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Abstract
Profile data is valuable for identifying performance bottlenecks

and guiding optimizations. Periodic sampling of a processor’s per-
formance monitoring hardware is an effective, unobtrusive way to
obtain detailed profiles. Unfortunately, existing hardware simply
countsevents, such as cache misses and branch mispredictions,
and cannot accurately attribute these events to instructions, espe-
cially on out-of-order machines. We propose an alternative ap-
proach, calledProfileMe, that samplesinstructions. As a sampled
instruction moves through the processorpipeline, a detailed record
of all interesting events and pipeline stage latencies is collected.
ProfileMe also supportpaired sampling, which captures informa-
tion about the interactions between concurrent instructions, re-
vealing information about useful concurrency and the utilization
of various pipeline stages while an instruction is in flight. We
describe an inexpensive hardware implementation of ProfileMe,
outline a variety of software techniques to extract useful profile
information from the hardware, and explain several ways in which
this information can provide valuable feedback for programmers
and optimizers.

1 Introduction
Processors are getting faster, yet application performance

is not keeping pace. On large commercial applications, av-
erage cycles-per-instruction (CPI) values may be as high as
2.5 or 3. With 4-way instruction issue, a CPI of 3 means
that only one issue slot in every 12 is being put to good use!

It is common to blame such problems on poor mem-
ory performance, and in fact most applications spend many
cycles waiting for memory, but other problems, such as
branch mispredictions, also waste cycles. To improve the
performance of a particular application, we need to know
which instructions are stalling and why.

In this paper, we describe hardware and software sup-
port for a sampling-based profiling system that provides de-
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tailed instruction-level information on processors that can
execute instructions speculatively and out of order. Our ap-
proach, calledProfileMe, consists of two parts: aninstruc-
tion samplingtechnique, which captures information about
individual instructions (e.g., cache miss rates for each in-
struction), and apaired samplingtechnique, which captures
information about the interactions among instructions (e.g.,
concurrency levels). ProfileMe has several key advantages
over previous techniques such as hardware event counters:
(1) it collects complete information abouteach instruction,
rather than sampling a small number of events at a time; (2)
it accurately attributes events to instructions; (3) it collects
information about all instructions, including instructions in
uninterruptiblesections of code; and (4) it collects informa-
tion about useful concurrency, thus helping to pinpoint real
bottlenecks.

Sampling has a number of advantages over other pro-
filing methods, such as simulation or instrumentation: it
works on unmodified programs, it profiles complete sys-
tems, and it can have very low overhead. Indeed, re-
cent work [2] has shown that low-overhead sampling-based
profiling can reveal detailed instruction-level information
about pipeline stalls and their causes, and that this sort of
information is extremely helpful in diagnosing and fixing
performance problems—but that work is limited to in-order
processors, and its techniques do not extend to out-of-order
processors.

Most modern microprocessors, including the Alpha
21164 [8], Pentium Pro [11] and R10000 [14], provide
performance counters that count a variety of events (e.g.,
branch mispredicts or data cache misses) and deliver an in-
terrupt when the counters overflow. Event counters provide
useful aggregate information, such as the total number of
branch mispredicts during a program run. However, as dis-
cussed in Section 2.2, they do not give accurate information
about individual instructions, such as the mispredict rate for
a single branch.

ProfileMe is a departure from traditional performance
counters. Rather than countingeventsand sampling the
program counter when the event counters overflow, we
sampleinstructions. At random intervals, we select an in-
struction; as it executes, we record information about its
execution in internal registers. Information recorded in-
cludes the instruction’s PC, the number of cycles spent
in each pipeline stage, whether it suffered I-cache or D-
cache misses, the effective address of a memory operand or
branch target, and whether it retired or why it aborted. Af-
ter the instruction completes, we generate an interrupt and



deliver the recorded information to software.
Our core instruction sampling technique captures de-

tailed information about a single instruction, and is useful
for identifying instructions that remain in the pipeline for a
long time. On an in-order machine, this information is suf-
ficient to identify bottlenecks. However, on an out-of-order
machine, the concurrency provided by executing instruc-
tions out-of-order masks some stalls.

To identify real bottlenecks, instruction-level informa-
tion must be combined with information aboutuseful con-
currency (e.g., while a given instruction is in flight, how
many issue slots are used by instructions that ultimately re-
tire). We usepaired sampling, a nested form of sampling,
to measure useful concurrency: for each profiled instruc-
tion, the instructions that may execute concurrently with it
are also randomly sampled, forming asample pair. Paired
sampling exposes the interactions among instructions, en-
abling a wide variety of interesting concurrency and uti-
lization metrics to be computed.

The remainder of this paper describes ProfileMe in more
detail. Section 2 explains why performance on out-of-order
processors is hard to understand and why event counters are
insufficient. Section 3 presents an overview of ProfileMe.
Section 4 describes its hardware requirements, while Sec-
tion 5 discusses how profiling software can collect profiles
from this hardware and analyze them to extract useful infor-
mation. Section 6 discusses alternative metrics for identi-
fying bottlenecks. Section 7 discusses optimizations based
on the information produced by ProfileMe. Related work is
examined in Section 8. Finally, we summarize our conclu-
sions in Section 9.

2 Problem
The behavior of programs run on out-of-order processors

can be subtle and difficult to understand. To motivate our
profiling mechanism, we begin this section by reviewing
the flow of instructions in out-of-order processors. Using
the Alpha 21264 processor as a concrete example, we dis-
cuss the myriad ways in which instructions may be delayed.
We then demonstrate the problems with using event coun-
ters to understand the performance of programs executed
on processors with out-of-order and speculative execution.

