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DEC’s System Research Center is a new group, still recruiting its initial members and laying plans for
long-term work. The business and technology objectives of DEC require a strong commitment to
research. We join two other corporate research groups in meeting that commitment.

SRC’s role is to design, build, and use new digital systems five to ten years before they become
commonplace. Our purpose is to advance both the state of knowledge and the state of the art.

SRC will create and use real systems in order to investigate their properties. Interesting systems are too
complex to be evaluated purely in the abstract. Our strategy is to build prototypes, use them as daily
tools, and feed the experience back into the design of better tools and more relevant theories. Most of
the major advances in information systems have come through this strategy, including time-sharing, the
Arpanet, and distributed personal computing.

Among the areas in which SRC will be building prototypes during the next several years are applications
of high-performance personal computing, distributed computing, communications, databases,
programming environments, system-building tools, design automation, specification technology, and
tightly coupled multiprocessors.

We will also do work of a more formal and mathematical flavor; some of us will be constructing theories,
developing algorithms, and proving theorems as well as designing systems and writing programs. Some
of SRC’s theory work will be in established fields of theoretical computer science, such as the analysis of
algorithms, computational geometry, and logics of programming. In other cases, we expect to explore
new ground motivated by problems that arise in our systems research.

DEC has a commitment to open research. The improved understanding that comes with widespread
exposure seems more valuable than any transient competitive advantage. SRC will freely report results
at conferences and in professional journals. We will encourage visits by university researchers and
conduct collaborative research. We will actively seek users for our prototype systems. To facilitate
interchange, we will develop systems that run on hardware available to universities and work out ways of
making our software available for academic use.
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Authors' abstract:

Modula-2 has been chosen as SRC's primary programming language for the
next few years. This report addresses some of the problems of using
Modula-2 for building large, integrated systems. The report has three
sections: Section 1 outlines a set of extensions to the language. (The
extended language is called Modula-2+.) Section 2 (with Appendix B)
provides a complete description of the Modula-2+ type-checking rules.
Section 3 offers some guidelines for programming in Modula-2+.

Our implementation of Modula-2+ is based on the Modula-2 compiler
written by Mike Powell at the DEC Western Research Laboratory. Our
extensions include features for exceptions and finalization, garbage
collection, and concurrency.

Paul Rovner, Roy Levin, John Wick






Capsule review:

This paper is an informal overview of the programming language
Modula-2+, an extension of Modula-2. Most of the new features are in
the three areas of signalling and handling exceptions, controlling
concurrency, and providing a type-safe discipline for managing storage.

The value of exception-handling follows from the fact that many useful
abstractions cannot reasonably be implemented in their full generality.
For example, the natural numbers are a useful abstraction, but they
can't all be represented in a finite-state machine. When a program
specifies an abstract operation that exceeds a particular
implementations' capacity, some exceptional action must be taken, even
if only to print "computation aborted dur to arithmetic overflow."
When a single language is used to code systems with many layers of
abstraction, it is attractive to provide a control structure for
signalling and handling these circumstances. Hence Modula-2+'s
exception facility.

Apparently the Modula-2 abstraction called "process" fails to hide the
nature of its first implementation by a multiprocessor. Therefore,
Modula-2+ introduces a more suitable abstraction for a thread of
control (called "Thread").

Compile-time checking in Modula-2 guarantees the absence of a class of
errors but gives no warning of the error of deallocating storage while
references to it remain. Modula-2+ guarantees the absence of these
dangerous errors by a combination of run-time and compile-time
checking: A garbage collector provides automatic deallocation at
run-time, and checking at compile-time enforces a discipline on the use
of references that guarantees the validity of the storage system's
invariants.

The authors assume that the reader is already familiar with Modula-2.
Most of the paper is a general overview, but it drops to the detail
necessary for a reference manual in the appendixes, which describe the
changes made to the syntax, the type-checking rules, and formatting
conventions.

Greg Nelson
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DEC's System Research Center is currently developing software
and hardware to provide a powerful base for work in programming
systems, distributed systems and personal workstations. We hope
to significantly reduce the cost of producing reliable,
high-quality software.

Though good software design remains an art, it is easier today
than it used to be, due largely to the emergence of systematic
techniques for structuring programs. These include improved
methods for identifying the interfaces between the component
parts of a program, and new programming languages that provide
better chosen and better integrated features, particularly those
that support explicit interfaces.

Modula-2 has been chosen as SRC's primary programming language for
the next few years, both for implementing system software and
for exploring prototype applications. It strikes a reasonable
balance between simplicity and functionality. While some of the
design choices are arguable (e.g., POW84-1), it does provide a
well-integrated combination of features from the following
domains:

* Strong typing with static checking
Separate specification of interfaces and their implementations
Data abstraction (via "opaque" types)
Systems programming (via "low-level" facilities)
Concurrency
Procedure-valued variables

* A X X %



Though we did find it necessary to extend Modula-2 in the ways
outlined below, we believe after looking at the available
alternatives that it comes closest to serving our needs. A
comparative analysis, including both the technical and
non-technical reasoning that led to our choice of Modula-2, is
beyond the scope of this paper, but would make a good topic for
another report.

This report addresses some of the problems of using Modula-2 for
building large, integrated systems. It should be of interest
both to those who study programming languages in general and
Modula-2 in particular, and to those who build such systems. The
discussion assumes a familiarity with Modula-2 as described in
the book "Programming in Modula-2," by Niklaus Wirth (WIR82).

The report has three sections. Section 1 outlines a set of
extensions to the language and to its compiler and runtime
library. The extended language is called Modula-2+. Each
extension is introduced in the context of our goals and
requirements, then presented in detail with examples. A reader
interested only in acquiring an overview might read the
introductory material in each subsection but skip the detailed
presentations of language changes. A grammar for the extensions
appears in Appendix A.

Section 2 (with Appendix B) provides a complete description of
the Modula-2+ type-checking rules. This is included here because
it is otherwise unavailable (the Modula-2 book is vague on this
subject) and we find it to be important for effective use of the
language. Others learning or using Modula-2 should also find it
valuable.

Section 3 offers some guidelines for programming in Modula-2+.
Appendix C contains a complete set of conventions for formatting
Modula-2+ programs and interfaces: indentation, spelling and
punctuation rules are presented, as well as guidelines for
placing comments. Again, this material is included here because
we find it to be important for effective use of the language,
not conveniently available elsewhere, and likely to be of
interest to others learning or using Modula-2.

Our implementation of Modula-2+ is based on the Modula-2
compiler written by Mike Powell at the DEC Western Research
Laboratory (DECWRL). This is an optimizing compiler with good
code quality and a straightforward implementation (POW84-2).
In its author's words,

"The design philosophy of the compiler is 'best simple'.
Whenever possible, design decisions were made to favor the
simplest alternative that got us most of what we wanted."



1. Language Extensions

This section provides a brief description of our extensions to
Modula-2, omitting some of the less important details. A grammar
for the extensions appears in Appendix A.

Our primary purpose in embarking on a project to extend Modula-2
was to provide what we believed to be essential features with
minimal disruption to the language and the compiler. It was our
explicit goal to stay compatible with the underlying "spirit" of
both the language and the compiler. It was NOT our goal to build
a "PL/I" of Modula-2 systems. It was a ground rule for the DECWRL
compiler that it support "standard" Modula-2 programs. The
Modula-2+ compiler has the same constraint.

We considered additional ideas for upward-compatible extensions,
but adopted them only if they would certainly have high payoff
for clients, low impact on the language and a simple
implementation. The DECWRL compiler had several such extensions,
made in the same spirit. These included removal of restrictions
on the type and size of function procedure results and on the
size of sets, optional runtime checking, optional treatment of
CARDINAL as a subrange of INTEGER, a new standard type for
double-precision REALs and facilities for linking to programs
written in other languages.

Based on our experience with similar systems in the past, we do
not anticipate surprises from the use of Modula-2+. But we have
used it ourselves only for a short time, and we are well aware
that the actual use of a complex system is often an educational
and sometimes a humbling experience for its designers. The
reader should note that the balance of emphasis in the design
depends more on our experience with similar systems than with
this one, and should anticipate a critical report on our actual
experiences with Modula-2+ a year or so hence.

