
Specifying the modi�cation of extended state

K. Rustan M. Leino

Digital Equipment Corporation Systems Research Center

130 Lytton Ave., Palo Alto, CA 94301, U.S.A.

http://www.research.digital.com/SRC/people/Rustan Leino

Abstract

This paper explores the interpretation of speci�cations in
the context of an object-oriented programming language
with subclassing and method overrides. In particular, the
paper considers annotations for describing what variables a
method may change and the interpretation of these annota-
tions. The paper shows that there is a problem to be solved
in the speci�cation of methods whose overrides may modify
additional state introduced in subclasses. As a solution to
this problem, the paper introduces data groups, which enable
modular checking and rather naturally capture a program-
mer's design decisions.

0 Introduction

Speci�cations help in the documentation of computer pro-
grams. Ideally, speci�cations can be used by a mechanical
program analyzer to check the body of a method against
its speci�cation, attempting to �nd errors. The Extended
Static Checker, which works on object-oriented programs, is
an example of such a program checker [Det96, ESC].

This paper concerns the speci�cation of methods. A
method speci�cation is a contract between the implemen-
tation of a method and its callers. As such, it includes a
precondition, which documents what a caller must establish
before invoking the method. Consequently, the implemen-
tation can assume the precondition on entry to the method
body. A method speci�cation also includes a postcondition,
which documents what the implementation must establish
on exit. Consequently, the caller can assume the postcon-
dition upon return from the method invocation. When rea-
soning about method implementations and calls, only the
contract given by the speci�cation is used. That is, one
does not use the code in a method's callers when reasoning
about the method implementation, and one does not use the
implementation when reasoning about the calls.

To be useful to the caller, it is important that the post-
condition of a method detail what variables the method does
not change. But since the scope of the caller can include
variables that are not visible in the scope where the method

is declared and speci�ed, it is not possible to explicitly list
all unchanged variables in the method's postcondition. In-
stead, the annotation language must include some form of
syntactic shorthand (\sugar") whose interpretation as part
of the postcondition is a function of the scope in which it is
interpreted. A nice construct for this is the modi�es clause,
which lists those variables that the method is allowed to
modify, thereby specifying that the method does not mod-
ify any other variables [GH93]. For example, suppose that
the speci�cation of a method m occurs in a scope where two
variables, x and y , are visible, and that the speci�cation
includes the modi�es clause

modi�es x

If m is called from a scope where, additionally, a variable z

is visible, then the caller's interpretation (\desugaring") of
the speci�cation says that the call may possibly modify x ,
but leaves both y and z unchanged.

The fact that a modi�es clause is interpreted di�erently
in di�erent scopes raises a concern about modular sound-
ness [Lei95]. For the purpose of this paper, modular sound-
ness means that the implementation, which is checked to
meet the speci�cation as interpreted in the scope containing
the method body, actually lives up to a caller's expecta-
tions, which are based on the speci�cation as interpreted in
the scope of the call. A consequence of modular soundness
is that one can check a class even in the absence of its future
clients and subclasses.

This paper explores the interpretation of speci�cations
in the context of an object-oriented programming language
with subclassing and method overrides, for example like
Java. In particular, I consider annotations for describing
what a method may change and the interpretation of these
annotations. I show that there is a problem to be solved
in the speci�cation of methods whose overrides may modify
additional state introduced in subclasses. As a solution to
this problem, I introduce data groups, which adhere to mod-
ular soundness and rather naturally capture a programmer's
design decisions.

For simplicity, I restrict my attention to the operations
on only one object, the implicit self parameter. Neverthe-
less, because of inheritance and method overriding, the im-
plementations of the methods of this object may be found
in superclasses and subclasses of the class being checked.

1 Extending the state of a superclass

To illustrate the problem, I introduce a simpli�ed example of
a computer arcade game|an excellent application of object-

7 - 1

oriented programming indeed.
The design centers around sprites. A sprite is a game ob-

ject that appears somewhere on the screen. In this simple
example, every sprite has a position, a color, and methods
to update these. The main program, which I will not show,
essentially consists of a loop that performs one iteration per
video frame. Each iteration works in two phases. The �rst
phase invokes the update method on each sprite, which up-
dates the sprite's position, color, and other attributes. The
second phase invokes the draw method on each sprite, which
renders the sprite on the screen.

