
A Semantic Approach to Secure Information Flow

K. Rustan M. Leino1 and Rajeev Joshi2

1 DEC SRC, Palo Alto, CA 94301, USA
rustan@pa.dec.com

2 University of Texas, Austin, TX 78712, USA
joshi@cs.utexas.edu

Abstract. A classic problem in security is to determine whether a program has
secure information flow. Informally, this problem is described as follows: Given
a program with variables partitioned into two disjoint sets of “high-security” and
“low-security” variables, check whether observations of the low-security vari-
ables reveal any information about the initial values of the high-security vari-
ables. Although the problem has been studied for several decades, most previous
approaches have been syntactic in nature, often using type systems and compiler
data flow analysis techniques to analyze program texts. This paper presents a
considerably different approach to checking secure information flow, based on
a semantic characterization. A semantic approach has several desirable features.
Firstly, it gives a more precise characterization of security than that provided by
most previous approaches. Secondly, it applies to any programming constructs
whose semantics are definable; for instance, the introduction of nondeterminism
and exceptions poses no additional problems. Thirdly, it can be used for reason-
ing about indirect leaking of information through variations in program behavior
(e.g., whether or not the program terminates).

0 Introduction

A classic problem in security is that of determining whether a given program hassecure
information flow[BLP73,Den76]. In its simplest form, this problem may be described
informally as follows: Given a program whose variables are partitioned into two disjoint
sets of “high-security” and “low-security” variables, check whether observations of the
low-security variables reveal anything about the initial values of the high-security vari-
ables. A related problem is that of detectingcovert flows, where information is leaked
indirectly, through variations in program behavior [Lam73]. For instance, it may be
possible to deduce something about the initial values of the high-security variables by
examining the resource usage of the program (e.g., by counting the number of times it
accesses the disk head).

Although this problem has been studied for several decades, most of the previous
approaches have been syntactic in nature, often using type systems and compiler data
flow analysis techniques to analyze program texts. In this paper, we present a consider-
ably different approach to secure information flow, based on a semantic notion of pro-
gram equality. A definition based on program semantics has several desirable features.
Firstly, it provides a more precise characterization of secure information flow than that
provided by most previous approaches. Secondly, it is applicable to any programming

construct whose semantics are defined; for instance, nondeterminism and exceptions
pose no additional problems. Thirdly, it can be applied to reasoning about a variety of
covert flows, including termination behavior and timing dependent flows.

The outline of the rest of the paper is as follows. We start in section 1 by informally
describing the problem and discussing several small examples. We present our formal
characterization of security in section 2. In section 3, we relate our definition to the
notion used elsewhere in the literature. In sections 4 and 5, we show how to rewrite our
definition in the weakest precondition calculus so that it is amenable for use with tools
for mechanical verification. We discuss related work in section 6 and end with a short
summary in section 7.

1 Informal description of the problem

Throughout the rest of the paper, we assume that in each program considered, the vari-
ables are partitioned into two disjoint tuplesh (denoting “high-security” variables) and
k (denoting “low-security” variables). Informally, we say that a program issecureif:

Observations of the initial and final values ofk do not provide any information
about the initial value ofh .

(Notice that it is only theinitial value of h that we care about.) We illustrate this
informal description of the problem with a few examples. Throughout our discussion,
we refer to an “adversary” who is trying to glean some information about the initial
value of h . We assume that this adversary has knowledge of the program text and of
the initial and final values ofk .

The program

k := h

is not secure, since the initial value ofh can be observed as the final value ofk .
However, the program

h := k

is secure, sincek , whose value is not changed, is independent of the initial value ofh .
Similarly, the program

k := 6

is secure, because the final value ofk is always 6 , regardless of the initial value of
h .

It is possible for an insecure program to occur as a subprogram of a secure program.
For example, in each of the four programs

(0)k := h ; k := 6

(1)h := k ; k := h

(2)k := h ; k := k � h

(3)if false then k := h end

the insecure programk := h occurs as a subprogram; nevertheless, the four programs
are all secure.

There are more subtle ways in which a program can be insecure. For example, with
h; k of type boolean, the program

if h then k := true else k := false end

is insecure, despite the fact that each branch of the conditional is secure. This program
has the same effect ask := h , and the flow of information fromh to k is called
implicit [Den76].

In the insecure programs shown so far, the exact value ofh is leaked intok .
This need not always be the case: a program is considered insecure if it revealsany
information about the initial value ofh . For example, ifh and k are of type integer,
neither of the two programs shown below,

k := h � h

if 0 � h then k := 1 else k := 0 end

transmits the entire value ofh , but both programs are insecure because the final value
of k does reveal something about the initial value ofh .

