
Systems Performance Measurement on PCI Pamette

Laurent Moll
Pôle Universitaire Léonard de Vinci

La Défense, France.
Laurent.Moll@devinci.fr

Mark Shand
Digital Equipment Corporation, Systems Research Center

Palo Alto, California, USA.
shand@acm.org

Abstract

We describe the use of a reconfigurable board to obtain
information on the performance that can be expected on
particular systems. Our goal is to use the reconfigurability
of the board’s interface to test a system and discover not
only the maximum bandwidth and best latency attainable,
but also the way to reliably achieve these figures.

The board we present uses the now widespread PCI bus.
PCI is sufficiently complex, and its implementations suf-
ficiently varied, that it is impossible to guess the perfor-
mance that can be obtained by a specific board on a spe-
cific computer with the only technical characteristics of the
two in hand. We observe astonishing performance differ-
ences between almost identical systems and comparable
figures between small PCs and big servers.

Our performance tests can be an end in themselves,
however they also serve to demonstrate the value of a re-
configurable bus interface. With the same board, we can
test and choose a system, make informed architectural de-
cisions on the hardware/software interface, and then finely
tune the bus interface to get maximum and predictable fig-
ures in the running application.

1 Introduction

PCI Pamette [1] is a reconfigurable computing device
which uses the PCI bus to connect to its host processor.
PCI Pamette follows strongly in the tradition of the PAM
Project [2]: the reconfigurable logic is seen as acopro-
cessordesigned to work in harmony with the host proces-
sor. Applications seek to leverage the maximum from the
presence of a modern microprocessor replete with power-
ful graphics, fast disk subsystems and high-speed network-

ing as is found on a modern workstation or high-end PC.
As such, the performance of many applications depends
critically on the performance of the host link.

We approached PCI with some trepidation. Our pre-
vious experience had been with systems based on Digi-
tal’s TURBOchannel, a simple high performance system
expansion bus that, as early as 1991, had enabled mem-
bers of the PAM Project at Digital’s Paris Research Lab-
oratory to build coprocessors with DMA performance of
80-90 MB/s [3]. Although PCI promises theoretical peak
performance of 133 MB/s, it is clear from the most cursory
reading of the PCI Specification [4] that PCI is a far more
complex bus than TURBOchannel and that it allows many
more opportunities for implementations to introduce wait-
states and other performance degrading artifacts. The first
PCI chipsets confirmed our fears with many developers re-
porting never seeing performance above 30 MB/s. Never-
theless PCI has rapidly achieved total market dominance as
the first tier expansion bus in all PC and Macintosh compat-
ibles, many workstations and even some high-end servers,
so PCI is the bus of choice for performance oriented recon-
figurable coprocessors that seek to use a standard bus.

Apart from high-end graphics, few current devices can
actually use 133 MB/s of throughput; reconfigurable co-
processors however are an exception. Therefore a signifi-
cant part of the design effort in PCI Pamette has gone into
understanding PCI performance: what is achievable, and
how to achieve it. From the outset, system exercising and
measurement were seen as important applications of PCI
Pamette. We had already used reconfigurable technology
to measure TURBOchannel performance, and understood
its value [3]. The complexity of PCI and disappointing
early performance figures obtained by others made repeat-
ing these sorts of measurements on PCI even more com-
pelling.



PCI has an aggressive electrical specification making it
challenging to implement in anything but a custom chip.
However, we quickly ruled out the use of a commercial
PCI interface chip; all were flawed in one way or another
and seemed unlikely to offer reasonable performance. In
any case PCI Pamette is a 64-bit PCI board and no com-
mercial interface is 64-bit. Thus the logic of PCI Pamette
is implemented entirely from FPGAs,including the PCI
interface, and all can be reconfigured in circuit.

This paper describes a collection of simple designs im-
plemented on PCI Pamette, which are used to gather per-
formance figures. For each of these designs, sample re-
sults are provided, giving an idea of the sorts of results ob-
tainable, and how they may vary. The platforms used are
Intel-based PC compatible systems running Windows NT,
and Alpha-based workstations and servers running Digi-
tal Unix and Windows NT. The paper’s contributions are
three-fold:

� Measurement and bus exercising is an application do-
main in its own right; we show the utility of recon-
figurable computers in this domain. This application
domain has the added utility that applications in other
domains can easily reuse the PCI interfaces developed
in the bus exercising applications.

� The results themselves are of use to architects of other
PCI-based reconfigurable systems.