Here is the declaration of class Sprite , in which the
methods have been annotated with modi�es clauses:

class Sprite f
int x;y;
void updatePosition() /* modi�es x;y */

f g
int col;
void updateColor() /* modi�es col */

f g
void update() /* modi�es x;y;col */

f updatePosition(); updateColor(); g
void draw() /* modi�es (nothing) */

f g
g

The default update method invokes the updatePosition

and updateColor methods, whose default implementations
do nothing. Any of these methods can be overridden in
Sprite subclasses. For example, a moving sprite that never
changes colors would override the updatePosition method,
a stationary sprite whose color changes over time would
override the updateColor method, and a sprite that adds
further attributes that need to be updated overrides the
update method and possibly also the updatePosition and
updateColor methods.

Since the speci�cations I have given in the example show
only modi�es clauses, checking that an implementation
meets its speci�cation comes down to checking that it mod-
i�es only those variables that it is permitted to modify. The
implementations of the updatePosition , updateColor, and
draw methods are no-ops, so they trivially satisfy their spec-
i�cations. The update method invokes the other two update
methods, whose modi�es clauses say they may modify x , y ,
and col . So update in e�ect modi�es x , y , and col , and
this is exactly what its speci�cation allows. We conclude
that the methods in class Sprite meet their speci�cations.

Let us now consider a subclass Hero of Sprite , repre-
senting the hero of the game. The hero can move about,
and hence the Hero class provides its own implementation
of the updatePosition method by overriding this method.
The next position of the hero is calculated from the hero's
velocity and acceleration, which are represented as instance
variables. The Hero class is declared as follows:

class Hero extends Sprite f
int dx;dy;
int ddx;ddy;
void updatePosition()

f x += dx+ ddx=2; y += dy+ ddy=2;
dx += ddx; dy += ddy;

g
: : :

g

The Hero implementation of updatePosition increases x

and y by appropriate amounts (�d = v0 � t + 1=2 � a � t2

where t = 1). In addition, it updates the velocity according
to the current acceleration. (Omitted from this example is
the update of acceleration, which is computed according to
the game player's joystick movements.) It seems natural to
update the velocity in the method that calculates the new
position, but the speci�cation of updatePosition (given in
class Sprite) allows only x and y to be modi�ed, not dx

and dy which are not even de�ned in class Sprite . (If the
update of dx and dy instead took place in method update ,
there would still be a problem, since the modi�es clause of
update also does not include these variables.)

As ecan be seen in this example, the reason for overrid-
ing a method is not just to change what the method does
algorithmicly, but also to change what data the method up-
dates. In fact, the main reason for designing a subclass is
to introduce subclass-speci�c variables, and it is the uses
and updates of such variables that necessitate being able to
override methods. For example, class Sprite was designed
with the intention that subclasses be able to add sprite at-
tributes and update these in appropriate methods. So how
does one in a superclass write the speci�cation of a method
such that subclasses can extend the superclass's state (that
is, introduce additional variables) and override the method
to modify this extended state?

2 Three straw man proposals

In this section, I discuss three proposals that I often hear
suggested for solving the problem of specifying the modi�-
cation of extended state. I show that these proposals don't
work. This is what it means for a proposal to work:

� the proposal must provide a way to annotate classes
like Sprite and Hero such that the desired method
implementations in these classes will meet their spec-
i�cations,

� the interpretation of speci�cations must be useful to
callers (for example, speci�cations should not all be
treated as \can do anything whatsoever"),

� the annotations should not be unnecessarily tedious to
write down, and

� the proposal must adhere to modular soundness.

Here is the �rst proposal:

Straw man 0. A subclass can re�ne the speci-
�cation of a method when it overrides it. That
is, a subclass can weaken the precondition of the
method in the superclass (that is, say that the
overridden method implementation will work in
more situations) and strengthen the postcondi-
tion (that is, be more speci�c about the e�ect of
the method).

It is well known that this proposal is sound. However, it
doesn't solve the problem at hand. To strengthen the post-
condition means to be more precise about the �nal values
of variables. This is just the opposite of what we'd like|
we'd like the new postcondition to allow more variables to
be modi�ed, that is, to put no restrictions at all on the �nal
values of these variables. Stated di�erently, while shrinking
the list in the modi�es clause is sound, enlarging it is what
we want when specifying a subclass's method overrides.