2.1 A Superscalar Out-of-Order Architecture
An out-of-order execution processor fetches and retires

instructions in order, but may execute them out of order
(subject to data dependences). Figure 1 depicts the pipeline
of the Alpha 21264 processor [12]. Each cycle, the first
stage of the pipeline fetches and decodes a group of in-
structions from the instruction cache starting at the current
PC. Because it takes multiple cycles to resolve the PC of
the next instruction to fetch, the current PC is predicted by
a branch or jump predictor. If the prediction is incorrect,
the processor will abort the mispredicted instructions (the
bad path) and will restart fetching instructions on thegood
path. Because of this use of PC prediction, we refer to the
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Figure 1: Alpha 21264 Processor Pipeline.

instruction stream followed by the fetcher as thepredicted
control path.

The decoder determines which instructions in the fetched
group are part of the instruction stream. When a block of
instructions is fetched from the I-cache, some of the in-
structions may not be on the predicted control path due to
branches or jumps into or out of the middle of the fetch
block.

To support out-of-order execution, registers are renamed
to prevent write-after-read and write-after-write conflicts.
This renaming is accomplished bymappingarchitectural to
physical registers. Thus two instructionsthat write the same
architectural register can safely execute out of order be-
cause they will write different physical registers, and con-
sumers of those architectural registers will get the proper
values. Instructions are fetched and mapped in order along
the predicted path.

A mapped instruction resides in the issue queue until
its operands have been computed and a functional unit of
the appropriate type is available. After an instruction has
executed, it is marked as ready to retire and is retired by
the processor when all previous ready-to-retire instructions
in program order have been retired (and earlier predicted
branches have been confirmed). Upon retirement, the pro-
cessor commits the instruction’s changes to the architec-
tural state and releases resources used by the instruction.

In some cases, such as when a branch is mispredicted,
instructions must be trapped or discarded. When this oc-
curs, the speculative architectural state is rolled back and
fetching continues after the most recent untrapped instruc-
tion (i.e., the actual branch target).

Numerous events may delay the execution of an instruc-
tion. In the front of the pipeline, the fetcher may stall due
to an I-cache miss or may fetch bad-path instructions due
to a misprediction. The mapper may stall due to a lack of
free physical registers or free slots in the issue queue. In-
structions in the issue queue may wait for their register de-
pendences to be satisfied or for the availability of functional
units. Instructions may stall due to data cache misses. In-
structions may trap because they were speculatively issued
down a bad path, or because the processor took an interrupt.

Many of these events are difficult to predict statically, and



all of them can degrade performance. At the same time,
the ability of an out-of-order processor to issue a later in-
struction while an earlier instruction is stalled can mean that
some delays are hidden. Our approach identifies which in-
structions are delayed and how that affects the running time
of a program, enabling programmers or optimization tools
to improve performance.
2.2 Event Counter Limitations

As mentioned earlier, many existing processors provide
event counters to help measure the performance of pro-
grams. Unfortunately, event counters do notaccurately at-
tribute events to instructions: the instruction that caused an
event resulting in an event-counter overflow is usually ear-
lier, by an unpredictable amount, than the instruction whose
PC is delivered to the interrupt handler. Out-of-order and
speculative execution amplify this problem, but it is present
even on in-order machines.

Figure 2 compares the program counter value delivered
to the performance counter interrupt handler when monitor-
ing D-cache-reference events on the in-order Alpha21164
and on the out-of-order Pentium Pro. The example pro-
gram, shown on the left side of the figure, consists of a
loop containing a single (cache hit) memory read instruc-
tion, followed by hundreds ofnop instructions.

On the in-order Alpha, almost all performance counter
events are attributed to the instruction that is executing six
cycles after the event, resulting in a large peak of samples
on the seventh instruction after the load. This skewed distri-
bution is not ideal, but static analysis can sometimes work
backwards from the single large peak to identify the instruc-
tion that caused the event.

On the Pentium Pro, the event samples are widely dis-
tributed over the next 25 instructions. This smeared distri-
bution of samples makes it nearly impossible to attribute an
event to the instruction that caused it. Similar behavior oc-
curs when counting other hardware events. This problem
is also not specific to the Pentium Pro: we have observed
similar behavior with the MIPS R10000’s hardware event
counters [14].

Aside from the wide distribution of event samples, hard-
ware event counters suffer from several additional prob-
lems. First, performance-counter interrupts may be de-
ferred when running non-interruptible or high-priority sys-
tem code, such as Alpha PALcode [8]. As a result, event
samples will be incorrectly attributed to the instruction
following the high-priority code, resulting in undesirable
“blind spots”.

In addition, there are typically many more events of in-
terest than there are hardware counters, making it impossi-
ble to concurrently monitor all interesting events. The in-
creasing complexity of processors is likely to exacerbate
this problem. Moreover, event counters only record the
fact that an event occurred; they do not provide any con-
text about the event. For many kinds of events, additional
information, such as the latency to service a cache miss,
would be extremely useful.
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Figure 2: Histogram of PC values delivered to performance
counter interrupt routines on in-order and out-of-order processors

ProfileMe avoids these problems on both in-order and
out-of-order processors. Profiling instructions instead of
events completely eliminates the difficulties with event at-
tribution. Similarly, sampling instructions in hardware
eliminates blind spots. Instruction-based profiling also per-
mits a complete set of correlated events to be collected for
each instruction, avoiding the need to process and correlate
interrupts from multiple event counters.

3 Overview of Approach
To understand a program’s performance, we would like

to gather information at two levels:

� Aggregate information, summarizing performance
statistics over an entire workload, an individual pro-
gram, a procedure, or a smaller unit such as a loop.

� Instruction-level information, showing the average be-
havior of each instruction.

We are interested in gathering the key performance met-
rics needed to identify performance bottlenecks. As de-
scribed earlier, ProfileMe involves sampling instructions:
randomly choosing instructions to be profiled and record-
ing information about their execution. By aggregating sam-
ples from repeated executions of the same instruction, we
can estimate many interesting metrics for each instruction.
Our approach makes gathering this instruction-level infor-
mation both possible and relatively inexpensive. Informa-
tion about individual instructions can easily be aggregated
to summarize the behavior of larger units of code.