� Our results can also help the design and test of con-
ventional fixed circuit PCI interfaces and thus our
work represents an instance of emulation by FPGAs.
Our use of an easily reconfigured FPGA based sys-
tem makes it easy to embed the instrumentation cir-
cuitry for measurement in the same reconfigurable
board that is performing the emulation.

In section 2, we present a simple application that spies
on PCI bus traffic. As it is fully passive, it is not system
intrusive and can be used to monitor full PCI transactions
like an in-system logic analyzer.

In section 3, we use a fully programmable PCI mas-
ter/slave engine, which, associated with section 2’s passive
spy, allows the user to test the maximum bandwidth of his
system in each of its operating modes, and to tune the pa-
rameters of his application to get the best from his system.
This setup can also be used to test prototype boards and
PCI-to-PCI bridges.

In section 4, we describe an enhanced and open version
of the passive spy that can be adapted to specific needs. We
offer two examples.

In section 5, we show a simple setup that tests the inter-
rupt latency figures of a specific Machine/Operating Sys-
tem pair. These figures are particularly interesting for real-
time applications.

2 Simple passive bus spy

2.1 PCI basics

The PCI bus is designed to be versatile, adapted to high-
end servers as well small PCs. As such, it does not make
any assumptions on a device’s ability to sustain a continu-
ous transaction for any number of cycles. We can observe
on the same bus a very long transaction with a 32-bit word
transmitted every cycle, followed by a single byte transac-
tion lasting 30 cycles.

Here are some details of the PCI bus, which will help to
better understand the rest of the article:

� All data transfers are broken intotransactions. Each
transaction is between aninitiator and atarget. The
host bridge (processor to PCI interface) is just one of
the devices on the bus. Each device responds to a cer-
tain (or to multiple)address spaceassigned individu-
ally at boot time.

� The initiatorrequestsa transaction, and when it gets
agrant from thearbiter, it sends an address andcom-
mand(transaction type) and waits for some target to
respond. The data transfer can then happen in either
direction (from the initiator to the target or from the
target to the initiator), depending on the command
that was issued.

� At any cycle, either the target or the initiator can de-
clare they are not ready to accept or deliver data, thus
introducing a wait cycle.

� After any amount of data already transferred, both the
initiator and the target can decide to stop the transac-
tion. In particular, the target can decide toretry the
transaction before any data has been transferred, be-
cause it is temporarily unavailable, or todisconnect
the transaction after some data has been transferred
when it will not be ready again within PCI’s latency
requirements.

� PCI clock frequency can vary dynamically from DC
to 33 MHz. However most system keep the clock
frequency around 33 MHz. All our calculations and
measurements assume a 33 MHz clock.

From a bandwidth perspective, the best case occurs
when the transfer between the target and the initiator starts
quickly after the address cycle, data words are sent every
cycle for a long time, and the master stops the transaction
when it has transferred all the data it wished to transfer.
The result is a near optimal use of the bus bandwidth, al-
lowing up to 130 MB/s on a 32-bit PCI and 260 MB/s on



a 64-bit PCI. Sometimes the maximum length of a trans-
fer needs to be limited to reduce overall latency seen on
the bus, but in reality PCI performance is most likely to be
limited because devices exhibit one or more of the follow-
ing features:

� They are often not ready andretry frequently (e.g.
PCI-to-ISA bridges).

� They have a very long latency between the address
cycle and the initial data cycle (this is especially true
for host bridges when required to read host memory).

� They can not send or receive data on every cycle.

� They always stop a transaction after a (small) fixed
amount of data has been transferred.

When two devices have to exchange data, these features
combine and the result can be most disappointing. More-
over, many devices have bugs, and are configured to oper-
ate in degraded performance modes, where, although they
actually function correctly, performance is very poor. On
most systems, PCI board performance ranges from 5 to 30
MB/s. On the same systems, it is usually not hard to get 80
to 120 MB/s with a well designed and specifically tuned
PCI interface.