1.1 Exceptions and Finalization
Introduction

The behavior of an abstraction when its implementation fails is
an essential part of its specification. Clarity of such a
specification is most naturally achieved by outlining its
expected behavior separately from a list of the problems that
might arise. Explicit provision in the language for decomposing
a program into a normal case part and a "handler" for the
exceptional cases improves predictability, robustness and



reliability.

Normal use of a component can almost always be expressed without
including explicit code at each procedure call to deal with
exceptions. Though it is possible to define each procedure to
return a value that (by convention) identifies an exceptional
result, it is awkward and inefficient to insert a check at every
call. And if by mistake the check is not made, the exceptional
result will go unnoticed.

Rather, it is more natural to associate a "handler" with a
sequence of statements. The handler deals with exceptions that
arise from any one of them. This enables the statement sequence
to be written for the normal case; code to deal with exceptional
cases can be placed outside the normal flow of control.

A related (and common) programming idiom identifies a natural
temporal framework: first "initialization," then the main body,
then "finalization." An example in a concurrent program might
be: first acquire a lock, then examine or change a shared data
structure, then release the lock. A tiresome and often
overlooked programming problem arises if the main body exits
abnormally (e.g., via EXIT, RETURN, or exceptional result): the
finalization action must usually be taken in any case. Usually,
coding one's way out of such a mess is awkward and error-prone.
Language support for this common control structure should
accompany changes for exception-handling. With a little care,
implementation of finalization features can be a simple
extension of the exception-handling mechanism.

Good debugging facilities are needed to support rapid
development of large experimental systems. When
exception-handling is used, programming bugs and oversights are
manifest as unhandled exceptions. The implementation must
recognize unhandled exceptions and pass them to the debugger
without destroying the context in which the exception was
raised.

Finally, and most important, we required a design that could be
implemented at reasonable cost and with negligible runtime
overhead for normal execution. For example, the execution cost
of introducing handler and finalization scopes had to be
negligible. (A satisfactory implementation is in place but is
not discussed here.)

Semantics
Exception-handling in Modula-2+ is based on a "termination"

model, similar in some ways to the ones in Ada (ADA82) and in
CLU (LIS81l). The choice of exception-handling semantics for



Modula-2+ was also influenced by our experiences with Mesa
(MIT79). See (LEV77) for a good survey of related issues and
techniques.

Handlers are attached to statement-sequences via the TRY
statement, described below. When an exception is raised, a
handler for it that is attached to the enclosing
statement-sequence 1is sought. If none is found, the next
enclosing statement-sequence is examined, and so on, until
either a handler is found or the boundary of the current
procedure is reached, in which case the search continues in the
context of the calling procedure. Finalization actions are
performed as they are encountered. When a handler is found,
control is passed to it. The handler effectively "takes the
place"” of the statement-sequence to which it is attached.

If a handler is not found before the root of the stack is
reached, the debugger is invoked. In this unusual case, the
implementation of RAISE presents the debugger with the execution
context as it was when RAISE was invoked: e.g., the stack is
intact and finalization actions have not been performed.

Implicit finalization actions are associated with each procedure
(e.g., restoration of the caller's context). Explicit
finalization actions may be attached to statement-sequences

via the TRY statement. While executing, such an action operates
in the same context as the statement-sequence to which it is
attached. Abnormal termination of such an action, e.g., by
raising another exception, has the same effect as if the
statement-sequence terminated in the same way.

Procedures and procedure types may be defined to raise only
exceptions from a specified set, plus a standard exception,
System.Fail. At execution time, other exceptions that would
emerge from such a procedure are automatically converted to
System.Fail. The argument to System.Fail identifies the original
exception and its argument, if any.

Language Forms

Exceptions are declared by specifying a name and at most one
parameter. E.qg.,

EXCEPTION Overflow:
EXCEPTION InvalidCharacter (CHAR);

The parameter can be of any type that is allowed as the result
of a function procedure.

Exception names obey standard scope rules, but are treated like



constants rather than variables. For example, an exception
declared in a recursive procedure does not get a new definition
for each invocation. Rather, a unique internal code is assigned
by the compiler to each exception declaration; this code is used
to identify the exception at runtime.

Exceptions are said to "propagate" upward through nested dynamic
contexts from the "raiser,” looking for a "handler." If a
handler is found, the exception is said to be "handlegd" by it.

An exception is raised by
RAISE(exception, argument)

1f the exception is declared to take a parameter, or by
RAISE(exception)

otherwise.

An exception is handled by

TRY

Statement-sequence
EXCEPT
| exception-1l(variable-1): handler-body-1
| exception-2(variable-2): handler-body-2
| ELSE(variable-n) handler-body-n
END;

The code following EXCEPT is similar to a CASE statement. If,
during the execution of the statement-sequence, one of the
listed exceptions is raised, execution of the statement-sequence
ceases and control passes to the corresponding handler-body (a
statement-sequence). If the exception raised doesn't match any
of those listed and an ELSE clause is present, the ELSE
handler-body receives control. If no ELSE clause is present,
propagation continues in the enclosing context.

Before execution of a handler-body, all dynamic contexts between
the raiser and the statement-sequence (inclusive) are

"finalized": i.e., the stack is unwound, register values are
restored, and explicit finalization actions are invoked (see

page 8 below). Upon completion of the handler-body, control passes
to the statement following the TRY construct, that is, to the same
place it would have passed if the statement-sequence hadn't
encountered an exception.

The exception name in a handler arm may be followed by the name
of a variable declared in an enclosing scope. The exception



parameter must be assignable to this variable. The value passed
by RAISE as the parameter to the exception is assigned to the
indicated variable when the handler is entered. A variable need
not be specified if it is not needed in the handler-body.

By convention, the only exceptions handled by ELSE are those
caused by programming errors. Low-level system failures or other
catastrophes, e.g., memory parity errors or device failure,
require different treatment. ELSE handlers do not usually appear
in application programs, though they are sometimes useful for
bullet-proofing experimental code. Rather, their application is
in code that for some reason does not want the debugger to field
errors, e.g., for a read/eval/print loop. Such a handler might
print a message identifying the exception and its argument and
then continue at the top level. ELSE handlers must be used with
care; thoughtless use can mask programming errors.

The parameter type of an ELSE handler is System.FailArg, a type
that represents an exception and its argument, if any.
Operations are provided in the System module for examining the
components of a FailArg, but they will not be described here.

Syntactic Shorthands
(1) TRY statement-sequence PASSING {ex-1, ex-2} END;
means

TRY
statement-sequence
EXCEPT
| ex-1(vl): RAISE(ex-1,vl);
| ex-1(v2): RAISE(ex-2,v2);
| ELSE(v3) RAISE(System.Fail,v3);
END;

In this construct, any of the listed exceptions raised during
the execution of the statement-sequence pass through to the
enclosing context.

(NOTE: To support debugging, such simple "pass-through"
handlers are treated specially by the compiler:
termination is postponed until a non-trivial handler
is found.)

All other exceptions are handled by converting them to
System.Fail, which 1s included implicitly in every PASSING
clause (by virtue of the ELSE). The phrase "PASSING {}" means
that only Fail can be raised.

By convention, System.Fail is used to report programming errors.
Normally, application programs do not handle System.Fail.



Rather, any unhandled exception, including System.Fail, is
intercepted by a debugging facility in a way that preserves the
contexts through which the exception propagated.

(2) PROCEDURE P(actuals): ret RAISES {ex-1, ex-2};
<decls>
<body>

This behaves the same at runtime as

PROCEDURE P(actuals): ret;
<decls>
TRY <body> PASSING {ex-1, ex-2} END;

but the inclusion of the RAISES clause in procedure types
provides a client with reliable documentation of the exceptions
that can be raised. Thus, the RAISES clause affects both the
procedure type and the body. Use of the RAISES clause in
definition modules is a valuable specification technique.

As with PASSING, each RAISES clause implicitly includes
System.Fail, and an empty list means that only Fail can be
raised. If no RAISES clause appears, any exception may be raised
by the procedure.