ProfileMe consists of both hardware and software. Hard-
ware is needed to select instructions to be profiled, to record
information about profiled instructions, and to generate an
interrupt when a profiled instruction completes so that the
recorded information can be delivered to software. Soft-
ware is needed to sample the instruction stream randomly,



to field the interrupts generated by the hardware so that in-
formation about profiled instructions can be saved in a pro-
file database, and to analyze profile data to identify perfor-
mance problems.

To get a statistically meaningful estimate of program
behavior, the profiling software requires a random sam-
ple of the instruction stream. Some analyses require a
random sampling of all fetched instructions, while oth-
ers need a random sample of only the retired instructions.
As described later, our approach involves randomly sam-
pling fetched and decoded instructions. This means that
an instruction chosen for profiling may later abort rather
than retiring (e.g., due to speculative execution down a bad
path). Providing samples of fetched instructions (along
with retired/aborted status information) permits an analy-
sis of which instructions are aborting and why, rather than
making aborted instructions completely invisible to profil-
ing. Note that this does not impact the random sampling of
retired instructions: selecting the retired instructions from
a random sampling of fetched instructions yields a ran-
dom sampling of retired instructions, just as if the hardware
were providing a random sampling of retired instructions
directly.

As mentioned earlier, sampling individual instructions is
important, but is not sufficient to accurately identify bottle-
necks in out-of-order processors. We augment our core in-
struction sampling mechanism withpaired sampling, which
permits the sampling of multiple instructions that may be in
flight concurrently. Paired sampling provides essential in-
formation for analyzing interactions between instructions.
The idea is to sample the instructions in a relatively small
window aroundeach instruction to obtain a statistical esti-
mate of concurrency levels and other utilization measures.
Since both samples in a sample pair include retired/aborted
status information, it is possible to determine the level of
useful concurrency—i.e., the number of concurrent instruc-
tions that eventually retire.

Paired sampling imposes relatively simple additional re-
quirements. The hardware for selecting instructions to be
profiled and for recording information about profiled in-
structions must be duplicated. In addition, hardware is
needed for measuring the fetch latency between the instruc-
tions in a sample pair so that concurrency levels can be es-
timated.

In the next section, we describe the hardware needed
for ProfileMe, including both the core instruction sampling
mechanisms and paired sampling. Section 5 discusses in
more detail how this hardware can be used to provide use-
ful profiling information for a variety of performance un-
derstanding and optimization tasks.

4 ProfileMe Hardware
The hardware required for sampling instruction execu-

tion is modest and scales linearly with the number of in-
flight instructions that may be sampled simultaneously.
By restricting the number of instructions simultaneously

profiled—to one or two instructions—we limit the hard-
ware overhead. The run-time profiling overhead may be de-
creased arbitrarily by reducing the sampling rate, although
previous work has shown that high frequency sampling can
be implemented with relatively low overhead through care-
ful programming [2].

In the subsections below we describe the hardware
needed to sample a single instruction, the additional hard-
ware needed for paired sampling, and how replicating some
of the hardware can reduce the software overhead substan-
tially.

4.1 Instruction Sampling
Hardware must perform four tasks to sample individ-

ual instructions: instructions to be profiled must be se-
lected, profiled instructions must be tagged in the processor
pipeline, data captured about a profiled instruction’s execu-
tion must be recorded in internal registers, and an interrupt
must be generated when a profiled instruction completes so
that the recorded information can be captured by profiling
software.

4.1.1 Choosing Profiled Instructions
In the front of the pipeline, we need hardware to choose

instructions to be profiled. To ensure that instructions are
chosen randomly, we add a software-writableFetched In-
struction Counterto the processor’s instruction fetcher.
At the beginning of each sampling interval, the profil-
ing software writes a random value to the counter. The
counter decrements once foreach instruction fetched on
the predicted control path; the instruction fetched when the
counter reaches zero is selected for profiling.

Counting fetched instructions on the predicted control
path is actually somewhat complicated, since a variable
number of instructions (zero to four on the Alpha 21264)
on the predicted control path is fetched each cycle. This
complexity can be avoided by instead counting “fetch op-
portunities” (four per cycle on the Alpha 21264) and select-
ing a particular fetch opportunity to be profiled. A given
fetch opportunity may contain an instruction on the pre-
dicted control path, an instruction not on the predicted con-
trol path (but in the same fetch block as instructions that are
on the predicted control path), or no instruction at all (e.g.,
if the fetcher is stalled waiting for an I-cache miss). Choos-
ing instructions to profile based on counting fetch opportu-
nities simplifies the hardware, but may result in a signifi-
cant number of samples that do not contain instructions on
the predicted control path, effectively reducing the useful
sampling rate. We are still evaluating the tradeoffs among
different methods of selecting instructions to be profiled.

4.1.2 The ProfileMe Tag
We augment the decoded instruction state with aPro-

fileMe tagthat is passed through the processor pipeline with
every in-flight instruction. The ProfileMe tag is set for an
instruction when it is chosen to be profiled. In the lowest-
cost implementation, the tag is set for at most one in-flight
instruction at a time, so that a single bit suffices for the



tag. For paired sampling or, in general,N -way sampling,
dlog(N + 1)e bits are needed.

4.1.3 Instruction-Level Data Collection
When the ProfileMe tag is set for an instruction, the pro-

filing hardware records events, latencies, addresses,etc., as-
sociated with that instruction, in a set of processor-internal
Profile Registersindexed by the tag. The information col-
lected for profiled instructions will vary across processor
implementations. This subsection sketches the information
that is important for profiling in current out-of-order ex-
ecution processors and the hardware needed to gather it.
It is relatively easy to have the hardware record additional
events or other information about the instruction in the Pro-
file Registers.