2.2 Implementation of the spy

LCA2

LCA3

1

166MHz

PCI

64

30

PCI Pamette

30

32
PCILCA

LCA1

16

16

LCA0 SRAM0

SRAM1

Addr/data

Control
33MHz

Figure 1: Simple spy

The passive spy implemented on PCI Pamette uses the
straightforward design shown in figure 1. PCI Pamette
consists of a 2�2 matrix of FPGAs called theuser area
and a fifth FPGA called thePcilca. Since PCI Pamette is
based on Xilinx FPGAs, we use the terms FPGA and LCA
interchangeably is describing the board. The PCI interface
chip has a special promiscuous mode where all the PCI
control signals (30 seen by the board, including all the in-
terrupts and 64-bit PCI control signals) and 32 bits of the

address/data bus (out of 32 or 64 depending on the mother-
board) are sent to the user area (multiplexed in time: 32 bits
@ 66 MHz). In the user LCAs, a simple counter counter
increments the external SRAMs address lines, while data
is sent to the data lines (there are two banks of 64k�

16, 12 ns SRAMs, which provide the necessary 32 bits @
66 MHz bandwidth). To read the data, we just download
a new configuration containing a standard SRAM-reading
design, and analyze the results.

2.3 Use of the spy

To use the spy to look at transactions on the PCI, we
simply prefix the code that starts these transactions by a
write to the board which triggers data collection. After a
short delay, we can download the SRAM-reading design
to see what has happened. This simple mode can be used
for instance to watch the types and lengths of transactions
issued by a graphics or a SCSI card.

3 Traffic generation and performance anal-
ysis

3.1 PIO slave and DMA engine

To actually obtain the maximum performance and tune
PCI transactions, we have to add a traffic generation
scheme to the simple passive spy. We have focused on two
kinds of transactions:

� Programmed Input/Outputs (or PIOs) are initiated by
software. They consist of reading or writing values
to/from a board. In this case, the host bridge is the
initiator and the board is the target.

� Direct Memory Accesses (or DMAs) are initiated by
the board and transfer data to/from host memory. The
board is the initiator and the host bridge is the target.

.
PIOs are generated by a simple piece of code that ac-

cesses the board, and of course theslavepart of the board
that responds to the requests. For these tests the interface
has been programmed so that the response of the slave to
64-bit requests depends on the target address used. Thus,
we can choose 32-bit or 64-bit transactions directly from
software (on 64-bit PCI systems only of course).

DMA traffic is generated by a fullPCI masterwhich
has been programmed into the Pcilca. Contrary to most
DMA engines, this one must be extensively programmable,
so that we can test many PCI transaction parameters. The
test DMA engine in PCI Pamette is capable of generating
transactions with the following attributes:



� Full set of PCI command codes: memory or legacy
I/Os, read line, read multiple, write and invalidate. . . ).

� Total amount of data to be transferred.

� Size of the bursts (after which the engine stops a trans-
action, if the target has not already done so).

� Number of idle cycles between transactions.

� Use of 64-bit requests.

Using the passive spy of the preceding section, we
can generate traffic and read the full transaction log. We
can then very precisely analyze the results, finding pat-
terns, trying to tune the parameters to achieve better per-
formance.

3.2 Single-board performance tests

As the passive spy does not use any resources in the
PCI interface LCA, we can fit both the PCI master and tar-
get engine and the spy on the same board. We can then use
an automated program which can test all the characteristics
of a system by generating all kinds of traffic and modify-
ing parameters. Figure 2 shows examples of performance
measured on some Alpha-based workstations and servers
and Intel-based PC compatibles.

Four kinds of performance figures are interesting:

3.2.1 DMA Write (board writes to memory)

This is usually the most impressive figure. As address
and data are sent in same the direction, latency is usu-
ally small. For memory systems which are wide enough,
the asymptotic bandwidths of 130 MB/s or 260 MB/s on
64-bit PCI can be reached. Nevertheless, there can be be-
haviors which degrade performance considerably. Older
host bridges often disconnect any transaction at cacheline
or doublecachelineboundaries; in such cases, the board’s
interface should be programmed to do bursts of this size ex-
actly. Sometimes a small number of idle cycles should be
inserted before next request for the bus, to ensure that the
host bridge is ready in time for the next burst and will not
retry the transaction. Some host bridges allow only the PCI
memory write and invalidatecommand to perform long
bursts and will disconnect ordinarymemory writecom-
mands. Other more common problems include disconnects
or wait states inserted every 4th or 8th data word because
the memory system is saturated, or the internal buffers of
the host bridge are full. On an AlphaStation 200 or 400,
the host bridge disconnects after 16 data words, and we
can reach 107 MB/s. On a simple PC with a80430FX
(aka. Triton I), we can get 124 MB/s. On an AlphaServer

4100 (64-bit PCI), we can get 260 MB/s. On an AlphaSta-
tion 500, though, 64-bit DMA Writes are only marginally
faster than 32-bit mode. The designers of this workstation
made an explicit decision that�100 MB/s was more than
adequate for disk and network I/O [5], and focused most
effort on support for graphics whose primary bandwidth
requirement is from the host to the PCI option (DMA Read
and PIO Write).