Finalization

TRY
block-statement-sequence
FINALLY
clean-up-statement-sequence
END;

In this construct, the block-statement-sequence is executed and,
upon its termination, the clean-up-statement-sequence is
executed. Termination of the block-statement-sequence occurs
either normally, or by executing an EXIT or RETURN statement, or
by raising an exception. For example, consider the following:

TRY
sl;
TRY s2; s3 FINALLY s4; s5 END;
s6
EXCEPT
e: s7
END;

If no exceptions are raised, the sequence of execution will be
sl; s2; s3; s4; s5; s6. If exception 'e' is raised in sl, the
sequence will be sl (partially); s7. If exception 'e' is raised



in s2, the sequence will be sl; s2 (partially); s4; s5; s7.

If finalization occurs as the result of an exception, and the
clean-up-statement-sequence raises an exception, the original
exception is lost.

1.2 Safety

Previous experience with LISP(TEI78), Smalltalk(GOL83),
Mesa(LAM80, MIT79) and Cedar(DEU80, TEI84) has taught us that
the use of a single virtual address space enables the
development of highly integrated applications that share
packages and present a standard, ubiquitous user interface.
Systems of concurrent applications that share data structures
and programs are especially well-suited for development in a
common address space. Multiple, loosely coupled address spaces
provide additional options for structuring software, but do not
provide a consistently better alternative for such systems.

Efficient, non-disruptive garbage collection is a key
requirement in a shared address space. In a setting where
multiple complex and experimental programs that share memory are
being developed together, and by different people, it is crucial
to guard against programming blunders that smash memory. In
addition, our experience indicates that it is possible to
achieve a dramatic decrease in the fraction of programming costs
due to storage management.

We define a "safe" program as one that will not violate the
invariants of the storage allocator, i.e., it will not cause
memory to be smashed. Operationally, this means that a safe
program will not alter storage that has not been properly
allocated (e.g., by accessing "off the end" of an array or
storing through an invalid pointer). A safe program can still
get the wrong answer, but it will not cause an independent
program sharing the same address space to do so.

We wanted to use simple static analysis to prove (informally)
that a given program is safe, and we wanted such analysis to
apply to as many programs as possible. Our approach had two
parts:

1. We identified those Modula-2 language features and library
procedures that if misused could smash memory. If a given
program uses none of these, it is safe.

2. Where feasible, we provided a safe alternative for each such
facility unless very few programs would need it.
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The discussion below and in the rest of section 1 outlines a
small collection of extensions and restrictions to Modula-2 that
provide a language of sufficient power and convenience for
writing most programs. Simple static analysis is adequate for
proving such programs to be safe.

Of course, some programs cannot be shown to be safe in this way,
€.g., a storage allocator or a garbage collector. Others for
which such restrictions are sometimes inappropriate include ones
requiring access to low-level facilities and ones with stringent
performance requirements. Rather, these must be assumed to be
safe. Experience indicates that there are few such programs. As
usual, they must be written and maintained with special care.

REFs

The use of POINTERs is restricted in safe programs. We have
added to the language a well-behaved form of POINTER called REF,
which can nearly always be used instead. REFs behave much like
POINTERs, except that the storage they address is never
explicitly freed by the programmer. REFs are declared as
follows:

TYPE Node = REF NodeRep;
TYPE NodeRep = RECORD
next, prev: Node:
(* other fields *)
END;

Like POINTERs, REFs are created by NEW, i.e., the first
parameter to NEW may be a variable of type REF T. The standard
constant NIL is assignable to a REF. REFs may be embedded in
RECORDs (as above) and ARRAYs. Such structures are called
"REF-containing" or "RC". Every REF variable is initialized to
NIL,

Static checking for safety is enabled in an implementation or
program module via use of the keyword SAFE. For example,

SAFE IMPLEMENTATION MODULE Threads;
SAFE MODULE ThreadsClient;

Definition modules can also be marked SAFE, e.qg.,
SAFE DEFINITION MODULE Threads:
This indicates that the corresponding implementation module is

safe, hence it is safe to import procedures and variables from
the interface. If the corresponding implementation module begins
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with the keyword SAFE then it is guaranteed safe by the
compiler; otherwise, it is safe on the assumption that the
implementor knows what he is doing. If a core-smash bug occurs,
implementation modules not checked by the compiler are the prime
candidates for scrutiny.

The compiler ensures that a SAFE implementation is actually safe
by enforcing the following rules:

** Array bounds checking is enabled in SAFE modules.

** NIL checking (detecting attempts to dereference a REF whose
value is NIL) is enabled in SAFE modules.

** VAR and PROCEDURE imports to SAFE modules must come from
SAFE interfaces.

** SAFE modules may not dereference a POINTER to yield an RC
value or VAR,

** SAFE modules may not perform any assignment through a POINTER.

**  SAFE modules may not apply LOOPHOLE or a type-transfer
function to obtain an RC type. The types Address and Word are
not compatible with REFs (see section 2 on type-checking).

** A variant record with REF-containing arms has its variant
tags set at the time it is allocated (via extra parameters to
NEW) and the tags cannot be subsequently changed. Variant
tag checking for RC fields is always enabled in safe modules.

1.3 Runtime Types

There are times, in using languages that provide strong typing
and static checking, when a programmer needs to circumvent the
restrictions imposed by the type system. Many such cases are
attrlbutable to one basic inadequacy, namely the lack of what is
called "subclassing"” in Simula (BIR73) and Smalltalk, i.e., the
ability to define a new type as a specialization of an existing
one: the applicable operations for the new type include the
operations of the existing type, plus some new ones. A familiar
example is REF (or POINTER) types: many common operations (e.g.,
assignment, list processing) need not distinguish a "REF T" from
a "REF S."

In standard Modula-2, it is common practice to use a "type
transfer function" or other loophole (System.Word,
System.Address) to make a value of a particular type (T)
acceptable to generic operations, then another loophole to make
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the resulting generic value acceptable as a T. Though

dangerous, this is an acceptable technique in unsafe modules.
But loopholes that could legitimize counterfeit REFs are illegal
in SAFE modules. Happily, provision of a limited form of

runtime type-checking for REF types, described below, goes a
long way toward eliminating most unsafe loopholes. And the
execution cost is small: it is comparable to checking the tag in
a variant record.

REFANY

REFANY is a new type for declaring variables that hold a value
of any REF type. For example,

TYPE
R = RECORD 1, j: INTEGER END;
S = RECORD m, n: INTEGER END;
T = REF R;
W = REF S;
VAR
x: T;
y: W;
ref: REFANY;
ref := x; (* legal *)
ref := y; (* legal *)
X 1= y; (* illegal *)
x := ref; (* illegal, but see TYPECASE, below *)

Assignment of a REF <type> to a REFANY is always legal and
generates no extra checking code; to go the other way requires
an explicit runtime test, using the following construct:

TYPECASE ref OF

| T(x): statement-sequence-for-type-T
| W(y): statement-sequence-for-type-w
| ELSE statement-sequence-for-others

END;

The expression following TYPECASE must evaluate to a REFANY, and
must not be NIL. If 1t 1s NIL, a runtime error will be
generated.

We considered a design wherein the ELSE clause would

catch NIL. The pros and cons of the two sets of features
appeared to balance; we chose this design because the
implementation was simpler and the compiled code is faster
in the normal case.



At runtime, the type of the object addressed by "ref" is
determined (call this type X). Then, in turn, the types

pointed to by the types named on the left-hand sides of the case
arms are compared for equality with X. For example, X is
compared with R for the first arm above, and with S for the
second arm. If a match is found, "ref" is assigned to the
parenthesized variable (if any) and the corresponding statement
sequence 1s executed. If no match is found, the ELSE clause, if
present, is executed. Note that the parenthesized variable may
be omitted, but if it is present, it must be
assignment-compatible with a value of the type preceding it.

It is often the case that the programmer knows the actual type
of a REFANY, and needs to coerce the REFANY to its actual (REF)
type in a safe way. TYPECASE can be used for this, but is
somewhat verbose:

TYPECASE ref OF

| T(x): <empty statement sequence>
| ELSE <programming error>;

END;

NARROW is a standard procedure provided for this common case.
PROCEDURE NARROW(r: REFANY; t: TYPE): t;
For example,
X := NARROW(ref, T);
is equivalent to
TYPECASE ref OF
| T(x):
| ELSE RAISE(System.NarrowFault, ref):
END;

The first parameter to NARROW must be a REFANY, and the second
parameter must be the name of a REF type.

