A Kernel Language for Modules
and Abstract Data Types

R. Burstall and B. Lampson

September 1, 1984

3 .
3 §
ot o

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

A Kernel Language for Modules and Abstract Data Types

R. Burstall and B. Lampson

R. Burstall is at the Department of Computer Science, University
of Edinburgh, King's Buildings, Mayfield Road, Edinburgh 9.

This work was supported in part by the Xerox Palo Alto Research
Center. An earlier version was presented at the International
Symposium on Semantics of Data Types in Sophia-Antipolis,
France, in June of 1984 and appears in the proceedings of that
symposium edited by G. Kahn, D. B. MacQueen, and G. Plotkin,

#173 in the Springer-Verlag Lecture Notes in Computer Science,
pages 1 to 50.

Authors' abstract:

A small set of constructs can simulate a wide variety of
apparently distinct features in modern programming languages.
Using a kernel language called Pebble based on the typed lambda
calculus with bindings, declarations, and types as first-class
values, we show how to build modules, interfaces and
implementations, abstract data types, generic types, recursive
types, and unions. Pebble has a concise operational semantics
given by inference rules.

R, Burstall
and B. Lampson

Capsule review:

Programming-language designers have invented a variety of
langquage extensions and special notations to deal with several
problems that arise in programming in the large. Some of the
differences among such features in Ada, CLU, Euclid, Mesa, ML,
Modula, Russell, SML, et al. are superficial; others are
fundamental. Without a uniform semantic framework it is
difficult to compare and evaluate these features, or to
determine which choices are arbitrary and which are tightly
constrained.

Pebble is a simpler language, intended for the precise
description of language constructs. It is used to explain
strongly typed module interconnection languages, abstract data
types, and procedures that are parameterized with respect to the
types of operands. It is based on the typed lambda calculus,
extended to encompass the linking together of separately checked
modules into a program. Bindings, declarations, and types -- as
well as functions -- are all treated as first-class values; the
type system includes dependent types.

This paper presents an informal overview of why the approach can
be expected to work. But the precise definition of the features
of existing languages in terms of Pebble is left as "an exercise
for the reader.”

The semantics of Pebble are presented both informally and
formally. Representative cases are presented in great detail,
to illustrate the workings of the formalism.

Jim Horning

Contents

1 Introduction 2
2 Informal description of Pebble 5
2.1 Basic features 5
2.2 Bindings and declarations 7
2.3 Types 8
2.4 Polymorphism 9
2.5 Dependent types 10
2.6 Type-checking 12
3 Applications 15
3.1 Interfaces and
implementations 15
3.2 Abstract data types 17
3.3 Generic types 20
3.4 Union types 21
3.5 Recursive types 21
3.6 Assignment 22
4 Values and syntax 23
4.1 Values 23
4.2 Syntax 26
5 Operational semantics 31
5.1 Inference rule semantics 31
5.1.1 Notation 31
5.1.2 Determinism 32
5.1.3 Feedback 33
5.2 The rules 33
5.2.1 Booleans, pairs and
names 34
5.2.2 Functions 35
5.2.3 Dependent functions 38
5.2.4 Bindings and
declarations 39
5.2.5 Recursion 41
5.2.6 Inferring types 43
5.3 Type-checking vs evaluation 48
5.4 Deterministic evaluation 48
6 Conclusion 49
References 49

Index 51

1. Introduction

Programming language designers have invented a number of features to support the writing of
large programs in a modular way which takes advantage of type-checking. As languages have
grown in size these features have been added to the basic structure of expressions, statements
and procedures in various ad-hoc fashions, increasing the syntactic and semantic complexity of
the language. It is not too clear what the underlying concepts or the language design options
are. In particular cases various kinds of parameterised types or modules are offered, and it is
unclear how these are related to the ideas of function definition and application, which can be
formalised very simply in the lambda calculus.

This paper describes a small programming language called Pebble, which provides a precise
model for these features. It is a functional language, based upon the lambda calculus with
types. It is addressed to the problems of data types, abstract data types and modules. It also
deals with the idea of generic values. It does not reflect all aspects of programming languages,
since we have not dealt with assignment, exceptions or concurrency, although we believe these
could be added to our framework. Our intention is that it should be possible to express the
semantics of a sizeable part of a real programming language by giving rules which rewrite it
into Pebble. This follows the method used by Bauer and his colleagues [Bauer et al. 1979] to ex-
press the semantics of their wide spectrum language. We were particularly concerned with the
Cedar language (an extension of Mesa [Mitchell et al. 1979]) which is in use at Xerox. One of
us (BL) has defined the quite complex part of this language which is concerned with data types
and modules in terms of rewrite rules which convert Cedar to an earlier version of Pebble; this
work is described in an unpublished report.

Practical motivation

A principal idea which we wish to express in our formalism is the linking together of a number
of modules into a large program. This idea may be summarized as follows: Each program
module produces an implementation of some collection of data types and procedures. In order
to do so it may require the implementations supplied to it by some other modules. This traffic
in implementations is controlled by interfaces which say what kind of implementation is
required or produced by a module. These interfaces name the data types and specify the
argument and result types of the procedures. Given a large collection of modules, perhaps the
work of many people at different times, it is essential to be able to express easily different ways
of connecting them together, that is, ways of providing the implementations needed by each
module. An input interface of a module may be satisfied by the implementations produced by
several different modules or different “versions” of the same module.

We believe that linking should not be described in a primitive and ad hoc special-purpose
language; it deserves more systematic treatment. In our view the linking should be expressed in
a functional applicative language, in which modules are regarded as functions from
implementations to implementations. Furthermore this language should be typed, and the
interfaces should play the role of types for the implementations. Thus we have the
correspondence:

implementation<:value
interfacctype
module2 function

Function application is more appropriate for linking than schemes based on the names of the
modules and the sequence in which they are presented. By choosing suitable structured types
in a functional language we can get a simple notation for dealing with "big" objects (pieces of
a program) as if they were “small” ones (numbers); this is the basic good trick in matrix
algebra. Thus we hope to make "Programming in the Large” look very much like
"Programming in the Small”.

Another advantage of this approach to linking is that the linking language can be incorporated
in the programming language. We hope in this way to achieve both conceptual economy and
added flexibility in expressing linking. By contrast, the usual approach to the linking problem,
exemplified by Mesa and C-Mesa [Mitchell et al. 1979], has a programming language (Mesa)
with a separate and different linking language (C-Mesa) which sits on top of it so to speak. The
main advantage of this approach is that a separate linking language can be used for linking
modules of more than one programming language, though in the past this advantage has been
gained only at the price of using an extremely primitive linking language.

A linking system called the System Modeller was built by Eric Schmidt for his Ph.D. thesis
work, supervised by one of us (BL). He used an earlier version of Pebble with some modifica-
tions, notably to provide default values for arguments since these are often obvious from the
context [Schmidt 1982, Lampson and Schmidt 1983]. The System Modeller was used by several

people to build large systems, but the implementation has not been polished sufficiently for
widespread use.

Our other practical motivation was to investigate how to provide polymorphic functions in
Cedar, that is ones which will work uniformly for argument values of different types; for ex-
ample, a matrix transpose procedure should work for integer matrices as well as for real
matrices.

Outline of the paper

We start from Landin’s view of programming languages as lambda calculus sweetened with syn-
tactic sugar {Landin 1964)]. Since we are dealing with typed languages, we have to use typed
lambda calculus, but it turns out that we need to go further and extend the type system with
dependent types. We take types as values, although they only need to be handled during type-
checking (which may involve some evaluation) and not at execution time. We thus handle all
variable binding with just one kind of lambda expression. Another extension is needed
because, whilst procedures accept n-tuples of values, for example (1, 5, 3), at the module level
it is burdensome to rely on position in a sequence to identify parameters and it is usual to
associate them with names, for example (x~1, y~5, z~3). This leads us to the notion of a
binding. To elucidate the notion of parameterised module we include such bindings as values
in Pebble. It turns out that the scoping of the names which they contain does not create
problems.

?oss\He,

To give a precise semantics of Pebble we give an operational semantics in the form of in-
ference rules, using a formalism due to Plotkin [1981}], with some variations. We could have
attempted a denotational semantics, but this would have raised theoretical questions rather
different from our concerns about language design. So far as we know it would be quite
pesssible to give a satisfactory denotational semantics for Pebble, and we should be interested
to learn of anyone attempting this task. Our semantics gives rules for type-checking as well as
evaluation. Our rules are in fact deterministic and hence can be translated into an interpreter
in a conventional programming language such as Pascal. We give a fragment of such a
translation in § 5.4.

Related work

Our work is of course much indebted to that of others. Reynolds, in a pioneering effort,
treated the idea of polymorphic types by introducing a special kind of lambda expression
[Reynolds 1974], and McCracken built on this approach [McCracken 1979]. The language
Russell introduced dependent types for functions and later for products [Demers and Donahue
1980]. MacQueen and Sethi have done some elegant work on the semantics of a statically typed
lambda calculus with dependent types, using the idea that these should be expressed by quan-
tified types. this idea of universally and existentially quantified types was introduced in logic
by Girard [Girard 1972] and used by Martin-Lof [Martin-Lof 1973] for the constructive logic
of mathematics. Mitchell and Plotkin seem to have each independently noted the usefulness of
existentially quantified types for explaining data abstraction. We had already noticed this
utility for dependent products, learning later of the work on Russell and the connection with
quantified types. It is a little hard to know who first made these observations; they seem to
have been very much "in the air”.

The main difference of our approach from that using quantified types is that we take types as
values and have only one kind of lambda expression. Russell also takes types as values, but
they are abstract data types with operations, whereas we start with types viewed as simple predi-
cates without operations, building more complex types from this simple basis. The idea of
taking bindings as values also appears in [Plotkin 1981] with a somewhat similar motivation.
Our work has been influenced by previous work by one of us with Goguen on the design of
the specification language Clear [Burstali and Goguen 1977).

Acknowledgements

We would like to thank a number of people for helpful discussions over an extended period,
particularly Jim Donahue, Joseph Goguen, David MacQueen, Gordon Plotkin, Ed
Satterthwaite and Eric Schmidt. Valuable feedback on the ideas and their presentation was ob-
tained from members of IFIP Working Group 2.3. Much of our work was supported by the
Xerox Palo Alto Research Center. Rod Burstall also had support from the Science Research
Council, and he was enabled to complete this work by a British Petroleum Venture Research
Fellowship.

2. Informal description of Pebble

This section describes the language, with some brief examples and some motivation. We first
go through the conventional features such as expressions, conditionals and function definitions.
Then we present those which have more interest:

the use of bindings as values with declarations as their types;
the use of types as values;
the extension of function and product types to dependent types;
the method of defining polymorphic functions.
Finally we say something about type-checking.
The reader may wish to consult the formal description of the values and the formal syntax,

given in § 4, when he is unclear about some point. Likewise the operational semantics given in
§ 5 will clarify exact details of the type-checking and evaluation.

2.1 Basic features

Pebble is based upon lambda calculus with types, using a fairly conventional notation. It is en-
tirely functional and consists of expressions which denote values.

We start by describing the values, which we write in this font. They are:
e primitive values: integers and booleans;

e function values: primitive operations, such as +, and closures, which are the values of
lambda expressions;

e tuples: nil and pairs of values, such as {1, 2];

e bindings: values such as x~3 which associate a name with a value, and fix bindings which
arise in defining recursive functions;

e types:
the primitive types int and bool,
types formed by X and —,
dependent types formed by % and »,
the type type which is the type of all types including itself, and
declarations, such as x: int, which are the types of bindings;
e applications: primitive functions applied to arguments which need simplification, written

primitivelvalue, and symbolic applications f%e which arise during type-checking. These
are not final values of expressions, but are used in the formal semantics.

We now consider the various forms of expressions, leaving aside for the moment the details of
bindings, declarations, and dependent types, which will be discussed in later sections. These
are as follows:

italic k

> e

D)

>
>/

e applications: these are of the form "operator operand”, for example facrorial 6, with juxta-
position to denote application. Parentheses and brackets are used purely for grouptng. If
E, is an expression of type 1;—>t, and E, is an expression of type 1, then E| E, is an ex-
pression of type #,. As an abbreviation we allow infixed operators such as x+ y for +{x, y].

e tuples: nil is an expression of type void. If E| is an expression of type 1, and E, one of
type ¢, then [E}, E,] is an expression of type X1, The brackets are not significant and
may be omitted. The functions fst and snd select components, thus fst[1, 2] is 1.

e conditionals: IF E} THEN E, ELSE Ej, where Ej is of type bool.

e local definitions: LET B IN F evaluates E in the environment enriched by the binding B.
For example

LET x: int~y+z IN x+mod x

first evaluates y+z and then evaluates x+mod x with this value for x. The int may be
omitted, thus

LET x:~y+zIN...
The binding may be recursive, thus
LET RECf: int—int ~...IN...

We allow £ WHERE B as an abbreviation for LET B IN E.

e function definitions: Functions are denoted by lambda expressions, for example
A x: int=int IN x+mod x
which when applied to 3 evaluates 3+mod 3. If 7} evaluates to ¢, T; evaluates to), and E
is an expression of type ¢, provided that N is a name of type ¢, then
AN:T=T,INE
is a function of type #;—1,. Functions of two or more arguments can be defined by using
X, for example

A x:int X y: bool —intIN ...

We allow the abbreviation f: (i int—int) IS . . . for /! int—int ~ A i; int—=int IN . . .