3.2.2 DMA Read (board reads from memory)

This kind of transaction resembles DMA Write except that,
as it involves a roundtrip to the memory system before
first data can be returned, the latency to initial data can
be very large. On high-end servers like the AlphaServer
8400, where the memory is in a different subsystem to the
PCI host bridge, the latency is many tens of PCI cycles,
even though the bandwidth of the memory backplane is 2
GB/s. On our Pentium Pro 200, the memory latency av-
eraged 35 cycles, with values up to 60 (in spite of the fact
that version 2.1 of PCI specification states that this value
should never be greater than 32). On DMA Read, it is espe-
cially critical to do long bursts, to amortize the cost of the
memory latency. The PCI protocol provides three differ-
ent flavors of memory read command which provide hints
to the target of how long a transaction is likely to be that
it can optimize the prefetch of subsequent data. On most
platforms that support long bursts it is essential to use these
hints to sustain a long burst. Platforms systematically dis-
connecting transactions like the AlphaStation 200 or 400
can reach only 67 MB/s, while standard long bursting plat-
forms reach 120 MB/s to more than 200 MB/s for 64-bit
PCI machines.

3.2.3 PIO Write (processor writes to board)

There is little one can do to optimize the PIO Write per-
formance on the target side, except respond quickly and
accept data every cycle. PIO Write performance depends
mainly on the ability of the processor and the host bridge
to aggregate writes. A program can only issue 32 or 64
bit writes with a single machine instruction. If the writes
are sequential or on the same region, the processor and
the host bridge can aggregate the writes in order to issue
a longer burst, thus amortizing the overhead of starting a
PCI transaction. Alpha and Intel platforms are very dif-
ferent in this respect. On Alpha, the writes can be ag-
gregated, reordered and even merged, and the processor
may delay a write for as much as 100 CPU cycles in the
hope that other writes will be performed to nearby loca-
tions and these may be aggregated with the pending write
before it is sent off chip. The result of this policy is that
the ordering of writes must be explicitly managed by the



Platform CPU & Host bridge DMA Write DMA Read PIO Write PIO Read
AlphaServer 4100 5/300 21164/300 w/ custom bridge 130 (260) 120 (240) 83 (122) 47 (58)
AlphaStation 500/400 21164/400 w/ 21171 90 (95) 126 (200) 88 (132) 47 (58)
AlphaStation 500/333 21164/333 w/ 21171 82 (88) 130 (200) 96 (151) 54 (69)
AlphaStation 200 4/166 21064/166 w/ 21071 107 68 81 24
HP Vectra XU 6/200 Pentium Pro 200 w/ 80450KX 129 110 19 7
Digital Celebris GL 6200 Pentium Pro 200 w/ 80440FX 130 125 29 10
Digital Celebris GL 5133 Pentium 133 w/ 80430FX 124 130 65 15
Digital Proris XL Server 590 Pentium 90 w/ 80430NX 68 52 54 13

(All figures in MB/s. Where available, 64-bit PCI performance in parenthesis).

Figure 2: Maximum sustained bandwidth on selected systems.

machine code when order is significant (for instance in the
face of order-dependent side-effects of writes to hardware
devices), but performance can be fairly high. On Intel plat-
forms, the writes to a PCI board are strongly ordered, never
merged, and aggregated only if they are perfectly sequen-
tial and sent within a very short time period: on a Pentium
133, a standard Cfor loop writing to a board can only
provoke 8 or 12 byte bursts whereas tight assembly code
can lead to 16 byte bursts. PIO performance on Intel ma-
chines is usually fairly poor if no special optimization is
used. On most 80450KX- (aka. Orion for workstation)
based Pentium Pro machines, write aggregation is com-
pletely disabled because of bugs in some revisions of the
chipset which can lead to data corruption. On these ma-
chines, the best PIO Write performance can be under 20
MB/s.