1.4 Opaque Types

In a DEFINITION module, Modula-2 allows the programmer to define
an abstract type and to specify associated operations without
giving implementation details of either the type's concrete
representation or the code that implements the operations. Such
types serve to isolate clients from implementation details,
while preserving the compiler's ability to do static checking.



Such a type is called "opaque," but unfortunately it is somewhat
translucent: the concrete representation must be either a
pointer or a subrange and must occupy one WORD. Indeed, Modula-2
allows variables of an opaque type to be created (e.g., via NEW)
assigned, copied, etc. An assumption is evident here, namely
that simple assignment and equality operations suffice for
opaque values. This is often not the case. Consider EQ and EQUAL
in LISP, and reference-counted assignment for some forms of
garbage collection.

r

Extending the language to relax the restrictions on opaque types
and tighten the implementor's control over the proliferation of
opaque values would have some merit independent of our other
extensions, but the clincher is the interaction between REFs and
opaque types. Concrete types must be allowed to contain REFs.
But REFs require a non-standard assignment operation because our
garbage collector is based on reference-counting. The following
design addresses these problems.

OPAQUE

The opaque type facility defined in standard Modula-2 has been
extended to include the new form:

TYPE Object = OPAQUE;

This form is generally used in conjunction with a REF type as
follows:

TYPE Handle = REF Object:

An OPAQUE type provides no operations to its client, and
therefore instances of the type cannot be allocated, assigned,
passed as actual parameter, or compared against each other. Nor
can it be a field of a record or element of an array, even in a
local variable.

The corresponding concrete type, however, is not constrained to
be a pointer or a subrange, as in standard Modula-2. (For
reasons related to consistency among runtime types, it is
constrained to be a "type constructor," however. See section 2.1
for a list of the type constructors in Modula-2+.)



Consider the following example:
DEFINITION MODULE Threads;

TYPE Object
TYPE Thread

OPAQUE;
REF Object;

PROCEDURE Fork (PROCEDURE (REFANY) : REFANY, REFANY): Thread;
PROCEDURE Join(Thread): REFANY;
(*x . . . %)
END Threads.
The client of Threads cannot manufacture a Threads.Object and
cannot even dereference a Threads.Thread to acquire one,
However, the implementation has complete access to
Threads.Objects.
IMPLEMENTATION MODULE Threads:
TYPE
Object = RECORD
next: Thread;
state: ThreadState;
(* other fields *)
END;
TYPE ThreadState = (Unborn, Alive, Dying, Dead);

PROCEDURE Join(t: Thread): REFANY;

BEGIN

IF t~.state = Unborn THEN (* ., , . *) END;:
(* . . . %)

END;

(x . . . %)

END Threads.

1.5 Concurrency

In the "Processes" module, standard Modula-2 provides a small
and simple facility at a high level of abstraction for dealing
with concurrent, cooperating threads of control. Unfortunately,
for the reasons cited below, it is too limited to support our
needs. See (LAM80) for a deeper discussion of these issues.



(A note on terminology: the word "process" carries many
conflicting connotations. To avoid confusion, we use the word
"thread" instead of "process" to mean a thread of control with
its associated stack.)

(1) In standard Modula-2, mutual exclusion is provided via
implementation modules that are specially marked as "monitors."
The system guarantees that only one thread at a time can be
executing in any one of a monitor's procedures. The number of
monitors, hence the number of data structures that can be
protected via mutual exclusion, must therefore be a load-time
constant. A programming style that depends on the dynamic
creation of objects, each with independent protection against
concurrent access, is precluded. Many of our programs will
require such "object-style" monitors.

(2) In standard Modula-2, synchronization is provided via
"signals" that can be "sent" and "awaited." If no thread is
waiting for a particular signal, a Send operation on that signal
is ignored. When a thread waiting for a signal is resumed, it
can assume that the condition causing the signal to be sent is
still satisfied.

Unfortunately, not enough is said in Wirth's book about the
relationship between signals and monitors. Worse, the situation
is a lot more complicated than it appears at first; there are
subtle semantic dependencies among the Wait and Send operations,
monitors, and the scheduler. Though the design is adequate 1if
the implementation is based on co-routines, it is not workable
for multi-processors.

A central question is:

Must Wait and Send be called only from within a monitor that
protects both the shared data and the signal?

If not, there is a critical race: a signal may be sent and
discarded just as a thread is about to wait for it. Such signals
will be lost. Deadlock or erroneous execution will ensue.

If so, Wait must simultaneously suspend the thread and exit the
monitor, then re-enter the monitor when the thread is awakened
some time later. The semantics of Send are less clear; there are
at least the following two options: the simpler design would
‘awaken a waiting thread, which cannot enter the monitor until
the thread that does the Send exits. The sender must not change
shared data after doing the send and before it exits the
monitor. A more complicated design for Wirth's Send would waken
a waiting thread, exit the monitor, reschedule itself to allow
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the other thread to run, then re-enter the monitor.

Fortunately, there is a better solution to this set of problems
if clients are able to deal with "spurious wakeups." The design
outlined below can be implemented simply and efficiently for a
multi-processor without introducing restrictions based on
scheduling "priority."

(3) There are other subtle interactions between monitors and
signals. Programming all but the simplest applications with the
primitives in the "Processes" module is quite tricky and
error-prone. Fortunately, only a few programming idioms cover
most of the tricky cases. These include passing a parameter to
the root procedure of a new thread; synchronizing one thread
with the termination (maybe with a result) of another; invoking
WAIT from inside a monitor; and identifying critical sections.
It is well worthwhile to provide explicit support for these
cases.

The Threads Module and the LOCK Statement

Most of the facilities in Modula-2+ for programming with
concurrent threads of control (sometimes called "lightweight
processes") are provided by the "Threads" module. Three notions
are important: Thread, Mutex, and Condition.

A thread of control (Threads.Thread) is created by Fork:
TYPE Forkee = PROCEDURE(REFANY): REFANY;
PROCEDURE Fork{Forkee, REFANY): Thread;

Fork creates a new thread of control within the caller's address
space and causes it to call the indicated Forkee with the
indicated REFANY. When the Forkee returns, its result may be
acquired by Join:

PROCEDURE Join(Thread): REFANY;

Join synchronizes with the specified thread, waiting, if
necessary, until the Forkee returns. A thread that has returned
from the Forkee and is not referenced (e.g., by an outstanding
Join) will be reclaimed by the garbage collector.



Threads can be synchronized explicitly by means of Mutexes:

TYPE Mutex;

PROCEDURE Acquire(VAR mutex: Mutex);

(* If mutex is "available," mark it "unavailable”
and continue. Otherwise, wait for it to become
"available" and try again then. Do all this
atomically with respect to other threads *)

PROCEDURE Release(VAR mutex: Mutex):
(* Mark the mutex "available" and continue. This
may cause other threads waiting in Acquire to
be awakened *)

The language provides the following syntax for mutual exclusion:
LOCK <mutex> DQ statement-sequence END;

where <mutex> 1is a designator of type Mutex. This construct is
equivalent to:

VAR &t: POINTER TO Threads.Mutex; (* &t is a new, unigue name
&t := System.Adr(<mutex>); (* evaluate <mutex> once *)
Threads.Acquire(&t™);
TRY

statement-sequence
FINALLY

Threads.Release(&t")
END:

Threads use Conditions to notify one another of potentially
interesting state changes.

TYPE Condition:

PROCEDURE Wait (VAR mutex: Mutex; VAR condition: Condition);
PROCEDURE Broadcast (VAR condition: Condition);
PROCEDURE Signal(VAR condition: Condition);

A Condition is always used in connection with some mutex. There
are three operations: Wait, Broadcast and Signal.

Wait is called from a thread that holds the mutex. It causes the
thread to block and the mutex to be released. When the thread

is subsequently awakened, it re-acquires the mutex (this may
require first blocking on the mutex).

Broadcast and Signal are generally called from a thread inside



_19_

the mutex. Broadcast wakes every thread that has previously
called Wait and has not yet been awakened. Signal wakes one or
more such threads. Thus, Signal is more efficient if your
algorithm does not require waking multiple threads. 1In case of
doubt, use Broadcast instead.

