C. For this, we need to use the fact that
[go to M] is live. As before, let € be a simple path in the step graph of P from [start] to [go to M],

and partition € into ¢ and 5 where it enters the block B; we have
[start] —t» [bgn/rptg] 2 |go to M| A m.
n [

The image of this path in the augmented flow graph of P is almost enough to show that the node
m is indeed a second gateway to C. The only problem is that n might visit atomic nodes of C.
We shall consider two cases. If n doesn’t visit any atomic nodes at all, it certainly doesn’t visit
any nodes of C, and we are done. So suppose 7 visits at least one atomic node, and let k be the
last atomic node that 5 visits. By the same argument that worked for v, we can see that n must
visit some atomic node after traversing any go to edge. Hence, after visiting its last atomic node
k, the path 5 can’t traverse any goto edges. We claim that k < [L:]. Otherwise, the path n
would have to jump backward across [L:] to get from k to [go to M]. The only backward jumps in
GOTO other than go to’s lead from an [endloop] to the matching [repeat]. Looping back around
a loop nested inside of B couldn’t carry us back over the top-level label [L:]. If B itself were a
loop, looping back around B would carry us backward over [L:], but doing so would demand that n
visit [repeatg| twice, contradicting the simplicity of e. Thus, we must have k < [L:]. This means
that the augmenting path from [start] to k avoids all nodes of C. Hence, we can show that mis a
second gateway to C in this case by following the augmenting path from [start] to k and then the

dynamic edge from k to m. At long last, the proof of Proposition 7 is complete.
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Figure 13: Two examples of conflicting pairs of edges in an augmented flow graph

Corollary 8. A GOTO program can be translated into EXIT under the policy of structural equiv-

alence if and only if its augmented flow graph is reducible.

Corollary 9. Every reducible augmented flow graph is the augmented flow graph of some EXIT
program.

Proof: First produce a GOTO program with the given augmented flow graph by the construction
in Section 6; then apply Corollary 8 to that GOTO program.

9. Testing the reducibility of augmented flow graphs

Our theoretical investigations are almost complete, but there is one more point worth making.
We have identified two new regularity conditions for programs in GOTO: the reducibility of the
augmented flow graph (RAFG) and the absence of head-to-head crossings in the go to graphs
(AHHC). These two conditions differ a little in strength: AHHC implies RAFG by Corollary 6,
but RAFG allows the go to pathologies while AHHC does not. These two conditions also differ in
another way: AHHC is a fairly simple, essentially first order condition, while RAFG seems more
subtle and second order. In fact, this latter difference is an illusion. The notion of reduciblity in
general is subtle, but the linear order inherent in an augmented flow graph allows us to rephrase
reducibility of those graphs as a first order condition, in fact, as a prohibition against certain
“conflicting” pairs of edges.

We shall say that two edges w — y and 2 — z in an augmented flow graph conflict if the nodes
involved occur on the augmenting path in the order w < z < y < z. Two examples of conflicting
pairs of edges are shown in Figure 13. When y < z, a conflicting pair in an augmented flow graph
looks just like a head-to-head crossing in a go to graph. The case y = z is special: it counts as a

conflict even though it wouldn’t count as a head-to-head.

Proposition 10. An augmented flow graph is reducible if and only if it contains no conflicting
pairs of edges.

If there is a conflicting pair of edges, it is easy to see that the augmented flow graph is not
reducible: the simple cycle composed of the augmenting path edges from z to z followed by the
edge z — z has both z and y as gateways. Conversely, suppose that C is a simple cycle in the

