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Abstract. We develop a logic for reasoning about object-oriented pro-
grams. The logic is for a language with an imperative semantics and

aliasing, and accounts for self-reference in objects. It is much like a type

system for objects with subtyping, but our speci�cations go further than
types in detailing pre- and postconditions. We intend the logic as an

analogue of Hoare logic for object-oriented programs. Our main techni-

cal result is a soundness theorem that relates the logic to a standard
operational semantics.

1 Introduction

In the realm of procedural programming, Floyd and Hoare de�ned two of the
�rst logics of programs [Flo67, Hoa69]; many later formalisms and systems built
on their ideas, and addressed di�cult questions of concurrency and data ab-
straction, for example. An analogous development has not taken place in object-
oriented programming. Although there is much formal work on objects (see sec-
tion 6), the literature on objects does not seem to contain an analogue for Floyd's
logic or Hoare's logic. In our opinion, this is an important gap in the understand-
ing of object-oriented programming languages.

Roughly imitatingHoare, we develop a logic for the speci�cation and veri�ca-
tion of object-oriented programs.We focus on elementary goals: we are interested
in logical reasoning about pre- and postconditions of programs written in a ba-
sic object-oriented programming language (a variant of the calculi of Abadi and
Cardelli [AC96]). Like Hoare, we deal with partial correctness, not with termi-
nation.

The programming language presents many interesting and challenging fea-
tures of common object-oriented languages. In particular, the operational se-
mantics of the language is imperative and allows aliasing. Objects have �elds
and methods, and the self variable permits self-reference. At the type level, the
type of an object lists the types of its �elds and the result types of its methods;
a subtyping relation supports subsumption and inheritance. We mostly ignore
\advanced" issues, like concurrency, but some of them have been considered in
the literature (e.g., see [Jon92, YT87]).

Much like Hoare logic, our logic includes one rule for reasoning about pre-
and postconditions for each of the constructs of the programming language. In
order to formulate these rules, we introduce object speci�cations. An object spec-
i�cation is a generalization of an object type: it lists the speci�cations of �elds,



the speci�cations of the methods' results, and also gives the pre/postcondition
descriptions of the methods.

Some of the main advantages of Hoare logic are its formal precision and
its simplicity. These advantages make it possible to study Hoare logic, and for
example to prove its soundness and completeness; they also make it easier to ex-
tend and to implement Hoare logic. We aim to develop a logic with some of those
same advantages. Our rules are not quite as simple as Hoare's, in part because of
aliasing, and in part because objects are more expressive than �rst-order proce-
dures and give some facilities for higher-order programming (cf. [Cla79, Apt81]).
However, our rules are precise; in particular, we are able to state and to prove
a soundness theorem. We do not know of any equivalent soundness theorem in
the object-oriented literature.

In the next section we describe the programming language. In section 3 we
develop a logic for this language, and in section 4 we give some examples of the
use of this logic in veri�cation. In section 5, we discuss soundness and complete-
ness with respect to the operational semantics of section 2. Finally, in sections 6
and 7, we review some related work, discuss possible extensions of our own work,
and conclude.

2 The language

In this section we de�ne a small object-oriented language similar to the calculi
of Abadi and Cardelli. Those calculi have few syntactic forms, but are quite
expressive. They are object-based; they do not include primitives for classes and
inheritance, which can be simulated using simpler constructs.

We give the syntax of our language, its operational semantics, and a set of
type rules. These aspects of the language are (intentionally) not particularly
novel or exotic; we describe them only as background for the rest of the paper.

2.1 Syntax and operational semantics

We assume we are given a set V of program variables (written x, y, z, and w

possibly with subscripts), a set F of �eld names (written f and g, possibly with
subscripts), and a setM of method names (written m, possibly with subscripts).
These sets are disjoint. The grammar of the language is:

a; b ::= x variables
j false j true constants
j if x then a0 else a1 conditional
j let x = a in b let
j [fi = xi

i21::n; mj = &(yj )bj
j21::m] object construction

j x:f �eld selection
j x:m method invocation
j x:f := y �eld update



Throughout, we assume that the names fi and mj are all distinct in the con-
struct [fi = xi

i21::n; mj = &(yj )bj
j21::m], and we allow the renaming of bound

variables in all expressions.
Informally, the semantics of the language is as follows:

{ Variables are identi�ers; they are not mutable: x := a is not a legal state-
ment. This restriction is convenient but not fundamental. (We can simulate
assignment by binding a variable to an object with a single �eld and updating
that �eld.)