An example may help to make this all more digestible:

LET REC fact : {(n. int—int) IS
IF n=0THEN 1 ELSE n*fac{n—1)
INLET k:~24+2+21IN
Jac fst[k, k+1])

This all evaluates to factorial 6. Slightly less dull is

LET zwice'\(f :Ainl—*int)—*(int—vint)AlS
A niint—int IN f(f n)
IN (twice fst) [[1, 2], 3]

which evaluates to fst(fst([[1, 2], 3]': that is 1. We shall see later how we could define a
polymorphic version of twice which would not be restricted to integer functions.

The reader will note the omission of assignment. Its addition would scarcely affect the syntax,
but it would complicate the formal semantics by requiring the notion of store. It would also

complicate thc rules for type-checking, since in order to preserve static type-checking, we
would have to make sure that types were constants, not subject to change by assignment. This
matter is discussed further in § 3.6.

2.2 Bindings and declarations

An unconventional feature of Pebble is that it treats bindings, such as x~3, as values. They
may be passed as arguments and results of functions, and they may be components of data
structures, just like integers or any other values. The expression x: int~3 has as its value the
binding x~3. A binding is evaluated by evaluating its right hand side and attaching this to the
variable. Thus if x is 3 in the current environment, the expression y: int~x+ 1 evaluates to the
binding y~4. The expresssien x. int~3 may be written more briefly x:~3.

The type of a binding is a declaration. Thus the binding expression x:~3 has as its type the
declaration x: int. Bindings may be combined by pairing, just like any other values. Thus
[x:~3, b:~true] is also a binding. After LET such a complex binding acts as two bindings "in
parallel”, binding both x and 4. Thus

LET x:~0 IN LET [x:~3, yi~x] IN [x,]

has value [3, 0] not [3, 3], since both bindings in the pair are evaluated in the outer environ-

ment. Thus the pair constructor ",” is just like any other function. The type of the binding
{x:~3, b:~true] is (x: int)X(b: bool), since as usual if e; has type 1, and e, has type ¢, then
[e;. &,] has type 1; X1,

For convenience we have a syntactic sugar for combining bindings "in series”. We write this
By, B,, which is short for [B), LET B; IN B,]. There are no other operations on bindings, with
the possible exception of equality which could well be provided.

Declarations occur not only as the types of bindings but also in the context of lambda expres-
sions. Thus in

A xiint—int IN x+1

x: int 1s a declaration, and hence x: int—int is a type. In fact you may write any expression
after the A provided that it evaluates to a type of the form d—« where 4 is a declaration. To
make two argument lambda expressions we simply use a X declaration, thus

Axiint X y:int = int IN x+y

which is of type intXint—int, and could take [2, 3] as an argument. This introduces a certain
uniformity and flexibility into the syntax of lambda expressions.

We may write some unconventional expressions using bindings as values. For example,
LET b:~(x:~3) INLET bIN x
which evaluates to 3. Another example is

LET f:~A b (xtint X y: int)—int IN
LET 5 IN x+)N
Sx:i~1, yi~2]

which also evaluates to 3. Here ftakes as argument not a pair of integers but a binding.

evaus\cv\

ML

The main intended application of bindings as values is in elucidating the concept of parameter-
ised module. Such a module delivers a binding as its result; thus, a parameterised module is a
Sfunction from bindings to bindings. Consider a module which implements sorting, requires as
parameter a function lesseq on integers, and produces as its result functions issorted and sort. It
could be represented by a function from bindings to bindings whose type would be

(lesseq: intXint—bool) — (issorted: list int—~>bool)X(sort: list int — list int)

We go into this in more detail in § 3.1.

Pebble also has an anti-LET, which impoverishes the environment instead of enriching it:
IMPORT N IN E

evaluates E in an environment in which N is the on/y name which is bound. For example:
LET N:~BIN IMPORT NINLET NV IN x

The value of this expression is the value of x in the binding B, if x is indeed bound by B.
Otherwise it has no value. This is very useful if B is a named collection of values from which
we want to obtain the one named x. Without IMPORT, if x is missing from B we would pick up
any x that happens to be in the current environment. IMPORT is so useful that we provide the
syntactic sugar B$x for it.

2.3 Types

We now explain how the kernel language handles types. It may be helpful to begin by dis-
criminating between some of the different senses in which the word ‘type’ is customarily used.
We use ADT to abbreviate ‘Abstract Data Type’'.

e Predicate type —simply denoting a set of values.
Example: bool considered as {true, false}.
e Simple ADT —a single predicate type with a collection of associated operations.

Example: stack with particular operations:
push: intX stack— stack~. . ., €lc.

e Multiple ADT —several predicates (zero or more) with a collection of associated operations.

Example: point and line with particular operations:
intersection: lineXline—> point~. . ., elc.

e ADT declaration —several predicate names with a collection of associated operation names,
each having inputs and outputs of given predicate names.

Example: predicate names point and line with operator names:
intersection: lineX line— point, etc.

The simple ADT is a special case of the multiple ADT which offers notational and other con-
veniences to language designers. For the ADT declaration we may think of a collection of
(predicate) type and procedure declarations, as opposed to the representations of the types and
the code for the operations.

Some examples of how these concepts appear in different languages may help. The last column
gives the terminology for many sorted algebras.

Pascal ClLU Mesa Ada Russell ML Algebra

Predicate type type type type - type sort
Simple - cluster - - type - algebra
ADT

Multiple - — imple- package - abstract algebra
ADT mentation body type

ADT - - interface package - - signature
declaration spec

In Pebble we take as our notion of type the first of these, predicate types. Thus a type is simply
a means of classifying values. We are then able to define entities which are simple ADT’s, mul-
tiple ADT's and ADT declarations. To do this we make use of the notions of binding and
declaration already explained, and the notion of dependent type explained below.

Pebble treats types as values, just like integers and other traditional values. We remove the
sharp distinction between “compile time" and "run time", allowing evaluation (possibly
symbolic) at compile time. This seems appropriate, given that one of our main concemns is to
express the linking of modules and the checking of their interfaces in the language itself.
Treating types as values enriches the language to a degree at which we might lose control of
the phenomena, but we have adopted this approach to get a language which can describe the
facilities we find in existing languages such as Mesa and Cedar. A similar but more
conservative approach, which maintains the traditional distinction between types and values, is
being pursued by David MacQueen at Bell Labs, with some collaboration of one of us (RB).
He has recently applied these ideas to the design of a module facility for ML [MacQueen 1984].
The theoretical basis for this work has been developed in [MacQueen and Sethi 1982,
MacQueen, Plotkin and Sethi 1984].

2.4 Polymorphism

A function is said to be polymorphic if it can accept an argument of more than one type; for
example, an equality function might be willing to accept either a pair of integers or a pair of
booleans. To clarify the way Pebble handles polymorphism we should first discuss some dif-
ferent phenomena which may be described by this term. We start with a distinction (due we
believe to C. Strachey) between ad hoc and universal polymorphism.

Ad hoc polymorphism —the code executed depends on the type of the argument, e.g.

"y

‘print 3’ involves different code from ‘print "nonsense'’.

Universal polymorphism —the same code is executed regardless of the type of the argu-
ment, since the different types of data have uniform representation, e.g. reverse (1, 2, 3, 4)
and reverse (true, false, false).

We have made this distinction in terms of program execution, lacking a mathematical theory.
Recently Reynolds has offered a mathematical basis for this distinction [Reynolds 1983].

10

In Pebble we take universal polymorphism as the primitive idea. We are able to program ad
hoc polymorphic functions on this basis (see §3.3 on generic types). But universal
polymorphism may itself be handled in two ways: explicit parameterisation or unification.

Explicit parameterisation—when we apply the polymorphic function we pass an extra
argument (parameter), namely the type required to determine the particular instance of
the polymorphic function being used. For example, reverse would take an argument ¢
which is a type, as well as a list. If we want to apply it to a list of integers we would supply
the type int as the value of ¢, writing reverse(int)(1, 2, 3, 4) and reverse(bool)(true, false,
false). To understand the type of reverse we need the notion of dependent type, to be
introduced later. This approach is due to Reynolds [Reynolds 1974] and is used in Russell
and CLU.

Unification —the type required to instantiate the polymorphic function when it is applied
to a particular argument need not be supplied as a parameter. The type-checker is able to
determine it by inspecting the type of the argument and the type of the required result. A
convenient and general method of doing this is by using unification on the typc expres-
sions concerned [Milner 1978]; this method is used in ML [Gordon, Milner and
Wadsworth]. For example we may write reverse(1, 2, 3, 4). Following Girard [Girard 1972]
we may regard these type variables as universally quantified. The type of reverse would
then be ‘For all : type . list(¢) = list(s).” This form is used by MacQueen and Sethi [1982].

In Pebble we adopt the explicit parameterisation form of universal polymorphism. This has
been traditional when considering instantiation of modules, as in CLU or in Ada generic types.
To instantiate a module we must explicitly supply the parameter types and procedures. Thus
before we can use a generic Ada package to do list processing on lists of integers, we must in-
stantiate it to integers. The pleasures of unification polymorphism as in ML seem harder to
achieve at the module level; in fact one seems to get involved with second order unification.
This is an open area for research. It must be said that explicit parameterisation makes program-
ming in the kernel language more tedious. We hope to avoid the tedium in future versions of
Pebble by sugar which automatically supplies a value for the type parameter.

For example, we might want to define a polymorphic function for reversing a pair, thus
swap[int, bool}[3, true]
which evaluates to [true, 3]. Here swap is applied to the pair of types [int, bool] and delivers a

function whose type is intXbool—booliXint. The type of swap is a dependent type; we will
explain this in the next section, and then we will be able to define the function swap.

2.5 Dependent types

We now consider the idea of dependent type [Girard 1972, Demers and Donahue 1980]. We
will need two kinds of dependent type constructor, one analogous to — for dealing with func-
tions, the other analogous to X for dealing with pairs. We start with the former.

We might think naively that the type of swap would be
(type Xtype)—> (1, X1,—>1,X1))

but of course this is nonsense because the type variables 1 and ¢, are not bound anywhere. The
fact is that the type of the result depends on the values of the arguments. Here the arguments are
a pair of types and ¢ and ¢, are the names for these values. We need a special arrow —» in-
stead of = to indicate that we have a dependent type; to the left of the = > we must declare
the variables ¢ and r,. So the type of swap is actually the value of

(1,2 type X 1,1 type)= (1, X1,—=>1,X¢))
In order to have only one name-binding mechanism, we take this value to be
(t,: type X ty type)rc
where ¢ is the closure which is the value of
Ay type X g1 type—>type IN (1, X4,=1,X1))
and » is a new value constructor for dependent function types. For example, the type of
swap|int, bool] is intXbool—boolXint.
We may now define swap by
swap: (1;:type X t,:type)—>>(y, X1, 1, X)) IS
A xpy X oxyi, =Xt INx,, x]
Another example would be the list reversing function
REC reverse: (r.1ype)— >(list t—>list £) IS

A I list t— list £ IN IF J=nil THEN ! ELSE append [reverse tail I, [head I, nil}]

A similar pherememen occurs with the type of pairs. Suppose for example that the first ele-
ment of a pair is to be a type and the second element is to be a value of that type; thus [int, 3]
and [bool, false] denote such pairs. The type of all such pairs may be written (: type) X Xt. As
we did with —>, we take its value to be (t,: type X t,: type) % c where ¢ is the closure which is
the value of Az type—type IN ¢ and % is a new value constructor for dependent product
types. It is a dependent type because the type of the second element depends on the value of the
first. Actually it is more convenient technically to let this type include all pairs whose first

element is not just a type but a binding of a type to ¢ So expressions of type (z: type) XX are
[:~int, 3] and [1:~bool, false] for example.

A more realistic example might be

Automaton: type ~ (input: type X state: type X output: type) XX
((inputX state— state) X (state—> output))

Values of the type Automaton are pairs, consisting of
(i) three types called input, state and output;
(i1) a transition function and an output function.

By "three types called input, state and outpur” we mean a binding of types to these names.

11

FL\Q\ROMQ nown

uvov\é Fout'

12

2.6 Type-checking

Given an expression in Pebble, we first type-check it and then evaluate it. However, the type-
checking will involve some evaluation; for example, we will have to evaluate subexpressions
which denote types and those which make bindings to type variables. Thus there are two dis-
tinct phases of evaluation: evaluation during type-checking and evaluation proper to get the
result value. These both follow the same rules, but evaluation during type-checking may make
use of symbolic values at times when the actual values are not available; this happens when we
type-check a lambda expression.

For each form of expression we need
(1) a type-checking rule with a conclusion of the form: E has type .
(i1) an evaluation rule with a conclusion of the form: E has value e.
The type-checking rule may evoke the evaluation rules on subexpressions, but the evaluation
rule should not need to invoke type-checking rules.

For example, an expression of the form LET ... IN ... is type-checked using the following rules.

The type of LET B IN E is found thus:
If the type of B is void then it is just the type of E.
If the type of B is N: 1, then it is the type of E in a new environment computed thus:
evaluate B and let ¢, be the right hand side of its value,
the new environment is the old one with N taking type 1, and value ¢,
If the type of B is 4,Xd, then
evaluate B and let b, be the second of its value;
now the result is the type of LET fst B IN LET &, IN E.
If the type of B is a dependent type of the form 4 %/ then this must be reduced to the
previous d; Xd, case by applying fto the binding fst B to get d,.
The type of a binding of the form D~E is:
the value of D if
it is void and E has type void,
or if it is N:z and E has type ¢,
or if it is d,Xd, and [d) ~fst e, d,~snd ¢] has type d, Xd,;
otherwise, if the value of D is a dependent type of the form 4%/, then this must be re-
duced to the d,Xd, case by applying /10 the binding (4, ~ fst E) to get a,.

The type of a recursive binding REC D~E is just the value of D, provided that a somewhat com-
plicated check on the type of E succeeds.