Another straw man proposal is the following:

7 - 2

Straw man 1. Let m be a method declared and
speci�ed in a class T . An implementation of m

is allowed to modify those variables listed in the
modi�es clause of m , plus any variable declared
in any proper subtype of T .

Although sound, this straw man is too liberal about the
modi�cation of variables in subclasses. In fact, a subclass
loses the advantage of modi�es clauses with this proposal.
To illustrate, I will show an example that builds on class
Sprite .

Consider a class of monsters with a strength attribute.
Rather than storing this attribute as an instance variable in
every monster object, suppose a class Monster has a method
that returns the value of the strength attribute. Thus, di�er-
ent Monster subclasses can decide on their own representa-
tion of the strength attribute. For example, if the strength of
a class of monsters is constant, the method can return that
constant, without taking up any per-object storage. This
design trades quick access of an attribute for exibility in
how the attribute is represented.

The following declaration shows class Monster , which
uses the strength attribute in updating the sprite position.

class Monster extends Sprite f
int getStrength() /* modi�es (nothing) */

f return 100; g
void updatePosition()

f if (getStrength() < 10) f
x += 2;

g else f
x += 4;

g g
g

A particular Monster subclass is AgingMonster, which
adds an age attribute and overrides the draw method so as
to render the monster di�erently according to its strength-
to-age ratio.

class AgingMonster extends Monster f
int age;
: : :
void draw()

f int bitmapID;
if (age = 0) f

bitmapID= MONSTER INFANT;
g else f

int s = getStrength();
int relativeStrength= s=age;
if (relativeStrength< 5) f

bitmapID= MONSTER WIMPY;
g elsif (relativeStrength< 10) f

bitmapID= MONSTER NORMAL;
g else f

bitmapID= MONSTER STRONG;
g g
Bitmap:Draw(x;y;bitmapID);

g
g

The name Bitmap:Draw denotes some procedure that can
draw a bitmap given a screen coordinate and an ID.

The correctness of the AgingMonster implementation of
draw relies on the fact that the call to getStrength does not
modify age . In particular, if getStrength were to set age

to 0 , then the computation of relativeStrength would

result in a division-by-zero error. Method getStrength is
speci�ed with an empty modi�es clause, but Straw Man 1
gives implementations of getStrength permission to modify
age , since age is declared in a proper subclass of Monster .
Thus, the interpreted speci�cation for getStrength is not
strong enough for one to conclude that method draw will
execute correctly.

There is a workaround. If a class is allowed to re�ne
the speci�cations of methods declared in superclasses, class
AgingMonster can strengthen the postcondition of method
getStrength with agepre = agepost . But this would quickly
get annoying, because programmers would then sometimes
rely on the absence of age in the modi�es clause to conclude
that age is not changed, and sometimes rely on an explicit
postcondition agepre = agepost to conclude the same thing.
Even worse, strengthening the speci�cation of all methods
declared in a superclass whenever a class introduces new
variables would quickly grow to be an unacceptably tedious
chore.

The next straw man proposal seeks to alleviate this chore
by making the mentioned postcondition strengthening the
default interpretation, and providing a new speci�cation
construct also-modi�es that can override the default inter-
pretation:

Straw man 2. Let m be a method declared and
speci�ed in a class T . An implementation of m

in a subclass U of T is allowed to modify those
variables listed in the modi�es clause of m as
given in class T , plus any variable declared in
any also-modi�es clause for m as given in some
superclass of U .

This straw man seems to solve the problem for the Hero

example: One would simply annotate the updatePosition

override with
also-modi�es dx;dy

This would give the updatePosition implementation in
Hero permission to modify not just x and y (as granted by
the original speci�cation of updatePosition in Sprite),
but also the variables dx and dy . (One could also add ddx

and ddy to the also-modi�es clause, if desired.)
Let us consider how Straw Man 2 stands up to modu-

lar soundness. Suppose that the game uses one hero object
throughout many game levels. As a new level starts, the
program will call a method startNewLevel on the hero ob-
ject. This method resets certain attributes of the hero object
while leaving other attributes unchanged, preparing it to be-
gin the new level. To this end, suppose class Hero contains
the following method declaration and speci�cation, where
the keyword ensures is used to express a given postcondi-
tion:

void startNewLevel()
/* modi�es x;y;col;dx;dy;ddx;ddy

ensures dxpost = 0 ^ dypost = 0 */

f dx = 0; dy = 0;
update();

g

The given implementation of startNewLevel contains
an error: The invocation of update results in a call to
the update implementation in class Sprite , whose invo-
cation of updatePosition in turn results in a call to the
updatePosition implementation in class Hero (because of
dynamic method dispatch). This implementation of update-
Position modi�es the dx and dy variables. Thus, execu-
tions of startNewLevel may well end with non-zero values