As an optimization, Signal or Broadcast may be called after

releasing the mutex. In that case, Broadcast wakes all threads
that had called Wait before this thread released the mutex, and
Signal wakes one or more such threads; either operation may

also wake zero or more threads that have called Wait after this
thread released the mutex. This optimization can help prevent a
newly awakened thread from immediately blocking on the mutex.

The semantics we have adopted imply that a return from a Wait
should be viewed as merely a hint that some action may need to
be taken. It suggests that the matter should be re-considered,
and does not guarantee (as in some schemes) that action is
required. Therefore, Waits should occur in WHILE loops of the
form shown below. As long as programs treat return from a Wait
as a hint, extra Signals can affect performance, but not
correctness.

Finally, mutexes and conditions must be initialized using the
InitMutex and InitCondition procedures from the Threads module.
If they are not properly initialized in this way, chaos will
likely ensue. Mutex and condition values should never be copied,
assigned, passed as value parameters, or otherwise used
explicitly. All operations on mutexes or conditions take them as
VAR parameters.

The following small program illustrates the use of these
constructs:

SAFE MODULE ProCon; (* Producer/Consumer *)
IMPORT Threads:;

CONST BufferMax = 10;

TYPE
BufferIndex = [0..BufferMax-1];
BufferObject = RECORD
mutex: Threads.Mutex;
in, out: BufferIndex;
contents: ARRAY BufferIndex OF INTEGER;
nonFull, nonEmpty: Threads.Condition
END;
Buffer = REF BufferObject;



PROCEDURE Produce(buffer: Buffer; i: INTEGER);
BEGIN

LOCK buffer”~.mutex DO

WHILE (buffer~.in+1) MOD BufferMax = buffer~.out DO
Threads.Wait(buffer”~.mutex, buffer”~.nonFull);

END;

buffer~.contents{buffer~.in] := 1i;

buffer~.in := (buffer~.in+1) MOD BufferMax;

Threads.Broadcast(buffer~.nonEmpty) ;
END;
END Produce;

PROCEDURE Consume(buffer: Buffer): INTEGER;
VAR 1: INTEGER:
BEGIN
LOCK buffer~.mutex DO
WHILE buffer~.in = buffer~.out DO
Threads.Wait(buffer”.mutex, buffer”~.nonEmpty);

END;
i := buffer~.contents[buffer~.outl];
buffer~.out := (buffer~.out+l) MOD BufferMax;
Threads.Broadcast(buffer~.nonFull);

END;

RETURN 1i;

END Consume:

PROCEDURE Producer(x: REFANY): REFANY;

VAR
buffer: Buffer;
i: INTEGER;

BEGIN
buffer := NARROW(x, Buffer);
FOR i := 1 TO 10000 DO Produce(buffer, i) END;
Produce(buffer, 0);
RETURN NIL;

END Producer;

PROCEDURE Consumer (x: REFANY): REFANY;

VAR
buffer: Buffer;
i: INTEGER;

BEGIN
buffer := NARROW(x, Buffer);
REPEAT i := Consume(buffer) UNTIL i = 0;
RETURN NIL;

END Consumer;



(* sample main program *)

VAR
b: Buffer;
p, c: Threads.Thread;
dummy: REFANY;
BEGIN
NEW(b) ;
WITH b~ DO
in := 0; out := 0;
Threads.InitCondition(nonEmpty);
Threads.InitCondition(nonFull);
Threads.InitMutex{mutex);
END;
p := Threads.Fork(Producer, b);
¢ := Threads.Fork(Consumer, b);
dummy := Threads.Join(p);
dummy := Threads.Join(c);
END ProCon.

1.6 1Interface Extensions

Standard Modula-2 presents a particular model of the ways in
which parts of a system should fit together. Most notably, the
language requires that an implementation module export exactly
one "interface" (definition module) and that an interface be
exported by exactly one module; indeed, the Modula-2 book says
(p. 81) that an implementation module and corresponding
definition module constitute a unit, and that the definition
module should be thought of as a "prefix to the implementation
part" of the unit.

These limitations severely restrict the designer of non-trivial
packages, which often are best organized with multiple
implementation modules collectively exporting multiple
interfaces. Accordingly, the declaration syntax and semantics
in interfaces have been extended to permit this kind of package
structure.

We extend a "definition" (see syntax lines 90-93 in WIR82)
as follows:

definition =
. . . (existing forms are unchanged |
VAR {ident ":" type "=" qualident ";"} |
LU ) I

ProcedureHeading "=" qualident ";
EXCEPTION {ident ["(" qualident ")"] "=" qualident ";"}
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The intent of these new declaration forms is to equate the
identifier being defined with the one to the right of the equal
sign. For the VAR declaration, the type on the right-hand side
must "equal" the type on the left-hand side in the sense defined
in section 2, below. For the PROCEDURE declaration, the types

of the two sides must be procedure types that are "redefinable"
in the sense defined in section 2. For the EXCEPTION
declaration, the right-hand side must name an EXCEPTION that has
a parameter (the parenthesized qualident) if and only if the
left-hand side does and, if a parameter is present, the types
must be equal. Also note that the existing syntax for TYPE and
CONST declarations already permits a qualident to appear on the
right-hand side.

Cn the surface, these new declaration forms would seem to have
little to do with the need for multiple export, multi-module
implementations mentioned earlier. However, we can achieve the
effect we want by having each module of a package export a
single interface, and then "layering over" this interface with
one or more others that effectively regroup the declarations.
Such "umbrella" interfaces consist entirely of definitions of
the form

n = mod.n

1.7 Open Arrays

Standard Modula-2 provides a mechanism for the manipulation of
arrays when the number of elements 1s not known until runtime.
But it restricts such "open arrays" to be formal parameters of
procedures; the programmer cannot create new open array variables
or allocate open array objects.

In unsafe programs, using loopholes, the programmer can use
System.Allocate and address arithmetic in place of subscripting
to circumvent this restriction, but not in safe programs.
Accordingly, we extended the use of open arrays as follows:

Modula-2+ allows open arrays as types. For example,

TYPE Array: ARRAY OF ElementType;
In addition to their use in standard Modula-2, open array types
can be used in the declaration of REF types. NARROW and TYPECASE
can be used with such REF types.

TYPE ArrayRef: REF Array;
The form of NEW used with variables of type ArrayRef takes the

number of elements as its second parameter. NEW returns NIL if
the number of elements specified is zero.



VAR al, a2: ArrayRef;
NEW(al, 613); a2 := NIL;
IF a2 = NIL THEN NEW(a2, NUMBER(al"));

Tne dereferencing operator """ following a REF to an open array
can appear in three contexts: as an actual array parameter
corresponding to an open array formal parameter with a matching
element type, as a "designator" preceding a bracketed

subscript expression, or as an actual parameter to the standard
procedures HIGH and NUMBER.

Example, continuing the code above:

VAR et: ElementType;
PROCEDURE Sum(a: ARRAY of ElementType): ElementType;

et := Sum(al");
Other Example:

PROCEDURE Equal(al, a2: ArrayRef): BOOLEAN;
VAR i: CARDINAL;
BEGIN
IF al = a2 THEN RETURN TRUE END;
IF NUMBER(al”) # NUMBER(a2”~) THEN RETURN FALSE END;

FOR i := 0 TO HIGH(al”™) DO
IF al~[i] # a2~(i] THEN RETURN FALSE END;
END;
RETURN TRUE
END Equal;

1.8 Low-Level Control of Data Size and Layout

Generally, the elements of records and arrays are laid out
sequentially in an imaginary bit-addressed memory. To improve
performance, the compiler attempts to align elements on byte or
word boundaries.

For most programs, this works well. But for programs that
control devices, or ones with critical performance requirements,
or ones that deal with binary data from files or communication
networks, 1t is sometimes necessary for the programmer to
specify the precise layout of data in memory.



The Modula-2+ declarations

TYPE
T
B

BITS 4 FOR [0..15]:
BITS 1 FOR BOOLEAN;

specify that each datum of type T occupies four bits; of type B,
one bit. Operations that apply to the subrange [0..15] also
apply to type T; ones that apply to BOOLEAN also apply to type

The general form of this new type constructor is:
BITS ConstExpression FOR type
It creates a new type with the specified size.