TheProfiled Context Registerrecords the address space
number or other identification of the process or thread ex-
ecuting the profiled instruction. TheProfiled PC Register
records the address of the profiled instruction. TheProfiled
Address Registerrecords the effective address of load and
store instructions and the target address of indirect jump in-
structions.

A Profiled Event Registeris a bit-field that records
whether various events were experienced by the instruction.
Events include: I-cache and D-cache miss, instruction and
data TLB miss, branch taken, branch mispredicted, various
resource conflicts, memory traps, whether the instruction
retired, trap reason,etc.

A Profiled Path Registeris used to capture recent branch-
taken information from the processor’s global branch his-
tory register. This information can be used to determine
the code path taken in reaching the profiled instruction, as
described in Section 5.3.

A set ofLatency Registersrecords the number of cycles
spent by the instruction in each pipeline phase. Table 1 lists
some of the latencies of interest on the Alpha 21264, along
with descriptions of the problems they help diagnose.

4.1.4 Capturing Profile Data
The ProfileMe tag remains set for a profiled instruction

until it retires or aborts. After all processor activity pertain-
ing to the instruction has completed, an interrupt is gener-
ated. Profiling software fields the interrupt, reads the Pro-
file Registers, and resets the Fetched Instruction Counter to
a pseudo-random value.

Note that even if some of the information to be recorded
in the Profile Registers needs to travel a long distance across
the chip, this need not impact the cycle time. Latches can
be inserted to pipeline the signals to the Profile Registers.
If this is done, the interrupt that signals the collection of a
ProfileMe sample must be delayed until all the appropriate
signals have had time to reach the Profile Registers.

4.2 Paired Sampling
Paired sampling requires the ability to sample two po-

tentially concurrent instructions. We also need information
about the overlap between the instructions in a sample pair.

Measured Latency Explanation
Fetch!Map Stalls due to lack of physical registers or is-

sue queue slots
Map!Data ready Stalls due to data dependences
Data ready!Issue Stalls due to execution resouce contention
Issue!Retire ready Execution latency
Retire ready!Retire Stalls due to prior unretired instructions
Load issue! Completion Memory system latency (Alpha allows

loads to retire before value returns, so this
may be different from Issue!Retire ready)

Table 1:Latency Measurements.Pipeline stage latencies
are useful for identifying and diagnosing stalls and delays.

To accommodate paired sampling, we make the following
extensions to the core instruction sampling mechanisms.

To choose instructions in a sample pair, we specifymajor
and minor sample intervals. The major interval specifies
the number of fetched instructions until the first instruction
of a pair is chosen. The minor interval specifies the number
of fetched instructions between the first and second profiled
instructions in a sample pair. The software randomizes both
of these intervals.

To record information about both instructions in a sample
pair, we need two sets of Profile Registers, indexed by the
ProfileMe tag, and the signals carrying information to the
registers must also carry the tag.

So profiling software can capture the recorded informa-
tion, an interrupt must not be generated until both sampled
instructions have finished executing and all relevant data
has been recorded in their Profile Registers.

Finally, we need to capture the latency between the two
sampled instructions (i.e., the number of cycles between
the times when the two sampled instructions were fetched).
This latency is required to determine the degree of overlap
of the instruction pair in the processor pipeline.
4.3 Amortizing Interrupt Delivery Costs

Previous work has shown that the cost of delivering and
processing performance interrupts is one of the most signif-
icant sources of overhead in sampling-based profiling sys-
tems [2]. ProfileMe makes it possible to reduce this over-
head by providingadditional hardware copies of profile reg-
isters and by buffering multiple samples before delivering
a performance interrupt. Software can then read the data
for several samples at once, thereby amortizing the perfor-
mance interrupt delivery cost.

5 Profiling Software
The hardware mechanisms presented in the previous sec-

tion can be utilized in various ways. One approach is to
gather samples several thousand times per second, logging
them in memory or on disk for later processing. Space con-
sumption can be reduced by processing some of the infor-
mation as the samples are gathered, such as by aggregat-
ing samples for the same instruction, as is done for event-
counter-based samples in DIGITAL’s Continuous Profiling
Infrastructure (DCPI) system [2]. Overhead can be further



reduced by ignoring certain fields of the profile informa-
tion except when gathering data for specific optimizations.
Once the profile information has been collected, it can be
analyzed to extract useful information. Several analyses are
described in the following subsections.

5.1 Estimating Event Frequencies
Samples for individual instructions can be used to es-

timate various instruction-level event frequencies as fol-
lows. Assume an average sampling rate of one sample ev-
eryS fetched instructions. Suppose thatN instructions are
fetched and a fractionf of those have a given propertyP
(e.g., “instructionI retired,” or “instructionI missed in the
D-cache”). We know how many total samples are collected
(on average,N=S) and how many of the samples have the
propertyP . Our goal is to estimatefN , i.e., the actual
number of fetched instructions with propertyP .

Let the random variablek be the number of samples
with property P . We estimate the actual number of
fetched instructions with propertyP as kS. It is easy
to show that the expected value ofkS is fN , i.e., the
actual number of fetches ofI with propertyP . Under
simple assumptions, the coefficient of variation ofkS is
�kS=E[kS] =

p
1=N
p

(S � f)=f , which is approxi-
mately

p
S=fN (sinceS � f). This latter expression is

equivalent to
p

1=E[k]. In other words, relative error de-
creases with the reciprocal of the square root of the (ex-
pected number of) samples with propertyP . Infrequent
events or long sampling intervals require longer runs to
get enough samples foraccurate estimates. However, for
many applications the goal is to identify instructions that
exhibit an unusually high value for a particular metric (e.g.,
D-cache miss count). Such instructions have a high value
of fN for that property, so convergence should happen rel-
atively quickly.