7 - 3

for dx and dy , so the implementation of startNewLevel

does not meet its speci�cation.
Unfortunately, the methodology proposed by Straw Man

2 does not allow one to catch the error in startNewLevel .
The problem is that even though the interpretation of the
speci�cation of updatePosition in class Hero reveals that
dx and dy may be modi�ed (since the also-modi�es an-
notation of updatePosition in class Hero lists these vari-
ables), the update method is not overridden in Hero and
thus gets its speci�cation solely from the one given in class
Sprite . Hence, the interpretation of the speci�cation of
update shows dx and dy as being unchanged, so a program
checker will not �nd anything wrong with the implementa-
tion of startNewLevel .

Note that the implementations in class Sprite do meet
their speci�cations under Straw Man 2. For example, the in-
terpretation of the speci�cation of updatePosition in class
Sprite includes only x and y , both of which are allowed to
be modi�ed also by the implementation of update . Hence,
there is no error for the checker to report in class Sprite

either.
In conclusion, Straw Man 2 seems pretty good at �rst,

but since it allows the speci�cations of di�erent methods (in
the example, updatePosition and update) to be extended
in di�erent ways (by having di�erent also-modi�es clauses,
or none at all), the proposal does not adhere to modular
soundness. The proposal in the next section provides anno-
tations for data rather than for methods, the e�ect of which
is to make speci�cation extensions apply in a uniform man-
ner.

3 Data groups

In this section, I explain my proposal and demonstrate how
it solves the problems with the examples shown previously.
In Section 4, I show how a program checker can enforce
the proposal, and in Section 5, I argue that my proposal is
sound.

The idea is to introduce data groups, which represent
sets of variables. A data group is declared in a class, just
like an instance variable is. The declaration of an instance
variable is annotated with the names of the data groups to
which the variable belongs. Data groups can be nested, that
is, a group can be declared as a member of another group.
A data group can be listed in a modi�es clause, where it
represents the set of all members of the group.

Using data groups, the declaration of Sprite can be
written as:

class Sprite f
/* group attributes; */

/* group position member-of attributes; */

int x /* member-of position */;
int y /* member-of position */;
void updatePosition() /* modi�es position */

f g
/* group color member-of attributes; */

int col /* member-of color */;
void updateColor() /* modi�es color */

f g
void update() /* modi�es attributes */

f updatePosition(); updateColor(); g
/* group drawState; */

void draw() /* modi�es drawState */

f g
g

This version of class Sprite declares four data groups, at-
tributes , position , color , and drawState, and declares
position and color to be members of attributes , x and
y to be members of position , and col to be a member
of color . Class Sprite does not declare any members of
group drawState .

Since updatePosition is declared with the speci�cation
modi�es position , an implementation of this method is al-
lowed to modify x and y . In addition, an implementation of
this method is allowed to modify any variables declared in
Sprite subclasses to be members of position . An imple-
mentation of updatePosition is not allowed to call method
updateColor , for example, since color is not a member of
position .

By introducing a data group drawState and listing it
in the modi�es clause of method draw , implementations
of draw in Sprite subclasses are given a way to modify
instance variables (in particular, to modify variables that
are introduced as members of drawState).

The following illustrates how one can use data groups to
annotate class Hero :

class Hero extends Sprite f
int dx /* member-of position */;
int dy /* member-of position */;
int ddx /* member-of position */;
int ddy /* member-of position */;
void updatePosition()

f x += dx+ ddx=2; y += dy+ ddy=2;
dx += ddx; dy += ddy;

g
void startNewLevel()
/* modi�es attributes

ensures dxpost = 0 ^ dypost = 0 */

f dx = 0; dy = 0;
update();

g
g

The override of updatePosition gets its permission to
modify dx and dy from the fact that these variables are
members of the data group position . This solves the prob-
lem of how to specify updatePosition in class Sprite so
that a subclass like Hero can modify the state it introduces.