The type of a binding which is a pair is calculated as usual for a pair of expressions.

The value of a binding of the form D~E is as follows:
If the value of D is void then nil.
If the value of D is N:r then N~e, where e is the value of E.
If the value of D is d;Xd, then the value of (d,~fst E, d,~snd E).
If the value of D is a dependent type then we need to reduce it to the previous case (as
before).

A couple of examples may make this clearer. We give them as informal proofs. The proofs are
not taken down to the lowest level of detail, but display the action of the rules just given.
Example:
LET x: intXint ~ [1+1, 0] IN fst x
has type int (and value 2). To show this, we first compute the type of the binding.
x: intXint ~ [1+1, 0] has type x: intXint because
x: intXint has type type and
x: intXint has value x: intXint and
[141,0] has type intXint
This is of the form N: ¢, so we evaluate the binding.
x: intXint ~ [1+1, 0] has value x~[2, 0]
We type-check fst x in the new environment formed by adding [x: intXint] and [x~[2, 0]].
In this environment fst x has type int. This is the type of the whole expression.

Here is a second rather similar example in which LET introduces a type name. It shows why it
1s necessary to evaluate the binding after the LET, not just type-check it. We need the ap-
propriate binding for any type names which may appear in the expression after IN. Here ¢ in
t: type~int is such a name, and we need its binding to evaluate the rest of the expression.

Example:

LET 1; type~int IN
LET x; t~1IN x+1

has type int (and incidentally value 2). We first type-check the binding of the first LET ... IN.
r type~int has type t: type and value t~int

In the new environment formed by adding [t: type] and [t~int] we must type-check LET x: ¢~1
IN x+ 1. This has type int because

x: t~1 has type x: int and
x: t~] has value x~1 and

in the new environment formed by adding [x: int] and [x~1], x+ 1 has type int.

13

14

What about type-checking lambda expressions? For expressions such as

A x:int—intIN x+1

this is straightforward. We can simply type-check x+1 in an environment enriched by [x: int].
But we must also consider polymorphic functions such as

Arwpe—=>(—=0)INAx: —1INE

We would like to know the type of x when type-checking the body E, but this depends on the
argument supplied for . However we want the lambda-expression to type-check no matter
what argument is supplied, since we want it to be universally polymorphic. Otherwise we
would have to type-check it anew each time it is given an argument, and this would be
dynamic rather than static type-checking. So we supply a dummy, symbolic value for ¢ and use
this while type-checking the rest of the expression. That is, we type-check

Axt—tINE

in an environment enriched by [t: type] and [t~newconstant], where newconstant is a sym-
bolic value of type type, distinct from all other symbolic values which we may invent. Under
this regime a function such as

Arntype => (=) INA x:t = (INx
will type-check (it has type denoted by . type— >(1—¢)) but
Atype => (1=)INAx t > tINx+1

will fail to type-check because it only makes sense if ¢ is int.

Thus it is necessary that at type-checking time evaluation can give a symbolic result, since we
may come across a newconstant. How do we apply one of the primitives to such a value? It
will simply produce a value w!e which cannot be simplified. But what if the operator is sym-
bolic? We introduce a special value constructing operator % to permit the application of a sym-
bolic function to an argument. So if fis symbolic the result of applying fto e is just f%e. This
enables us to do symbolic evaluation at compile time and to compare types as symbolic
expressions.

3. Applications

This section presents a number of applications of Pebble, mainly to programming in the large:
interfaces and implementations, and abstract data types. We also give treatments of generic
types, union types, recursive types such as list, and assignment. The point is to see how all
these facilities can be provided simply in Pebble.

3.1 Interfaces and implementations

The most important recent development in programming languages is the introduction of an ex-
plicit notion of interface to stand between the implementation of an abstraction and its clients.
To paraphrase Parnas:

An interface is the set of assumptions that a programmer needs to make about another
program in order to show the correctness of his program.

Sometimes an interface is called a specification (e.g., in Ada, where the term is package
specification). We will call the other program an implementation of the interface, and the
program which depends on the interface the client.

In a practical present-day language, it is not possible to check automatically that the interface
assumptions are strong enough to make the client program correct, or that an implementation
actually satisfies the assumptions. In fact, existing languages cannot even express all the assump-
tions that may be needed. They are confined to specifying the names and types of the
procedures and other values in the interface.

This is exactly the function of a definition module in Mesa or Modula 2, a package specifica-
tion in Ada, or a module type in Euclid. These names and types are the assumptions which the
client may make, and which the implementation must satisfy by providing values of the proper

types. In one of these languages, we might define an interface for a real number abstraction as
follows:

interface Real;
type real;
function plus(x: real, y: real): real,

end

and an implementation of this interface, using an existing type floar, might look like this:

implementation RealFl implements Real;
type real=float;
function plus(x: real;, y. real): real,
begin
if .. .then ... else...end;
return .. .;
end;

end
In Pebble an interface such as Real is simply a declaration for a type Real$rea! and various func-

tions such as plus; an implementation of Real is a binding whose type is Real. Here is the
interface:

15

16

Real:type~ (real: type X X
plus: (realXreal=>real) X ...),

Note that this is a dependent type: the type of plus depends on the value of Reaf$real.

Now for the implementation, a binding with type Real. It gives real the value floar, which must
denote some already-existing type, and it has an explicit A-expression for plus.

RealFl: Real~ [real:~ Sloat ;
plus:~ A x: real X y: real—real IN (1F ... THEN ... ELSE ...), ...}

On this foundation we can define another interface Complex, with a declaration for a mod func-
tion which takes a Complex$complex to a RealFi$real.
Complex: type ~ {complex: type XX

mod. complex—> RealFf$real X ...)
If we don’t wish to commit ourselves to the RealF! implementation, we can define a
parameterized interface MakeComplex, which takes a Real parameter:
MakeComplex: (R: Realy— type IS

(complex: type XX
mod. complex—> R$real X ...)

Then the previous Complex can be defined by
Complex: type ~ MakeComplex(RealFl)

This illustrates the point that a module is usually a function producing some declaration or
binding (the one it defines) from other declarations and bindings (the interfaces and imple-
mentations it depends on).

Now the familiar cartesian and polar implementations of complex numbers can be defined,
still with a Rea/ parameter. This is possible because the implementations depend on real num-
bers only through the elements of a binding with type Real: the real type, the plus function, etc.
MakeCartesian: (R: Real— > MakeComplex(R)) IS

[complex:~ R$real X RSreal ;

mod; ~ A ¢: complex— RSreal IN R$sgri((fst c2+(snd ¢)?), .. .J;
MakePolar. (R: Real— > MakeComplex(R)) IS

[complex:~ RS$real X RSreal ;
mod: ~ A c: complex—>RSreal IN fste, ...}

These are functions which, given an implementation of Real, will yield an implementation of
MakeComplex(Real). To get actual implementations of Complex (which is MakeComplex(RealFl)),
we apply these functions:

Cartesian:Complex~ MakeCartesian(RealFl);
Polar:Complex—~ MakePolar{ RealFl),

If we don’t need the flexibility of different kinds of complex numbers, we can dispense with
the Make functions and simply write:

Cartesian: Complex~ [complex:~ RXR;

mod: ~ A ¢: complex— R IN RealFSsqri((fst ¢)*+(snd ¢)?), ..),
Polar: Complex~ [complex:~ R XR;

mod:~ A c: complex—RIN fste, ...]

WIERE R:~RealFl$real

To show how far this can be pushed, we define an interface Transform which deals with real
numbers and nvo implementations of complex numbers. Among other things, it includes a map
function which takes one of each kind of complex into a real.

Transform:(R: Real X X Cl: MakeComplex(R) X C2: MakeComplex(R) —typc) 1S
(map: (CIScomplex X C28complex — R¥rea) X ..);

Note how this declaration requires C/ and C2 to be based on the same implementation of Real.
An implementation of this interface would look like:
TransformCP: Transform(realFl, Cartesian, Polar)~

[map: ~ A CI: Cartesian$complexX C2: Polar$complex—> RealFl$real IN
IF ... THEN ... ELSE ..., ...}

Thus in Pebble it is easy to obtain any desired degree of flexibility in defining interfaces and
implementations. In most applications, the amount of parameterization shown in these ex-
amples is not necessary, and definitions like the simpler ones for Cartesian and Polar would be
used.

We leave it as an exercise for the reader to recast the module facilities of Ada, CLU, Euclid and
Mesa in the forms of Pebble.

3.2 Abstract data types

An abstract data type glues some operations to a type; e.g., a stack with push, pop, top etc.
Clients of the abstraction are not allowed to depend on the value of the type (e.g., whether a
stack is represented as a list or an array), or on the actual implementations of the operations. In
Pebble terms, the abstract type is a declaration, and the client takes an implementation as a
parameter. Thus
intStackDecl: type ~ (stk: type XX

empty: stk X

isEmpty: (stk—bool) X

push: (int X stk—> stk) X

top: (stk—int) X ...)
is an abstract data type for a stack of ints. We have used a dependent XX type to express the
fact that the operations work on values of type stk which is also part of the abstraction. We
could instead have given a parameterized declaration for the operations:
intStackOpsDecl: (stk: type —>type) ~

(empty: stk X

isEmpty: (stk—>bool) X

push: (int X stk—» stk) X

top: (stk—int) X ...)

Matters are somewhat complicated by the fact that the abstraction may itself be parameterized.
We would probably prefer a stack abstraction, for example, that is not committed to the type of
value being stacked. This gives us still more choices about how to arrange things. To illustrate
some of the possibilities, we give definitions for the smallest reasonable pieces of a stack
abstraction, and show various ways of putting them together.

We begin with a function producing a declaration for the stack operations; it has both the ele-
ment type elem and the stack type stk as parameters:

StackOpsDecl: (elem: type X stk: type — type) IS
(empty: stk X
isEmpty. (stk—bool) X
push: (elem X stk—> stk) X
top: (stk—>elem) X ...)

17

18

9 *A.C\A -D 4—0—‘

With this we can write the previous definition of intStackOpsDec! more concisely as

intStackOpsDecl: (stk: type —type) IS
StackOpsDecl(int, stk)

The type of a conventional stack abstraction, parameterized by the element type, is a function
that produces a declaration for a depcndent type:

StackDecl: (dlem: typc—type) IS stk: type X X
StackOpsDecllelem, stk]

and we can write the previous iniStackDecl as
intStack Decl: type ~ StackDecl int

Leaving the element type unbound, we can write an implementation of Staek€f using lists to
represent stacks.
StackFromList. (el: type— >SiackDecl el) 1S

(stk:~list el,

empty.~nil;

isEmpty: (s. stk—>bool) IS s=nil;

WHERE list: type->type~...

Here we have given the type of /ist but omitted the implementation, which is likely to be primi-
tive.

By analogy with /Ziss, if we have only one implementation of stacks to deal with we will
probably just call it stack, rather than StackFromList. In particular, an ordinary client is
probably in this position, and will be written

Clienr: (stack: (el: type—>StackDeclel) — ...)1S LET iniStack: ~stack int IN
-- Client body -- ...

This arrangement for the implementation leaves something to be desired in security. The client
body is type-checked without any knowledge of the lisr implementation, and hence cannot com-
promise its security. However, the enclosing program which includes both looks like

LET StackFromList. ~--as above-- . . ., Client.~ --as above-- ... IN
... Clien{StackFromList) . ..

and this program is in a position to construct a /ist int and pass it off as a intStack$stk. To

defend itself against such forgeries, an implementation such as StackFromList may need a way
to protect the ability to construct a stk value. To this end we introduce the primitive

AbstractType: (T: type X p: Password —»
AT type XX abs: (T= AT) X rep: (AT=T)) ~ ...,

This function returns a new type AT, together with functions abs and rep which map back and
forth between AT and the parameter type T. Values of type AT can only be constructed by the
abs function returned by a call of AbstractType with the same Password.

Other languages with a similar protection mechanism (for example, ML) do not use a password,
but instead make AbstractType non-applicative, so that it returns a different AT each time it is
called. This ensures that no intruder can invoke AbstractType on his own and get hold of the abs
function. We have not used this approach for two reasons. First, a non-applicative AbstractType
does not fit easily into the formal operational semantics for Pebble. Both the intuitive notion of

type-checking described in § 2 and the formal one in § 5 depend on the fact that identical ex-
pressions in the same environment have the same value, i.e., that all functions are applicative.
The use of a password to make an abstract type unique is quite compatible with this approach.

Second, we think of converting a value v to an abstract value abs(v) as a way of asserting some
invariant that involves v. The implementations of operations on abs(v) depend on this invariant
for their correctness. The implementer is responsible for ensuring that the invariant does in
fact hold for any v in an expression abs(v); he does this by:

checking that each application of abs in his code satisfies a suitable pre-condition;
preventing any use of abs outside his code, so that every application is checked.

A natural way to identify the implementer is by his knowledge of a suitable password. This re-
quires no extensions to the language, and the only assumption it requires about the program-
ming system is that other programmers do not have access to the text of the implementation,
but only to the interface. We want this to be true anyway.

Using AbstractType we can write a secure implementation:

StackFromList: (el: type)— > StackDecl el 1S
LET (st:~ a.AT: abs: ~a.abs; rep.~a.rep
WHERE a: ~ AbstractType(list el, 314159)) IN

(stk: ~st;

procs.~ (empty: ~abs nil;
isEmpty: (5. stk—b00l1) IS rep s= nil;
..2))

Here we are also showing how to rename the values produced by AbstractType, if the names
provided by its declaration are satisfactory, we could simply write

StackFromList: (el: type)—> > StackDecl el 1S LET AbstractType(list e, 314159)) IN

(stk:~ AT,

procs.~ (empty: ~abs nil;
isEmpty: (5. stk—>bool) IS rep s=nil;
.2))

The abs and rep functions are not returned from this StackFromlList, and because of the
password, there is no way to make a type equal to the AT which is returned. Hence the
program outside the implementation has no way to forge or inspect AT values.