To explore the issue of convergence, we extended a
cycle-accurate simulator of the Alpha21264 processor to
gather ProfileMe samples. Using a suite of benchmarks that
includedCOMPRESS, GCC, GO, IJPEG, LI , PERL, POVRAY,
andVORTEX. we sampled every103 to 105 fetched instruc-
tion from traces of108 and109 instructions. Figure 3 il-
lustrates how the estimated counts foreach PC converge on
the actual values as the number of samples increases. The
left column shows the results for the retire count foreach
instruction while the right column shows the results for D-
cache miss counts.

In the graphs, each point represents a single static instruc-
tion. All graphs show the ratio of the estimated value to the
actual value on the y-axis; the top two rows use a log scale,
and the bottom row uses a linear scale. In the top row, the
x-axis shows the total number of samples for each instruc-
tion; this is typically more than the number of samples in
which the instruction retired or suffered a D-cache miss (es-
pecially for D-cache misses). In the bottom two rows, the
x-axis shows the number of samples with the relevant prop-
erty. The graphs in the bottom row show an expanded view
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Figure 3:Convergence of Retire Count and D-Cache Miss Rate

of the same data as in the middle row; they also show the
edges of the envelope corresponding to one standard devia-
tion from the actual value (y = 1 � 1=

p
x). Two-thirds of

the points are expected to be within this envelope, and any
envelope that includes a fixed percentage of the points will
follow a 1=

p
x curve. Optimization and profiling tools may

also find it useful to compute confidence intervals around
data derived from sampling.

5.2 Estimating Interaction Frequencies
Paired samples can be used to estimate a wide range of

concurrency and utilization metrics. For example, they can
be analyzed to estimate useful concurrency levels, mak-
ing it possible to find true bottlenecks (see Section 5.2.3).
Paired samples can also be used to measure edge frequen-
cies of a program’s control-flow and call graphs and can
improve the accuracy of sampling-based path-profiling (see
Section 5.3). Finally, it may be possible to statistically
reconstruct detailed processor pipeline states from paired
samples. This section explains in more detail how paired
sampling works and how paired samples can be analyzed
to derive statistical estimates of concurrency and resource
utilization levels while an instruction is in flight.

5.2.1 Nested Sampling
Paired sampling enables ProfileMe records to be col-

lected for two instructions that may be in flight simulta-
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Figure 4:Nested Sampling Example.Two levels of sampling are depicted: (1) a major inter-pair sampling interval between windows
(black regions), and (2) a minor intra-pair sampling interval within each window (expanded views).

neously. A key application of paired sampling hardware
is nested sampling: for each profiled instruction, the set of
other instructions that can potentially execute concurrently
with it is directly sampled. Nested sampling is based on the
same statistical arguments that justify ordinary sampling.
Because it involves two levels of sampling, it will be most
effective for heavily executed code.

Figure 4 illustrates an example of nested sampling. The
arrow indicates the sequence of instructions that are fetched
(in program order) during some dynamic execution. The
first level of sampling is represented by the small black re-
gions of fetched instructions; their spacing corresponds to
themajorsampling interval.

Thesecondlevel of sampling is depicted by the expanded
window of instructions shown above each black region.
The first labelled instruction in each window represents the
instruction selected by the first level of sampling. The sec-
ond labelled instruction in each window is determined by
theminorsampling interval.

Denote the size of the window of potentially concurrent
instructions byW . For each paired samplehI1; I2i, nested
sampling is implemented by setting the intra-pair fetch dis-
tance to a pseudo-random number uniformly distributed be-
tween 1 andW . The window size is conservatively cho-
sen to include any pair of instructions that may be simul-
taneously in flight. In general, an appropriate value for
W depends on the maximum number of in-flight instruc-
tions supported by the processor. (On most processors, this
is less than one hundred instructions.) The minor intra-
pair sampling interval will typically be orders of magnitude
smaller than the major inter-pair interval.

5.2.2 Analyzing Sample Pairs
For a given profiled instructionI, the set of potentially

concurrent instructions are those that may be co-resident
in the processor pipeline withI during any dynamic exe-
cution. This includes instructions that may be in various
stages of executionbeforeI is fetched, as well as instruc-
tions that are fetchedafter I.

Figure 5(a) shows how the sample pairs from Figure 4
can be analyzed to recover information about instructions
in a window of �W potentially concurrent instructions
aroundI. In this example, we consider all pairshI1; I2i
containing the instruction labelleda. WhenI1 = a, I2 is a
random sample in the windowafter a; whenI2 = a, I1 is
a random sample in the windowbeforea. By considering
each pair twice, random samples are uniformly distributed
over the set of all potentially concurrent instructions.

b
a

d
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a
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a
d
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a b

ad

da
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fetch distance (instructions)

c a
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Figure 5: Paired Sample Analysis. (a) Sample pairs con-
taining instructiona form a random sample of instructions in the
window of�W potentially concurrent instructions arounda. (b)
Execution timings for the instructions in each pair enable their
temporal overlap to be determined.

The ProfileMe data recorded for each paired sample
hI1; I2i includes latency registers that indicate whereI1 and
I2 were in the processor pipeline at each point in time, as
well as the intra-pair fetch latency that allows the two sets
of latency registers to be correlated. The ProfileMe records
for I1 andI2 also indicate whether they retired or aborted.
This information can be used to determine whether or not
the two instructions in a sample pair overlapped in time, as
illustrated in Figure 5(b). For example, the data associated
with sample pairshd; ai andhc; ai reveal varying degrees of
execution overlap, and there was no overlap forha; di. Sim-
ilarly, the data forha; bi indicates that while the executions
of a andb overlapped,b was subsequently aborted.