With data groups, the error in startNewLevel is de-
tected. Since dx and dy are members of position , which
in turn is a member of attributes , a program checker will
know that dx and dy may be modi�ed as a result of invok-
ing update . Since the speci�cation of update says nothing
further about the �nal values of dx and dy , one cannot
conclude that they remain 0 after the call.

As for the AgingMonster example, the data groups pro-
posal does allow one to infer that no division-by-zero er-
ror is incurred in the evaluation of s=age : The guarding
if else statement guarantees that age is non-zero before
the call to getStrength , and since age is not modi�ed by
getStrength , whose modi�es clause is empty, age remains
non-zero on return from getStrength.

I will give two more examples that illustrate the use of
data groups.

First, note that the members of two groups are allowed to
overlap, that is, that a variable is allowed to be a member of
several groups. For example, if a Sprite subclass declares
a variable

int k /* member-of position;drawState */;

7 - 4

then k can be modi�ed by any of the methods update ,
updatePosition , and draw .

Second, I give another example to illustrate that it is
useful to allow groups to contain other groups. Suppose
a Sprite subclass Centipede introduces a legs attribute.
Class Centipede declares a data group legs and a method
updateLegs with license to modify legs , which implies the
license to modify the members of legs . By declaring legs

as a member of attributes , the update method gets per-
mission to call method updateLegs:

class Centipede extends Sprite f
/* group legs member-of attributes; */

int legCount /* member-of legs */;
void updateLegs() /* modi�es legs */

f legCount= : : : ; g
void update()

f updatePosition(); updateColor();
updateLegs();

g
g

4 Enforcing the data groups proposal

This section describes more precisely how a program checker
handles data groups.

For every data group g , the checker introduces a new
variable gResidue . This so-called residue variable is used
to represent those of g 's members that are not in scope|
in a modular program, there is always a possibility of a
future subclass introducing a new variable as a member of
a previously declared group.

To interpret a modi�es clause

modi�es w

the checker �rst replaces w with the variables in the down-
ward closure of w . For any set of variables and data groups
w , the downward closure of w , written down(w) , is de�ned
as the smallest superset of w such that for any group g in
down(w) , gResidue and the variables and groups declared
with

member-of g

are also in down(w) .
For example, computing the downward closure of the

modi�es list attributes in class Hero as shown in Section 3
yields

attributes;attributesResidue;
position;positionResidue;x;y;dx;dy;ddx;ddy;
color;colorResidue;col

Thus, in that class,

modi�es attributes

is interpreted as

modi�es attributesResidue;positionResidue;
x;y;dx;dy;ddx;ddy;
colorResidue;col

By handling data groups in the way described, the Hero

implementation of method startNewLevel , for example, is
allowed to modify dx and dy and is allowed to call method
update (but the assignments to dx and dy must take place

after the call to update in order to establish the speci-
�ed postcondition of startNewLevel). The implementation
would also be allowed to call, for example, updatePosition
directly. The checker would complain if startNewLevel

called draw , because the call to draw would be treated as
modifying the residue variable drawStateResidue, and that
variable is not in the downward closure of attributes .

5 Soundness

The key to making the data groups proposal sound is that it
is always known to which groups a given variable or group
belongs, and that residue variables are used to represent
members of the group that are not in scope. The data groups
proposal is, in fact, a variation of the use of abstract vari-
ables and dependencies in my thesis [Lei95]. I will explain
the relation between the two approaches in this section, and
relegate the proof of soundness to that for dependencies in
my thesis.

A data group is like an abstract variable. An abstract
variable (also called a speci�cation variable) is a �ctitious
variable introduced for the purpose of writing speci�cations.
The value of an abstract variable is represented in terms of
program variables and other abstract variables. In some
scopes, it is not possible, nor desirable, to specify the rep-
resentation of an abstract variable because not all of the
variables of the representation are visible. This tends to
happen often in object-oriented programs, where the repre-
sentation is often subclass-speci�c. However, if the abstract
variable and some of the variables of the representation are
visible in a scope, then the fact that there is a dependency
between these variables must be known to a program checker
in order to achieve modular soundness. Consequently, an an-
notation language that admits abstract variables must also
include some construct by which one can explicitly declare
the dependency of an abstract variable on a variable that is
part of its representation. For example, if position were
an abstract variable, then

depends position on x

would declare that variable x is part of the representation
of position . My thesis introduced such dependency dec-
larations. The corresponding notion in this paper is the
annotation that declares that x is a member of data group
position :

int x /* member-of position */;

Using dependencies, one can give a precise de�nition of
what the occurrence of an abstract variable in a modi�es
clause means. For dependencies like the ones shown here,
this interpretation is the same as that de�ned for data groups
above: the downward closure.