A nondeterministic program can be insecure even if the adversary has no knowledge
of how the nondeterminism is resolved. For example, the following program is insecure,
because the final value ofk is always very close to the initial value ofh :

k := h � 1 k := h + 1

(The operator denotes demonic choice: execution ofS T consists of choosing
any one ofS or T and executing it.) The program

skip k := h

is also considered insecure, because if the initial and final values ofk are observed to
be different, then the initial value ofh is revealed.

Finally, we give some examples of programs that transmit information abouth

via their termination behavior. The nicest way to present these examples is by using
Dijkstra’s if � construct [Dij76]. The operational interpretation of the program

if B0 �! S0 B1 �! S1 �

is as follows. From states in which neitherB0 nor B1 is true, the program loops
forever; from all other states it executes eitherS0 (if B0 is true) or S1 (if B1 is
true). If bothB0 andB1 are true, the choice betweenS0 and S1 is made arbitrarily.
Now, the deterministic program

if h = 0 �! loop h 6= 0 �! skip � (4)

(where loop is the program that never terminates) is insecure, because whether or not
the program terminates depends on the initial value ofh . Next, consider the following
two nondeterministic programs:

(5)if h = 0 �! skip true �! loop �

(6)if h = 0 �! loop true �! skip �

Note that program (5) terminates only if the initial value ofh is 0 . Although there
is always a possibility that the program will loop forever, if the program is observed to
terminate, the initial value ofh is revealed; thus the program is considered insecure.
Program (6) is more interesting. If we take the view that nontermination is indistin-
guishable from slow execution, then the program is secure. However, if we take the
view that an adversary is able to detect infinite looping, then it can deduce that the ini-
tial value of h is 0 , and the program should be considered insecure.

Remark. Readers may be wondering just how much time an adversary would have
to spend in order to “detect infinite looping”, so the second viewpoint above requires
a little explanation. One way to address the issue of nontermination is to require that
machine-specific timing information (which the adversary may exploit to detect nonter-
mination) be made explicit in the programming model (e.g., by adding a low-security
timer variable, which is updated by each instruction). Another way, which we adopt
in this paper, is to strengthen the definition of security by considering powerful adver-
saries who can detect nontermination. As we will see later, these two approaches yield
the same definition for deterministic programs; it is only in the presence of nondeter-
minism that differences arise. Even then, our definition is at worst a little conservative,
in that it classifies a program such as (6) as insecure.(End of Remark.)

We hope that these examples, based on our informal description of secure infor-
mation flow, have helped give the reader an operational understanding of the problem.
From now on, we will adopt a more rigorous approach. We start in the next section by
formally defining security in terms of program semantics.

2 Formal characterization

Our formal characterization of secure information flow is expressed as an equality be-
tween two programs. We use the symbol

:
= to denote program equality based on total

correctness and write “S is secure” to mean that programS has secure information
flow.

A key ingredient in our characterization is the program

“assign toh an arbitrary value”

which we denote byHH (“havoc onh ”). ProgramHH may be used to express some
useful properties. Firstly, observe that the difference between a programS and the
program “HH ; S ” is that the latter executesS after settingh to an arbitrary value.
Secondly, observe that the program “S ; HH ” ‘discards’ the final value ofh result-
ing from the execution ofS . We use these observations below in giving an informal
understanding of the following definition of security.

Definition (Secure Information Flow)

S is secure � (HH ; S ; HH
:
= S ; HH) (7)

Using the two observations above, this characterization may be understood as follows.
First, note that the final occurrence ofHH on each side means that only the final value
of k (but not of h) is retained. Next, observe that the prefix “HH ; ” in the first pro-
gram means that the two programs are equal provided that the final value ofk produced
by S does not depend on the initial value ofh . In section 3, we provide a more rigor-
ous justification for this definition, by relating it to a notion of secure information flow
that has been used elsewhere in the literature, but for now, we hope that this informal
argument gives the reader some operational understanding of our definition. In the rest
of this section, we discuss some of the features of our approach.

Firstly, note that we have not stated the definition in terms of a particular style of
program semantics (e.g., axiomatic, denotational, or operational). Sequential program
equality can be expressed in any of these styles and different choices are suitable for
different purposes. For instance, in this paper, we will use a relational semantics to
justify our characterization, but we will use weakest precondition semantics to obtain a
condition that is more amenable for use in mechanical verification. Secondly, observe
that our definition is given purely in terms of program semantics; thus it can be used
to reason about any programming construct whose semantics are defined. For instance,
nondeterminism and exceptions pose no additional problems in this approach, nor do
data structures such as arrays, records, or objects. (In contrast, definitions based on type
systems often need to be extended with the introduction of new constructs.) Finally,
note that our definition leaves open the decision of which variables are deemed to be
low-security (i.e., observable by an adversary). Different choices may be used to reason
about different kinds of covert flows, by introducing appropriate special variables (such
as those used by Hehner [Heh84]) and including them in the low-security variables
k . For example, one can reason about covert flows involving timing considerations by
including in k a program variable that records execution time.

