
A Case Study of Algorithm Implementation

in Recon�gurable Hardware and Software

Mark Shand

Digital Equipment Corporation, Systems Research Center

130 Lytton Ave, Palo Alto, CA 94301

shand@acm.org

Abstract. We present a case study of implementation of a combinato-

rial search problem in both recon�gurable hardware and software. The

particular problem is the search for approximate solutions of overcon-

strained systems of equations over GF(2). The problem is of practical

interest in cryptanalysis. We consider the e�cient implementation of ex-

haustive search techniques to �nd the best solutions of sets of up to

1000 equations over 30 variables. Best is de�ned to be those variable

assignments that leave the minimum number of equations unsatis�ed.

As we apply various techniques to speed up this computation, we �nd

that the techniques, whether inspired by software or recon�gurable hard-

ware, are applicable to both implementation domains. While recon�g-

urable hardware o�ers greater raw compute power than software, new

microprocessor with wide datapaths and far higher clock speeds do not

lag far behind. Software also bene�ts from faster compilation times which

prove important for some optimizations.

1 Introduction

We present a case study of implementing a combinatorial search problem in both
recon�gurable hardware and software. Although we did not produce running
hardware, the hardware design was taken to a point where both the circuit
size and time required for the search execution could be accurately predicted.
The software implementation was carried through to optimized C code running
on a Digital 64-bit Alpha processor. The particular problem is the search for
approximate solutions of overconstrained systems of equations over GF(2). We
consider only brute force approaches to the search. To the best of our knowledge
the problem is not amenable to non-brute force approaches. The problem size is
held at 1000 equations in 30 variables. Thus the problem state space is of size
230.

The initial goal of this work was to implement this problem on FPGA-based
coprocessors. However, we have found that careful coding on a modern micropro-
cessor with good compiler support can also yield very respectable performance,
such that an FPGA-based solution, albeit faster, may not be worth pursuing.

FPGA-based recon�gurable computing machines are often seen as having
major advantages over traditional computer architectures on problems involving
repetitive computation on small or variable-sized integer data because they can

tailor their datapaths to the problem at hand. However, for many years now,
techniques have been known that use conventional ALU datapaths to process
several small integer variables in parallel, in a SIMD manner ([1], [2]). Certainly
these techniques entail some overhead but the speedups gained more than com-
pensate, particularly on modern CPUs with 64-bit wide integer ALUs [3].

We will show that it is useful to consider implementations in both SIMD-style
software and recon�gurable hardware in parallel. Techniques that emerge more
naturally in one implementation domain can often be fruitfully applied to the
other. We will also point out some drawbacks in current recon�gurable hardware
systems that limit their performance in this and similar problems.

The paper is organized as follows. Section 2 presents the search problem in
mathematical terms. Section 3 describes a basic hardware search engine. Section
4 discusses opportunities for parallelism that speed-up the search with modest
amounts of extra circuitry. Section 5 covers the software implementation. Section
6 compares the hardware and software solutions. Section 7 concludes the paper.

2 Linear Systems over GF(2)

Consider a system of M formulae over N variables:

rj(X) =

0
@N�1L

i=0

wijxi

1
A� vj ; 0 � j < M (1)

Arithmetic is performed over the Galois Field GF(2). In less mathematical
terms this means values are represented in one bit and all computations are
modulo 2. Addition and multiplication are the familiar Boolean operations of
exclusive-or and and respectively.

For a given set of wij 's and vj 's, if M > N we cannot guarantee that an
assignment to each xi can be found such that each formula in (1) is equal to
zero 8j : 0 � j < M . Nevertheless, we can de�ne a �gure of merit, R, which can
be used to rank the di�erent possible assignments.

R(X) =

M�1X
j=0

rj(X) (2)

R(X) counts the number of formulae that do not evaluate to zero for a given
assignment to X . We seek those assignments of X that minimize R(X). Note
that the arithmetic used to compute rj(X) is over GF(2) whereas that used to
combine the single bit rj(X)'s to form R(X) is over the integers.