3.2.4 PIO Read (processor reads from board)

This kind of transaction is usually slow and should be
avoided for large data transfers. In most cases, PIO Reads
end up as single memory quantum reads (32 bits on an In-
tel, 64 bits on an Alpha). Exceptions are the recent al-
pha systems based on the 21164 CPU. The 21164 is able
to support multiple outstanding reads, They can be aggre-
gated and presented off chip as a single transaction. A tight
loop of sequential reads on a 21164 based machine gener-
ally produces a stream of 16 byte bursts, giving, on the
AlphaServer 4100 for instance, about 37 MB/s throughput.
One might imagine this cannot be improved upon, but it
turns out that a load sequence of the first word of a 32 byte
block, then the last word, then the intervening words, usu-
ally generates a 32 byte burst on this platform, allowing us
to reach as much as 69 MB/s in 64-bit mode.

3.2.5 No “One size fits all”

Other factors too numerous to be given a full treatment in
this paper can affect PCI performance. For instance on ver-
sions of the AlphaServer 4100 with a 300 MHz CPU (but
not with a 400 MHz CPU) if data is in the processor cache,
64-bit DMA Read performance can be degraded (but not
32-bit DMA Read performance). On the AlphaStation 200
or 400 on the other hand, the presence of data in the pro-
cessor cache canboost performance by as much as 30%.

In section 2 we have presented the best figures we have
been able to achieve. It is obviously difficult to forecast the
actual bus bandwidth a certain board can obtain on a given
platform, and matters get only worse if we begin to include
application specific constraints. On PCs, PIOs are usually
best avoided for large transfers, whereas PIO Writes can be
largely sufficient on Alpha platforms. Such considerations
often determine major architectural decisions, affecting the
hardware and driving software, in many PCI Pamette appli-
cations.

3.3 Debugging setups

The combination of a simple passive spy and a traffic
generator can be used as single-board performance tester,
but it can also be used as a debugger for PCI interface
chipsets. Many schemes can be envisaged, some of which
are actually used within Digital:

� With a single board, we can spy on another specific
board, provided it is on the same PCI bus as the PCI
Pamette. We can generate peer-to-peer traffic, expos-
ing the other board to any kind of transaction, em-
ulating the behavior of almost any conceivable host
bridge. We can also keep very long traces using
DRAM and verify that no protocol violations have oc-
curred.

� With two boards connected by a flat cable, each on a
different system or at least on a different bus, we can



use one as a spy, and the other as a means to com-
municate the results in real-time. This setup results in
a non-intrusive logic analyzer with a real-time, high-
bandwidth link to another system.

� With a two-board setup, we can also debug special
PCI devices like PCI-to-PCI bridges. We can put one
board on each side of the bridge and generate traffic
through the bridge, while getting a trace from both
sides.

All these setups are minor variations of the basic PCI
spying and exercising configuration. They exploit the re-
configurability of the boards because any special feature
(like time-stamping) can be implemented in a matter of
hours or days by a moderately experienced PCI Pamette
programmer.

4 Application-specific bus spy

4.1 Basic design and possible extensions

The simple spy of section 2 is useful for cycle by cycle
off-line analysis, but real-time, on-board trace computation
is also useful, and needs a much more sophisticated de-
sign. For low-level PCI spying, a custom version is needed,
but for most needs, a common front-end, hiding the PCI
complexity, can form the basis of a variety of application
specialized measurement applications. We implemented a
core design that receives the full PCI signals, like the sim-
ple spy, and which computes for each PCI transaction a
compact summary of its principal characteristics:

� The starting address.

� The transaction type.

� The number of words transferred.

� The address-to-first-data latency.

� The total number of wait-states.

� The total length of the transaction.

� How the transaction was terminated.

� A time-stamp of the transaction.

With the summary produced by the front-end, we can cus-
tomize the spy to more specific needs by adding an applica-
tion specific subcircuit. We can then use the rest of the re-
sources of the board (remaining programmable logic gates,
SRAMs and DRAMs, daughter board connector, PCI inter-
face. . . ) to implement the functions we need. Among the
extensions one may want to add are:

� Programmable filters. Filtering on the address allows
us to restrict attention to all traffic to/from a certain
device. By getting the base address of the board from
the system, we can get all transactions which have the
chosen board as target. With some cooperation from
the chosen board’s driver, we can get the PCI-mapped
address of the memory buffers used by the board and
thus spy on DMAs initiated by the board.

� Real-time performance counters. By filtering the traf-
fic related to a specific board and using it to main-
tain running totals of various transaction characteris-
tics we can calculate in real-time: the amount of data
transferred to/from that board, the PCI bus loading at-
tributable to the board, the average latency, the aver-
age time between two transactions, and various other
histogramming type measures.