3 Security in the relational calculus

In this section, we formally justify definition (7) by showing that it is equivalent to the
notion used elsewhere in the literature. Since that notion was given in operational terms,
we find it convenient to use a relational semantics for total correctness. Thus, for the
purposes of this section, a program is a relation over the space formed by extending the
state space defined byh and k with the special “looping state”1 [RMD92]. We use
the following notational conventions: Identifiersw ; x ; y ; z denote program states; we
write x :k and x :h to denote the values ofk and h in state x . For any relationS
and statesx and y , we write x hS iy to denote thatS relatesx to y ; this means
that there is an execution of programS from the initial statex to final statey . We
assume that every programS satisfiesx hS i1 � x = 1 for all x and that1:k

differs from x :k for all x that differ from 1 . The identity relation is denoted by
“ Id ” ; it satisfies x hIdiy � x = y for all x and y . The symbol � denotes
relational containment and the operator; denotes relational composition. We will use
the facts thatId is a left- and a right-identity of composition and that; is monotonic
with respect to� in both arguments.

We use the following format for writing quantified expressions [DS90]: ForQ de-
noting either8 or 9 , we write

(Q j : r :j : t :j)

to denote the quantification over allj satisfying r :j . Identifier j is called thedummy,
r :j is called therange, and t :j is called theterm of the quantification. When the
range istrue or is understood from context, it is sometimes omitted. We use a similar
convention to define sets, and write

f j : r :j : t :j g

to mean the set of all elements of the formt :j for j satisfying r :j .
The relational semantics of programHH are given as follows.

(8 x ; y :: x hHH iy � x :k = y :k)

Note that the relationHH is both reflexive and transitive:

Id � HH (8)

HH ; HH � HH (9)

Using these properties, condition (7) may be rewritten in relational terms as follows.

S is secure
= f Definition (7), program equality

:
= is relational equality= g

HH ; S ; HH = S ; HH

) f (8) and ; monotonic, henceHH ; S ; Id � HH ; S ; HH g

HH ; S � S ; HH

) f Applying “ ; HH ” to both sides, using; monotonic g
HH ; S ; HH � S ; HH ; HH

) f (9) and ; monotonic, henceS ; HH ; HH � S ; HH g

HH ; S ; HH � S ; HH

) f (8) and ; monotonic, henceId ; S ; HH � HH ; S ; HH g

HH ; S ; HH = S ; HH

Since the second expression equals the final one, we have equivalence throughout, and
we have:

S is secure � (HH ; S � S ; HH) (10)

This result is useful because it facilitates the following derivation, which expresses
security in terms of the values of program variables.

HH ;S � S ;HH

= f Definition of relational containmentg
(8 y ;w :: yhHH ;S iw) yhS ;HH iw)

= f Definition of relational composition, twiceg

(8 y ;w :: (9 x :: yhHH ix ^ x hS iw)

) (9 z :: yhS iz ^ z hHH iw))

= f Relational semantics ofHH , shunting between range and termg
(8 y ;w :: (9 x :: y :k = x :k ^ x hS iw)

) (9 z : yhS iz : z :k = w :k))

= f Predicate calculusg
(8 y ;w :: (8 x :: y :k = x :k ^ x hS iw

) (9 z : yhS iz : z :k = w :k)))

= f Unnesting of quantifiersg
(8 x ; y ;w :: y :k = x :k ^ x hS iw

) (9 z : yhS iz : z :k = w :k))

= f Nesting, shuntingg
(8 x ; y : y :k = x :k : (8w :: x hS iw

) (9 z : yhS iz : z :k = w :k)))

= f Set calculus g
(8 x ; y : y :k = x :k : fw : x hS iw : w :k g � f z : yhS iz : z :k g)

= f Expression is symmetric inx and y g

(8 x ; y : y :k = x :k : fw : x hS iw : w :k g = f z : yhS iz : z :k g)

Thus, we have established that, for anyS ,

S is secure � (8 x ; y : x :k = y :k : fw : x hS iw : w :k g

= f z : yhS iz : z :k g) (11)

This condition says that the set of possible final values ofk is independent of the
initial value of h . It has appeared in the literature [BBLM94] as the definition of secure
information flow. (Similar definitions, restricted to the deterministic case, have appeared
elsewhere [VSI96,VS97b].) Thus, one may view the derivation above as a proof of the
equivalence of (7) with respect to the notion used by others.

4 Security in the weakest precondition calculus

In this section and the next, we show how our definition of secure information flow may
be expressed in the weakest precondition calculus [Dij76]. Our first formulation, pre-
sented in this section, involves a quantification over predicates; it is therefore somewhat
inconvenient to use. In the next section, we show how this formulation can be written
more simply as a condition involving a quantification over the domain ofk .