The definition ofoverlapcan be altered to focus on par-
ticular aspects of concurrent execution. The subsection be-
low uses a particular definition to estimate the number of
issue slots wasted while a given instruction was in flight.
Other useful definitions ofoverlapinclude: one instruction
issued while the other was stalled in the issue queue; one
instruction retired within a fixed number of cycles of the
other; or both instructions were using arithmetic units at
the same time.

5.2.3 Example Metric: Wasted Issue Slots
To pinpoint bottlenecks, we need to identify instructions

with high execution counts, long latencies, and low levels
of useful concurrency. One interesting measure of concur-
rency is the total number of issue slots “wasted” while an
instruction is in progress. To compute this metric, we de-
fine useful overlapfor a sample pair containing an instruc-



tion I to mean that whileI is in progress, the instruction
paired with it in the sample pair issues and subsequently
retires. Here we define “in progress” to mean the time be-
tween whenI is fetched and when it becomes ready to re-
tire; we do not include time spent waiting to retire, since
such delays are purely due to stalls by earlier instructions.

Fix an instructionI. To estimate the number of issue slots
wasted whileI is in progress, we first estimate the number
of issue slots used by instructionsthat exhibit useful overlap
with I. We then estimate the total number of issue slots
available over all executions ofI; the difference between
these two quantities is the number of wasted issue slots.

Assume an average sampling rate of one sample pair ev-
eryS fetched instructions, with the second sample in a pair
chosen uniformly from the window of theW instructions
after the first. LetUF

I
denote the number of samples of

the form hI; I2i such thatI2 exhibits useful overlap with
I; similarly, let UB

I
denote the number of samples of the

form hI1; Ii such thatI1 exhibits useful overlap withI. Let
UI = UF

I
+UB

I
. We estimate the number of useful instruc-

tions that issued whileI was in progress asUIWS.
Now let LI be the sum over all samples involvingI of

the sample latency (in cycles) from fetch to ready-to-retire.
(We include both samples in every pair in this sum.) LetC
be the issue width of the machine,i.e., the number of avail-
able issue slots per cycle (e.g., four per cycle sustainable
on the Alpha 21264). We estimate the total latency over all
executions ofI asLICS=2. Finally, we estimate the total
number of wasted issue slots during all executions ofI as
(LICS=2)� (UIWS).

An important attribute of our approach is that the com-
ponents of a metric such as wasted issue slots can be aggre-
gated incrementally, enabling compact storage during data
collection (as in the DCPI profiling system [2]).
5.2.4 Flexible Support for Concurrency Metrics

Many other concurrency metrics can be estimated in a
similar manner, such as the number of instructions that re-
tired while I was in flight, or the number of instructions
that issued aroundI. Instruction-per-cycle (IPC) levels in
the neighborhood ofI can be measured by counting the
number of pairs in which both instructions retire within a
fixed number of cycles of each other.

More detailed information can also be extracted or aggre-
gated, such as the average utilization of a particular func-
tional unit while I was in a given pipeline stage. Per-
instructiondata may also be used to cluster interesting cases
when aggregating concurrency information. For example,
it may be useful to compare the average concurrency level
when instructionI hits in the cache with the concurrency
level whenI suffers a cache miss. Other interesting aspects
to examine for correlation with concurrency levels include
register dependencies, branch-mispredict stalls, and recent
branch history.

In general, paired sampling provides significant flexibil-
ity, allowing a variety of different metrics to be computed
statistically by sampling the value of any function that can

be expressed asf(I1; I2) over a window ofW instructions.
In contrast to hardware mechanisms designed to measure
a single concurrency metric, this flexibility makes paired
sampling an attractive choice for capturing concurrency in-
formation on complex, out-of-order processors, because it
leaves the door open for the design of new metrics and anal-
ysis techniques.
5.3 Path Profiles

Many compiler optimizations, such as trace schedul-
ing [9] and hot-cold optimization [5], rely on predicting
the heavily executed paths through a program. Frequently
executed paths were conventionally estimated by gathering
basic block or control-flow graph edge counts and then us-
ing these counts to infer the hot paths. More recently, Ball
and Larus [3] and Younget al. [19] proposed more ad-
vanced profiling methods to gather detailed path informa-
tion directly. Although such techniques yield exact path
counts, they require instrumenting the program and are
therefore expensive and intrusive. By capturing informa-
tion about the processor’s global branch history and com-
bining this with static analysis of a program’s control flow
graph (CFG), we can use ProfileMe hardware to perform
statistical profiling of CFG path segments.

Most modern microprocessors store the directions of the
lastN conditional branches in aglobal branch history reg-
isteras part of their branch prediction hardware. By captur-
ing the contents of this register at instruction fetch time as
part of the profile record, we can analyze the CFG by look-
ing backward from a sampled instruction to find the paths
leading up to it that are consistent with the recorded branch-
history information. Because of merges in the CFG, there
may be multiple such consistent paths, because the history
register contains only the directions of the branches and not
their PCs.1

To explore the effectiveness of this analysis in identifying
the true program path given the PC and global branch his-
tory contained in a ProfileMe sample, we traced each of the
programs in theSPECint95 benchmark suite. For each in-
struction in the trace, we computed the value of the branch
history bits at that point, and walked backwards through the
program’s CFG to identify path segments that could have
been executed (i.e., where the particular branch directions
on the path are consistent with the branch directions indi-
cated in the history bits). Ideally, this analysis would iden-
tify just one potential path segment corresponding to the
true execution path.

We compared three different schemes for constructing
paths:Execution counts, which ignores the branch history
bits, using the execution frequencies at each control-flow
merge point to identify the most likely path (trace schedul-
ing compilers use a similar technique to construct traces

1Asynchronous events that cause code with branches to be executed,
such as interrupts or context switches, also pollute the branch history
bits, but these events should be relatively infrequent. Since the goal is to
identify high frequency paths, low frequency paths generated by “noisy”
branch history bits will be largely ignored.