4.2 Example 1: the PC’s Real-Time Clock

A very simple application requiring only the implemen-
tation of a programmable comparator and mask is a spy
that logs all transactions to a specific device (recognized
by its base address). Using a legacy device’s fixed address
in I/O space or modern device’s settable address in mem-
ory space, we can capture all the PIOs to the device.

Figure 3 shows the use of such a filter on address 70 and
71 (hex) in I/O space, which corresponds to a PC’s Real-
Time Clock (RTC). This device sits on the ISA bus, on the
other side of a PCI-to-ISA bridge. With this log, we start
to understand the true burden of ISA transactions carried
through the PCI bus. This log comes from an AlphaStation
200 running Digital UNIX, but it uses a standard PC-like
hardware configuration.

The PCI cycle deltas in the right-most column of the
log confirm that it is indeed the RTC that we have logged;
transactions appear in groups at intervals of approximately
32000 PCI cycles. At 33 MHz, this period corresponds
to about 1 ms; under Digital UNIX the RTC is configured
to interrupt at 1024 Hz. We see that the usual initial data
latency for reads is 39 cycles (once again we find ourselves
observing a device that is not PCI version 2.1 compliant).
The total transaction lasts for more than 40 cycles, for a
single byte transferred. For writes, the average latency is
33 cycles, but there is more going on. Transaction #00077
tries to write a single byte to address 70, but the PCI-to-ISA
disconnects after 3 cycles with no data transferred. The
write has beenretried and must repeat until it is actually
done. In this example, it takes 8 transactions (7 retried)
for a total of 41 cycles to complete. This is an excellent
example of how bad standard ISA devices can be on a PCI
system and how the reliance on legacy buses can degrade
performance at all levels of the system.



Trans. Addr. R/W Lgth. Dur. Lat. � Cycle#
00071 0070 W 1 35 33 32302
00072 0071 R 1 41 39 42
00073 0070 W 1 33 31 32332
00074 0071 R 1 41 39 40
00075 0070 W 1 33 31 32344
00076 0071 R 1 41 39 40
00077 0070 W 0 04 03 32329
00078 0070 W 0 03 02 6
00079 0070 W 0 03 02 10
00080 0070 W 0 03 02 5
00081 0070 W 0 03 02 5
00082 0070 W 0 03 02 5
00083 0070 W 0 03 02 5
00084 0070 W 1 35 33 5
00085 0071 R 1 41 39 42
00086 0070 W 1 36 34 32293
00087 0071 R 1 41 39 43
00088 0070 W 1 33 31 32348
00089 0071 R 1 41 39 40
00090 0070 W 1 35 33 32322
00091 0071 R 1 41 39 42
00092 0070 W 0 04 03 32337
00093 0070 W 0 03 02 6
00094 0070 W 0 03 02 15
00095 0070 W 0 03 02 5

Figure 3: Simple filter at I/O address 7x (Real-Time Clock)

4.3 Example 2: the Memory Channel spy

Memory Channel [6] is Digital’s high-end cluster inter-
connect; it is used to tightly couple several servers through
a high-speed link. The hardware component of this product
consists of a full-length PCI board in each machine, and an
active hub to exchange the data between the boards. Appli-
cations use a standard API to send or receive data through
the Memory Channel system.

The data transfer model chosen in this system is apush
model: data is sent to the local adapter through PIOs by
software, the data then goes to the hub and is dispatched to
targets. On the targets, the adapter sends the data by DMA
to a specific place in the host memory. From the software
point of view, a part of each other machine’s address space
is mapped into its memory space, and a part of its own
physical memory is mapped into the address spaces of the
other machines. Writing to a certain part of the memory
automatically writes to the physical memory of other des-
ignated machines. Memory Channel also provides locking,
error recovery and interrupt mechanisms.

The PCI Pamette can be used as a non-intrusive spy in
Memory Channel systems. By dividing the address space
into a number of fixed regions and keeping histograms on

each of these, traffic to particular regions of Memory Chan-
nel address space can be identified. With more effort, the
PCI Pamette can be programmed to know about the Page
Control Table kept by the MC adapters (which selects the
destination and mapped address of a local or remote page
in the mapped space), and can use the same control in-
formation received by the MC adapter to maintain a copy
of the PCT. With additional information from the software
on the subsystems (disk, database, failure recovery. . . ) as-
sociated with each PCT entry, it can produce real-time or
off-line histograms on the use of each subsystem. This can
be used to physically optimize a cluster and also to opti-
mize the code of the client (for instance guaranteeing that
PIO Writes undergo the maximum possible aggregation in
Alpha write buffers so that scarce PCI bandwidth is better
utilized).