Sometimes it is convenient to include the element type in the abstraction:

aStackDecl. type ~ elem: type XX
stk type XX
StackOpsDecllelem, stk)

This allows generic stack-bashing functions to be written more neatly. An aStackDecl value is a
binding. For example, redefining intStack,

intStack: aStackDecl~ (elem:~int, StackFromList int)

19

20

An example of a gencric function is

Reverse: (S: aStackDecIX X x: S$stk—>S$sik) ISLFT S IN
LET rev: (y: stk X z. stk=>stk) IS
IV isEmpty y THEN z ELSE reW(pop y. push(iop y, 7))
IN rev(x, empty)

so that Reverse(intStack, intStack$MakeStack(1, 2, 3]) = intStack$MakeStack[3, 2, 1]

3.3 Generic types

A generic type glues a value to an instance of an abstract data type. Thus, for example, we
might want a generic type called atom, such that each value carries with it a procedure for print-
ing it. A typical atom value might be:

[string. Print~string$ Print, "Hello"]
A simple way to get this effect (using <> for string concatenation) is

AtomOps: 1. type—>type IS Print: {t—> list char)

atomT: type~ £ type XX
AtomOps(1)

atom: type-~ at: atomT XX
val: ar$t

PrintAtom: (a: atom— list char) 1S a$ Prinf(a$val)
REC PrintList: (I: list atom—> list char) 1S
IF null { THEN "[]"
ELSE "[" <> PrintAtom (hd {)

O
<> PrintLisi(dl 1)
<> ||]l'
With this we can write
stringAtomT: ~ AtomT~[string. Print~ PrintString] ;
hello:~ Atom~|stringAtomT, " Hello")
intAtomT: ~ AtomT~[int, Print~ PrintIni] ;
three.~ Atom~[numAtomT, 3]

Then PrintAtom three="3", and PrintList{hello, three, nil] = "[Hello,[3,[]]]".

This is fine for dealing with an individual value which can be turned into an arom, but suppose
we want to print a list of ints. [t isn’t attractive to first construct a list of atoms: we would like
to do this on the fly. This observation leads to different Print functions, using the same defini-
tion of atom. The idea is to package a type ¢, and a function for turning 's into atom’s.
atomX: ~ 1 type XX conv. t—>atom
PrintAtom: (at: atomX XX v: ai$t— list char) 1S

LET a:~ai$conv v IN a$Print(a$val)

REC PrineList: (at: atomX X X I list at$t—> list char) 1S
IF null | THEN "]"

ELSE "[" <> PrintAtom({at, hd /]
O
<> PrintLisdat, tl]
<> 'l}ll
IntAsAtom: atomX~ (£~int,

conv. (v. t—>atom) IS r:~int, Print:~Printint, val:~v)

3.4 Union types

There is a straightforward way to define a union type in Pebble:
T, T,=1ag: bool XX val: (IF 1ag THEN T ELSE T,)

Unfortunately, it doesn’t work, because the inference rules cannot evaluate the IF based on the
rest of the program. For example, the expression
LET x: T\®Ty~. .. IN

I x8tag=true THEN LET y: T,~x$val

will not type-check. There is no way to decompose a value of this type, and hence it is useless.

However, there are other ways to introduce unions. We have not completed a design, but here
is a suggestive sketch. Following Cardelli [1984], we introduce a union or sum type parallel to
the product type we already have. If 4; and d, are declarations, then parallel to the labelled
product d; Xd, there is a labelled sum 4,d,. An expression with type) has type 4,@d,, and
so does an expression with type d,. For example, if D:~(i: int & r: real), then both i:~3 and
r.~3.14 have type D.

Parallel to
LETBINE

which decomposes a labelled product, is
CASE E OF B

which decomposes a labelled sum. If the type of E is ny: t; @ n,: 1, the B in CASE must have
type
(=1 @ ny: (4,—>0).

In other words, B provides a suitable function for each case of E. The value of the CASE is ob-
tained by chosing the proper function and applying it to ths E. More precisely, in view of its
type the value of E must be ny~¢ or n,~e, In the former case, the value of the CASE is
Bbn,(e); in the latter it is BSa,(e,). To continue the previous example, after
LET f1~X x: (i: int@® r: real) IN
CASE x OF |
L~Ajint=intIN j+1,
ri~A s real—int IN fix(s)]

Sf(i:~int) has the value 4, and so does f(r:~4.1416).

3.5 Recursive types

Pebble handles recursive functions in the standard operational style, relying on the fact that a
A-expression evaluates to a closure in which evaluation of the body is deferred. The language
has types which involve closures, namely the dependent types constructed with —=» and XX,
and 1t turns out that the operational semantics can handle recursive type definitions involving
these constructors. A simple example is

LET REC IntList: type~head: int XX tail: (I: IntList ® v: void)
where for simplicity we have confined oursclves to lists of integers rather than introducing a

type parameter. Although the evaluation rules for recursion were not designed to handle this
kind of expression, they in fact do so quite well.

21

22

It is also interesting to note that union types are not necessary for meaningful recursive types,
although they are very convenient. In fact, we can represent a list of integers as a function
which takes no argument and returns an integer and another such function. In Pebble

LT REC [niList: type~(void—>int X IntList);
REC empty: IntList~(X IntList IN [error, empty]) IN

Now we can define a list of the first n integers:

LET REC S int=>IntList IS
A TmtList INTE = 0 THEN [0, empry) ELSE [i, £(i— 1))

The usefulness of this definition may well be questioned, but it does show that recursive types
are a purely functional phenomenon.

3.6 Assignment

Although Pebble as we have presented it is entirely applicative, it is easy to introduce impera-
tive primitives. For example, we can add

var: type—type
Then var int is the type of a variable whose contents is an int. We also need
new: Tt type—»>var T X

MakeAssign: T: type-»>(var T X T — void) X
MakeDereference. T: type—>>(var T — T)

From MakeAssign and MakeDereference we can construct : = and t procedures for any type.

Of course, these are only declarations, and the implementation will necessarily be by primi-
tives. Furthermore, the semantics must be modified to carry around a store which := and *
can use to communicate.

In addition, steps must be taken to preserve the soundness of the type-checking in the presence
of these non-applicative functions. The simplest way to do this is to divide the function types
into pure or applicative versus impure or imperative ones. MakeAssign and MakeDereference
return impure functions, as does any function defined by a A-expression whose body contains
an application of an impure function. Then an impure symbolic value is one that contains an
application of an impure function. We can never infer that such a value is equal to any other
value, even one with an identical form (at least not without a much more powerful reasoning
system than the one in the Pebble formal semantics).

4. Values and syntax

This section gives a formal description of the values and syntax of Pebble. It also defines a rela-
tion ‘has type’ (written :::) between values and types; in other words, it specifies the set of
values corresponding to each type. Note that these sets are not disjoint. § 5 gives a formal
description of the semantics of Pebble, and defines a relation “has type’ (written ::) between
expressions and types.

4.1 Values

We start our description of Pebble with a definition of the space of values. These may be parti-
tioned into subsets, such as function values, pairs and types. Some of these may be further par-
titioned into more refined subsets, such as cross types and arrow types. Our values are the kind
of values which would be handled by a compiler or an interpreter, rather than the ones which
would be used in giving a traditional denotational semantics for our language. The main dif-
ference is that we represent funcuions by closures instead of by the partial functions and
functionals of denotational semantics. Table 1 gives a complete breakdown of the set of values.

e ¢ viztrue false,0,1,2, .., etc

f primitive(w)—where wis +, X, etc.
closure(p, d, E)

nil
ee
b n~e
nil
b, b
fix(f, d)
t ty viz bool, int, etc.
void
Xt
ed
dr f
d nt
void
dXd
axf
wle
f%e

Table 1; Values

Each set of values, denoted by a lower case letter, is composed of the sets written immediately
to the right of it, e.g.

e=eUfUnilU(ee) UbU U (wle) U (f%e)

where by (e, ¢) we mean the set of all values (v;, v,) such that v,€e and v,€e. Similarly nil
mcans {nil}, (w!e) means {(v!v,) | v,€w, v,€e} and so on for cach value constructing operator.

23

24

The primitive constants of the value space are written in this font. Constructors such as
closure arc written in this font. Meta-variables which denote values or sets of values,
possible of a given kind, are single lower-case letters in this font, possibly subscripted.

We now examine each kind of value in turn, giving a brief informal explanation. Indented
paragraphs describe how a set of values may be partitioned into disjoint subsets.

e is the set of all values, everything which may be denoted by an expression.

de(\- V\'\‘\"\OV\

g consists of the primitive values true, false, 0, 1, ...; all except the functions and types.

Sconsists of the values which are functions, as follows:

The values primitive(w), where w is some built-in function such as addition or mul-
tiplication of integers. They include functions on types such as X. We write
primitive(w) rather than just w to show that w is tagged as a primitive function.
This is useful for matching purposes in our operational semantics; see § 5.
closure values, the results of evaluating A-expressions. A closure is composed of:
an environment p, which associates a type and a value with each name;
a declaration value, which gives the bound variables of the A-expression;
a body expression, which is the expression (expressions are defined in § 4.2).

nil, the O-tuple.

le, €], the 2-tuples (ordered pairs) of values. The pair forming operation is ",". In general
we use brackets for pairs, as in [1, [2, [3, nil]]]; formally, brackets are just a syntactic var-

iant of parentheses. Since "," associates to the right, we can also write [1, 2, 3, nil].

binding values, which associate names with values. For example evaluating LET x:
int~142 IN ... will produce a binding x~3 which associates x with 3. Strictly we should
discriminate between "binding expressions” and "binding values”, but mostly we will be
sloppy and say "binding" for either. Bindings are either elementary or tuples, thus:

N~e, which binds a single name N to a value e.

nil. The O-tuple is also a binding.

[6, b], which is a pair of bindings, is also a binding. The binding [b;, b,] binds the vari-
ables of b; and those of &,. This is a special case of [e, €] above, since & is a subset of e.

f ix values, which result from the evaluation of recursive bindings. A f ix value con-
tains the declaration of the names being recursively defined and the function which
represents one step of the recursive defintition (roughly, the functional whose fixed
point is being computed). Details are given in § 5.2.5.

type values, consisting of:

l;, some built-in types such as booleans (bool) and integers (int). They include the
type type which is the type of all type expressions.

void, the type of nil.

1X¢, which is the type of pairs. If expression E| has type 7, and expression E, has type
t,, then the pair [E}, E,] has type ; X,
t—¢, which is the type of functions.

25

d, declarations. These are the type of bindings; for example, the type of x: int~1+2 is
x:. int. They give types for the three kinds of bindings above.

N:t, a basic declaration, which associates name N with type ¢, e.g. x: int.
void, the type of the nil binding.
dXd, the type of a pair of bindings (a special case of 1Xz).

d% f, a dependent version of &Xt. This is explained in § 2.5.

d» f, a dependent version of r—¢. This is also explained in § 2.5.

wle, the application of the primitive function w to the value e. Such applications are values
which may be simplified.

Sf%e, the application of the symbolic value fto the value e. This is explained in § 2.6.
We may define a relation ::: between values and types, analogous to the :: (‘has type’) relation
between expressions and types defined in §35. Unlike the latter, it is independent of any
environment. We could define it by operational semantic rules, but it is shorter to give the fol-
lowing informal inductive definition. In one or two places we need the => (‘has value’) relation
between expressions and values defined in § 5. We first define a subsidiary relation ‘is the type

part of between type values and declaration values; for example, int is the type part of x: int
and intXbool is the type part of x: intXp: bool.

tis the type part of N: ¢
void is the type part of void
4 X1, is the type part of d)Xd, if ¢ is the type part of 4 and ¢, is the type part of ¢,.

Now for the definition of :::
e true ::: bool, false ::; bool, 0:::int, 1:::int, and so on.
primitive(not) ::: bool—bool, and so on for other operators.

primitive(X)::: typeXtype—type,
primitive(—)::: typeXtype—type.

closure(p,d E}::: 4=, if ¢ is the type part of d and for all bindings b such that 5::: d
we have pld~b] = E:: ¢,

e nil ::: void.
e e iy Xy ife iy ande, il g,
o N~e:iN:tifeii e
fix(d f):.:dif f::: d—d.
e bool ::: type, int .:: type, type ::: type, void :.: type.
Xy itypeify iitypeand o) 1l type.
e N:t::: type.
dxf:... typeiff:... d—=type.
af:typeif [d—type.

26

c,uv\\j }'

e wleiipife:iiyand primitive(w) it 41,
fleiigifeinand fiil =,

® ¢, ¢ .l dXfif supposing that F=(fio-nee)(e)sa)=>1,, then e}, e, 111 dXty.
Aiiavfifforall esuch that e:i: d, if bF=(fro~noe)(esa)=>1; then (fjsavee)(era) 111 1.

The last clause might be written more simply by defining a notion of application for values, say
fe, analogous to F E for expressions, and writing

® e, e idifife, e 11 dX(fd)
fiiiadfifforallesuch thate::i d, fy el fe.

Now if E=>e, we would like to have e ::: ¢ if and only if E :: «. But our type checking rules,
which use symbolic evaluation, cannot always achieve this. A closure may have a certain type
for all bindings, but symbolic evaluation may fail to show this. Consider for example

A x:int = > (IF x<x+ 1 THEN int ELSE bool) IN x :: int—int

This is not derivable from our typechecking rules because symbolic evaluation cannot show
that x<x+1 for an arbitrary integer x. But the latter is true, so if fis the value of the lambda
expression we do get f'::: int—int by the definition above for closures. This limitation does not
seem to present a major practical obstacle, but the matter would repay further study.