111 3 5 7 9
0

50

100

Id
en

ti
fi

ed
 S

in
g

le
C

o
rr

ec
t 

P
at

h
 (

%
)

Available Branch History (conditional branches)

Intraprocedural 

111 3 5 7 9
0

50

100
History bits+paired sampling
History bits
Execution counts

Interprocedural 

Figure 6: Effectiveness of path reconstruction strategies

from basic-block execution-count profiles);History bits,
which uses the global branch history bits to restrict the set
of paths that are examined; andHistory bits + paired sam-
pling, which augmentsHistory bitsby discarding paths that
do not contain the other PC from a paired sample (with
the intra-pair distance randomly varied between 1 and 50
fetched instructions).

The results are shown in Figure 6. The graphs depict the
accuracy of each of the three different schemes, as a func-
tion of the length of the branch history that was examined
(the history lengths maintained by current generation pro-
cessors typically are between 8 to 12). The vertical axis
shows the success rate of the reconstruction over the en-
tire SPECint95 suite (using traces of 33 to 83 million in-
structions for each benchmark), where success is defined
as a case where only one path is produced by the analy-
sis and the path corresponds to the actual execution path.
The left graph of Figure 6 depicts an intraprocedural exper-
iment, where we finished a path when either the path had
grown backward to include a fixed number of branches cor-
responding to the length of the available branch history or
when the path reached the beginning of the routine (such
paths may not contains as many branches as there are bits
in the available branch history). This graph corresponds to
the kinds of paths that might be used to guide an intrapro-
cedural trace scheduler. The right graph of Figure 6 shows
an interprocedural experiment, where the analysis contin-
ued through the call-sites of a routine when the beginning
of the routine was reached, so that a path was only complete
if it contained a number of branches equal to the length of
the branch history being examined.2

In general, the accuracy of all three methods decreases
as we attempt to infer longer execution path segments,
but using the branch history noticeably improves accuracy,
and paired sampling improves accuracy further. All three
methods are considerably lessaccurate when trying to con-
struct interprocedural paths, but the results still indicate that
branch history bits significantly improve accuracy and that

2Note that in either case, when a procedure call instruction is encoun-
tered during the backwards traversal of the CFG, the analysis continues at
the exits of the called procedure and can eventually return to the calling
procedure if there is sufficient branch history to work backwards through
the entire called routine.
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Figure 7: Identifying Bottlenecks. Instruction latency alone
cannot accurately identify bottlenecks due to out-of-order execu-
tion that masks stalls.

paired sampling further improves accuracy. Further study is
required to show the degree of improvement of code gener-
ation that can be attained using more accurate path profiles.

6 Metrics for Identifying Bottlenecks
When we started this work, we believed that concurrency

information would be needed to identify bottlenecksaccu-
rately; this motivated us to invent paired sampling. Given
that paired sampling imposes some additional costs, one
might ask whether it is really necessary. To explore this
question, we examined whether the total latency of each in-
struction (which can be estimated from individual instruc-
tion samples, without paired sampling) would pinpoint bot-
tlenecks as effectively as would the total number of issue
slots wasted while each instruction was in progress.

Figure 7 shows results from running a simple program
consisting of three separate loops on an Alpha 21264 sim-
ulator. Each instruction in the program is represented by a
symbol (circle, square, or triangle), with a different symbol
for instructions in each of the three separate loops.

In the figure, an instruction’sX coordinate gives the to-
tal latency from fetch to retire-ready experienced by the in-
struction over the execution of the program.3 An instruc-
tion’s Y coordinate gives the total number of issue slots
wasted while the instruction was in progress.

The results in the graph show that latency is not well cor-
related with wasted issue slots, due to varying levels of use-
ful concurrency in the different loops. For example, the in-
struction with the highest latency (rightmost triangle) actu-
ally wastes fewer issue slots than instructions with lower la-
tencies (rightmost circle and squares). However, when con-
currency is fairly constant, latency is highly correlated with
wasted issue slots. In the figure, intra-loop concurrency is

3We use this definition of latency instead of the fetch-to-retire latency
to avoid penalizing instructions that issue around a stalled instruction and
execute quickly but stall waiting to retire because the earlier instruction
is not ready to retire; as with other out-of-order processors, the Alpha
21264 retires instructions in order. This is consistent with our definition of
wasted issue slots, which considers only slots wasted while an instruction
is in progress—i.e., between the time it is fetched and the time it becomes
ready to retire.



similar across instructions, as indicated by the slopes of in-
structions in the different loops. (Though even within indi-
vidual loops, there are some significant differences.)

Data collected for severalSPEC95 benchmarks using
the same simulator indicate that real applications also ex-
hibit varying levels of useful concurrency. We measured
instructions-per-cycle (IPC) levels by counting the number
of instructions that retired during a fixed 30-cycle time win-
dow. The ratio of the maximum and minimum of these win-
dowed IPC levels ranged from 3 to 30 across the various
benchmarks; the standard deviation of the windowed IPC,
weighted by retire count, varied from 20–42% of the mean
for each of the benchmarks, with an overall value of 31%
of the mean.

It is not yet clear what the right metric is for pinpointing
bottlenecks. However, it seems likely that latency alone
will not suffice. As the complexity of processors increases,
instruction-level concurrency will only become harder to
understand; paired sampling and the analyses it supports
will be a useful tool for getting to the root of performance
problems.

7 Potential Optimizations
This section briefly outlines some ways in which infor-

mation collected by ProfileMe could be used in compilers
and operating systems to improve performance. We are cur-
rently exploring these and other directions.