{ false and true evaluate to themselves.
{ if x then a0 else a1 evaluates a0 if x is true and evaluates a1 if x is false.
{ let x = a in b evaluates a and then evaluates b with x bound to the result of
a. We de�ne a ; b as a shorthand for let x = a in b where x does not occur
free in b.

{ [fi = xi
i21::n; mj = &(yj)bj

j21::m] creates and returns a new object with
�elds fi and methods mj. The initial value for the �eld fi is the value of xi.
The method mj is set to &(yj )bj, where & is a binder, yj is a variable (the self
parameter of the method), and bj is a program (the body of the method).

{ Fields can be both selected and updated. In the case of selection (x:f), the
value of the �eld is returned; in the case of update (x:f := y), the value of
the object is returned.

{ When a method of an object is invoked (x:m), its self variable is bound to the
object itself and the body of the method is executed. The method does not
have any explicit parameters besides the self variable; however, additional
parameters can be passed via the �elds of the object.

Objects are references (rather than records), and the semantics allows aliasing.
For example, the program fragment

let x = [f = z0] in let y = x in (x:f := z1 ; y:f)

allocates some storage, creates two references to it (x and y), updates the storage
through x, and then reads it through y, returning z1.

The semantics can be de�ned more formally in terms of stacks and stores. A
stack maps variables to values (booleans or references). A store contains values
for object �elds and closures for object methods. We write �; S ` b ; v; �0 to
mean that, given initial store � and stack S, executing the program b leads to
the result v and to the �nal store �0. (We leave details to an extended version
of this paper.)

We have de�ned a small language in order to simplify the presentation of our
rules. In examples, we sometimes extend the syntax with additional, standard
constructs, such as integers. The rules for such constructs are straightforward.

2.2 Types

We present a �rst-order type system for our language. The types are Bool and
object types, which have the form [fi:Ai

i21::n; mj:Bj
j21::m]. This is the type



of objects with a �eld fi of type Ai, for i 2 1::n, and with a method mj with
result type Bj , for j 2 1::m. The order of the components does not matter.

The type system includes a re
exive and transitive subtyping relation. A
longer object type is a subtype of a shorter one, and in addition object types are
covariant in the result types of methods. More precisely, the type [fi:Ai

i21::n+p;

mj:Bj
j21::m+q ] is a subtype of [fi:Ai

i21::n; mj:B
0

j
j21::m] provided Bj is a

subtype of B0
j , for j 2 1::m. Thus, object types are invariant in the types of

�elds; this invariance is essential for soundness [AC96].
Formally, we write ` A to express that A is a well-formed type, and ` A <: A0

to express that A is a subtype of A0. We have the rules:

Well-formed types

` Bool

` Ai
i21::n ` Bj

j21::m

` [fi:Ai
i21::n; mj:Bj

j21::m]

Subtypes

` Bool <: Bool

` Ai
i21::n+p ` Bj <: B

0

j
j21::m ` Bj

j2m+1::m+q

` [fi:Ai
i21::n+p; mj:Bj

j21::m+q ] <: [fi:Ai
i21::n; mj:B0

j
j21::m]

A typing environment is a (possibly empty) list of pairs x:A, where x is a
variable and A is a type. The variables of each environment are distinct. We
write ; for the empty environment, and say that x is in E when it appears in
some pair x:A in E. We write E ` � to express that E is a well-formed typing
environment. We have two rules for forming typing environments:

Well-formed typing environments

; ` �

E ` � ` A x not in E

E; x:A ` �

We write E ` a : A to express that, in environment E, program a has
type A. There is one typing rule for each construct, and an additional rule for
subsumption. We write

syn

= for the relation of syntactic equality (up to reordering

of object components).