augmented flow graph with more than one gateway; we must show that some conflicting pair of
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edges exists. Note that no final node can appear on C itself, nor can any final node appear on any
path from [start] to any node of C; hence, we might as well ignore final nodes. The augmenting
path imposes a linear order on the non-final nodes of the flow graph. Let u be the smallest node of
C in this order, and let v be the largest non-final node of the entire graph from which it is possible
to reach u without visiting any node smaller than u. All of the nodes of C must lie in the interval
[4,v]. The node u will be one gateway to C. By assumption, C' has some gateway other than u.
The path from [start] to this second gateway must enter the interval [u,v] by traversing an edge
t — h with h € (u,v] and t ¢ [u,v]. Could we have t > v? Note that we can get from ¢ to u without
visiting any node less than u as follows: take the assumed edge from ¢ to A, follow the augmenting
path from h to v, and then do whatever v does to get to u. Since v was chosen as the largest node
with this property, the existence of a such a node ¢t with ¢ > v would be a contradiction; hence, we
must have t < u. Follow the path from v to u that doesn’t visit any node less than u, and consider
the first edge p — ¢ on that path whose head ¢ satisfies ¢ < h; such an edge must exist since u < h.
We have t < u < ¢ < h < p; this implies that the edge t — h forms a conflicting pair with the edge
p — ¢, which completes the proof.

10. A case study of arrow stretching

The results in this paper are mostly of theoretical rather than practical interest. But it is
possible to imagine unusual practical situations where the Elimination Rules and arrow stretching
would come in handy. In fact, it was just such a situation that started me thinking about the
problem of preserving structure while eliminating go to’s.

During the latter half of 1982, while I was working at the Computer Science Laboratory
of the Xerox Palo Alto Research Center, I decided that I would like to import the spiffy new
PASCAL version of Donald E. Knuth’s document compiler TEX [13] into the PARC/CSL computing
environment. The easiest way to do so involved translating it from PASCAL to MESA [17], the
systems programming language used in PARC/CSL. As it happens, Edward M. McCreight had
already taken advantage of the family resemblance between PASCAL and MESA by building a
PASCAL to MESA source translation tool. I decided to port TEX using McCreight’s translator.

Unfortunately, PASCAL allows outward go to’s—and Knuth used them fairly heavily in TEX—
while MESA does not. Ironically, Knuth is partly to blame for the absence of full-fledged outward
goto’s in MESA. The language designers at PARC/CSL were just deciding what local control
structures to put into MESA when Knuth’s influential article “Structured Programming with go to
Statements” [12] appeared. In this article, Knuth proposed a restricted form of the go to statement
based on Zahn’s “event indicator” scheme. The designers of MESA adopted Knuth’s proposal. In
terms of expressive power, Zahn-Knuth go to’s are essentially the same as multilevel exit’s; either
construct can simulate the other while preserving program structure. Thus, I had a practical
interest in replacing outward go to’s with multilevel exit’s.

The standard technique for doing so would involve computing flow graphs and testing them for
reducibility; this looked unattractive for several reasons. First, most of the go to’s that Knuth used
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[ S « the empty stack;
f01_' each vertex v in increasing order do
for each forward arrow f with f.head = v in decreasing order of f.tail do
while f.tail < top(S) do

w « pop(S);

for each backward arrow b with b.head = w in any order do

[if b.tail > v then error(‘{f,b} are head-to-head’) else b.newtail «— v fi;
[ .newtail — top(S);
| push v onto S;
while S is not empty do
w « pop(S);
for each backward arrow b with b.head = w in any order do
[b.newtail + the last vertex;

Figure 14: An algorithm that stretches the arrows of a go to graph

in TEX were part of simple, well-structured idioms—computing flow graphs seemed like overkill.
Second, Knuth was going to a lot of work to make the sources of TEX of publishable quality. It
seemed a shame not to preserve as much of Knuth’s program structure as possible in the MESA
version. Third, I was planning to debug the resulting MESA program by reading Knuth’s beautifully
typeset and indexed listings of the PASCAL code [14]. This plan would be feasible only if the two
programs corresponded quite closely.