When allocating records and arrays, the compiler lays out
elements of BITS types as they appear, without attempting to
adjust their alignment. For example, "packed" types would be
declared thus:

TYPE AT ARRAY IndexType OF T;
BT ARRAY IndexType OF B;
R = RECORD a,b,c,d: B; t: T END; (* size = 8 bits *)

1.9 Miscellany
To make type system breaches more evident, the added construct
LOOPHOLE(<expression>, <typename>)

1s semantically equivalent to the standard Modula-2 "type
transfer function" <typename>(<expression>).

The relational operators equal and unequal have been extended to
apply to procedure types.

The syntax has been extended to allow empty cases in CASE,
TYPECASE, and TRY ... EXCEPT statements. This allows a vertical
bar to appear before the first case and before the optional ELSE
clause.

Constant expressions have been extended to include applications
of the following standard procedures:

FIRST, LAST,

HIGH, NUMBER (with fixed size arrays),
and the following procedures from the standard System interface:
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Size, TSize, ByteSize, TByteSize

Efficient runtime libraries for dealing with garbage-collectible
strings of characters (called "Texts") and associated streaming

functions have been provided. The compiler has been extended to

recognize and open-code selected performance-critical operations
from these and from the Threads interface.



2. Type-Checking

Modula-2+'s rules for type-checking are straightforward but
occasionally restrictive. Unfortunately, these rules are not
stated precisely in the Modula-2 book, but a precise
specification is required for effective and efficient use of the
language.

This section introduces the simple ideas underlying the
Modula-2+ type system; Appendix B contains a precise description
of the Modula-2+ type-checking rules and applicability charts
for the binary infix operators of the language.

2.1 Names and Uniqueness

Modula-2+ comes with a pre-defined collection of unique types,
called "standard" types. Other unique types are created via the
type contsructors of the language, which are:

ARRAY

RECORD

SET

POINTER

REF

PROCEDURE

(identList) (* enumeration *)
[constExpr..constExpr] (* subrange *)

BITS ... (* type with bit size *)

A program identifies a type either by naming a previously
defined type, by naming a new "opaque" type, or by writing a
type constructor. A name is required for any type that is
mentioned more than once, because, in general, two applications
of the same type constructor to the same arguments return
distinct types.

Names of the standard types are:

INTEGER, CARDINAL, UNSIGNED, CHAR, REAL, LONGREAL, BITSET,
BOOLEAN, PROC, REFANY

Names of types that are defined in the standard interfaces are:

System interface: Address, Word, Byte, Process, FailArg;
IO interface: File.

Each type named above is unique.
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Each syntactic occurrence of a type constructor produces a new
unique type.

Normally, one defines a name for a type with a declaration of
the form

TYPE name = type;

but in a DEFINITION module one can also define a name for a new
"opaque" type via a declaration of the form

TYPE name; (* standard Modula-2 *)
or of the form
TYPE name = OPAQUE; (* Modula-2+ *)

The OPAQUE type specification is completed in the corresponding
implementation module by repeating the name in a normal type
declaration; such a declaration specifies what is called the
"concrete" type. See section 1.4 for more information about
opaque types.

2.2 Predicates Used for Type-Checking

The following predicates are used for type-checking: EQUAL,
COMPATIBLE, ASSIGNABLE, PASSABLE, and REDEFINABLE.

EQUAL is used to distinguish unique types.

COMPATIBLE is used to check compatibility between the operands
of binary infix operators (e.g., +, =, IN) and between the
selector expression and the arm labels in a case statement,
COMPATIBLE is also used by the ASSIGNABLE predicate.

ASSIGNABLE is used to check the compatibility of:
the left and right sides of an assignment statement;
a subscript expression with an array index type;
a return expression with a procedure result type;
an argument to Raise with an exception parameter type;
IF, WHILE and REPEAT control expressions with BOOLEAN;
and the TO and FROM expressions of a FOR statement with the
type of its index variable.

ASSIGNABLE is different from COMPATIBLE: for example, it
disallows assignment to a constant. COMPATIBLE treats constants
and non-constants symmetrically.

ASSIGNABLE is also used by the PASSABLE predicate, which
determines whether a given actual parameter may be passed as a



given formal parameter.

REDEFINABLE is used to check the compatibility of:
a ProcedureHeading in a definition module with the corresponding
ProcedureDeclaration in its implementation module;
and a ProcedureHeading in a definition module on the left-hand side
of an equated definition with the ProcedureHeading named by
the right-hand side.

Appendix B contains precise definitions of these predicates.



3. Programming Conventions

In this section, we offer some hints (with rationale) about how
to avoid some common pitfalls in the use of Modula-2+. This is
not intended to be a complete style manual for Modula-2+
programming; rather, it includes the few most striking items that
we encountered when first learning Modula-2.

Thoughtful choice of conventions is important A well-designed
programmlng language will make it easier to write good programs
1f its facilities are used with taste and understanding. By
adopting a style that exploits the language's strengths and
circumvents its weaknesses, one can do a better and less
frustrating job of applylng it to the task at hand. And it is
better to apply a consistent style un1formly from the outset
than to evolve an inconsistent one in response to bad
experiences. The notes on programming conventions in this
section and on formatting conventions in the next derive from
the application of our experience programming in similar
languages to the specific features and restrictions of this
language.

3.1 Interfaces

(a) Modula-2 provides no way to specify that a variable in a
DEFINITION module is meant to be read only by clients.
Furthermore, client access to such a variable is unsynchronized
with actions of the implementation. For these reasons,
DEFINITION modules should contain variables (VARs) only when
synchronization is not an issue; otherwise the variables should
be declared in the corresponding implementation, and accessed by
clients through procedures that read, change or return their
values.

(b) Modula-2 limits procedures to at most a single return value.
VAR parameters are specifically intended to enable procedures to
return multiple values. They also can be used to reduce the
overhead of passing large "value" parameters. However, since the
language provides no syntax to distinguish these conceptually
different applications of VAR parameters, a clarifying comment
will help the reader to understand the procedure's semantics.

Example:

PROCEDURE Sum(VAR a (*inout*), b (*in*): Matrix);



3.2 Implementations

(a) In an implementation module, imported facilities should
generally be referenced with qualified names. This makes code
explicit about its non-local dependencies, hence easier to read.

For example, RealFns.Sqgrt and RealFns.ArcTan should be used as
follows:

IMPORT RealFns:

X := RealFns.ArcTan(RealFns.Sqrt(3.0));

rather than
FROM RealFns IMPORT Sqrt, ArcTan;
X := ArcTan(Sqgrt(3.0));

However, there is room for individual preference here. In a
program dominated by REAL numbers, the latter form might be
easier on the reader, since the function names are unlikely to
be confused with functions from other interfaces. Similarly,
heavily used procedures from standard I/0 interfaces might be
referenced in the second style. If the program text would become
greatly cluttered with a repeated interface name, use the second
form to eliminate the repeated name. If you have any doubt,
however, use the first form.

(b) Use explicit subranges of INTEGER wherever possible to make
the intended semantics clear. In Modula-2+, the type UNSIGNED is
defined as [0..2732-1], the same as standard Modula-2's
CARDINAL, and CARDINAL is defined as the non-negative subrange
of INTEGER [0..2731-1].

(c) There are times when the Modula-2 type system is inadequate
for expressing a programmer's intentions. A mechanism for
circumventing the restrictions imposed by the compiler in such
situations is required. But breaches of the type system often
lead to subtle bugs that are difficult to find; such breaches
should be used with care, only when necessary, and should be
localized. To make the type breach easy to notice, use LOOPHOLE
rather than a "type transfer function."

Similarly, implementations should be SAFE whenever possible. It
i1s best to consider unsafe constructs as akin to type system
breaches.,

(d) The WITH statement makes record field names accessible
without qualification and can therefore mask variables 1in
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enclosing scopes. Since the masking is implicit (the field names
do not appear locally to remind the reader what is happening),
subtle errors can occur if a significant amount of code appears
inside a WITH statement.

We find it best to use the WITH statement only for replacing all
or most of the fields of a record. In essence, this facility
should be treated as a record constructor combined with an
assignment statement.