Well-typed programs

Subsumption
` A <: A0 E ` a : A

E ` a : A0

Variables
E; x:A;E0 ` �

E; x:A;E0 ` x : A

Constants
E ` �

E ` false : Bool

E ` �

E ` true : Bool



Conditional

E ` x : Bool E ` a0 : A E ` a1 : A

E ` if x then a0 else a1 : A

Let
E ` a : A E; x:A ` b : B

E ` let x = a in b : B

Object construction for A
syn

= [fi:Ai
i21::n; mj:Bj

j21::m]

E ` � E ` xi : Ai
i21::n E; yj:A ` bj : Bj

j21::m

E ` [fi = xi i21::n; mj = &(yj)bj j21::m] : A

Field selection
E ` x : [f:A]

E ` x:f : A

Method invocation
E ` x : [m:B]

E ` x:m : B

Field update for A
syn

= [fi:Ai
i21::n; mj:Bj

j21::m]

E ` x : A k 2 1::n E ` y : Ak

E ` x:fk := y : A

This type system is like those of common programming languages in that it
is independent of veri�cation rules. In particular, types are not automatically
associated with speci�cations, and subtyping does not impose any \behavioral"
constraints (cf. [LW94]). However, as section 3 explains, speci�cations generalize
types.

3 Veri�cation

In this section, which is the core of the paper, we give rules for verifying object-
oriented programs written in the language of section 2. We start with an informal

explanation of our approach.

3.1 Transition relations

The purpose of our veri�cation rules is to allow reasoning about pre- and post-
conditions. These pre- and postconditions concern the initial and �nal stores,
the stack, and the result of the execution of a given program.

In our rules, we express pre- and postconditions in formulas of standard,
untyped �rst-order logic that we call transition relations. These formulasmention
the unary predicates �alloc and �alloc, two binary functions �� and ��, and the
special variable r (which is not in the set V of program variables). Intuitively,
��(x; f) is the value of �eld f of object x before the execution, and ��(x; f) is its



value after the execution. Similarly, �alloc(x) and �alloc(x) indicate whether x has
been allocated before and after the execution. Finally, the variable r represents
the result of the execution.

For example, we may want to prove that, after any execution of the program
x:f := y, the result is x and the �eld f of x equals y. We can express this
with the transition relation r = x ^ ��(x; f) = y. As a second example, we may
want to prove that, after any execution of x:f, the result equals the initial value
of the �eld f of x, and that the store is not changed by the execution. This
statement is captured by the transition relation r = ��(x; f) ^ ( 8 y; z : ��(y; z) =

��(y; z) ^ ( �alloc(y) � �alloc(y)) ).
We work in standard �rst-order logic, so the functions �� and �� are total.

Hence, ��(x; f) and ��(x; f) are de�ned even if �alloc(x) and �alloc(x) do not hold.
In that case, the values of ��(x; f) and ��(x; f) are not important.

Given a program, a transition relation is much like a Hoare triple from
the point of view of expressiveness. For example, a transition relation such as
(��(x; f) = ��(x; g)) ) (��(x; f) = ��(x; g)) can be understood as assuming a pre-
condition (��(x; f) = ��(x; g)) and asserting a postcondition (��(x; f) = ��(x; g)).
However, the precondition and postcondition are given by separate formulas in
a Hoare triple, while there is no such formal separation in a transition relation.
This di�erence is largely a matter of convenience.

Formally, we write that T is a transition relation to mean that T is a well-
formed formula of the standard, untyped �rst-order logic, made up only of:

{ the constants false and true;
{ the variable r, the binary functions �� and ��, and the unary predicates �alloc

and �alloc;
{ constants for �eld names (such as f);
{ other variables (such as x);
{ the usual logical connectives :, ^, and 8 (from which _, ) , �, and 9 can

be de�ned as abbreviations), and the equality predicate =.

The grammar for transition relations is thus:

T ::= e0 = e1 j �alloc(e) j �alloc(e) j :T j T0 ^ T1 j ( 8x : T )

e ::= false j true j r j x j f j ��(e0; e1) j ��(e0; e1)

3.2 Speci�cations and subspeci�cations

In order to permit reasoning about pre- and postconditions, our veri�cation rules
also deal with speci�cations, which generalize types. A speci�cation can be either
Bool or an object speci�cation, of the form:

[fi:Ai
i21::n; mj: &(yj)Bj ::Tj

j21::m]

where each Ai and Bj is a speci�cation, and each Tj is a transition relation.
The variable yj is bound in Bj and Tj . An object satis�es the speci�cation
[fi:Ai

i21::n; mj: &(yj)Bj ::Tj
j21::m] if, for i 2 1::n, it has a �eld fi that satis�es



speci�cation Ai, and, for j 2 1::m, it has a method mj with a result that satis�es
Bj and whose execution satis�es Tj when yj equals self. Informally, we may
think of Bj as a predicate on the result, and then we may read Bj ::Tj as
the conjunction of that predicate and Tj. As for object types, the order of the
components of object speci�cations does not matter.