So, I added code for stretching arrows and applying the Elimination Rules to McCreight’s
translator. Using the beefed up translator, Michael F. Plass and I successfully translated version 0.8
of TEX into MESA early in 1983. With the compile-time switch debug turned off, that version of
TEX had 395 go to’s and 162 labels. There were 109 blocks whose go to graphs included at least
one arrow. Of these, 69 had more than one arrow; twenty had at least one crossing pair of arrows;
one included backward-backward crossings; but none had any head-to-heads. Later, when other
circumstances caused us to turn on the debug switch, we discovered that a single head-to-head
had been hiding in the debugging routine debug_help. The ordinary flow graph of debug_help was
reducible, but its augmented flow graph was nonreducible. Its statements were in a funny order so
that a label where the user was encouraged to set a breakpoint would appear at the beginning of the
procedure body. In the next version of TgX, Knuth rewrote debug-help to remove this head-to-head.

In the course of this effort, several issues of a practical nature arose that are worth mentioning.
First, when I was writing the documentation for the enhanced translator, I wanted to describe the
class of PASCAL programs that it could handle, but I didn’t want to define go to graphs and head-
to-head crossings. It isn’t hard to show that all of the go to graphs of a GOTO program are free of
head-to-heads if and only if the pattern

...gotoM ...L:...;...M:...goto L ...

never occurs in the program text. The reason for including the semicolon in the middle of the
pattern is to guarantee that L and M don’t both label the same statement; since PASCAL doesn’t
allow more than one label on a statement, the semicolon is superfluous for PASCAL.

24



Second, we proved in Section 4 that, in the absence of head-to-heads, the arrows of a go to
graph could always be stretched so as to eliminate all crossings; but we didn’t give an efficient
algorithm. Figure 14 shows the algorithm that I implemented. Each edge is represented as a record
with the three fields head, tail, and newtail, the last of which stores the tail of the edge after it
has been stretched. The variable S denotes an auxiliary stack of vertices. This algorithm has
antisymmetric preferences about stretching arrows: it stretches forward edges as little as possible
and backward edges as much as possible. As far as efficiency is concerned, McCreight’s translator
parsed the PASCAL source with recursive descent and built up the corresponding MESA target
as a tree of program fragments. The additional time needed to stretch arrows and apply the
Elimination Rules in that context was linear in the length of the program text, if we ignore the
cost of maintaining a symbol table in which to insert and lookup labels.

Third, what about the non-local go to’s of PASCAL, the go to’s that jump out of a procedure
body to a label defined in an enclosing procedure? Executing a non-local go to involves returning
from one or more procedures and deallocating their activation records. As it happens, MESA has an
exception-handling mechanism that can achieve this effect. Unfortunately, non-local go to’s have
another problem as well: it is hard to predict where they are going to come from. Think about a
non-local go to from the point of view of the destination label L, which labels a top-level statement
of some block B. A non-local “goto L” doesn’t occur textually within B at all. Instead, there is a
call on some procedure P within B, and the “go to L” appears in the body of P or in the body of
some procedure that P calls. We shall say that a non-local go to is forward if the call on P occurs
before the label “L:” in B, else backward. By proper use of the MESA exception machinery, we can
prepare for either forward or backward non-local go to’s to L. In each case, we must introduce a
new block that is enabled to handle the exceptional condition. One end of this new block must be
at the label “L:”, while the other end must be far enough away so that no non-local go to’s will
escape being handled. Unfortunately, we need at least global flow analysis and perhaps theorem
proving to determine how large these new blocks have to be. If we try to duck the issue by making
them as large as possible, we are likely to generate head-to-head crossings.

I don’t know of any good solution to this problem. In McCreight’s translator, I chose to assume
that no backward non-local go to’s would ever happen, but that forward non-local go to’s might
come from anywhere. This worked fine for TgX, since TiX has only one non-local go to statement
in it: a forward non-local jump from the routine that handles fatal errors out to the end of the
program. But this simple étrategy would clearly fail on programs that made more extensive use of
non-local go to’s.
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