3 Basic Hardware Search Engine

In this section, we consider the hardware implementation of search engines that
can handle up to 1000 equations (M � 1000) in 30 variables (N � 30). This

implies 230 possible assignments of X that must be evaluated. We will consider
techniques to �nd the B best ranked X , where B is a small integer, say 16.

For quantitative evaluation of our proposed implementation, we assume the
use of con�gurable hardware based on Xilinx 3000 series FPGAs [4]. These con-
tain a regular two-dimensional mesh of programmable cells called con�gurable
logic blocks (CLBs) in Xilinx terminology. Each CLB contains two registers and
two lookup tables (LUTs) that allow it to implement either two 4-input combi-
natorial logic functions or one 5-input combinatorial logic functions.

3.1 Principal Constraints

In this section we consider the search order. We �nd that the enumeration of X
should be con�ned to the outer loop to prevent an excess of intermediate results,
and the inner loop should be at least parallelized to the level of theM equations
to allow the equation parameters to be wired into the processing elements.

The rank of a particular X , R(X), is the sum of the results of each equation
rj(X). We assume that the computation proceeds by enumerating each possible
X and maintaining a sorted list of the best R(X) so far encountered. It is
impractical to proceed in a di�erent order, for instance evaluating for successive
j, rj(X) for all possible X since this would require the partially accumulated
ranks to be stored (and repeatedly updated) of which there are one billion.

The computation can be performed most e�ciently if we have enough hard-
ware to hold locally to each processing element in a distributed store, the wij
coe�cients needed for computation of each rj(X). If enough local store is not
available we are likely to be required to reload these coe�cients from some cen-
tral store. The bandwidth required for such reloading would create a bottleneck.

3.2 Gray Codes

In principle, a simple counter could be used to enumerate X . Considerable ad-
vantages accrue if instead we use a Gray code. A Gray code ensures that only one
bit in the representation of X changes for each new X . A Gray-coded counter,
G, may be derived from a conventional counter, C, by setting gi = ci � ci+1.

Suppose that the ith bit of X changes, x0i = :xi. There are two cases to
consider:

if wij = 0 then wijx
0

i = wijxi = 0
=) rj(X

0) = rj(X)
if wij = 1 then wijx

0

i = x0i = :xi = :wijxi
=) rj(X

0) = :rj(X)

Note that the value of rj(X
0) is independent of the value of xi and depends

solely on the value of rj(X) and of wij . Thus the processing element that com-
putes the value of rj(X

0) needs to know only the value of rj(X) and which bit
i changes in going from X to X 0.

5 1

i w ir (X)ij

Fig. 1. Formula Evaluation Cell

3.3 Formula Evaluation Cell

The Figure 1 shows the hardware for evaluating successive values for one rj(X).

The �ve-bit index i is broadcast from a central Gray-coded enumerator which
is shared amongst the evaluation circuits for all formulae. The Xilinx implemen-
tation of this circuit requires one and a half CLBs; one for the LUT that decodes
i into wij and a half for an exclusive-or and a register that holds the current
value of rj(X). Parallel evaluation of the 1000 formulae requires 1500 CLBs.

3.4 Population Count

The formula evaluations produce 1000 one-bit values which are added together to
yield R(X). The binary representation of this value needs 10 bits. The operation
to produce it is a population count. We consider an implementation based on a
tree of full-adders. A full-adder takes three values a, b and c of weight 2k and
produces outputs r and s of weights 2k+1 and 2k respectively, where a+ b+ c =
2r + s. A portion of the required full-adder tree is shown in Figure 2.

The population count circuit requires approximately 1000 full-adders. The
actual �gure will be slightly higher than this due to boundary cases which cause
some full-adder inputs to be tied to zero. In a Xilinx implementation this will
consume one CLB per full-adder.