(e) Data that needs to be protected by one or more mutexes
should generally be organized in an appropriate data structure
using the type system of the language. This is sometimes called
a "monitored object" style and is worthwhile even when only a
single instance of the "object" is necessary. The alternative
approach (simply listing the variables in the outer scope of a
module) is inferior because it fails to indicate clearly which
variables are "monitored" and which are not.



Appendix A

Collected Syntax

The syntax below follows the conventions used in Appendix 1 of
"Programming in Modula-2, Second Edition" by Niklaus Wirth.
Numbers to the left of each rule refer to production numbers in
that Appendix (rules without numbers are extensions for
Modula-2+). Additions to a rule are indicated by an ellipsis.

A.1 EZxceptions and Finalization
41 ProcedureType = PROCEDURE [FormalTypeList] [RAISES raisees].

53 statement = [ ... | TryStatement | ... ].
TryStatement = TRY StatementSequence TryTail END.

TryTail = FINALLY StatementSequence |
PASSING raisees | PASSING raisees ";" |

EXCEPT [HandlerArm {"|" HandlerArm}]
[ELSE ["(" ident ")"] StatementSequence].

HandlerArm = [QualidList ["(" ident ")"] ":" StatementSequencel.
raisees = "{" [QualidList] "}".
QualidList = qualident {"," qualident}.

73 ProcedureHeading = PROCEDURE ident
[FormalParameters] [RAISES raisees].

75 declaration = ... |
EXCEPTION {IdentList ["(" qualident ")"] ";"}.
90 definition = ... |
EXCEPTION {IdentList ["(" qualident ")"] ["=" qualident] ";"}.

A.2 Safety
24 type = ... | REF ident | REF type.

96 CompilationUnit = [SAFE] DefinitionModule |
97 [SAFE] [IMPLEMENTATION] ProgramModule



53

90
91

53

90
92
93

30

24

36
65

Runtime Types
statement = [ ... | TypecaseStatement | ... J.
TypecaseStatement = TYPECASE expression OF tcase
{"|" tcase} [ELSE StatementSequence] END.

tcase = [QualidList ":" StatementSequence] |
qualident ["(" ident ")"] ":" StatementSequence.

Opaque Types

definition = ... |
TYPE {ident ["=" type | "=" OPAQUE] ";"}.
Concurrency
statement = [ ... | LockStatement | ... 1.
LockStatement = LOCK designator DO StatementSequence END,
Interface Extensions
definition = ... |
VAR {ident ":" type ["=" qualident] ";"} |
ProcedureHeading ["=" qualident] ";" |
EXCEPTION {IdentList ["(" qualident ")"] ["=" qualident]
Open Arrays

ArrayType = ARRAY [SimpleType {"," SimpleType}] OF type.
Miscellaneous Extensions
type = ... | BITS ConstExpression FOR type.

variant = [CaseLabelList ":" FieldListSequencel].
case = [CaseLabelList ":" StatementSequence].

.
14

u}.



Appendix B

Type Checking Rules and Binary Operators
B.1 Predicates Used for Type-Checking

This section defines the type-checking predicates that are used
by the compiler: EQUAL, COMPATIBLE, ASSIGNABLE, PASSABLE, and
REDEFINABLE.

To facilitate the definitions, it is useful to introduce the
following functions and names:

BaseType: a function on types. BaseType(t) peels off
layers of subrange and BITS specifications until it
finds a type without these.

ElementType: a function on ARRAY types. If X is an
ARRAY type, then ElementType(X) is the type of the
elements.,

tl, t2, src, srcB, dst and dstB: names for types.
By convention,
tl, t2, src and dst are arbitrary types,
srcB is a name for BaseType(src),
and dstB is a name for BaseType(dst).

EQUAL (See section 2.1 for a discussion of unique types)

Two types tl and t2 are EQUAL if
they are the same (i.e., unique) standard type;
or they are the same type from a standard interface;
or they are the same syntactic occurrence of a type constructor;
or they are the same opaque type;
or one is an opaque type
and the compiler is analyzing 1its implementation module;
and the other is the corresponding concrete type.

EQUAL is used to distinguish unique types.



COMPATIBLE

The types src and dst are COMPATIBLE if:

srcB is EQUAL to dstB;

or the (unordered) pair {srcB, dstB} is one of the following:
{CARDINAL, INTEGER}
{CARDINAL, UNSIGNED}
{<a REAL constant>, REAL} (* literals and constants
{<a REAL constant>, LONGREAL} are treated specially *)
{<a CHAR constant>, CHAR}
{<a CHAR constant>, ARRAY [...] OF CHAR}
{<a string constant>, ARRAY [...] OF CHAR}
{ADDRESS, CARDINAL}
{ADDRESS, UNSIGNED}
{ADDRESS, INTEGER}
{ADDRESS, <a POINTER type>}

or both srcB and dstB are PROCEDURE types;
and both types have the same number of parameters;
and the result types of srcB and dstB are EQUAL;
and the set of exceptions raised by srcB is a subset of dstB's;
and for each pair of corresponding parameters pl and p2

pl and p2 are both VAR parameters or neither is;
and either
both pl and p2 have EQUAL types;
or both are open arrays with EQUAL element types.

COMPATIBLE is used to check compatibility between the operands
of binary infix operators (e.g., +, =, IN) and (in a case
statement) between the case selector expression and the case arm
labels. COMPATIBLE is also used by the ASSIGNABLE predicate.

ASSIGNABLE

A value of type src is ASSIGNABLE to a variable of
type dst if
src and dst are COMPATIBLE and dst is not a constant:
or srcB is a REF type and dstB EQUALs REFANY;
or both srcB and dstB are in {INTEGER, CARDINAL, UNSIGNED}.

ASSIGNABLE is used to check the compatibility of:
the left and right sides of an assignment statement;
a subscript expression with an array index type;
a return expression with a procedure result type;
an argument to Raise with an exception parameter type;
IF, WHILE and REPEAT control expressions with BOOLEAN;
and the TO and FROM expressions of a FOR statement with the
type of its index variable.
ASSIGNABLE is also used by the PASSABLE predicate.



PASSABLE

An expression E of type src is PASSABLE as a
parameter of type dst 1if:
the parameter is passed by value and src is ASSIGNABLE to dst;
or the parameter is passed by var and dst EQUALs src;
or dstB EQUALs System.Word and TSize(srcB) <= System.WordSize;
or dstB EQUALs System.Byte and TSize(srcB) <= System.ByteSize;
or either srcB or dstB EQUALs ADDRESS and the other 1is a POINTER;
or dstB is an open ARRAY
and srcB i1s an ARRAY;
and ElementType(dstB) EQUALs ElementType(srcB);
or dstB is an open ARRAY
and BaseType(ElementType(dstB)) EQUALs CHAR;
and E is a STRING or CHAR constant;
or dstB is an open ARRAY
and ElementType(dstB) is WORD or BYTE.

REDEFINABLE

Two procedure types tl and t2 are REDEFINABLE 1if:
tl and t2 are COMPATIBLE;
and the exceptions raised by tl and t2 are the same;
and corresponding parameters have the same name.

REDEFINABLE is used to check the compatibility of:
a ProcedureHeading in a definition module with the corresponding
ProcedureDeclaration in its implementation module;
and a ProcedureHeading in a definition module on the left-hand side
of an equated definition with the ProcedureHeading named by
the right-hand side.