Just like there is a subtyping relation on types, there is a subspeci�cation

relation on speci�cations. This relation is re
exive and transitive. A longer ob-
ject speci�cation is a subspeci�cation of a shorter one, and in addition object
speci�cations are covariant in the result speci�cations and in the transition re-
lations for methods. Intuitively, when A and A0 are object speci�cations, A is a
subspeci�cation of A0 only if any object that satis�es A also satis�es A0.

3.3 Rules for speci�cations

In our rules for speci�cations, we use several judgments analogous to those in-
troduced for types in section 2.2, and in those cases we use similar notations
but with a `̀ instead of a `. In particular, we write `̀ A to express that A is a
well-formed speci�cation, and `̀ A <: A0 to express that A is a subspeci�cation
of A0. The following rules for speci�cations generalize the corresponding rules
for types:

Well-formed speci�cations

`̀ Bool

`̀ Ai
i21::n `̀ Bj

j21::m

Tj is a transition relation j21::m

`̀ [fi:Ai
i21::n; mj: &(yj)Bj ::Tj j21::m]

Subspeci�cations

`̀ Bool <: Bool

`̀ Ai
i21::n+p `̀ Bj <: B

0

j
j21::m `̀ Bj

j2m+1::m+q

`̀ fol Tj ) T 0

j
j21::m

Tj is a transition relation j21::m+q T 0
j is a transition relation j21::m

`̀ [fi:Ai
i21::n+p; mj: &(yj)Bj ::Tj

j21::m+q]
<: [fi:Ai

i21::n; mj: &(yj)B
0

j ::T
0

j
j21::m]

In this last rule, `̀ fol represents provability in �rst-order logic.

3.4 Speci�cation environments

A speci�cation environment is much like a typing environment, except that it
contains speci�cations instead of types. We write E `̀ � to mean that E is a
well-formed speci�cation environment. We have the rules:

Well-formed speci�cation environments

; `̀ �

E `̀ � E `̀ A x not in E

E; x:A `̀ �



Here, given a well-formed speci�cation environment E, we write E `̀ A to mean
`̀ A and that all the free program variables of A are in E. We omit the obvi-
ous rule for this judgment. Similarly, when all the free program variables of a
transition relation T are in E, we write:

E `̀ T is a transition relation

In order to formulate the veri�cation rules, we introduce the judgment:

E `̀ a : A :: T

This judgment states that, in speci�cation environment E, the execution of a
satis�es the transition relation T , and its result satis�es the speci�cation A.

For this judgment, there is one rule per construct plus a subsumption rule;
the rules are all given below. The rules guarantee that, whenever E `̀ a : A :: T
is provable, all the free program variables of a, A, and T are in E. The rules have
interesting similarities both with the operational semantics and with the typing
rules. The treatment of transition relations reiterates parts of the operational
semantics, while the treatment of speci�cations generalizes that of types.

The subsumption rule enables us to weaken a speci�cation and a transition
relation, much like we weaken a type in the subsumption rule for typing. The
rule for if-then-else allows the replacement of the boolean guard with its value
in reasoning about each of the alternatives. The rule for let achieves sequencing
by representing an intermediate state with the auxiliary binary function �� and
unary predicate �alloc. The variable x bound by let cannot escape because of
the hypotheses that E `̀ B and that E `̀ T 00 is a transition relation. The rule
for object construction has a complicated transition relation, but this transition
relation directly re
ects the operational semantics; the introduction of an object
speci�cation requires the veri�cation of the methods of the new object. The rule
for method invocation takes advantage of an object speci�cation for yielding a
speci�cation and a transition relation; in these, the formal self is replaced with
the actual self. The remaining rules are mostly straightforward.