3.5 Implementation on DECPeRLe-1

DECPeRLe-1 [5] is an FPGA-based coprocessor built at Digital's Paris Research
Laboratory (PRL) in 1992. Its central processing resource is a 4 � 4 matrix of
Xilinx 3090-100 FPGAs containing a total of over 5000 CLBs. The formula
evaluation and population count circuitry consumes roughly half of these. The
remaining CLBs provide plenty of room to implement the comparators and reg-
isters to track the current B best ranked assignments of X .

Given the regularity and the ample opportunities for pipelining, a clock speed
of 40MHz is not unreasonable. The proposed design evaluates one assignment of
X per cycle and at 40MHz requires 25 seconds to enumerate the 230 states.

We also considered implementation of this computation on the newer FPGA-
based coprocessors (TURBOchannel Pamette and PCI Pamette) built by Digital
and described in detail in [6] and [7] . These boards have a 2 � 2 matrix of

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Weight 1

Weight 2

Weight 1
Inputs from
Formula
Evaluation
Cells

+

Weight 4

Weight 8

+

+

0

Weight 16

Fig. 2. Population Count Using a Tree of Full-Adders

Xilinx 4010 FPGAs. With only 1600 CLBs, these boards are not large enough to
contain the formula evaluation and population count circuitry for the problem
size considered.

Surprisingly, we could �nd no way to use these smaller boards to accelerate
the computation over the pure software implementations discussed in section 5.
Although the boards provide a powerful computational resource, they can only
implement part of the computation and the cost of communicating between them
and other parts of the system outweighs any processing advantages they can give.

4 Opportunities for Parallelism

We will consider two classes of methods to parallelize the enumeration of X :
methods that make no particular assumptions about the formulae being treated;
and methods that depend on wij and require preprocessing of the formulae. The
distinction is important because in case two preprocessing may dominate the

time taken for the search, particularly if it changes the wiring to be downloaded
into the FPGA-based coprocessor. In the Xilinx technology, logic changes in
LUTs can be trivially merged into a precompiled design, whereas wiring changes
involve a circuit compilation process that takes, at best, several minutes to run.
A software analogue is changing initialized data versus recompiling modi�ed
source code. Note also that some of our methods make assumptions about the
statistical distribution of wij coe�cients that may not hold in all contexts where
solutions to these types of equations are sought.

4.1 Sharing Formula Evaluation Cells

As a �rst step, let us remove x0 from the enumeration by computing in parallel
the two cases x0 = 0 and x0 = 1. This e�ectively doubles the number of formulae
because we must now evaluate formulae (3) and (4) in each cycle.

w0j � 0�

0
@N�1L

i=1

wijxi

1
A� vj (3)

w0j � 1�

0
@N�1L

i=1

wijxi

1
A� vj (4)

However, observe that (4) is either identical to or the inverse of (3), depending
on the value of w0j . This sharing is exploited by the circuit in Figure 3. In the
Xilinx technology, the exclusive-or that computes ri(X+1) may be merged into
the logic in the population count for x0 = 1. Thus, this circuit enumerates two
states per cycle, double the speed of our previous circuit, at the cost of a second
population count circuit, a 1.4 times increase in CLBs.

Population
count
for x = 05 1

i w ir (X)
ij

i

w0j

r (X+1)

0

0

Population
count
for x = 1

Fig. 3. Sharing Formula Evaluation Cells

We can apply this technique to x1 and successive variables, but the relative
gain decreases since the size of the total circuit quickly becomes dominated by
the population count circuits. In any case, evaluating all possible values x0 and
x1 in a single cycle by this method requires four population count circuits which
with the formula evaluation circuit exceeds the CLB resources of DECPeRLe-1.

4.2 Partitioning on wij Values in Hardware

Much greater savings can be obtained by sharing population count circuits. This
is possible if we are permitted to partition the formulae based on the wij values.