Recall that for any programS , the predicate transformerswlp:S (“weakest liberal
precondition”) andwp:S (“weakest precondition”) are informally defined as follows:
For any predicatep ,

wlp:S :p holds in exactly those initial states from which every terminating
computation ofS ends in a state satisfyingp , and wp:S :p holds in exactly
those initial states from which every computation ofS terminates in a state
satisfying p .

The two predicate transformers are related by the following pairing property: For any
programS ,

(8 p :: wp:S :p = wlp:S :p ^ wp:S :true) (12)

We assume that for all statementsS considered here, the predicate transformerwlp:S

is universally conjunctive(i.e., it distributes over arbitrary conjunctions), and (hence)
monotonic [DS90].

We start by introducing some notation. For any program with a variable namedv ,
we define the unary predicate transformer[v :] (read “v -everywhere”) as follows:
For any predicatep ,

[v : p] = (8M :: wlp:\v := M ":p)

where M ranges over the domain ofv . This unary predicate transformer has all
the properties of universal quantification; in particular, it is universally conjunctive.
Furthermore, for any variablesv ;w and any predicatep , we have

[v : [w : p]] = [w : [v : p]]

Recall that we are interested in programs whose variables are partitioned intok

and h . For any such program, we write[p] (read “everywherep ”) as shorthand for
[h : [k : p]] . The wlp and wp semantics of the programHH are:

(8 p :: [wlp:HH :p � [h : p]])

[wp:HH :true � true]

Program equality in the weakest precondition calculus is given by equality ofwp and
wlp :

S
:
= T � (8 p :: [wlp:S :p � wlp:T :p] ^ [wp:S :p � wp:T :p])

which, on account of the pairing property, can be simplified to

S
:
= T � (8 p :: [wlp:S :p � wlp:T :p]) ^ [wp:S :true � wp:T :true]

Using this definition of program equality, we now rewrite security condition (7) in the
weakest precondition calculus as follows.

HH ; S ; HH
:
= S ; HH

= f Program equality in terms ofwlp and wp g

(8 p :: [wlp:(HH ; S ; HH):p � wlp:(S ; HH):p])

^ [wp:(HH ; S ; HH):true � wp:(S ; HH):true]

= f wlp and wp of HH and ; g

(13)(8 p :: [[h : wlp:S : [h : p]] � wlp:S : [h : p]])

(14)^ [[h : wp:S :true] � wp:S :true]

The last formula above contains expressions in which a predicateq satisfies

[[h : q] � q] :

Predicates with this property occur often in our calculations, so it is convenient to intro-
duce a special notation for them and identify some of their properties. This is the topic
of the following subsection.

4.0 Cylinders

Informally speaking, a predicateq that satisfies[q � [h : q]] has the property that its
value is independent of the variableh . We refer to such predicates as “h -cylinders”,
or simply as “cylinders” ash is understood from context. For notational convenience,
we define the setCyl of all h -cylinders:

Definition (Cylinders) For any predicateq ,

q 2 Cyl � [q � [h : q]] (15)

The following lemma provides several equivalent ways of expressing that a predicate is
a cylinder.

Lemma 0 For any predicateq , the following are all equivalent toq 2 Cyl .

i. [q � [h : q]]

ii. [q) [h : q]]

iii. (9 p :: [q � [h : p]])

iv. :q 2 Cyl

Proof. Follows from predicate calculus.(End of Proof.)

4.1 Security in terms of cylinders

We now use the results in the preceding subsection to simplify the formulation of secu-
rity in the weakest precondition calculus. We begin by rewriting (13) as follows.

(8 p :: [[h : wlp:S : [h : p]] � wlp:S : [h : p]])

= f Definition of Cyl (15) g

(8 p :: wlp:S : [h : p] 2 Cyl)

= f One-point rule g
(8 p; q : [q � [h : p]] : wlp:S :q 2 Cyl)

= f Nesting and tradingg
(8 q :: (8 p :: [q � [h : p]]) wlp:S :q 2 Cyl))

= f Predicate calculusg
(8 q :: (9 p :: [q � [h : p]])) wlp:S :q 2 Cyl)

= f Lemma 0.iii, and tradingg
(8 q : q 2 Cyl : wlp:S :q 2 Cyl)

Similarly, we rewrite the expression (14) as follows.

[[h : wp:S :true] � wp:S :true]

= f Definition of Cyl (15) g

wp:S :true 2 Cyl

Putting it all together, we get the following condition for security: For any programS ,

S is secure � (8 p : p 2 Cyl : wlp:S :p 2 Cyl) ^ wp:S :true 2 Cyl (16)

5 A simpler characterization

Using (16) to check whether a given programS is secure requires evaluation of the
following term:

(8 p : p 2 Cyl : wlp:S :p 2 Cyl) (17)

Since this term involves a quantification over all cylinders, it is somewhat inconvenient
to use. In this section, we show how this quantification over predicatesp can be re-
duced to a simpler quantification over the domain ofk .