My thesis contains a proof that the use of dependen-
cies in this way adheres to modular soundness, provided the
program meets two requirements and provided the inter-
pretation includes residue variables. The two requirements,
called the visibility and authenticity requirements, together
state essentially that a dependency declaration

depends a on c

should be placed near the declaration of c . Because the
member-of annotation is made part of the declaration of
the variable whose group membership it declares, the two
requirements are automatically satis�ed.

7 - 5

There is one other di�erence between data groups and
abstract variables with dependencies. Suppose an abstract
variable a depends on a variable c , and that the downward
closure of the modi�es clause of a method includes c but
not a . The interpretation of such a modi�es clause says
that c may be modi�ed, but only in such ways as to not
change the abstract value of a [Lei95]. This is called a side
e�ect constraint on a .

But with data groups, it would be meaningless to use
side e�ect constraints, since data groups don't have values.
Thus, if variable c is a member of a data group a and the
downward closure of a method m includes c but not a , then
the modi�es clause does not constrain the implementation
of m in how c is changed. Violations of modular soundness
result from the de�ciency that the di�erent interpretations
of a speci�cation in di�erent scopes are inconsistent. So
by removing side e�ect constraints in all scopes, modular
soundness is preserved.

From our experience with writing speci�cations for ex-
tended static checking, we have found it useful to introduce
an abstract variable conventionally called state [LN97].
This variable is declared to depend on variables representing
the state of a class or module. The state variable is used in
many modi�es clauses, but not in pre- and postconditions.
Furthermore, state is never given an exact de�nition in
terms of its dependencies. Thus, the type of state is never
important, so we declared its type to be any, where any is
a new keyword that we added to the annotation language.

The data groups proposal grew from a feeling that it was
a mistake to apply the side e�ect constraint on variables like
state whose type is any|after all, the exact value of such a
variable is never de�ned and thus cannot be relied on by any
part of the program. By changing the checking methodology
to not apply side e�ect constraints on variables of type any ,
one arrives at the interpretation of data groups presented in
this paper.

As a �nal note on modular soundness, I mention without
going into details that the absence of side e�ect constraints
makes the authenticity requirement unnecessary. This means
that it would be sound to declare the members of a data
group at the time the group is declared, rather than declar-
ing, at the time a variable is declared, of which groups the
variable is a member. For example, instead of writing

/* group g; */

: : :
int x /* member-of g */;

one could write

int x;
: : :
/* group g contains x; : : : ; */

Using contains in this way adheres to modular soundness
(but declaring a group with both a contains and a member-
of phrase does not). However, while introducing a group
containing previously declared variables is sound and may
occasionally be convenient, it does not solve the problem
described in this paper.

6 Conclusions

In summary, this paper has introduced data groups as a
natural way to document object-oriented programs. Data
groups represent sets of variables and can be mentioned in

the modi�es clauses that document what methods are al-
lowed to modify. The license to modify a data group implies
the license to modify the members of the data group as de-
�ned by the downward closure rule.

Since data groups are closely related to the use of ab-
stract variables and dependencies [Lei95], they adhere to the
useful property of modular soundness, which implies that
one can check a program one class at a time, without need-
ing global program information. Although the literature has
dealt extensively with data abstraction and re�nement, in-
cluding Hoare's famous 1972 paper [Hoa72], it seems that
only my thesis and my work with Nelson [LN97] have ad-
dressed the problem of having abstract variables in modi�es
clauses in a way that modern object-oriented programs tend
to use them.

The use of data groups shown in this paper corresponds
to static, as opposed to dynamic, dependencies. Dynamic
dependencies arise when one class is implemented in terms
of another. Achieving soundness with dynamic dependencies
is more di�cult than the case for static dependencies [LN97,
DLN96].

Data groups can be combined with abstract variables
and dependencies. This is useful if one is interested in the
abstract values of some attributes and in the representation
functions de�ning these abstract values.