In several rules, we use transition relations of the form Res(e), where e is a
term; Res(e) is de�ned by:

Res(e)
4

= r = e ^ ( 8x; y : ��(x; y) = ��(x; y) ^ ( �alloc(x) � �alloc(x)) )

and it means that the result is e and that the store does not change. We also
write u1[u2=u3] for the result of substituting u2 for u3 in u1.

Well-speci�ed programs

Subsumption

`̀ A <: A0 `̀ fol T ) T 0 E `̀ a : A :: T
E `̀ A0 E `̀ T 0 is a transition relation

E `̀ a : A0 :: T 0

Variables
E; x:A;E0 `̀ �

E; x:A;E0 `̀ x : A :: Res(x)



Constants

E `̀ �

E `̀ false : Bool :: Res(false)

E `̀ �

E `̀ true : Bool :: Res(true)

Conditional

E `̀ x : Bool :: Res(x)

E `̀ a0 : A0 :: T0 A0[true=x]
syn

= A[true=x] T0[true=x]
syn

= T [true=x]

E `̀ a1 : A1 :: T1 A1[false=x]
syn

= A[false=x] T1[false=x]
syn

= T [false=x]

E `̀ if x then a0 else a1 : A :: T

Let
E `̀ a : A :: T E; x:A `̀ b : B :: T 0

E `̀ B E `̀ T 00 is a transition relation

`̀ fol T [��=��; �alloc= �alloc; x=r] ^ T 0[��=��; �alloc= �alloc] ) T 00

E `̀ let x = a in b : B :: T 00

Object construction for A
syn

= [fi:Ai
i21::n; mj: &(yj)Bj ::Tj

j21::m]

E `̀ � E `̀ xi : Ai :: Res(xi)
i21::n E; yj :A `̀ bj : Bj :: Tj

j21::m

E `̀ [fi = xi
i21::n; mj = &(yj)bj

j21::m] : A ::

: �alloc(r) ^ �alloc(r) ^

( 8 z : z 6= r ) ( �alloc(z) � �alloc(z)) ) ^
��(r; f1) = x1 ^ � � � ^ ��(r; fn) = xn ^
( 8 z; w : z 6= r ) ��(z; w) = ��(z; w) )

Field selection
E `̀ x : [f:A] :: Res(x)

E `̀ x:f : A :: Res(��(x; f))

Method invocation
E `̀ x : [m: &(y)B ::T ] :: Res(x)

E `̀ x:m : B[x=y] :: T [x=y]

Field update for A
syn

= [fi:Ai
i21::n; mj: &(zj)Bj ::Tj

j21::m]

E `̀ x : A :: Res(x) k 2 1::n E `̀ y : Ak :: Res(y)

E `̀ x:fk := y : A ::
r = x ^ ��(x; fk) = y ^
( 8 z; w : :(z = x ^ w = fk) ) ��(z; w) = ��(z; w) ) ^

( 8 z : �alloc(z) � �alloc(z) )

4 Examples

We discuss a few instructive examples (omitting derivations for brevity). From
now on, we use some abbreviations, allowing general expressions to appear where
the grammar requires a variable. For a, ai

i21::n, and b not variables, we de�ne:



if b then a0 else a1
4

= let x = b in if x then a0 else a1

[fi = ai
i21::n; mj = &(yj)bj

j21::m]
4

= let x1 = a1 in � � � let xn = an in

[fi = xi
i21::n; mj = &(yj )bj

j21::m]

a:f
4

= let x = a in x:f

a:m
4

= let x = a in x:m

a:f := b
4

= let x = a in

(x:f ; let y = b in x:f := y)

where the variables x and xi
i21::n are fresh. Rules for these abbreviations can

be derived directly from the rules for the language proper.

Field update and selection Our �rst example concerns the program:

([f = false]:f := true):f

This program constructs an object with one �eld, f, whose initial value is false.
It then updates the value of the �eld to true. Finally, a �eld selection retrieves
the new value of the �eld.