Suppose that in K of the M formulae w0j = 1. Without loss of generality,
let us sort the formulae so that these correspond to j : 0 � j < K

rj(X � 1) = w0j � rj(X)

=

�
1� rj(X) if j < K

rj(X) if j � K

(5)

R(X) =

0
@K�1X

j=0

rj(X)

1
A+

0
@M�1X
j=K

rj(X)

1
A (6)

R(X � 1) = K �

0
@K�1X

j=0

rj(X)

1
A+

0
@M�1X
j=K

rj(X)

1
A (7)

Equations (6) and (7) show how the bulk of the population count circuitry
may be shared. A circuit implementing this sharing appears in Figure 4.

K

0

K−1

K

M−1

−
+

+

R(X)

R(X+1)

Formula
Evaluation

Population
Count

0jw = 0

0jw = 1

Fig. 4. Sharing Population Count Circuitry

This technique may be applied recursively to w1j , w2j , etc. The overhead of
extra adders at the top of the population count tree roughly doubles for each
successive application, but remains less than the cost of the population count
tree until applied six or seven times. This corresponds to a speed-up of 64 or
128 over our original DECPeRLe-1 execution time estimate of 25 seconds. The
chief di�culty posed by the technique is that the preprocessing of the wij values
may require a rewiring of the circuit. The preprocessing overhead is far more
manageable in software which is where we have put most implementation e�ort.

5 Software Implementation

Software implementation has concentrated on Digital's Alpha AXP 21064, with
much attention given to maximally exploiting the 64-bit integer datapath of this
processor[8]. Measurements on a number of Alpha platforms indicate that the
critical parts of the algorithm �t entirely in on-chip caches so the only important
parameter in determining speed is CPU clock rate.

5.1 Formula Evaluation

In section 3.1 we argued that in hardware the wij coe�cients needed to be held
locally to the processing elements to avoid a performance penalty due to their
repeated reloading. Likewise in software these coe�cients need to be rapidly
loaded to the ALU. The coe�cients of 1000 formulae in 30 variables occupy 4
kilobytes and �t comfortably in the 8 kilobyte �rst level data cache of the 21064.

The coe�cients are packed such that adjacent bits share a common i index.
A 1000-bit vector represents the current value of the formulae. A Gray-coded
counter selects the index of the variable to toggle and the corresponding 1000-bit
coe�cient vector is exclusive-ored with the current value. This requires 32 loads,
16 xors and 16 stores which can execute in 48 cycles on the 21064.

5.2 Population Count

Population count is designed to exploit the full 64-bit wordlength of the Alpha
ALU. Mask and shift operations extract odd and even bits to create 64-bit words
containing 32 2-bit �elds, the contents of which are either 0 or 1. Three such
�elds can be added together without danger of overow into the next �eld. These
adds are performed using the 64-bit register-to-register add, thus 32 �elds are
processed per instruction. 16 words are required to hold the 1000 1-bit inputs.
When these are combined into 2-bit �elds, of value 0 to 3, only 11 words are
required since only 334 (d1000=3e) such �elds are needed. A new sequence of
mask and shift operations extracts the 2-bit �elds into 4-bit zero-padded �elds.
Now 5 such �elds can be added without fear of overow|the maximum value
in a 2-bit �eld is 3 and 5� 3 = 15 which can be represented in 4 bits. There are
66 (d1000=15e) 4-bit �elds, now requiring only 5 words[1]. The process continues
until a single �eld containing the 10-bit population count remains. Portions of the
code are reproduced in Figure 5. This code requires approximately 170 cycles
on the 21064. On a 200MHz 21064 it takes 25 minutes to enumerate the 230

possible assignments of X and record the 16 best.