A related methodological approach to structuring the in-
stance variables and methods of a class is method groups,
�rst described by Lamping [Lam93] and developed further
by Stata [Sta97]. Method groups and data groups both pro-
vide ways to organize and think about the variables declared
in classes. Other than that, methods groups and data groups
have di�erent aims. The aim of method groups is to allow
the variables declared in a superclass to be used in a di�er-
ent way in a subclass, a feature achieved by the following
discipline: The variables and methods of a class are parti-
tioned into method groups. A variable x in a method group
A is allowed to be modi�ed directly only by the methods in
group A ; methods in other groups can modify x only via
calls to methods in group A . If a designer of a subclass
chooses to replace a variable or method of a method group,
all variables and methods of the method group must be re-
placed. The use of method groups can complement the use
of data groups, whose aim is to address not how variables
are used but rather the more fundamental question of which
variables are allowed to be changed by which methods. If
one wants to write speci�cations in terms of abstract values
and allow subclasses to change the representation functions
of these abstract values, then one can combine data groups,
abstract variables, and dependencies with method groups.

There are many speci�cation languages for documenting
object-oriented software, including Larch/C++ [Lea96] and
the speci�cation languages surveyed by Lano and Haughton
[LH94]. These speci�cation languages do not, however, es-
tablish a formal connection between speci�cations and ac-
tual code. Without such a connection, one cannot build a
programming tool for �nding errors in implementations. As
soon as one becomes interested in checking a method im-
plementation against a speci�cation that is useful to callers,
one becomes concerned with what the implementation is al-
lowed to modify. Add subclassing to the stew and one faces
the problem described in this paper.

To motivate data groups in this paper, I spoke informally
about the semantics of the example code. There are several
Hoare-like logics and axiomatic semantics of object-oriented
programs that de�ne the semantics formally [Lea89, AdB94,
Nau94, AL97, Lei97a, PHM97, Lei97b]. Four of these [AL97,

7 - 6

Lei97a, PHM97, Lei97b] deal with programs where objects
are references to mutable data �elds (instance variables) and
method invocations are dynamically dispatched. However,
except for Ecstatic [Lei97a], these logics have focused more
on the axiomatization of language features and object types
than on the desugaring of useful speci�cation constructs.

In the grand scheme of annotating object-oriented pro-
grams in ways that not only help programmers, but that also
can be used by program analyzers, this paper has touched
only on the modi�cation of extended state. Though they
sometimes seem like a nuisance in the speci�cation of pro-
grams, modi�es clauses are what give a checker precision
across procedure boundaries. Vandevoorde has also found
modi�es clauses to be useful in improving program perfor-
mance [Van94].

Other important method annotations include pre- and
postconditions, of which useful variations have also been
studied [Jon91, LB97]. As for annotating data, object in-
variants [Mey88, LW94, LH94, Lea96] is a concept useful to
programmers and amenable as annotations accepted by a
program checker. Like the modi�cation of extended state,
achieving modular soundness with object invariants is an
issue [LS97].

Acknowledgements

Raymie Stata, Greg Nelson, Mark Lillibridge, and Mart��n
Abadi made useful comments on a draft of this paper.

References

[AdB94] Pierre America and Frank de Boer. Reasoning
about dynamically evolving process structures.
Formal Aspects of Computing, 6(3):269{316, 1994.

[AL97] Mart��n Abadi and K. Rustan M. Leino. A logic
of object-oriented programs. In Michel Bidoit
and Max Dauchet, editors, Theory and Practice
of Software Development: Proceedings / TAP-
SOFT '97, 7th International Joint Conference
CAAP/FASE, volume 1214 of Lecture Notes in
Computer Science, pages 682{696. Springer, April
1997.

[Det96] David L. Detlefs. An overview of the Extended
Static Checking system. In Proceedings of The
First Workshop on Formal Methods in Software
Practice, pages 1{9. ACM SIGSOFT, January
1996.

[DLN96] David L. Detlefs, K. Rustan M. Leino, and Greg
Nelson. Wrestling with rep exposure. Manuscript
KRML 68, Digital Equipment Corporation Sys-
tems Research Center, July 1996.

[ESC] Extended Static Checking home page, Digital
Equipment Corporation Systems Research Cen-
ter. On the Web at http://www.research

.digital.com/SRC/esc/Esc.html.