To explain how this simplification is brought about, we introduce the notions of
conjunctiveanddisjunctive spans. These notions are defined formally below, but, in-
formally speaking, for any setX of predicates, the conjunctive spanA:X is the set
of predicates obtained by taking conjunctions over the subsets ofX . Similarly, the
disjunctive spanE :X is the set of predicates obtained by taking disjunctions over the
subsets ofX . The main theorem of this section asserts that the range ofp in (17)
may be replaced by any set of predicates whose conjunctive span is the setCyl . The
usefulness of the theorem is demonstrated in subsection 5.1, where we show that there
is a simple set of predicates whose conjunctive span isCyl .

We use the following notational conventions in this section. For any setX of pred-
icates, we write: X to mean the setf q : q 2 X : : q g . We also write8:X
to mean the conjunction of all the predicates inX , and 9:X to mean the disjunc-
tion of all the predicates inX . Note that as a result of these conventions, we have
[:(8:X) � 9:(:X)] .

5.0 Spans

For any setX of predicates, define the setsA:X and E :X as follows.

Definition (Spans)

A:X = fXS : XS � X : 8:XS g

E :X = fXS : XS � X : 9:XS g

The two notions are related by the following lemma.

Lemma 1 For any setX of predicates,

: E :X = A:(: X)

Proof. Follows from predicate calculus.(End of Proof.)

We are now ready to present the main theorem of this section.

Theorem 0 Let f be a universally conjunctive predicate transformer and letX be
any set of predicates. Then

(8 p : p 2 X : f :p 2 Cyl) � (8 q : q 2 A:X : f :q 2 Cyl)

Proof. Note that the left-hand side follows from the right-hand side sinceX � A:X ;
thus, it remains to prove the implication

(8 p : p 2 X : f :p 2 Cyl)) (8 q : q 2 A:X : f :q 2 Cyl)

We prove this implication by showing that for any predicateq in A:X , the antecedent
implies that f :q is a cylinder. By the definition of a conjunctive span, there is a subset
XS of X such that[q � 8:XS] . From the definition of cylinders (15),XS � X ,
and the antecedent, we have:

(8 p : p 2 XS : [f :p � [h : f :p]]) (18)

Now, we observe:

f :q 2 Cyl

= f Choice ofXS g

f :(8 p : p 2 XS : p) 2 Cyl

= f f is universally conjunctiveg
(8 p : p 2 XS : f :p) 2 Cyl

= f Definition of cylinders (15) g
[(8 p : p 2 XS : f :p) � [h : (8 p : p 2 XS : f :p)]]

= f [h :] is universally conjunctiveg
[(8 p : p 2 XS : f :p) � (8 p : p 2 XS : [h : f :p])]

= f (18) g

[(8 p : p 2 XS : f :p) � (8 p : p 2 XS : f :p)]

= f Predicate Calculusg
true

(End of Proof.)

From the standpoint of mechanical verification, the usefulness of the result above is due
to the fact that there is a simple set of predicates whose conjunctive span isCyl .

5.1 A simpler quantification

Consider the following two sets of predicates, whereM ranges over the domain ofk .

PP = fM :: \k = M " g (19)

NN = fM :: \k 6= M " g (20)

It follows directly from these definitions that

PP = :NN (21)

The relationship of these sets toCyl is given by the following lemma.

Lemma 2 With PP and NN as defined above, we have

i. E :PP = Cyl

ii. A:NN = Cyl

Proof. We give an informal sketch of the proof here; details are left to the reader. By
definition, Cyl consists of exactly those predicates that are independent ofh , that is,
they depend on the variablek only. But every predicate onk may be written as a
disjunction of predicates, one for each value in the domain ofk for which the predi-
cate holds; thus part (i) follows. Part (ii) follows directly from part (i), observation (21),
Lemma 1, and Lemma 0.iv.(End of Proof.)

Using the fact thatwlp:S is universally conjunctive for any statementS , and
Lemma 2.ii, we apply Theorem 0 withf ;X := wlp:S ;NN to obtain the following
reformulation of (16):

S is secure � (8 q : q 2 NN : wlp:S :q 2 Cyl) ^ wp:S :true 2 Cyl :

Applying the definition ofNN (20), this yields the following condition:

S is secure � (8M :: wlp:S :(k 6= M) 2 Cyl) ^ wp:S :true 2 Cyl (22)

Note that this is simpler than (16) since the quantification ranges over the domain ofk .

5.2 Deterministic programs

In the case thatS is also known to be deterministic and non-miraculous, we can fur-
ther simplify the security condition (22). Recall that a deterministic, non-miraculous
programS satisfies the following properties [DS90]:

(8 p :: [wp:S :p � :wlp:S :(:p)]) (23)

wp:S is universally disjunctive (24)

Consequently, the term involvingwp in (22) is subsumed by the term involvingwlp :

wp:S :true 2 Cyl

= f (23), with p := true g

:wlp:S :false 2 Cyl

= f Lemma 0.iv g

wlp:S :false 2 Cyl

(f false 2 Cyl g

(8 q : q 2 Cyl : wlp:S :q 2 Cyl)

Thus, the security condition for deterministicS is given by

S is secure � (8M :: wlp:S :(k 6= M) 2 Cyl) (25)

Next, we show that condition (25) may also be expressed in terms ofwp and PP

instead ofwlp and NN .