5.3 Partioning on wij Values in Software

Naturally, the ideas of section 4.2 can be applied to software. Indeed re�nements
are possible. The subtraction from K can be replaced by a subtraction from
2n � 1 followed by a post correction. The subtraction from 2n � 1 can be im-
plemented as a negation over n bits, and the post correction can be folded into

m0 = 0x5555555555555555L; /* sum single bits to pairs */

d0 = (v[0] & m0) + ((v[0] >> 1) & m0) + (v[1] & m0);

d1 = ((v[1] >> 1) & m0) + (v[2] & m0) + ((v[2] >> 1) & m0);

d2 = (v[3] & m0) + ((v[3] >> 1) & m0) + (v[4] & m0);

...

m1 = 0x3333333333333333L; /* sum double bits to nibbles */

n0 = (d0 & m1) + ((d0 >> 2) & m1)

+ (d1 & m1) + ((d1 >> 2) & m1) + (d2 & m1);

n1 = ((d2 >> 2) & m1) + (d3 & m1)

+ ((d3 >> 2) & m1) + (d4 & m1) + ((d4 >> 2) & m1);

...

m2 = 0x0f0f0f0f0f0f0f0fL; /* sum nibbles to bytes */

B0 = (n0 & m2) + ((n0 >> 4) & m2) + (n1 & m2) + ((n1 >> 4) & m2)

+ (n2 & m2) + ((n2 >> 4) & m2) + (n3 & m2) + ((n3 >> 4) & m2)

+ (n4 & m2) + ((n4 >> 4) & m2);

m3 = 0x00ff00ff00ff00ffL; /* sum bytes to shorts */

...

Fig. 5. C Code Fragment of Population Count Algorithm

the comparison against current best ranked assignments. These re�nements, in-
vented for the software implementation, can can in turn be applied back to the
hardware implementation yielding simpli�cations in that domain too.

We have implemented six levels of partitioning, which implies that we evalu-
ate 64 states on each iteration. Our current code assumes that wij coe�cients are
distributed such that the 64 partitions are of almost equal size1. The population
count code depends on this. The assumption can be removed either by padding
the 1000 formulae with extra dummy formulae to even out the distribution, or
by generating and compiling population count code tailored to the particular
distribution found in the input formulae.

Extending beyond six levels of partitioning proves di�cult to implement and
is unlikely to yield an appreciable performance improvement.

5.4 Comparision and Update

With six levels of partitioning we �nd that the comparison of new ranks against
the current best encountered ranks needs attention. Otherwise, time spent in this
code can dominate the computation. The 64 new ranks are returned from the
population count routine packed into 16-bit �elds. Each time the best encoun-
tered ranks are updated, we precompute 64 packed 16-bit �elds that contain the
value of the worst of the current best ranks combined with the post correction for
the corresponding new rank. We can now perform 64-bit wordwise subtraction
and extract the high bits of the 16-bit �elds. Any non-zero high bit represents
a borrow in the subtraction which triggers a detailed comparison of each of the
64 new ranks. The detailed comparison is slow but rare.

1 In terms of Figure 4, K �M=2, and so on for each subpartition.

5.5 Software Performance

Test were performed under DEC OSF/1 V3.0. The C compiler switches -O2

-migrate were used, enabling the GEM compiler [9]. They use six levels of par-
titioning. Times are for a series of 21064-based Alpha systems. Despite widely
di�ering memory systems the run time is almost a linear function of CPU clock
speed, indicating that all critical parts of the algorithm �t in on chip caches.
These are uniprocessor times. The computation can be parallelized trivially
across multiple CPUs by dividing the search space across the processors.

Model Clock rate CPU time

DEC 3000 M400 133MHz 75.64s
DEC 3000 M300 150MHz 69.45s
DEC 2000 300 150MHz 68.52s
DEC 3000 M500 150MHz 67.33s

AlphaStation 200 4/166 166MHz 60.60s
AlphaServer 2100 4/190 190MHz 52.10s

DEC 3000 M800 200MHz 49.91s
DEC 3000 M900 275MHz 36.88s

6 Comparison of Hardware and Software

To make a technologically fair comparison of hardware and software we should
concentrate on the 150MHz Alphas which are contempraneous with the DECPeRLe-
1 hardware. We acknowledge that the silicon process used in the 150MHz alpha
is more advanced than the process used in the FPGAs on DECPeRLe-1, however
we argue that FPGA processes have consistently lagged those used on leading
edge processors so the comparison is fair in terms of what can be expected to be
commercially avaliable at any point in time. Current FPGAs can be clocked at
probably two or three times the speed of DECPeRLe-1 and could form the basis
of machines with larger logic matrices than DECPeRLe-1 thus allowing greater
parallelism. On the other hand CPUs have gotten faster too: software, with six
levels of partitioning, takes 17 seconds on a 400MHz Alpha 21164.