Using our rules, we can prove that r = true holds upon termination of this
program. Formally, we can derive the judgment:

; `̀ ([f = false]:f := true):f : Bool :: (r = true)

Aliasing The following three programs exhibit the rôle of aliasing:

let x = [f = false] in let y = [g = false] in (y:g := true ; x:f)

let x = [f = false] in let y = [f = false] in (y:f := true ; x:f)

let x = [f = true] in let y = x in (y:f := false ; x:f)

For each of these programs we can verify that r = false. The �rst program
shows that an update of a �eld g has no e�ect on another �eld f. The second
program shows that separately constructed objects have di�erent �elds, even if
those �elds have the same name. The third program shows that an update of a

�eld of an aliased object can be seen through all the aliases.

Method invocations and recursion The next example illustrates the use of method
invocation; it shows how object speci�cations play the rôle of loop invariants for
recursive method invocations.

We consider an object-oriented implementation of Euclid's algorithm for com-
puting greatest common divisors. This implementation uses an object with two
�elds, f and g, and a method m:

[ f = 1; g = 1;
m= &(y) if y:f < y:g then (y:g := y:g � y:f ; y:m)

else if y:g < y:f then (y:f := y:f � y:g ; y:m)
else y:f ]



Setting f and g to two positive integer values and then invoking the method m
has the e�ect of reducing both f and g to the greatest common divisor of those
two values.

We can prove that this object satis�es the following speci�cation:

[ f:Nat; g:Nat;
m: &(y) Nat :: 1 � ��(y; f) ^ 1 � ��(y; g) )

r = ��(y; f) ^ r = ��(y; g) ^ r = gcd(��(y; f); ��(y; g)) ]

In verifying the body of m, we can use the speci�cation of m, recursively.

Nontermination As we mentioned initially, our rules are for partial correctness,
not for termination. Nontermination can easily arise because of recursive method
invocations. Consider, for example, the nonterminating program:

[m = &(x)x:m]:m

Using our rules, we can prove that anything holds upon termination of this
program, vacuously. Formally, we can derive the judgment:

; `̀ [m = &(x)x:m]:m : A :: T

for any closed speci�cation A and transition relation T .

5 Soundness and related properties

In this section we discuss the relation between veri�cation and typing, obtain-
ing two simple results. We then discuss the relation between veri�cation and
operational semantics, proving in particular a soundness theorem. The sound-
ness theorem is the main technical result of this paper. Finally, we comment on
completeness.

5.1 Typing versus veri�cation

Our �rst result establishes a correspondence between typing rules and veri�ca-
tion rules: it says that only well-typed programs can be veri�ed.

Proposition1. If E `̀ a : A :: T then E0 ` a : A0 for some E0 and A0 (obtained

from E and A by deleting transition relations).

This result provides a �rst sanity check for the veri�cation rules. It also highlights
a limitation: for example, it implies that the veri�cation rules do not enable us
to derive that the program if true then true else (true:f) yields r = true, because
this program is not well-typed. We do not view this limitation as a serious one
because we are primarily interested in well-typed programs.

Conversely, all well-typed programs can be veri�ed, at least in a trivial sense:

Proposition2. If E0 ` a : A0 then E `̀ a : A :: (r = r) for some E and A

(obtained from E0 and A0 by inserting trivial transition relations).



5.2 Soundness

We have both an axiomatic semantics (the veri�cation rules) and an operational
semantics. Fortunately, the two semantics agree in the sense that all that can
be derived with the veri�cation rules is true operationally. For example, if a
program yields a result according to the operational semantics, and the axiomatic
semantics says that the result is true, then indeed the result is true. This property
is expressed by the following soundness theorem:

Theorem3. Assume that the operational semantics says that program b yields

result v when run with an empty stack and an empty initial store (that is, ;; ; `
b ; v; �0 for some �0). If ; `̀ b : Bool :: (r = true) is provable then v is the

boolean true. Similarly, if ; `̀ b : Bool :: (r = false) is provable then v is the

boolean false.

In an extended version of this work, we prove a more general soundness the-
orem in full. Theorem 3 is a corollary of that more general theorem. As another
corollary, we obtain a soundness theorem for the type system of section 2.2.
Therefore, as might be expected, our proofs are no less intricate than typical
soundness proofs for type systems of imperative languages. In fact, they gener-
alize techniques developed for proofs of type soundness [Har94, Ler92, Tof90,
WF94]. New ingredients are required because speci�cations, unlike ordinary
(non-dependent) types, may contain occurrences of program variables.