(8 q : q 2 Cyl : wlp:S :q 2 Cyl)

= f Theorem 0 g
(8 q : q 2 NN : wlp:S :q 2 Cyl)

= f Negation is its own inverse, so rename dummyq to :p g

(8 p : :p 2 NN : wlp:S :(:p) 2 Cyl)

= f Observation (21), and (23)g
(8 p : p 2 PP : :wp:S :p 2 Cyl)

= f Lemma 0.iv g

(8 p : p 2 PP : wp:S :p 2 Cyl)

Thus we have another way of expressing the condition for security of deterministic
programs, namely,

S is secure � (8M :: wp:S :(k = M) 2 Cyl) (26)

5.3 Examples

We give some examples to show our formulae at work.
Firstly, consider the secure program (2). We calculate,

(k := h ; k := k � h) is secure
= f Security condition (22)g

(8M :: wlp:(k := h ; k := k � h):(k 6= M) 2 Cyl)

^ wp:(k := h ; k := k � h):true 2 Cyl

= f wlp and wp of := and ; g

(8M :: (h � h 6= M) 2 Cyl) ^ true 2 Cyl

= f Lemma 0.i, andtrue 2 Cyl g

(8M :: [h � h 6= M � [h : h � h 6= M]])

= f Arithmetic g

(8M :: [0 6= M � [h : 0 6= M]])

= f Definition of [h :] , predicate calculusg
true

This shows that our method does indeed establish that program (2) is secure.
Secondly, we apply the security condition to program (5), which is insecure because

of its termination behavior. LettingN range over the domains ofh , we have:

(if h = 0 �! skip true �! loop �) is secure
= f Security condition (22)g

(8M :: wlp:(if h = 0 �! skip true �! loop �):(k 6= M) 2 Cyl)

^ wp:(if h = 0 �! skip true �! loop �):true 2 Cyl

= f wlp and wp , using (8 p :: [wlp:loop:p � true])

and [wp:loop:true � false] g

(8M :: ((h = 0) k 6= M) ^ (true) true)) 2 Cyl)

^ ((h = 0 _ true) ^ (h = 0) true) ^ (true) false)) 2 Cyl

= f Predicate Calculusg
(8M :: (h = 0) k 6= M) 2 Cyl) ^ false 2 Cyl

= f Lemma 0.i, andfalse 2 Cyl g

(8M :: [h = 0) k 6= M � [h : h = 0) k 6= M]])

) f Instantiate withM := 2 g

[h = 0) k 6= 2 � [h : h = 0) k 6= 2]]

= f [p] is shorthand for [h : [k : p]] g

[h : [k : h = 0) k 6= 2 � [h : h = 0) k 6= 2]]]

= f Definition of [v :] , twice; wlp of := g

(8M ;N :: wlp:(k ; h := M ;N):(h = 0) k 6= 2

� [h : h = 0) k 6= 2]))

) f Instantiate withM ;N := 2 ; 2 g

2 = 0) 2 6= 2 � [h : h = 0) 2 6= 2]

= f Predicate Calculus, identity of� g

[h : h 6= 0]

= f Definition of [h :] g

(8N :: wlp:(h := N):(h 6= 0))

) f InstantiateN := 0 g

0 6= 0

= f Predicate Calculusg
false

Finally, using program (4), we illustrate how one can reason about secure termina-
tion behavior of deterministic programs usingwlp .

(if h = 0 �! loop h 6= 0 �! skip �) is secure
= f Security condition for deterministic programs (25)g

(8M :: wlp:(if h = 0 �! loop h 6= 0 �! skip �):(k 6= M) 2 Cyl)

= f wlp g

(8M :: ((h = 0) true) ^ (h 6= 0) k 6= M)) 2 Cyl)

= f Definition of Cyl : note h 6= 0) k 6= M depends onh g

false

6 Related work

The problem of secure information flow has been studied for several decades. A com-
monly used mathematical model for secure information flow is Denning’s lattice model
[Den76], which is based on the Bell and La Padula security model [BLP73]. Most ap-
proaches to static certification of secure information flow (an area pioneered by Denning
and Denning [Den76,DD77]) seem to fall into one of two general categories: type sys-
tems and data flow analysis techniques. In this section, we discuss these approaches and
compare them to our work. A historical perspective of secure information flow appears
in a book by Gasser [Gas88].