The advantage of such an approach is that there is no
need to instrument software (which would distort the true
response of the system), there is no need either for any
hardware modification of the MC adapters, and the spy
can evolve with the hardware and with the needs of the
customers without any physical change.

5 Interrupt dispatch latency and real-time
capabilities

5.1 Motivation

Since all PCI Pamette applications execute in part on
the host processor and in part on the PCI Pamette we need
mechanisms to synchronize the two. PIOs allow the pro-
cessor to poll the state of PCI Pamette and signal its own
state to it with latencies measured in fractions of a mi-
crosecond. For some applications this is all the synchro-
nization that is needed, but many PCI Pamette applications
have strong real-time requirements. The PCI Pamette host
runs a multitasking operating system, real-time applica-
tions cannot be at the mercy of the operating system sched-
uler, nor can they tie up the processor with a busy polling
high priority process. PCI Pamette needs a mechanism to
initiate synchronization with the processor. Unfortunately
DMAs do not perform for PCI Pamette what PIOs do for
the host processor. Instead, interrupts must be used.

Interrupt latencies are much longer and far, far more
variable than PIO latencies. Characterizing these laten-
cies is essential to designing applications that will meet
their real-time goals. Two aspects are important, the av-
erage cost of handling an interrupt which will determine
to overall load placed on the system by a given interrupt
rate, and the maximum interrupt handling latency which
will determine the amount of buffering needed while the
PCI Pamette is waiting for interrupt service.



There are several levels where interrupts are handled (all
the terms used here are specific to Windows NT [7] , but the
overall interrupt scheme is common also to Unix systems):

� In the Interrupt Service Routine, where the kernel-
mode device driver has to decide whether its board is
responsible for the interrupt (interrupt lines are share-
able on PCI), shut it off, and do some small amount
of processing related to the interrupt. The ISR runs at
a very high-level priority and should not execute for
long as the system is stalled while it is running.

� In the Deferred Procedure Call, still in kernel-mode,
but at a much lower priority level, where the driver
finishes the tasks associated with the interrupt (often
setting up a new DMA).

� In some user-mode code called by the driver using a
blocking I/O call, where some further processing can
be done.

Interrupt handling in standard boards occurs mainly at the
first two levels. However, as PCI Pamette in a reconfig-
urable board, we have sought to make the device drivers
supporting it completely generic as we do not want to
oblige every PCI Pamette application developer to write
kernel-mode non-portable code. All control of the board
is relegated to user-mode code which has direct access to
board. In particular, the interrupt signals are routed to the
user-mode application that requested to receive them. The
driver does a minimum of generic actions, which consist
of checking the source of the interrupt and shutting it off.
It then queues a request for a Deferred Procedure Call that
unblocks the user-mode thread which is waiting for the in-
terrupt.

There is unfortunately one big disadvantage to this ap-
proach, namely the time necessary to wake up a user-mode
thread, which is always longer than processing the interrupt
directly from kernel-mode. The interrupt dispatch time de-
pends mostly on the operating system (scheduling policy,
maximum locked times. . . ) and on other device drivers
(time spent at hardware priority levels. . . ).

5.2 Setup and results

The design on the board that is used to test the interrupt
latency is fairly simple. It contains a free-running settable
counter which triggers an interrupt when its value crosses
zero. This mechanism allows us to record the time when:

� The interrupt was triggered.

� The Interrupt Service Routine started and ended.

� The Deferred Procedure Called started.

1

10

100

1000

10000

10 100 1000

fr
eq

microseconds

"idle"
"loaded"

Figure 4: Histogram of time to ISR (Pentium Pro 200 w/
Windows NT 4.0)

1

10

100

1000

10000

10 100 1000

fr
eq

microseconds

"idle"
"loaded"

Figure 5: Histogram of time to user handler (Pentium Pro
200 w/ Windows NT 4.0)

� The user-mode thread was unblocked.

It is important to trigger the interrupt pseudo-randomly
using the free-running counter since it allows our measures
to more accurately reflect the ensemble of system activity.
Figure 4 shows a histogram of latency between the hard-
ware interrupt and the entry point of the ISR for 10000
interrupts on an idle and loaded1 system. Figure 5 shows
the corresponding data for the unblocking of the waiting
user-mode thread. All axes are logarithmic scales, all times
above 1ms have been truncated.