[GH93] John V. Guttag and James J. Horning, editors.
Larch: Languages and Tools for Formal Speci�ca-
tion. Texts and Monographs in Computer Science.
Springer-Verlag, 1993. With Stephen J. Garland,
Kevin D. Jones, Andr�es Modet, and Jeannette M.
Wing.

[Hoa72] C. A. R. Hoare. Proof of correctness of data repre-
sentations. Acta Informatica, 1(4):271{81, 1972.

[Jon91] H. B. M. Jonkers. Upgrading the pre- and post-
condition technique. In S. Prehn and W. J.
Toetenel, editors, VDM'91 Formal Software De-
velopment Methods, 4th International Symposium
of VDM Europe, Volume 1: Conference Proceed-
ings, volume 551 of Lecture Notes in Computer
Science, pages 428{456. Springer-Verlag, October
1991.

[Lam93] John Lamping. Typing the specialization inter-
face. ACM SIGPLAN Notices, 28(10):201{214,
October 1993. OOPSLA '93 conference proceed-
ings.

[LB97] Gary T. Leavens and Albert L. Baker. Enhancing
the pre- and postcondition technique for more ex-
pressive speci�cations. Technical Report TR #97-
19, Department of Computer Science, Iowa State
University, September 1997.

[Lea89] Gary Todd Leavens. Verifying Object-Oriented
Programs that Use Subtypes. PhD thesis, MIT
Laboratory for Computer Science, February 1989.
Available as Technical Report MIT/LCS/TR-439.

[Lea96] Gary T. Leavens. An overview of Larch/C++:
Behavioral speci�cations for C++ modules. In
Haim Kilov and William Harvey, editors, Speci�-
cation of Behavioral Semantics in Object-Oriented
Information Modeling, chapter 8, pages 121{142.
Kluwer Academic Publishers, 1996.

[Lei95] K. Rustan M. Leino. Toward Reliable Modular
Programs. PhD thesis, California Institute of
Technology, 1995. Available as Technical Report
Caltech-CS-TR-95-03.

[Lei97a] K. Rustan M. Leino. Ecstatic: An object-oriented
programming language with an axiomatic se-
mantics. In The Fourth International Work-
shop on Foundations of Object-Oriented Lan-
guages, January 1997. Proceedings available from
http://www.cs.indiana.edu/hyplan/pierce/

fool/.

[Lei97b] K. Rustan M. Leino. Recursive object types in a
logic of oject-oriented programs. Technical Note
1997-025, Digital Equipment Corporation Sys-
tems Research Center, October 1997.

[LH94] Kevin Lano and Howard Haughton, editors.
Object-Oriented Speci�cation Case Studies. The
Object-Oriented Series. Prentice Hall, 1994.

[LN97] K. Rustan M. Leino and Greg Nelson. Abstraction
and speci�cation revisited. Manuscript KRML 71,
Digital Equipment Corporation Systems Research
Center, In preparation, 1997.

[LS97] K. Rustan M. Leino and Raymie Stata. Check-
ing object invariants. Technical Note 1997-007,
Digital Equipment Corporation Systems Research
Center, April 1997.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A
behavioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems,
16(6):1811{1841, November 1994.

7 - 7

[Mey88] Bertrand Meyer. Object-oriented Software Con-
struction. Series in Computer Science. Prentice-
Hall International, New York, 1988.

[Nau94] David A. Naumann. Predicate transformer se-
mantics of an Oberon-like language. In E.-
R. Olderog, editor, Proceedings of the IFIP
WG2.1/WG2.2/WG2.3 Working Conference on
Programming Concepts, Methods, and Calculi,
pages 467{487. Elsevier, June 1994.

[PHM97] Arnd Poetzsch-He�ter and Peter M�uller. A
logic for the veri�cation of object-oriented pro-
grams. In R. Berghammer and F. Simon, edi-
tors, Programming Languages and Fundamentals
of Programming. Christian Albrechts-Universit�at
Kiel, 1997. Available from http://voss.

fernuni-hagen.de/pi5/forschung

/veroeffentlichungen/uebersicht en.html.

[Sta97] Raymie Stata. Modularity in the presence of sub-
classing. Research Report 145, Digital Equip-
ment Corporation Systems Research Center, April
1997.

[Van94] Mark T. Vandevoorde. Exploiting Speci�cations to
Improve Program Performance. PhD thesis, Mas-
sachusetts Institute of Technology, February 1994.
Available as Technical Report MIT/LCS/TR-598.

7 - 8