Guiding traditional compiler optimizations : Execu-
tion frequencies, branch mispredict rates, and I-cache miss
rates derived from the samples can be used to guide reg-
ister allocation spilling decisions, inlining decisions, code
generation, and the rearrangement of procedures and basic
blocks to improve I-cache locality.

Improved instruction scheduling: One important as-
pect of instruction scheduling is the insertion of prefetches
and the scheduling of loads and stores. The lack of infor-
mation about actual latencies means that compilers sched-
ule loads and stores assuming that they will hit in the data
cache. Abraham and Rau [1] have experimented with using
average load latencies to drive compiler optimizations, and
more recently Luk and Mowry [13] have explored the use
of path information to identify loads whose cache miss be-
havior is correlated with the execution path taken to reach
the load. ProfileMe provides a cheap way of gathering the
data needed to drive these optimizations.

Cache and TLB hit rate enhancement: Recent studies
have shown that dynamically controlling the operating sys-
tem’s virtual-to-physical mapping policies using informa-
tion about dynamic reference patterns can reduce conflict
misses in large direct-mapped caches [4, 15], lower TLB
miss rates through the creation of superpages [16], and de-
crease the number of remote memory references in NUMA-
based multiprocessors through replication and migration of
pages [17]. All of these schemes gather reference pattern
information through either specialized hardware for gather-

ing cache miss addresses or specialized software schemes
(e.g., flushing the TLB and observing the miss pattern that
results). By capturing the virtual addresses of memory ref-
erences that miss in the cache or TLB, ProfileMe provides
the information needed to guide these policies, without ad-
ditional hardware complexity.

8 Related Work
The work most closely related to ProfileMe is a patent by

Westcott and White, who also proposed a hardware mecha-
nism for instruction-based sampling in an out-of-order ex-
ecution machine [18]. Their system allows profiling of an
instruction when its execution is assigned a particular in-
ternal instruction number instruction identifier (IID ) in the
processor’s pipeline. During its execution, information as-
sociated with the instruction (such as whether it suffered a
data cache miss, and its latency from fetch time to comple-
tion time) is recorded in internal processor registers. When
the instruction retires, the information is logged to a spe-
cific area of memory, and when this memory area fills up,
an interrupt is generated.

There are three key differences between this approach
and ProfileMe. First, Westcott and White allow an instruc-
tion to be profiled only when it is assigned a particular IID.
In contrast, ProfileMe allows any instruction to be sampled;
this is essential for obtaining a random sample of the en-
tire instruction stream. Second, ProfileMe keeps informa-
tion for all sampled instructions and provides a bit in the
profile record indicating the instruction’s retirement status.
This allows software to decide how to handle unretired in-
structions, rather than transparently discarding them in the
hardware. Third, ProfileMe supports paired sampling (with
inter-sample latency information that shows overlap in the
pipeline); this is essential for measuring concurrency levels
during the execution of each instruction. The information
collected by the Westcott and White mechanism does not
provide any support for determining inter-instruction rela-
tionships. ProfileMe also collects additional information
for each sampled instruction, including branch directions,
global branch histories, and branch mispredict information,
all of which are useful for identifying the common paths.

More recently, Horowitzet al. [10] proposed a hardware
mechanism calledinforming loads, in which a memory op-
eration can be followed by a conditional branch operation
that is taken only if the memory operation misses in the
cache. This permits reacting to cache misses at a fine-
grained level, such as by branching to code that is sched-
uled for the case of a cache miss, rather than for the case
of a cache hit. ProfileMe provides information aboutcache
misses, but the information is available only for sampled in-
structions and only after a performance interrupt has been
delivered. At the same time, the information provided by
ProfileMe is more detailed, since it includes other informa-
tion such as the latency incurred in servicing a miss and
other aspects of an instruction’s execution. In many re-
spects, these two designs are complementary: informing



memory operations permit software to gain control very
quickly after a cache miss, while a ProfileMe record con-
tains more detailed information about an instruction’s exe-
cution that can be used for later analysis.

Bershadet al.[4] proposed specialized hardware called a
cache miss lookaside (CML) buffer to identify virtual mem-
ory pages that suffer from a high L2 cache miss rate. Using
the effective addresses and the latency information for loads
and stores captured by ProfileMe, we can provide the same
information as a CML buffer.

Some processors, such as the Intel Pentium, have soft-
ware readable branch target buffers (BTB). Conteet al. [7]
showed how to cheaply estimate a program’s edge execu-
tion frequencies by periodically reading the contents of the
BTB. More recently, Conteet al. [6] proposed additional
hardware called aprofile buffer, which counts the number
of times a branch is taken and not-taken. The branch direc-
tion information in a ProfileMe record yields similar infor-
mation; the branch history bits provide additional informa-
tion about paths.

9 Conclusions
The performance of modern processors is becoming in-

creasingly difficult to understand. The dynamic nature of
speculative and out-of-order execution, coupled with the
complexity of deep memory hierarchies, makes it impossi-
ble to predict program behavior solely through static anal-
ysis. Sampled profile information offers an inexpensive,
unobtrusive way to collect detailed information for identi-
fying bottlenecks and improving performance. However,
this potential cannot be realized using the hardware perfor-
mance counters found in existing processors, which cannot
even accurately attribute events to instructions.

ProfileMe enables the collection of accurate, detailed in-
formation with modest hardware by sampling instructions
instead of events. A complete record of interesting events,
such as cache misses and branch mispredictions, is directly
associated with each profiled instruction. A wealth of addi-
tional information is also collected, including pipeline stage
latencies, branch history data, and effective addresses for
memory operations. By additionally allowing a pair of in-
flight instructions to be simultaneously profiled, a variety
of interesting information can be derived about the inter-
actions between instructions, including useful concurrency
levels and pipeline stage utilizations. Together, these mech-
anisms enable the construction of a powerful, low-overhead
profiling system that offers unprecedented instruction-level
feedback to programmers and optimization tools.
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