The figures presented have been obtained with a thread
at maximum priority (31 or “real-time time-critical” [8])
on a HP Vectra XU 6/200 (Pentium Pro 200) running Mi-
crosoft Windows NT 4.0. The same tests can also be ap-
plied to Alpha systems running Windows NT or Digital
Unix.

The histograms exhibit sharp peaks. Even on the loaded
system, in 98% of cases the ISR is called within 30 mi-
croseconds and the user-mode thread starts to run within
200 microseconds. From the position of the peak of user-
mode thread unblocking latency on an idle system we can
estimate the kernel-mode cost of a typical interrupt. It ap-
pears to be 30-40 microseconds, so the system should sup-

1After some experimentation the most effective way we found toload
a Windows NT 4.0 system was to rapidly drag a large window.



port an interrupt load of several thousand per second. How-
ever the tail is long. Times to ISR of over 1 millisecond
and times to the user-mode thread in excess of 3 millisec-
onds have been observed, so PCI Pamette applications with
strong real-time requirements need to budget for at least
this much autonomy on this platform.

6 Conclusion

We have presented a number of applications of a re-
configurable computing platform called PCI Pamette that
come under the general heading of system exercising and
measurement. Our results have a particular focus on the
PCI bus.

We have demonstrated practical techniques to measure
parameters of live systems. Some of the measurements
could perhaps have been done more conventionally with a
logic analyzer, although in the course of writing this paper
the authors have personally gathered results on systems in
Palo Alto CA, Merrimack NH, Maynard MA, Paris France,
Sydney Australia and Ayr Scotland. Neither author has
ever been to Ayr, but a PCI Pamette has, and while there
it was attached to a computer on the internet. The use
of reconfigurable technology has given a software aspect
to an application that traditionally involves direct physical
manipulation. The active and application specific measure-
ments in sections 3 and 4 vigorously exploit reconfigurabil-
ity and would be much more difficult to perform with con-
ventional techniques. The interfaces we have developed
and modes of operating them to achieve best performance
can be reused in other applications of PCI Pamette that in-
volve theuserather than themeasurementof the PCI bus.

The data we have presented goes a little deeper than the
common presentation of PCI as a 33 MHz bus with peak
throughput of 133 MB/s. It is however understandable that
manufacturers are reluctant or unable to accurately charac-
terize the performance of their devices. PCI performance
is a complex issue and no device can be treated in isola-
tion. We trust our results will be useful to designers and
users of PCI based systems in the reconfigurable comput-
ing community for whom PCI performance is an important
issue.

Lastly PCI Pamette has served as a traffic generator, em-
ulating PCI devices with various performance characteris-
tics during the test and debug of conventional fixed circuit
PCI interfaces and systems.

7 Acknowledgements

This work owes an intellectual debt to Jean Vuillemin
founder of the PAM Project. For PCI Pamette, Didier

Roncin, Philippe Boucard and Patrice Bertin all helped in
the development of an early prototype.

References

[1] Mark Shand PCI Pamette V1 World-wide-web
http://www.research.digital.com/SRC/pamette 1996
and 1997.

[2] Jean Vuillemin, Patrice Bertin, Philippe Boucard,
Didier Roncin, Mark Shand, Herv´e Touati Pro-
grammable Active Memories: Reconfigurable Sys-
tems Come of AgeIEEE Transactions on VLSI Sys-
tems, April 1996.

[3] Mark ShandMeasuring Unix Kernel Performance
with Reprogammable HardwarePRL Research
Report #19, Aug 1992.
ftp://ftp.digital.com/pub/DEC/PRL/research-
reports/PRL-RR-19.ps.Z

[4] PCI Local Bus Specification 2.1,PCI Special Interest
Group, 1995.

[5] John H. Zurawski, John E. Murray, and Paul J. Lem-
monThe Design and Verification of the AlphaStation
600 5-series WorkstationDigital Technical Journal,
Volume 7, Number 1, Special Edition 1995.

[6] R. Gillett and R. Kaufman,Experiences Using the
1st-Generation Memory Channel for PCI Network,
Hot Interconnects Symposium IV 1996, Stanford
University, Palo Alto (CA).

[7] H. Custer,Inside Windows NT,Microsoft Press, 1993.

[8] Real-Time Systems and Microsoft Windows NT,
MSDN Library, Microsoft Corporation, June 1995.