4.2 Syntax

We can give the syntax of Pebble in traditional BNF form, but there will be only three syntax
classes: name (N), number (/) and expression (E).

N .= letter (letter | digit)*
I ::= digit digit*
E ::= boollint|void | EXE| E=E|E—>E|N:E| EXXE | type|true| false | /|

nl|E,E|AEINE|E~E|RECE~E|E, E| N:~E|N]|IMPORT NIN E |
IF ETHEN EELSEE| EE| LET EIN E | typeOf E | (F) | [E]

It is more helpful to divide the expressions up according to the type of value they produce. We
distinguish subsets of the set E of all expressions thus: T for types, D for declarations, B for
bindings and F for functions. These cannot be distinguished syntactically since an
operator/operand expression of the form E E could denote any of these, as could a name used
as a variable. However it makes more sense if we write, for example, LET B IN E instcad of
LET E IN E, showing that LET requires an expression whose value is a binding.

It is also helpful to organise the syntax according to types and to the introduction and elimina-
tion rules for expressions of each type. This is a common format in recent work on logic. For
example a value of type 7;XT, is introduced by an expression of the form 73, T,; it is
eliminated by expressions of the form fst £ or snd E.

The syntax presented in this way is shown in Table 2; a list of the notations used is given in
Table 3. Table 4 shows some abbreviations which make Pebbie more readable, for example
eliminating the A notation for function definitions.

Type

T bool
int
void
T\XT,
T,
D—>T,

D N T

D\ XD,
Dy XXD,

type

Tntroduction

left column
N

Elimination

true false IF E THEN Ey ELSE E,
01 2
nil
E) E, fsSt E snd E
F ATINE FE
primitives
BD~E LET BINE
RECD ~ E
By, B,
B B,
N:~FE
all types in the typeOf D

IMPORT NIN E

Either round or square brackets may be used for grouping.
Precedence is: lowest IN, then "," "

Non-terminal

Mmo~NMZ

)

;", then ~, then = —>, then X XX, highest :

Table 2: Syntax

Must evaluate to Example

name
expression
type
declaration
binding
function

i

ged(i, 3)+1

int

i int

iint~3

A i int—=bool IN D3

All the non-terminals except N are syntactically equivalent to E.

Write
N:TISE
[Pl, P2] i~ F

B$ N

E WHERE B

Table

For
N ~ATINE

LET B :~ BIN
IN LET B IN
LET BINE

3: Summary of abbreviations

Example
f: (i int X x: real)—real IS x!
:~snd E [i, j]:~QuotRem(7, 2)
=i~3,5~1

IMPORT B [i:~3, x1~7]$x
N =7

i+4 WHERE i:~3
=17

Table 4: Sugar

Al the

oPG_ro\‘\’ovs
associate

+o the vi

27

t

28

Type Introduction
bool
int
@y true :: bool=>true o false :: bool=>false () 0:: int=>0
void T4 E ¢t E it
T,XT, ‘ . _ 1- oty h
@il :: void=>nil o[, E] t, X,=>[e,, ¢,]
T,~T of T, =>4, 1, =d—1,typeOf dryee =1, t;—>t=1
D->T

d =parameter decl
= paramelter type

&= argument value
t =result type

L =1type of \-exp

N:'T
D, XD,
D, XXD,

type

Names

@ orT =1, t, Tdb f, frasmpe(newcra) =1},
(o)}
@wLETnewcs#dINE :: t

where newc is a new conslant

© (A T1 IN E) : t1=>closure(p, d, E)
o D=>d,d=void, E::void, nil=5%
@orD=d,d=N:t, E:t, (N~e)=b

®or D=>d,d=d Xd), [d, #twe~fst E,d, #tye~snd E]::d=>b
@wor D=>d, d,=d, * f, fra,~yoe(d, #ype~fSt E) =4, ,
® d1Xd2=d, drype~E::d=b

© D~FE ::d=b

ayD=d,(AF:D>DINLET F' IN detype~E)=> f
@) fra-a{ £ 1x(f, d)#a)=>b

() REC D~E:: d=>b
®) [B..LETB,INB)]:: =>b () E:: ¢
(®0) B, ; B,::t=>b @ N:~ E::(N:)=>N~e

@) A B D—type INLETB INT=>f

(ab) D—->T . type=>d»f

®) A B:D—typeINLETB INT=f
(b0) D XX T::type=>d*f
D T :: type

@) N:T:: type=>N:t

o p(N)=1~¢,
@ {c,tr>eclse ¢y=e}

© N:it=e¢

Table 5: Inference rules

Elimination

29

Type

mEbool E i Byt
o {E=>true. E,=>cor E=>false , E,=>e }

o) 1F ' THEN Iz‘1 ELSE lz‘2 nt=>e

@y fst ((Xt)—=t omsnd 1 (4 X0)—>t

wf{ Fug—1 By

norFiiddf firasvoeldrype~E) =>1},

®»{ f=primitive(w), {wle,reclsewle =e}
@or f=closu Pe(po,d,b),d#lype~E0=> b, po—LET brdINE =e

ey else in case fis a symbolic value f%eo =e }
© F E0 t=>e
@ B::void, E:: t=e

wor Bir (N: 1)), ths B=>¢,, pIN:t,~e] HE i 1=e
®or B:: dXd,, snd B=>b,LETfst BIN LET b,y#q, INE 2 1=>e
@or B:: d % f, fraure(fst B) =>d, , LET b#o,xq, INE i1 t=e
)

© LET BIN E :: t=>e¢

woyrhs 2 (N:)—t

these two are for convenience only

) {d:void s
@ord=N : ¢
mor d=d Xd,, typeOf d, #uee X typcOfd,styoe =>1
@ord=d f, typeOftd =},
D type

© typcOf D :: type=>t

void = ¢

o [N: p(N)| =E i (=>e

©IMPORT NIN F i t=>¢

bool
int

void
T, XT,

T,~T

D—->T

d = parameter decl
L= parameter type

e = argument value

t = result type
t=1type of \-exp

N: T
D, XD,
D, XXD,

type

Names

Table 5: Inference rules (continued)

30

Auxiliary rules

® U RS, Fraue (SLE) =1, E 11 d Xy,
@ or t=typeOfld , dswype~E :: d
©) E:t

© er:llt=>¢

for each <arg, result>
pair in the primitive w

) wle e o fstlle, e] e @0 sndlfe;, el e @ rhsi(N~e)re

) e():w!el s el'la>e2 s w!ez'bre
@ore,=rix(f, d), fra~da(c zd)=>e

o) eo'la re

Notation

ext is an expression with value e and type t.
€q € (simplify), €7 >e (unrolhy define functions on values.

Lialics: meta-variables bound by deterministic evaluator,
Value constants: type; value constructors: closure.

N=name

i
E=expression e=value ged(i, 3)+1
T=E with t value =type value int
D=E with d value d=declaration value i:int
B=E with b value b=binding value i int~3

F=E with f value

Jf=function value

Table 5: Inference rules (concluded)

A i int—=bool IN D3

5. Operational semantics

We have a precise operational semantics for Pebble, in the form of the set of inference rules in
Table 5. This section gives the notation for the inference rules, explains why they yield at most
one value for an expression, and discusses the way in which values can be converted into ex-
pressions and fed back through the inference system. Then we explain how each rule works,
and finally show how to derive an efficient type-checker and evaluator from the rules.

5.1 Inference rule semantics

The basic idea, which we derive from Plotkin, is to specify an operational semantics by means
of a set of inference rules. The operations of evaluation are the steps in a proof that uses the
rules. The advantage of this approach is that the control mechanism of the evaluator does not
need to be written down, since it is implicit in the well-known algorithm for deriving a proof.
Indecd, our rules can be trivially translated into Prolog, and then can be run to give a working
evaluator. We have in fact carried out this translation in part.

In general, of course, this will lead to a non-deterministic and inefficient evaluator; the par-
ticular rules we use, however, allow an efficient deterministic evaluator to be easily derived.

5.1.1 Notation

Each rule has a set of premises assertion,, ..., assertion, and a conclusion assertiony, written thus:
assertiony, ..., assertion,

assertiono

As usual, the meaning is that if each of the premises is established, then the conclusion is also
established. We write

assertiony, ..., assertion, O assertion,y, ..., assertion
11 1n, 21 2n,

asserliono
as an abbreviation for the two rules
assertiony, ..., assertion; " assertiony,, ..., assemonz,,2
assertiono assertiono

Note that or has lower precedence than ",". Sometimes or is more deeply nested, in which case
the meaning is to convert the premises to disjunctive normal form, and then apply this expan-
sion.

An assertion is:
environment k= simple assertion

An environment is a function mapping a name to a type and a value. The environment for the
conclusion is always denoted by p, and is not written explicitly. If the environment for a
premise is also p (as it nearly always is), it is also omitted.

A simple assertion is one of:

1) Et asserts that E has type ¢ in the given environment.

31

32

2) E=>e asserts that E has value e in the given environment.

3) e=<format asserts that e is of the form given by formar. For example, e==t,—>1,; here
=1, is a format, with variables ¢ and 1,. If e is int—bool, this assertion suc-
ceeds with ¢, =int and ¢, =bool.

There are three forms of simple assertion which are convenient abbreviations:
4) E:.r=>e combines(l)and (2)
5) E::formar combines (1) and (3); it is short for E :: ¢, t= format.
6) e =e asserts that e; is equal to e,; this is a special case of (3).

Finally, there are two forms of simple assertion which correspond to introducing auxiliary func-
tions into the evaluator:

7 e, asserts that e, simplifies t0 e,. using the simplification rules which tell how to
evaluate primitives. See § 5.2.2.

8) e ade, assertsthat e, unrolls to e,, using the rule for unrolling fix. See §5.2.5.

By convention we write a lower-case e for the value of the expression E, and likewise for any
other capital letter that stands for an expression. If a lower-case letter x appears in an assertion
but no premise is given to bind it, then the premise

X=>x
is implied.
A reminder of our typographic conventions:

We use capital letters for meta-variables denoting expressions, and lower-case letters for
meta-variables denoting values; both may be subscripted. Thus expressions appear on the
left of :: and = in assertions, and values everywhere else.

Value constants are written this way: e.g., true, x: int.
The value constructors that are not symbols are primitive, closure and fix.

An italicized meta-variable indicates where that variable will be bound by a deterministic
evaluator, as explained in the next section.

5.1.2 Determinism

In order to find the type of an expression E, we try to prove E::¢ where ¢is a new meta-
variable. If a proof is possible, it yields a value for ¢ as well. Similarly, we can use the inference
rules to find the value of E by trying to prove E=>e. We would like to be sure that an expres-
sion has only one value (i.e., that E=>¢; and E=>¢, implies ¢;=e,). This is guaranteed by the
fact that the inference rules for evaluation are dererministic: at most one rule can be applied to
evaluate any expression, because there is only one conclusion for each syntactic form. When
there are multiple rules abbreviated with or, the first premise of each rule excludes all the
others. In a few places we write

a, .. @ 1or a2n20r...ora . a kelscaz,...,a'l

100 0 Gy 12 o o Yen

as an abbreviation for

ayye e al"1 or gy, ..., (22”2 or...or Apys o a,mk or

not ap. not Ay e not ayy. Gy, -.s @,

The fact that the rules are deterministic is important for another reason: they define a reason-
ably efficient deterministic program for evaluating expressions. We will have more to say about
this in § 5.4.

It is not true, however, that an expression has only one type. In particular, the auxiliary rule ::
may allow types to be inferred for an expression in addition to the one which is computed,
along with its value, by all the other rules. We will say more about what this means for deter-
ministic evaluation in § 5.2.6.

In each rule one occurrence of each meta-variable is italicized. This is the one which the deter-
ministic evaluator will use to bind the meta-variable. For example, in XI1, # and ¢, are bound
to the types of E| and E, respectively; they are used in X1I0 to compute t; Xt,, the type of [E;,
E,). The italic occurrence of e may be omitted if it is E=>e, as explained earlier. Thus the ¢,
and e, in XI0 are bound by omitted premises E,=>¢; and E,=>e¢,. The italics are not part of
the inference rules, but are just a comment which is relevant for deterministic evaluation, and
may be a help to the reader as well.

It may also be helpful to know that the premises are written in the order that a deterministic
evaluator would use. In particular, each meta-variable is bound before it is used. In this order-
ing, the expression in the conclusion should be read first, then the premises, and then the rest
of the conclusion.

5.1.3 Feedback

An important device for keeping the inference rules compact is that a value with a known type
can be converted into an expression, which can then be embedded in a more complex expres-
sion whose type and value can be inferred using the entire set of rules. This feedback from the
value space to the expression space is enabled by the syntax

e#t

This is an expression which has value e and type ¢ This form of expression is not part of the
language, but is purely internal to the inference rules. Usually the type is not interesting, al-
though it must be there for the feedback to be possible, so we write such an expression with
the type in a small font:

ex:

to make it easier for the reader to concentrate on the values. In the text of the paper, we often
drop the # entirely, where no confusion is possible.

5.2 The rules

The inference rules are organized like the syntax in Table 2, according to the expression forms
for introducing and eliminating values of a particular type. A particular rule is named by the
constructor for the type, followed by I for introduction or E for elimination; thus —1 is the
rule for A-expressions, which introduce function values with types of the form #—¢,. Each line
is numbered at the left, so that, for example, the conclusion of the rule for A-expressions can

33

34

be named by —I10. If there is more than one rule in a part of the table labeled by the same
name, the less important ones are distinguished by letters a, b, ...; thus :la is the rule for REC.
Auxiliary rules, with conclusions which are not part of the syntax, appear overleaf.