6.0 Approaches based on type systems

The static certification mechanism proposed by Denning and Denning [DD77] is es-
sentially a type checker for secure information flow. Each variablex occurring in a

program is declared with a particularsecurity class, denoted byclass :x . These secu-
rity classes are assumed to form a lattice, ordered by� , with meet (greatest lower
bound) denoted by# and join (least upper bound) denoted by" . The type checker
computes the class of an expression as the join of the classes of its subexpressions. For
example, for an expression involving addition, we have

class :(E + F) = class :E " class :F

A security class is also assigned to each statement, and is computed as the meet of the
security classes of the variables assigned to by that statement. For instance,

class :(x := E) = class :x

class :(if E then S else T end) = class :S # class :T

The type checker certifies a programS as being secure provided the following two
conditions hold:

0. For every assignment statementx := E in S , class :E � class :x

1. For every conditional statementif E then T else U end in S ,
class :E � class :T and class :E � class :U .

Other programming constructs, such as loops, give rise to similar requirements.
Denning and Denning gave an informal argument for the soundness of their certi-

fication mechanism (i.e., a proof that the mechanism certifies only secure programs).
Recently, Volpanoet al.have given a more rigorous proof [VSI96,VS97b].

The advantage of using a type system as the basis of a certification mechanism is
that it is simple to implement. However, most certification mechanisms based on types
reject any program that contains an insecure subprogram. As we saw in examples (0)–
(3) of section 1, a secure program may contain an insecure subprogram. In contrast,
with a semantic approach like ours, it is possible to identify such programs as being
secure. Another problem with such approaches is that they are difficult to use for rea-
soning about programs that leak information via termination behaviour. (Volpano and
Smith [VS97a] have attempted to extend their type-based approach to handle termina-
tion behaviour. However, their type system rejects any program that mentionsh in a
loop guard. Such an approach seems terribly restrictive.)

6.1 Approaches based on data flow analyses

The key idea behind approaches based on data flow analyses is to transform a given
programS into a programS 0 that provides a simpler representation of the possible
data flows in programS . This is done as follows. (We assume, as in the previous
section, that we are given a lattice of security classes.) For every variablex in program
S , programS 0 contains a variablex 0 , representing the highest security class of the
values used in computing the current value forx . To deal with implicit flows, S 0

also contains a special variablelocal 0 , representing the lowest security class of the
values used to compute the guards that led to execution of the current instruction.For

example, for every assignment statement inS of the form x := y + z , S 0 contains
a corresponding statement

x 0 := y 0 " z 0 " local 0

For a conditional statement inS such as

if x = y �! S0 z < 0 �! S1 �

S 0 contains a corresponding statement

var old := local 0 in

local 0 := local 0 " x 0 " y 0 " z 0

; if true �! S0 0 true �! S1 0
�

; local 0 := old

end

where S0 0 and S1 0 are the statements inS 0 that correspond toS0 and S1 . If
a programS has the variablesk and h belonging to the security classes low and
high (denoted? and > , respectively, where? � >), then “ S is secure ” can be
expressed as the following Hoare triple onS 0 :

f k 0 � ? ^ h 0 � > ^ local 0 � ? g S 0 f k 0 � ? g (27)

The first data flow analysis approach of this kind was given by Andrews and Re-
itman [AR80], whose treatment also dealt with communicating sequential processes.
Banâtreet al. [BBLM94] used a variation of the method described above that attempts
to keep track of the set of initial variables used to produce a value rather than only the se-
curity class of the value. They also developed an efficient algorithm for their approach,
similar to data flow analysis algorithms used in compilers, and attempted a proof of
soundness. (Unlike our description above, Andrews and Reitman used the deterministic
if then else construct rather than Dijkstra’sif � construct. Banˆatreet al. used the
if � construct, but, as Volpanoet al.point out, their soundness theorem is actually false
for nondeterministic programs [VSI96].)

The data flow analysis approach can provide more precision than the type system
approach. For example, the approach certifies programs (0) and (1). However, the ap-
proach still rejects some secure programs that our approach will certify. This comes
about because of two reasons. The first reason is that the semantics of operators like
+ and � are lost in the rewriting ofS into S 0 . Thus a program like (2), which is
secure on account of thath � h = 0 , is rejected by the data flow analysis approach.
The second reason is that guards are replaced bytrue in the rewriting of S into S 0 .
Thus, a program like (3), whose security depends on when control can reach a certain
statement, is rejected.

One way to improve on this approach is to augment it with a logic, as suggested
by Andrews and Reitman [AR80]. Instead of rewriting programS into S 0 , one super-
imposes new variables (k 0 , h 0 , local 0) and their updates onto programS , and then
reasons aboutS using the Hoare triple (27) but withS instead ofS 0 . A consequence
of this approach is that one can rule out some impossible control paths, such as the one
in program (3).