Platform Technique Running time

Alpha 21064 150MHz No partitioning 2039s
DECPeRLe-1 (estimate) No partitioning 25s
Alpha 21064 150MHz Six levels of partitioning 67.33s

Using our simple algorithm of section 3 the recon�gurable machine is 60-100
times faster than a 150 MHz Alpha. However algorithmic techniques let us speed-
up the software to within a factor of two of the initial hardware speed. These
same algorithmic techniques can be applied in hardware provided that a data
dependent circuit recompilation is not required. If so, the recon�gurable machine
can maintain a healthy lead. If however, a data dependent circuit recompilation
is required the advantage of the recon�guarble machine is lost. Whereas software

compiles in seconds, traditional FPGAs require tens of minutes if not hours. In
the combinatorial problem we are considering here, once a particular input data
set is solved, a circuit dedicated to that data set is of no further interest.

7 Conclusions

As we apply various techniques to speed up this computation, we �nd that the
techniques, whether inspired by the SIMD-style software or the recon�gurable
hardware, are applicable to both implementation domains. There is important
synergy in considering both implementation domains simultaneously.

Many of the constraints of one domain have analogues in the other. However,
the analogues are not exact: some constraints that are minor for software become
major drawbacks in recon�gurable hardware systems. Recon�gurable hardware
o�ers more raw compute power than current microprocessors but certain op-
erations, such as circuit compilation, are much more expensive than software
compilation, limiting the scope of some of our techniques. Both technologies ex-
hibit sharp degradations in performance as certain problem size thresholds are
crossed: for instance exceeding the total logic resources in recon�gurable hard-
ware, or the size of the �rst level cache in software. However, the degradations
are more catastrophic in recon�gurable hardware. These drawbacks suggest areas
for future work in the design of recon�gurable hardware systems.

Acknowledgements. I thank F. Reblewski of MetaSyst�emes for providing this
problem and suggesting the use of Gray Codes for state enumeration.

References

1. M. Beeler, R. W. Gosper, R. Schroeppel, HAKMEM MIT AI Lab Memo 239, 29

Feb. 1972

2. Leslie Lamport, Multiple byte Processing with Full-Word Instructions, Communi-

cations of the ACM, August 1975, Volume 18, Number 8.

3. Mark Shand, Wang Wei, G�oran B. Scharmer, A 3.8ms latency correlation tracker

for active mirror control based on a recon�gurable interface to a standard worksta-

tion, Photonics East Symposium '95. SPIE, October 1995. SPIE Volume 2607.

4. Xilinx, Inc., The Programmable Gate Array Data Book, Xilinx, 2100 Logic Drive,

San Jose, CA 95124, USA, 1994.

5. J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, P. Boucard, Programmable

Active Memories: Recon�gurable Systems Come of Age, IEEE Transactions on

VLSI Systems, March 1996.

6. M. Shand, Flexible Image Acquisition using Recon�gurable Hardware, IEEE Work-

shop on FPGAs for Custom Computing Machines, April 19-21 1995.

7. http://www.research.digital.com/SRC/pamette

8. Richard L. Sites (editor), Alpha Architecture Reference Manual, Digital Press, 1992.

9. David S. Blickstein, Peter W. Craig, Caroline S. Davidson, R. Neil Faiman Jr.,

Kent D. Glossop, Richard B. Grove, Steven O. Hobbs, William B. Noyce, The

GEM Optimizing Compiler System, Digital Technical Journal, Volume 4, Number

4, 1992.

This article was processed using the LATEX macro package with LLNCS style