5.2.1 Booleans, pairs and names

The inference rules for booleans are extremely simple.

booll

wtrue :: bool=>true o false :: bool=>false
boolE wE:bool,E 1, E,y it

of E=>true , E;=>e or E=>false, E,=e}

© IF ETHEN E| ELSE E; i t=>e

booll tells us that the expressions true and false both have type bool and evaluate to true and
false respectively; these rules have no premises, since the conclusions are always true. boolE
says that the expression

IF E THEN El ELSE Ez

typechecks and has type ¢ if E has type bool, and E; and E, both have type ¢ for some ¢. The
value of the IF is the value of E; if the value of E is true, the value of E, if the value of E is
false. Thus

(A) IF true THEN 3 ELSE §

has type int and value 3.

We can display this argument more formally as an upside-down proof, in which each step is ex-
plicitly justified by some combination of already justified steps and inference rules (together
with some meta-rules which are not mentioned explicitly, such as substitution of equals for
equals).

(A1) IF true THEN 3 ELSE 5 :: int=3 2, 3, 4, boolE
(A2) true::bool=>true boolla

(A3) 3:int=>3 intlc

(A4) S5:int intlc

In this display we show the conclusion at the top, and successively less difficult propositions
below it. Viewing the inference rules as a (deterministic) evaluation mechanism, each line
shows the evaluation of an expression from the values of its subexpressions, which are calcu-
lated on later lines. Control flows down the table as the interpreter is called recursively to
evaluate sub-expressions, and then back up as the recursive calls return results that are used to
compute the values of larger expressions.

The rules for pairs are equally simple.

X1 o Ejiig By
wnil :: void=>nil olE}, By Xt,=>[ey, &)
XE
w fst 12 (1Xy)—t eosnd 1 (X0t

Xla says that nil has type void and value nil. XI says that the type of [E}, E;] is ;X¢, if ¢; is
the type of £, and its value is [e], e,]. XE gives the (highly polymorphic) types of the primi-
tives fst and snd that decompose pairs.

The rules for names are also straightforward, except for NI2, which is treated in § 5.2.5 since it
is needed only for recursion.

NI o p(N)=<t~e
o N:t=>e
NE) [N p(N)] HE . r=e

@IMPORT N IN F ;: t=>e

We can use NI to show
[i: int~3]IF true THEN i ELSE 0 :: int=>3

following the proof of (A) above, but replacing (A3) with
(A3) [i: int~3]i::int=>3 NI

The IMPORT construct has a very simple rule, NE, which says that to evaluate IMPORT N IN E,
evaluate E in an environment which contains only the current binding of N.

5.2.2 Functions

The pivotal inference rules are =1 (for defining a function by a A-expression) and —E (for ap-
plying a function). The —I rule is concerned almost entirely with type-checking. If the type
checks succeed, it returns a closure which contains the current environment p, the declaration d
for the parameters, and the unevaluated expression E which is the body of the A-expression. A
later application of this closure to an argument £ is evaluated (using —E) by evaluating the
expression

(1) LETd~EyINE

in the environment p which was saved in the closure.

We begin with the basic rule for A, omitting line 2, which deals with dependent function types:

g o Ty=>1, 4, =d=>1, typeOf doee =1, ty—>t=1

d=parameterdecl 'y -1 newec,.s IN E it wherenewc is a new constant
to=parameter type

pogime ke o (T INE):y=>closure(p, d, E)
f1=1ype of h-exp

35

36

which

The notes on the left of explain the meaning of the meta-variables. The expression 7; in the A
roughly gives the type of thc entire A-expression. Thus

(B) A int=intIN i+1
has 7y =(i: int—int), and its type (called 1)) is int—int. The value of 7} is called ¢ it differs
from ¢ in that the declaration i: int has been reduced to its type int. This is done by (—11),

which accepts a 77 which evaluates to something of the form 4—:, and computes first ¢, as
typeOf d (using typeE), and then ¢ as (y— .

The idea of (—14) is that if we can show that (1) type-checks without any knowledge of the ar-
gument values, depending only on their types, then whenever the closure is applied to an ex-
pression with type ¢ the resulting (1) will surely type-check. This is the essence of static type-
checking: the definition of a function can be checked independently of any application, and
then only the argument type need be checked on each application.

(—14) is true if we can show that
) LET newC«a IN E

has the result type ¢, where newc is a new constant, about which we know nothing except that
its type is d. In other words, newc is a binding for the names in 4, in wheh each name has the
type assigned to it by 4. For our example (B), we have

3) LET newC1s: m IN i+1
which must have type int. To show this, we need the base case of :E, the rule for LET.
:E o Bl (N:), ths B=>¢;, p[N:ty~e] —E i r=>e

) LET BIN E . t=>e

Using this, (3) has type int if
pli: int~rhs!newci]—i+1
has type int. Since i+1 is sugar for plus[i, 1], its type is given by the result type of plus (accord-
ing to = E1), provided that [/, 1] has the argument type of plus. Since
plus :: intXint—int
we have the desired result if [i, 1] :: intXint. Using XI this is true if i :: int and 1:: int. The lat-

ter is immediate, since 1 is a primitive. According to NE, the former is true if p()=int~¢,. But
in fact p(p=int~rhslnewc1, so we are done.

We can write this argument more formally as follows:

(B1) pHLET newcls: ~ IN i+1::int 2,:E
(B2) p;Fi+l:lint 3, »E
where p, = pl[i: int~rhs!newc1]
(B3) pyFplus:ie—=int, [i, 1] ¢ 4,5
(B4) py=plus::intXint—int primitive
(BS) p;Fli 12 intXint 5, XE
(B6) piFizint, 1:int 7, NE, primitive

(B7) p(d=int~g, inspection

We now consider the non-dependent case of application, and return to A-expressions with
dependent types in the next section.

—E o Fig=t By,
of f=primitive(w), {wleyreelsewle = e}
wor f=closure(pyd,E), dryoe~Ey=>b, pg—LET bsa INE =
selse in case fisa symbolic value f%eoz e}

© FEO t=>e

The type-checking is done by —El, which simply checks that the argument E, has the
parameter type 1, of the function. There are three cases for evaluation, depending on whether f
is a primitive, a closure, or a symbolic value.

If fis primitive(w), =E3 tries to use the % rules for evaluating primitives to obtain the
value of the primitive when applied to the argument value ¢,.

K] for each <arg, result> pair in the primitive w

© w !607-76

Because of the type-check, this will succeed for a properly constructed primitive unless ¢; is a
symbolic value, i.e. contains a newc constant or a fix. If no % rule is applicable, the value is
just w e, i.e., a more complex symbolic value.

Thus the 2 rules can be thought of as an evaluation mechanism for primitives which is
programmed entirely outside the language, as is appropriate for functions which are primitive
in the language. In its simplest form, as suggested by the 2 rule above, there is one rule for
each primitive and each argument value, which gives the result of applying that primitive to
that value. More compact and powerful rules are also possible, however, as Tra-c illustrate.

Wa-c
w fstlle, e w0 sndlie;, ejre « rhs'(N~e)ae

Note that the soundness of the type system depends on consistency between the types of a
primitive (as expressed in rules like XEa-b), and the 2 rules for that primitive (ra-b for fst
and snd). For each primitive, a proof is required that the 2 rules give a result for every argu-
ment of the proper type, and that the result is of the proper type.

If fis c1osure(p,, d, E), —E4 first computes a binding b=dsuw~E, from the argument E; in
the current environment, and then evaluates the closure body £ in the closure environment p,
augmented by b. Note the parallel with =14, which is identical except that the unknown argu-
ment binding newc~q replaces the actual argument binding dewse~Ej. The success of the type-
check made by —14 when fwas constructed ensures that the LET in —E4 will type-check.

If fis neither a primitive nor a closure, it must be a symbolic value. In this case there is not
enough information to evaluate the application, and it is left in the form f%e,. There is no
hope for simplifying this in any larger context.

37

38

5.2.3 Dependent functions
We now return to the function rule, and consider the case in which the A-expression has a
dependent type. :

-’I 2) Tl :[l N tl zd’f, fl-‘d—'tybe(neWCﬁd) =>I N
wlET newcss INE it wherenewc isa new constant

© (AT} INE)::y=closure(p,d, E)

The only difference is that =12 applies instead of —I1; it deals with a function whose result
type depends on the argument value, such as the swap function defined earlier by:
© swap:~ N (f:type X t,:itype)—=>(4, X,—=>1,X 1) IN
A xpip X xyi, =Xt IN [x, x4
The type expression for swap (following the first A) evaluates (by typela) to

4) (1,:type X 1,:type) »
closure(p, B: (1;:type X 1,:type), LET B’ IN X1, 1,X¢)

In this case the parameter type of swap is just (f:type X r,:type); we do not use typeOf to
replace it with typeXtype. This would be pointless, since the names 7 and ¢, would remain
buried in the closure, and to define equality of closures by the a-conversion rule of the A-cal-
culus would take us afield to no good purpose. Furthermore, if elsewhere in the program there
is another type expression which is supposed to denote the type of swap, it must also have —>
as its main operator, and a declaration with names corresponding to # and ¢. This is in con-
trast with the situation for a non-dependent function type, which can be written without any
names. The effect of leaving the names in, and not providing a-conversion between closures, is
that two dependent function types must use the same names for the parameters if they are to
be the same type.

We do, however, need to compute an intended result type against which to compare the type
of (1). This is done by applying the closure in (4) to newc1, a new constant which must be the
same here and in the instantiation of —14. In this example, this application yields

rhsst!newc1 Xrhs'snd'newc 1 —>rhs!snd'newc1Xrhs!fst!newc1

which we call ¢,

The body is typechecked as before, using —14. It goes like this

(C1) phF=LET newc1eype x t.pe IN 2,:E
A Xy X X126 X1 IN [xp, xp] i
rhslist!newct Xrhs!'snd!newc1—>rhs!snd'newc1 Xrhs!st!newct
(C) pyA xiy X x:=2 1, X1 IN [x, xp] equality, 3, =1
rhs'fst!newc1 Xrhs!'snd!newct —>rhs!snd!newc1 Xrhs!fst!newct
where p, = plt,:type~rhslistinewct t,type~rhs!sndlnewc1]

(C3) pl|_1,[1T REWC2 # x,:rhs'tstnewe 1 X x irhs'snd'mewct 1N [Xz, Xll . 4, E
rhs'snd!newc1 Xrhs!ist!newc1
C4) F=[x,, x;] :: rhs!snd!newc1 Xrhs!ist!newct 5, XE
P Xy X

where p, = p,[x,:rhs! fst Inewc1~rhs ! fst Inewc2,
x,-rhs!snd!newc1~rhs!sndinewc2]

39

(C5) pyb—x,::rhs!sndlnewct, pyb—x; 2 rhslfst!newct 6, NE
(C6) py(xy)=rhs!snd!newc1~ey,, py(x})=rhs!istinewc1~ey inspection

Observe that we carry symbolic forms (e.g. rhs!snd!newc1) of the values of the arguments for
functions whose bodies are being typechecked. In simple examples such as (A) and (B), these
values are never needed, but in a polymorphic function like swap they appear as the types of in-
ner functions. Validity of the proof rests on the fact that two identical symbolic values always
denote the same value. This in turn is maintained by the applicative nature of our system and
the fact that we gencrate a different newc constant for each A-expression.

A function with a dependent type d¥ fis applied very much like an ordinary function,
—E o Fiid Pfl , flttd-aryoe(d#lyoe"'Eﬂ) =21,

o f=primitive(w), {wleytreelse wle = e}

wor f=<closure(pyd,E).drwee~Eg=>b, py-LETbss INE =e

« else in case fisa symbolic value f%eoz e}

©® FE,: t=>e

The only difference is that =E2 is used for the type computation instead of —E1. This line
computes the result type of the application by applying fto the argument binding deuwpe~ E;. It
is exactly parallel to =12, which computes the (symbolic) result type of applying the function
to the unknown argument binding newc.. We apply fto dewwe~Ej rather than to E; because
typela, which constructs 4 £ expects a binding as the argument of /. The reason for this is that
in = E2 we don't have an expected type for E,, but we do have a declaration d to which it can
be bound. It is the evaluation of the binding drwee~E that checks the type of the argument;
there is no need for the explicit check Ej :: tof = EL

5.2.4 Bindings and declarations

The main rules for bindings show how to typecheck and evaluate a binding made from a
declaration and an expression (:I) and how to use a binding in a LET to modify the environ-
ment in which a subexpression is evaluated (:E). The tricky case of recursive bindings (:Ia and
NI2) is discussed in the next section. Rules :Ib and :Ic define the ";" and :~ abbreviations;
both are very simple.

The rule for D~E has four cases, depending on the form of the declaration value.
9| o D=>d, d=void, E::void, nil=»5
oorD=d,d=<N:t, E:.t, (N~e)=b
mor D=>d, d=d, Xd,, [d} snee~ {5t E, dyavee~snd E] 11 d=>b
@or D"—“>d0, dozdl*f, f#d;*type(dlﬂlype"‘fst E) =>d2 .
©) dIXdZZd. devoe~E::d=b

© D~FE :;: d=b

If the declaration is void, £ must have type void also, and the result is nil. If it is N: ¢, £ must
have type ¢, and the result is the binding value N~e. These are the base cases. If the declaration
is d;Xd,, E must have a X type, and the result is the value of [d;~fst E, d,~snd E]. Thus

40

i int X x:real ~ (3, 3.14)

evaluatcs just like

[i: int~fst [3. 3.14], x: real~snd [3. 3.14])

namely to [i~3, x~3.14]. All three of these cases yield 4 as the type of the binding.