B.2 Binary Infix Operators

The following charts present applicability rules for the binary
infix operators, which label their rows. In all cases except IN,
operands must be COMPATIBLE. Column headings, described below,

characterize the pair of parameters to the COMPATIBLE predicate:

whole number:
System.Address
REAL, LONGREAL
SET
BOOLEAN

h CHAR
enumeration

THOWONn P Z

ACh ARRAY <bounds>

For the IN operator, e

INTEGER, CARDINAL, UNSIGNED

DOINTER, REF, REFANY
St string constant

OF CHAR

IN s (result: BOOLEAN), e must be

COMPATIBLE with the range of set s. Charts for other operators:

relations (result:
N A R S
= + o+ o+ o+
# + + o+ o+
<>+ o+ o+ o+
>= o+ o+ o+ o+
> + o+ o+
<= + 4+  + +
< + o+ 4+

arithmetic and set

N A R S
+ + +  + o+
- + 4+ o+ o+
* + + o+
/ + o+
DIV +
MOD +

BOOLEAN)

B ChE P St ACh
+ o+ o+ o+ o+ o+

+ o+ o+ o+ o+ o+

+ + o+ o+ o+ o+

+ o+ o+

+ o+ o+

+ o+ o+

+ o+ o+

operators (the result has the operand type)

Boolean operators (result: BOOLEAN)

B
AND +
& +
OR +



Appendix C

Formatting Conventions

It 1s a curious fact of programming life that practitioners
consistently underestimate both the utility and the effort
required to produce a complete, integrated, operational set of
conventions for formatting programs. Such conventions address
indentation, capitalization, spacing, etc.

Common formatting conventions are worth a lot, especially when
several people work together on large projects. In addition to
the communication inefficiencies caused by differing
conventions, newcomers to a programming language often spend a
significant amount of time incrementally developing and
retrofitting their own style, usually re-learning what turn out
to be simple lessons that others have already learned. While
this is not always wasteful, it is clearly worthwhile to have a
good set of guidelines at hand, if only for reference. Also,
adherence to common conventions makes automatic formatting tools
easier to provide and more useful.

This section offers a complete set of conventicns for formatting
Modula-2+ programs and interfaces: indentation, spelling and
punctuation rules are presented, as well as guidelines for
placing comments.

The following points of style produce a visually pleasing
program. Consistently applied, they also provide syntactic cues
to semantics that make a program easier to read.

C.1 Spelling

Identifiers are written entirely in lower case except as
follows:

a. The initial letter of each embedded word except the first is
capitalized. For the purposes of this rule, an embedded acronym
1s a sequence of one-letter words, To avoid possible conflicts
with keywords (see below), do not use identifiers of length
greater than one that contain only capital letters.

b. Identifiers that name modules, procedures, exceptions, types,
and constants start with an upper-case letter. All of these are



- 39 -

compile-time constants. All variables, including procedure
variables, start with a lower-case letter.

Thus, for example,

variableName thi1sCPU
fieldName status
ModuleName Parser
ProcedureName Insert
TypeName VMCache
AnException Overflow
ConstantName WordSize
EnumerationElement Offline

Note that the elements of an enumeration type are semantically
similar to constants and are therefore capitalized.

c. Reserved words and standard identifiers (except interface
names) are written entirely in upper case. Other capitalizations
of the same word are available to the programmer for other
purposes (for example, "set" and "lock" are perfectly good
variable names).

d. identifiers in standard interfaces (and the interface names
themselves) follow the above rules (e.g., System.Word, IO.input).
Thus, a programmer need not be concerned with whether the
interface is "built-in" to the compiler or not.

e, Use "#" rather than "<>", Use "AND" rather than "&".

C.2 Punctuation

a. A space appears before and after vertical bar, and before and
after equal signs in definitions and declarations. Spaces
usually appear before and after binary operators (including
assignment) when the statement containing them is long, but they
may be omitted when the statement is short (e.g., i:=i+1l). A
newline sometimes appears in place of the space after these
characters.

b. A space appears after colon, comma, and semicolon, but none
before. A newline often follows semicolon (and sometimes
comma) instead.

c. Except as required by adjacent tokens, no spaces appear
before or after left and right parentheses, left and right
square brackets, left and right curly brackets, caret
(up-arrow), dot-dot, and period. (A newline follows the period
at the end of a module.) If the token on the left (or right) of
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these characters requires a space after (or before) it, one
should appear. For example, consider the left parentheses in

PROCEDURE Positive(x: INTEGER): BOOLEAN;
and

TYPE Color = (Red, Green, Blue):
d. A space appears after left-comment and before right-comment.
e. A semicolon follows the last statement in a statement

sequence and the last field in a field list; this makes
insertions and deletions somewhat easier.



C.3 Indentation

Indenting is used to emphasize program structure. Each nesting
level is two spaces wide. (If a formatter is available that
parameterizes the width, four spaces can also be used.) The
following illustrates the recommended form of each Modula-2+
construct ('ss' represents a statement sequence):

CONST TYPE PROCEDURE P;
A = 613; Index = (0..15]; VAR
B = (1, 3, 7); Object = RECORD b: BOOLEAN;
fl: Typel; 1: INTEGER;
VAR £2, £3: Type2; BEGIN
var: Typel; END; sS
X, y, 2: Type2; Handle = REF Object; END P
IF bool THEN WHILE bool DO REPEAT
Ss ss Ss
ELSIF bool THEN END UNTIL bool
sSs
ELSE FOR 1 := 1 TO 10 DO LOOP
Ss ss Ss
END END END
CASE expr OF TYPECASE ra OF WITH 4 DO
| cl: | t1(vl): Ss
sSs ssl END
| c2: [ t2(v2):
sSS Ss2 LOCK d DO
| ELSE | ELSE Ss
sSs ssn END
END END
TRY TRY MODULE Impl;
sSs Ss IMPORT 11, 12;
EXCEPT PASSING {el,e2} CONST C = 47;
| el(vl): END VAR v: INTEGER;
ssl PROCEDURE P;
| e2(v2): TRY BEGIN
ss2 Ss END P;
| ELSE FINALLY BEGIN
ssn ss ss
END END END Impl.

A statement sequence 1s indented under the construct that
introduces it, which lines up vertically with its corresponding
END. Note also the similarity of the case discriminations in
CASE, TYPECASE, and TRY ... EXCEPT. Declarations are indented



- 42 -

one level, including declarations of nested procedures.
(Exception: the declarations in the outermost module are not
indented; in a nested module, they would be.) If the declaration
requires more than one line, its components are indented another
level, with at most one type per line.

The above forms only apply to constructs that do not fit on a
single line. For example, if the statement sequence following a
THEN, ELSE, or case label is short (e.g., a single statement or
a few short statements), it can appear on the same line with the
tokens that introduce and terminate it. Similarly, 1f the
statement sequence of a loop body is short (even non-existent),
it can be moved up to the line that introduces the loop, along
with the trailing END. Thus,

IF bool THEN x :
FOR 1 := 1 TO 10
CASE x OF

l 1..3: y := 0;
4y 1= -1;

are all acceptable forms. The generalization here 1s: put the
whole construct on one line, if it fits.

Long statements which require more than one line are broken
where white space would normally appear, with the continuation
lines indented two levels.

C.4 Comments

The text of a multiline comment begins on the same line as the
opening left-comment. Subsequent lines are indented the same as
the opening left-comment. The terminating right-comment appears
on the last line of the comment.

(* A comment that fits entirely on one line by itself. *)
(* A long comment that does not fit on one line, and

the filler necessary to make it do so, and the filler
necessary to make it do so. *)



By convention, comments which refer to a group of items appear
before the group. "Comment boxes" are often used to set off what
is logically a section heading; they are constructed as follows:

(*******‘k**********)

(* Section Name *)
(******************)

Comments associated with a single definition or declaration
appear immediately after the definition or declaration (not
before) and at the same level of indentation. In modules and in
procedure implementations, they immediately follow the module
(procedure) heading, which includes the import and export
clauses. Comments in running code follow the normal flow of
control,

When comment brackets are used to "comment out" a section of
code, the terminating right-comment appears on a line by itself,
lined up vertically with the opening left-comment.

C.5 Interfaces

A few additional quidelines make interfaces, which represent the
most heavily read code, a bit more uniform from one to the next.

Procedures with more than two parameters of different types
should have their parameters listed on separate lines; items
should be grouped logically on each line. Each procedure should
be immediately followed by a comment describing its operation
(if it is not evident from the procedure's name). A blank line
separates procedure declarations.

PROCEDURE ProcName (
parml: Typel;
parm2, parm3: Type3;
VAR parmé4: Type4d)
ReturnType
RAISES {El, E2}:
(* Short, one-line description of the procedure.
More information, if necessary, appears here, in
multiline comment format. *)

PROCEDURE NextProc
. A general comment describing the interface as a whole should
appear lmmediately following the module header, before any

definitions.

Examples of these conventions appear throughout this report.
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