6.2 The use of determinism

It has been noted elsewhere that “semantic models always make implicit assumptions
about what sort of things are interesting about a process’ behaviour” [Ros95]. In the
context of security, these assumptions specify what we consider observable by the ad-
versary. We argued in section 2 that our definition can be used to model adversaries
that exploit covert flows (e.g., adversaries monitoring resource usage) by appropriately
choosing the low-security variables. There is, however, one subtle issue that arises in
the context of nondeterminism: security is not preserved by refinement. For example,
the secure program “assign tok an arbitrary value” is refined by the insecure program
“ k := h ”. Since sequential programs are often implemented by refining their nonde-
terminism, this leads to the undesirable situation in which a secure program is rendered
insecure by its implementation.

There are two ways of addressing this issue. The first is by recognizing that re-
finements are a concern only if the adversary is aware of how they are made. If we
take the position that the adversary has absolutely no knowledge of how a program is
refined during implementation (or how nondeterministic choices are resolved during
execution), we can assert that its observations reveal no information about the initial
value of h . The second way of addressing the issue is by noting that the problem
does not arise for deterministic programs, since the latter are maximal in the refinement
ordering. Thus we can avoid the difficulty by requiring that secure programs be deter-
ministic. 1 This latter approach is similar to the one advocated by Roscoe, who gives
several characterizations (corresponding to different observational models) for the se-
cure information flow property for CSP processes. He makes a persuasive argument
for requiring determinism by showing that these characterizations are all equivalent for
deterministic processes.

7 Summary

We have presented a simple and new mathematical characterization of what it means
for a program to have secure information flow. The characterization is general enough
to accommodate reasoning about a variety of covert flows, including nontermination.
Unlike previous methods, which were based on type systems and compiler data flow
analysis techniques, our characterization is in terms of program semantics, thus it is
more precise than these syntactic approaches. We are currently investigating ways of
using our characterization as a basis for developing a mechanically-assisted technique
for verifying secure flow.

Acknowledgments.We are grateful to the following colleagues for sharing their insights
and comments on our work: Mart´ın Abadi, Ernie Cohen, Rutger M. Dijkstra, Mark
Lillibridge, Jayadev Misra, Greg Nelson, Raymie Stata, the members of the Austin
Tuesday Afternoon Club, the participants at the September 1997 session of the IFIP
WG 2.3 meeting in Alsace, France, and the four anonymous referees.

1 Actually, it suffices to place the weaker requirement that programs be deterministic with respect
to the low-security variables in the following sense: the initial state determines the final value
of k .

References

[AR80] Gregory R. Andrews and Richard P. Reitman. An axiomatic approach to informa-
tion flow in programs.ACM Transactions on Programming Languages and Systems,
2(1):56–76, January 1980.

[BBLM94] Jean-Pierre Banˆatre, Ciarán Bryce, and Daniel Le M´etayer. Compile-time detection
of information flow in sequential programs. InProceedings of the European Sym-
posium on Research in Computer Security, pages 55–73. Lecture Notes in Computer
Science 875, Sprinter Verlag, 1994.

[BLP73] D. E. Bell and L. J. La Padula. Secure computer systems: Mathematical founda-
tions and model. Technical Report M74-244, MITRE Corporation, Bedford, Mas-
sachusetts, 1973.

[DD77] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure infor-
mation flow.Communications of the ACM, 20(7):504–513, July 1977.

[Den76] Dorothy E. Denning. A lattice model of secure information flow.Communications of
the ACM, 19(5):236–243, May 1976.

[Dij76] Edsger W. Dijkstra.A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
NJ, 1976.

[DS90] Edsger W. Dijkstra and Carel S. Scholten.Predicate Calculus and Program Seman-
tics. Texts and Monographs in Computer Science. Springer-Verlag, 1990.

[Gas88] Morrie Gasser.Building a secure computer system. Van Nostrand Reinhold Company,
New York, 1988.

[Heh84] Eric C. R. Hehner. Predicative programming Part I.Communications of the ACM,
27(2):134–143, February 1984.

[Lam73] Butler W. Lampson. A note on the confinement problem.Communications of the
ACM, 16(10):613–615, October 1973.

[RMD92] R.M. Dijkstra. Relational calculus and relational program semantics. Eindhoven
Institute of Technology, 1992.

[Ros95] A. W. Roscoe. CSP and determinism in security modelling. InSecurity and Privacy.
IEEE, 1995.

[VS97a] Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum typ-
ings. In Proceedings of the 10th IEEE Computer Security Foundations Workshop,
pages 156–168, June 1997.

[VS97b] Dennis Volpano and Geoffrey Smith. A type-based approach to program security.
In Theory and Practice of Software Development: Proceedings / TAPSOFT ’97, 7th
International Joint Conference CAAP/FASE, volume 1214 ofLecture Notes in Com-
puter Science, pages 607–621. Springer, April 1997.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure
flow analysis.Journal of Computer Security, 4(3):1–21, 1996.