The rule for a dependent declaration is more complicated. It is based on the idea that in the
context of a binding, dy=d, % can be converted to d;Xd, by applying fto fst E to obtain d,.
The binding then has the type and value of d;Xd,~E. Thus

r type XX x: ¢~ [int, 3]

has type & type X x: int and evaluates to [t~int, x~3]. In this case the type of the binding is
not d,, but the simpler cross type d=d, Xd,.

The rule for LET B IN E has exactly the same cases.

:E o B:ivoid, E:. i=e
@ or B::(N: 1), thsB=>¢,, p[N:ty~e)l HE I t=e
» or B:: d;Xd),snd B=>b,, LET fSt BIN LET b,+¢. INE :: 1=e
@ or B:: d]*f, fdd‘—orype(fst B) =d2 , LET braxe, INE :: t=e

o LETBIN E :: t=>e

If B has type void, the result is E in the current environment. If B has type N: ¢, the result is E
in an environment modified so that N has type ¢, and value obtained by evaluating rhs B. Thus

LET i int~3 IN i+4

has the same type and value that i+4 has in an environment where i; int~3, namely type int
and value 7.

If B has a cross type, the result is the same as that of a nested LET which first adds fst B to the
environment and then adds snd B. The rule evaluates snd B separately; if it said

LET fst BIN LET snd BIN E
the value of snd B would be affected by the bindings in fst B.

Finally, if B has a dependent type, that type is reduced to an ordinary cross type d,Xd,, and
the result is the same as LET B IN E, where B'=b-ax. has the same value as B, but an ordinary
cross type. The last case will never arise in a LET with an explicit binding expression for B,
since :I will always compute a cross type for such a B. However, when type-checking a func-
tion such as

Actype XX x:t—intINE

—14 requires a proof of

LET newcCs4#/IN E 3. int

where d) % fis the value of «. type XX x: ¢. :E4 reduces this to

LET N@WC # 1 type x x tst'newc IN E 37 int

5.2.5 Recursion

Recursion is handled by a fixed point constructor in the value space, fix{f, d). If fis a func-
tion with type d—d, then f ix(f, d) has type d and is the fixed point of f; ie.,
fro - AFix(f, dyea)=Fix(f, d).

The novelty is in the treatment of mutual recursion: d may declare any number of names, and
correspondingly fix(f;) binds all these names. A fix(f, d) value is the result of evaluating a
REC D~ E binding. For example,

RIC g {int—int) X &: (int—>int)~[

A x:int—int IN IF x=0 THEN 1 ELSE x*#(x/2),

A yiint=>int IN 1t <2 THEN O ELSE g(y=2)]
has type
g: (int—int) X h: (int—int).
Its value is a binding for g and 4 in which their values are the closures we would expect, with
an environment p, that contains suitable recursive bindings for g and A. We shall soon see
how this value is obtained, but for the moment let us just look at it:

[g~closure(p ,x:int, IF x=0THEN 1 ELSE x*h(x/2)),
h~closure(p ,y:int, IF <2 THEN 0 ELSE g(y—2))]

where

p =plg: int—=int~rhslfst!f ix(f, d), h: int—=int~rshisnd!f ix(/,),

where

d=g: (int—int) X h: (int—int)

and

f=closure(p. F: d LET F INd~[

A x; int—int IN IF x=0 THEN 1 ELSE x*h(x/2),

A y: int—int IN IF)<2 THEN 0 ELSE g(y—=2) })
It is the fix values inside P that capture the infinite value of this recursive binding in our
operational semantics. Of course, if g is looked up in p (as it will be, for example, when we
compute h(3)), we don't want to obtain rhs!fst!f ix(f d) as its value; rather, we want
closure(pgh, x: int, ...). To get this we unroll the fix value, that is, we replace fix(f d) by
Sf(fix(f, d)), which evaluates to a closure. This unrolling is done by the 23> rule, which also
deals with the possibility that there may be an operator such as rhs outside.

worey=fix(f d), fra-d(egra)=>e
) 80‘7-? >e

This rule unrolls rhs!fst!f i x(f, d) by first computing
fix(f dad[g~closure(p ,x:int ..),h~closure(p ,y:int, v

using 2»>2 and —E, and then simplifying rhslfst! fix(f, d) to c]osure(pgh, x: int, ...) using
23>1, Wa and @b, Thus, each time g or A is looked up in P g the NI and > rules unroll
the fix once, which is just enough to keep the computation going.

41

42

For the persistent reader, we now present in detail the evaluation of a simple recursive binding
with onc tdentifier, and an application of the resulting function. Since some of the expressions
and values are rather long, we introduce names for them as we go. First the recursive binding:
(D) REC P. int—=>int~A N: int—=int IN
IF n<2 THEN m ELSE P(N—12)

We can write this more compactly as

REEC DP~L
where

DP=P: int—int,

L=A n: int—int IN EXP,
EXP=(IF n<2 THEN 2 FI.SE P(n—2))

The table below is a proof that the value of (D) is

P: int—>int~closure(pfp, n: int, EXP)

It has been abbreviated by omitting the # types on values which are used as expressions. The
evaluation goes like this. First we construct the A-expression for the functional whose fixed
point f we need (D3) and evaluate it to obtain a closure (D4). Then, according to :la2, we
embed fin fix(f dp) and unroll it. This requires applying fto the fix (DS5), which gives rise
to a double LET (D6), onc from the application and the other from the definition of the func-
tional. After both LETs have their effect on the environment, we have ps» Which contains the
necessary fix value for P (D7-10). Now evaluating the A to obtain a closure value for P
that contains P is easy (D12-13).

(D1) pFHREC DP~L :: dp=>bp da, 13,3, 5

(Dla) pkDP=>dp typelc, 2

(D2) pkP:int—=int=DP definition

(D3) pk(A F: DP=DP IN LET F IN dp~L)=f -1 4

(D4) closure(p, F: dp, LET F IN dp~L)=f definition

(DS) pHfifix(f, dp))=>bp —E, 6

(D6) ptF': dp~fix(f, dp)=>bf, #,:1,7, E8
pHLET bf IN LET F IN dp~L=>bp

(D7) F: dp~fix(f, dp)=bf definition

(D8) p HLET F IN dp~L=>bp :E, 9,10
where p =p[F': dp~fix(f, dp)]

(D9) pfl-—rhs F=>rhs!f ix(f, dp) —E, NI

(D10) pgt—dp~L=>bp q,11, 12
where pfpzpf[PI int—int~rhs!f i x(f, dp)]

(D11) pfpl-—L=>c1 osure(pfp, n: int, EXP) -]

(D12) P~c1osure(pfp, n: int, EXP)=bp definition

Note that this evaluation does not depend on having A-expressions for the values of the recur-
sively bound names. It will work fine for ordinary expressions, such as

REC i int X j: int~[j+1, 0],
which binds i:~1 and j:~0. However, it may not terminate. For instance, consider
REC i int X jiint~[j+1,]

Now we look at an apphcation of P:

(F) FET(REC Point=ant~A N int=int IN
IF n€2 THEN m FLSE P(N—2))
IN P(3)

This has type int and value 1, as we sce in the proof which follows. First we get organized to
do the application with the proper recursive value for 2 (E1-2). The application becomes a LET
after P and 3 are evaluated (E3-5). This results in an environment p,; in which n~3, so we
need to evaluate P(n—2) (E6-7). Looking up P we find a value which can be unrolled (E8-9) to
obtain the recursive value ¢ osure(pfp. n: int, EXP) again (E10-11). Since n—2=>1 (E12), we
get the answer without any more recursion (E13-15).

(ED) pH1LEI REC DP~L IN P(3)) i1 int=>1 E, D,2

(E2) ppi—P(3) sint=1 —E 3,45
where pp———p[Pl int—int~closure(pg, n:int, EXP))

(E3) ppi—P::int—ﬂnt:c1osure(pfp. n: int, EXP) NI

(E4) p,n:int~3=>n~3 1, ind

(ES) ,pfpl—[.F,T n~3 IN EXP:: int=>1 ‘E, 6

(E6) p,3H1F n<2 THEN n ELSE P(n—2):: int=>1 boolE, 7
where p,3=pfn: int~3] -

(E7) ppkPn—2): int=>1 —E §,12,13

(E8) p P int—int=>closure(pg, n:int, EXP) NI, 9

(E9) rhs!fix(f, dp)a>closure(py, n: int, EXP) >, 11

(E11) rhs!bp‘l—vclosur‘e(pfp, n: int, EXP) b

(E12) p,b—n=2: int=>1 NI, =E,

(E13) pphLET n~1IN EXP:: int=>1 :E, 14

(E14) p,;t—IF n<2 THEN n ELSE P(n—2).. int=>1 boolE, 15
where p,; = pln: int~1]

(E15) p,lFn::int=>1 NI

It should be clear to anyone who has followed us this far that we have given a standard opera-
tional treatment of recursion. There is some technical interest in the way the f1ix is unrolled,
and in the handling of mutual recursion.

5.2.6 Inferring types

The inference rules give a way of computing a type for any expression. In some cases, however,
an expression may have additional types. In particular, this happens with types of the form
dx f and typeOf!(dk /). because pairs with these dependent types also have ordinary cross
types, which are the ones computed by the inference rules. To express this fact, there is an addi-
tional inference rule :: which tells how to infer types that are not computed by the rest of the
rules.

(1) t:dl *f, f#d)—crype (fb[E) =[2 s E .. dlxtz
o or t=typeOf'!d , dsyee~E :: d
© E::t

43

44

Introduction Llimination
mE:bool E e ke,
o)
@otruc :: bool ooy false :: bool «0::int © 1I° /X THEN 1:‘1 ELSE I:‘2 ot
) E g E g
woynil :: void ol Bl g Xy, wy 5t (1Xg)—>t ensnd (IIX_I;::;

of T, =1, 1, =<d=1, typeOf driype =1y, o t=1

@orT, =1, t, =dV f, frasype(nEWC #q) =},
)
@LETnewc#sINE i t

where newc is a new constant

© (A T\INE): 4

a D=>d,d=void, E:: void,
@orD=d,d=N:1, E:t,

@or D=>d, d:::dIXdz, [dl#type"‘fSt E,dzmype"'snd E]d
wor D=>dy, d)="d % f, fra~tywe(d, #ope~fStE) =d, ,
[&)] dIXdZ:d’ d#type"‘E::d

o D~FE::d=b

ayD =d
(22)

(a0) REC D~E :: d

ol [B,,LETB,INB)] :: ¢) E:t

(v0) BBt @ N:~E: (N:t)

@) AB:D—type INLETB' INT

(a0) D—>T:: type

®) AB:D—typeINLETB INT
(b0) D XX T:: type

) T :: type

@ N:T::type

1) P(N)z t~eo
%))
© Nt

of F:: =1 Byt
oorF i d ’fi , fl#d—-type(d#lype"‘Eo)ﬁl } s
3)

o)
®)

© FE0 Lt=>e

a B::void, E::¢
@or B:: (N: 1), ths B=>¢,, pIN:ty~e] HE 1 ¢
®or B:: d,Xd,, snd B=>b,,LET fst BIN LET by#q,INE:: ¢
@or B:: d & f, fra-ype(fst B) =>d,, LET beaxq, INE 1 1
)

© LET BIN E :: t=>e

woyrhs 12 (N)—t

these two are for convenience only

)
)
)
()
D :: type

© typeOf D :: type

o [N: p(N)]HE:: ¢

©OIMPORT NIN E:: t

Table 6a: Inference rules for type checking only

Introduction

45

Elimination

0y true =>true o false =>false =0
) Elittl,EZ::tz

@y nil =nil o[,)] =[e;, ¢,

o T, =1, .1, =d->1

@ 0rT1=>ll, tlzdbf }

3)
@LETnewc#iINE i t
where newc is a new constant

© (A Tl IN E) =>closure(p, d, E)
o D=d,d=void, nil=>5%
@orD=d d=<N:1t, (N~e)= b

@3yor D=d, dzdIXdz, [dl#type”’fSl E,dzﬁlype"'snd E]d=>b
@wor D= dO’ do’Zdl*f, f#dl—-type(dlﬂtype"‘fst E)=>d,,
dIXdzzd, deype~E::d=>b

D~E

)

© =b

@D =d, AF:D—>DINLET F IN deype~E)=>f
@ fra—o(£ 1x(f, d)xa)=>b

(a0) REC D~E =D
o) [B:.LETB,INB)] =>b () E:: ¢
(v0) B ;B, =b @ N:~ E::(N: t)=>N~e

al) AB: D—>type INLET B INT=f
D—>T =d)f

(20)

1) AB: D—type INLET B INT=f

(60) DXXT =d*xf
{cl)
oN: T =N:t

o p(N)=1~¢
%) {eo'la »eclse €= e}

© N =se

W
o {E=true, E,=eor E=>false, I';=>e }

© IF ETHEN I LISE L, =>e

(a0) (b0)

(]

(@)

»{ f=primitive(w), {wic,mreclsewle = e}
@or f=closu l‘e(po,d,l?),d#type"'EO=> b, pg-LET b#aIN E=e

@rclse in case fis a symbolic value f%eo =e }
© FE, =»e

@ B::void, E =e
@or B:: (N: 10), ths B=>e¢,, p[N:t0~e0] HE =e
®or B:: d Xd, snd B=>b, L ETfst BINLET by#¢,INE =>e
@or B:: d % f, fra~woe(fst B) =d,, LETbsex, INE =

&)

© IETBINE =>e

(b0)

these two are for convenience only

I {dzvoid y
@ord=N : ¢
@ord=d Xd,, typeOfd, #tpe X typeOfd,#ype =>1

@ord=d x f, typeOfld = 1},
)
©

void = ¢

typeOf D =t

@ [N: p(N)]HE =e

©IMPORTNINE =>e

Table 6b: Inference rules for evaluation only

46

type VR = record case tag of

{(ele2,)}

{n:~e}
{wle}
{r1x12}
{d=f}
{t—10}
{drf}
{n: 1}
{f%e}

type V= pointer to VR;
type Binding=VR

type Decl=VR

type Type= VR

boolean:
typeConst:
primitive:
nil;

pair:
closure:
binding:
bang:
Cross:
dcross:
arrow:
darrow:
sdecl:

symbolicApply:

end

{either
or

{ either
or
or
or

{ either
or
or
or
or
or

(v: (true, false)),

(v: (bool, int, void, type)),

(w: Primitive),

()

(cl,e2: V),

(rho: Binding. domain: Decl, body: Ex),
{n: Name, e: V),

(w:V {Primitive}, e: V),

(11, t2: Type).