5.3 Completeness issues

While we have soundness, we do not have its converse, completeness. Unfortu-
nately, our rules do not seem to be complete even for well-typed programs.

Careful examination of the following three similar programs reveals a �rst
di�culty:

b1
4

= let x = (let y = true in [m = &(z) y]) in x:m

b2
4

= let y = true in (let x = [m = &(z) y] in x:m)

b3
4

= let x = (let y = true in [f = y; m= &(z) z:f]) in x:m

All three programs are well-typed and yield the result true. Using our rules, we
can prove ; `̀ b2 : Bool :: (r = true) and ; `̀ b3 : Bool :: (r = true) but not
; `̀ b1 : Bool :: (r = true). A reasonable diagnosis is that the judgment E `̀ a :
A :: T does not allow su�cient interaction between A and T (particularly in the
rule for let). One remedy is transforming b1 into b2 (by let-
oating [PPS96]) or
into b3 (by adding an auxiliary �eld). We have considered other remedies, but
do not yet know which is the \right" one.

A deeper di�culty arises because the veri�cation rules rely on a \global store"
model. As Meyer and Sieber have explained [MS88], the use of this model is a
source of incompleteness for procedural languages with local variables. Some of
their remarks apply to our language as well. For example, the following program
is reminiscent of their Example 2: let x = [f = true] in (y:m ; x:f). This program



will always return true because the method invocation y:m cannot a�ect the
�eld f of the newly allocated object x. We can prove this, but only by adopting
a strong speci�cation for y, for example requiring that y:m not modify the �eld
f of any object. Recently, there has been progress in the semantics of procedural
languages with local variables (e.g., see [OT95, PS93]). Some of the insights
gained in that area should be applicable to reasoning about objects.

6 Past and future work

As we mentioned in the introduction, there has been much research on speci-
�cation and veri�cation for object-oriented languages. The words \object" and
\logic" are frequently used together in the literature, but with many di�erent
meanings (e.g., [SSC95]). Our work is most similar to that of Leavens [Lea89],
who gave veri�cation rules for a small language with objects; however, those
rules are limited in that they apply only to programs without side-e�ects and
aliasing. We do not know of any previous Hoare logic for a language like ours.

Much of the emphasis of the previous research has been on issues of re�ne-
ment and inheritance. Lano and Haughton [LH92], Leavens [Lea89, Lea91], and
Liskov and Wing [LW94] all studied notions of subtyping and of re�nement of
speci�cations (similar to our subspeci�cation relation, though in some respects
more sophisticated). Stata and Guttag [SG95] studied the notion of subclassing,
and presented a pre-formal approach for reasoning about inheritance. Lano and
Haughton [LH94] have collected other research on object-oriented speci�cation.

In some existing formalisms (e.g., Leavens'), speci�cations can be written in
terms of abstract variables. Speci�cations at di�erent levels of abstraction can
be related by simulation relations or abstraction functions. Undoubtedly the
use of abstraction is important for speci�cation and veri�cation. We leave a full
treatment of abstraction for future work; some results on abstraction appear in
Leino's dissertation [Lei95], which also includes a guarded-command semantics
for objects.

Several other extensions to our logic might be interesting. For example, it
would be trivial to account for a construct that compares the addresses of two
objects, or for a cloning construct. Recursive types and recursive speci�cations
would be helpful in dealing with programs that manipulate unbounded object
data structures, which our logic treats only in a limited way. The addition of
concurrency primitives would be more di�cult; it would call for a change of
formalism, similar to the move from Hoare logic to Owicki-Gries logic [OG76].

7 Conclusions

In summary, the main outcome of our work is a logic that enables us (at least in
principle) to specify and to verify object-oriented programs. To our knowledge,
our notations and rules are novel. They permit proofs that, despite their sim-
plicity, are outside the scope of previous methods. However, our work is only a
�rst step; we hope that it stimulates further research.



Secondarily, we hope that our logic will serve as another datapoint on the re-
lations between types and speci�cations. In the realm of functional programming,
speci�cations can be seen as a neat generalization of ordinary types (through no-
tions such as dependent types, or in the context of abstract interpretations). In
our experience with imperative object-oriented languages, the step from types
to speci�cations is not straightforward; still, type theory is sometimes helpful,
for example in suggesting techniques for soundness proofs.
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