(d: Decl. f: V {closure}),

(domain, range: Type),

(domain: Decl, frange: V {closure}),
(n: Name, t: Type),

(f.e: V),

V {binding}
V {pair{Binding, Binding]} }

V {sdecl}

V {nil}

V {cross[Decl, Decl]}

V {dcross[Decl, V .closure]} }

V {typeConst}
V {cross}

V {dcross}

V {arrow}

V {darrow}

V {decl} }

{or any of these could be V {bang} or V {symbolicApply} }

type ExR = record case tag of

{1F E THEN E1 FLSE E2}

{El, E2}
{A\T1INE}
{F E}
{D~E}
{rREC D~E}
{B1: B2}
{LETBINE}

{IMPORT N IN E}

{D—)T0}
{N: T}
{DIXXD2}
{Vﬂ}

type Ex = pointer to ExR;

constant;
if:

pair:
lambda:
apply:
binding:
rec:
semi:
let:
name:
import:
darrow:
sdecl:
dcross:
ev:

end

(c: (true, false, ...)),
(E: Ex, El1, E2: Ex),
(El, E2: Ex),

(T1, E: Ex),

(F, E: Ex),

(D, E: Ex),

(D, E: Ex),

(B1, B2: Ex),

(B, E: Ex),

(N: Name),

(N: Name, E: Ex),
(D, TO: Ex),

(N: Name, T: Ex)
(D1, D2: Ex),

(v: V, T: Type)

Table 7a: Pascal declarations for the Pebble semantics

procedure H(EE: Ex, rho: Binding. typeOnly: boolean, var t: Type, var v V).

var
10: Type; ¢0: V;
tF: Type, f: V;
tE: Type,e: V;
B: Ex;
wx: Type;
b: Binding;
Let: Ex;

begin

case EEr.tag of

apply: begin
I(EEt.F, rho, tF, f);
I(EEt.E, rho, tE, e);
case tF1.tag of
arrow: {Fiu— lo E:: t}
if tF*.domain = (E or HasType(E, tFt.domain)
then 10: = tF1.range else Fail;

darrow:begin {F:avfy, fra:=ope= Fo}
B: =Bind(EV(tFt.d, type), EEL.E)); {d#uype~E= B}
I Apply(F, B), rho, tx, v) end;

else Fail;

end;

if not typeOnly then case f*.tag of
primitive: begin

new(c0, bang); e0t.w: =ft.w; eQt.e:=e; { f=primitive(w), }

€0: =Simplify(c0) end; {wlere, else wle=¢}
closure: begin { f=closure(p,, d, E)}

1(Bind(EV(fr.domain, type). E), rho, tx, b); { deype~E=>b}

new(Let, lct); letr.B: = EV(b, ft.domain); lett.D: = ft.body; {pH-LETbs¢INE;= e}

I(Let. ft.rho, i, ¢0) end;
else begin new(c0, symbolicApply); e0t.f: =f; e0r.e:=e end;
end;
else e0: =notDone;
end;
end }
procedure Bind (D. E: Ex): Ex; begin new(Bind, binding); Bindt.D: =D; Bindt.E: =E end;
procedureApply (F, E: Ex): Ex; begin new(Apply, apply); Applyt.F: =F; Applyt.E: =E end;
procedurcEV (v: V, t: Type): Ex; begin new(EV, ev); EVt.v: =v; EVt.u =tend;

Table 7b: Pascal code for =E

47

48

11 turns d finto dXr by applying fto fst E to compute ¢ then it checks that £ has type dXu.
This is a reflection of the fact already discussed, that a pair may have many dependent types,
as well as its "basic” cross type.

::2 deals with the case in which typeOf cannot be evaluated immediately. typeE tells us that
typeOf (x: int) = int
typeOf (x: int X y: real) = intXreal,

but

typeOf (¢ type XX x:) = typeOfl(t: typekclosure(p, t: type, x: 1)

because there is no way to compute typeOf (x: ¢) without a value for 7. One might think that
there would be some way to obtain

t. typekclosure(p, t: type, 1))
as the value, but consider

typeOf (b: bool XX IF b THEN x: int ELSE y: real)
Once we have a pair E in hand, however, it is easy to check whether it has type typeOf!dx,
simply by seeing whether d% f~ E type-checks. This expression is checked by :14-5, which turns
d% finto dXt, much as ::1 does.

5.3 Type checking vs evaluation

There is a subtle interaction between type-checking and evaluation in Pebble, which is illus-
trated in Table 6. It is possible to write inference rules which only do type-checking; they must
be able to call on the evaluator to evaluate type expressions. It is also possible to write
inference rules which only do evaluation, on the assumption that type-checking has already
been done. Table 6 repeats the entire set of inference rules twice (except for the auxiliary
rules), once with only the parts needed for type-checking, and once with only the parts needed
for evaluation. It is important to note that the type-checking rules contain calls on the
evaluator, in the form of occurrences of the = symbol.

Note that most of the rules for ~ and LET are needed for both purposes. This is because these
rules set up environments which bind names, and there is no way to tell whether a given name
will be needed to evaluate a type expression. In fact, the rules as written in Table 6 are
pessimistic; during type-checking it is possible to defer evaluation of the right hand side of a
binding until the value of that name is actually needed. As examples (B) and (C) above
suggest, this usually happens only when the name denotes a type.

5.4 Deterministic evaluation

As we mentioned in §5.1.2, it is possible to construct a deterministic evaluator from the
inference rules. Table 7 gives Pascal declarations for such an evaluator, together with a
fragment of the code, that which corresponds to —E. It is interesting to note the close
correspondence between the inference rule and the Pascal code, as well as the fact that the
code is only about twice as large.

49

6. Conclusion

We have presented both an informal and a formal treatment of the Pebble language, which
adds to the typed lambda calculus a systematic treatment of sets of labeled values, and an
explicit form of polymorphism. Pebble can give a simple account of many constructs for
programming in the large, and we have demonstrated this with a number of examples. The
language derives its power from its ability to manipulate large, structured objects without
delving into their contents, and from the uniform use of A-abstraction for all its entities.

A number of areas are open for further work:

Labelled unions or sum types, discussed briefly in § 3.5.

Abbreviations which allow explicit type parameters to be omitted from applications of
polymorphic functions.

A sub-type or type inheritance relation, perhaps along the lines suggested by Cardelli.
Assignment, discussed briefly in § 3.6.

Exception-handling, probably as an abbreviation for returning a union result and testing
for some of the cases.

Concurrency. We do not have any ideas about how this is related to the rest of Pebble.
A more mathematical semantics for the language.

Proof of the soundness of the type-checking, and an exploration of its limitations.

References

Bauer, F.L. et al. (1978). Towards a wide spectrum language to support program specification and
program development. SIGPLAN Notices13,15-24.

Burstall, R. and Goguen, J. (1977). Putting theorics together to make specifications. Sth Joint
International Conference on Artificial Intelligence, Cambridge, MA, 1045-1058.

Cardelli, L. (1984). A semantics of multiple inheritance. Lecture Notes in Computer Science 173,
Springer, 51-68.

Demers. A. and Donahue, J. (1980). Datatypes, parameters and type checking. 7th ACM Symposium on
Principles of Programming Languages, Las Vegas, 12-23.

Girard, J-Y. (1972). Interpretation Fonctionelle et Elimination des Coupures dans I'Arithmetique d’Ordre
Superieur, These de Doctorat d’ctat, University of Paris.

Gordon, M., Milner, R. and Wadsworth, C. (1979). Edinburgh LCF. Lecture Notes in Computer
Science, Springer.

Lampson, B. and Schmidt, E. (1983). Practica!l use of a polymorphic applicative language. /0th ACM
Symposium on Principles of Programming Languages, Austin.

L.andin, P. (1964). The Next 700 Programming languages. Comm. ACM. 9, 157-166.

MacQucen. . and Sethi, R. (1982). A higher order polymorphic type system for applicative languages.
Symposium on Lisp and Functional Programming, Pittsburgh, PA, 243-252,

MacQueen, D., Plotkin, G. and Scthi, R. (1984). An ideal model for recursive polymorphic types. //th
ACM Symposium on Principles of Programming Languages, Salt Lake City.

50

MacQuecen, D. (1984). Modulcs for standard MI. (draft). In Polymorphism (ed. L. Cardelli), Computer
Science Dept., Bell Labs., Murray Hill, NJ (privately circulated).

Martin-Lof, P. (1973). An intuitionistic thcory of types: Predicative part. In Logic Collog. ‘73 (cds. H.E.
Rose and J.C. Shepherdson) North-Holland, 73-118.

McCracken, N. (1979). An Investigation of a Programming Language with a Polymorphic Type
Structure. Ph.D. thesis, Computer and Information Science, Syracuse University.

Milner, R. (1978) A theory of type polymorphism in programming. JCSS 17 (3), 348-275.

Mitchell, J., Maybury, W. and Sweet, R. (1979). Mesa Language Manual. Report ¢cSL-79-3, Xerox Palo
Alto Rescarch Center.

Pepper, P.(1979) A Study on Transformational Semantics. Dissertation, Fachbereich Mathematik,
Technische Universitat Miinchen.

Plotkin, G. (1981) A Structural Approach to Operational Semantics. Computer Science Dept. Report,
Aarhus University.

Reynolds, J. (1974) Towards a theory of type structure. Lecture Notes in Computer Science 19,
Springer, 408-425.

Reynolds. J. (1983) Types, abstraction and parametric polymorphism, in /nformation Processing 83,
North-Holland.

Schmidt, E. (1982) C énlrolling Large Sofiware Development in a Distributed Environment. Report CSL-
82-7, Xerox Palo Alto Research Center.

51

Top half of the page is marked with an "a," bottom half with a

"b," whole page with neither.

abstract (data) type (value) 2a,
4b, 8b, 15a, 17, 19a, 20a

Ada 10b, 15, 17a

assignment 2a, 6b, 7a, 15a,
22a, 49a

Bauer 2a

Bell 9b

Cardelli 2la, 49a

Cedar 2b, 3b, 9a

client 15, 17a, 18b

concurrency 2a, 49a

constant 7a, 24a, 32b, 36a, 37a,
38b, 39a

constructor 7a, 10b, 11, 21b,
24a, 32b, 33b, 41la

context 3b, 7b, 37b, 40a

cross type 23a, 40, 43b, 48a

declare lla, 4la

Demers 4a, 10b

determinism 32b

Donahue 4, 10b

Euclid 15b, 17a

evaluator 31a, 32, 33a, 48b

factorial 6

feedback 4b, 33b

float 15b, 1l6a

forgeries 18b

functionals 23a

Girard 4b, 10

Goguen 4b

implements 8a, 15b

import 8a, 26b, 35b

impure 22b

inheritance 49a

input/s 2b, 8b, 1l1lb

instantiate 10

instantiation 10b, 38b

interpreter 4a, 23a, 34b

kernel 8b, 10b

Landin 3b

MacQueen 4, 9b, 10a

Martin-Lof 4b

McCracken 4a

mechanism lla, 18b, 31la, 34b, 37b

Mesa 2b, 3a, 9a, 15b, 1l7a

meta-rules 34b

meta-variable/s 24a, 32b, 33a, 36a

Milner 10a

Mitchell 2b, 3a, 4b

Modeller 3

Modula 15b

non-applicative 18b, 22b

non-dependent 37a, 38b

non-deterministic 3la

non-terminal/s 27b

output/s 8b, 11b

package 10b, 15, 20b

parameteris/zation 10, 17a

Parnas 15a

Pascal 4a, 9a, 48b

password 18b, 19

persistent reader 42a

Plotkin 4, 9b, 3la

pre-condition 19a

precedence 27a, 31b

primitives 14b, 22, 32a, 35a, 37

Prolog 31la

proof/s 13a, 32b, 34b, 35a, 37b,
39a, 43a, 49a,

recursion 21b, 3%a, 4la, 43

Reynolds 4a, 9b, 10a

Russell 4, 9a, 10a

satisfies assumption,
pre-condition 15a, 19a

Satterthwaite 4b

Schmidt 3a, 4b

security 18b

select 6a

semantics 2a, 4a, 5, 6b, 18b,
21b, 22b, 23a, 24a, 25a, 3la,
41b, 49%a

Sethi 4a, 9b, 10a

soundness 22b, 37b, 49a

specification 4b, 15

specifies 23a

store 6b, 22b

Strachey 9b

syntactic sugar 3b, 7b, 8a,
10b, 27b, 36b

unification 10

unrolling 32a, 41b

Wadsworth 10a

