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Abstract

This paper explores the interpretation of specifications in the
context of an object-oriented programming language with
subclassing and method overrides. In particular, the paper
considers annotations for describing what variables a method
may change and the interpretation of these annotations. The
paper shows that there is a problem to be solved in the spec-
ification of methods whose overrides may modify additional
state introduced in subclasses. As a solution to this prob-
lem, the paper introducesdata groups, which enable mod-
ular checking and rather naturally capture a programmer’s
design decisions.

0 Introduction

Specifications help in the documentation of computer pro-
grams. Ideally, specifications can be used by a mechanical
program analyzer to check the body of a method against its
specification, attempting to find errors. The Extended Static
Checkers for Modula-3 [DLNS98, LN98b, Det96] and for
Java [ESC], which work on object-oriented programs, are
examples of such program checkers.

This paper concerns the specification of methods. A
method specification is a contract between the implemen-
tation of a method and its callers. As such, it includes a
precondition, which documents what a caller must establish
before invoking the method. Consequently, the implemen-
tation can assume the precondition on entry to the method
body. A method specification also includes apostcondition,
which documents what the implementation must establish
on exit. Consequently, the caller can assume the postcondi-
tion upon return from the method invocation. When reason-
ing about method implementations and calls, only the con-
tract given by the specification is used. That is, one does

not use the code in a method’s callers when reasoning about
the method implementation, and one does not use the imple-
mentation when reasoning about the calls.

To be useful to the caller, it is important that the postcon-
dition of a method detail what variables the method does not
change. But since the scope of the caller can include vari-
ables that are not visible in the scope where the method is
declared and specified, it is not possible to explicitly list all
unchanged variables in the method’s postcondition. Instead,
the annotation language must include some form of syntactic
shorthand (“sugar”) whose interpretation as part of the post-
condition is a function of the scope in which it is interpreted.
A nice construct for this is themodifies clause, which lists
those variables that the method is allowed to modify, thereby
specifying that the method does not modify any other vari-
ables [GH93]. For example, suppose that the specification of
a methodm occurs in a scope where two variables,x andy ,
are visible, and that the specification includes themodifies
clause

modifiesx

If m is called from a scope where, additionally, a variablez
is visible, then the caller’s interpretation (“desugaring”) of
the specification says that the call may possibly modifyx ,
but leaves bothy andz unchanged.

The fact that amodifies clause is interpreted differently
in different scopes raises a concern aboutmodular sound-
ness[Lei95]. For the purpose of this paper, modular sound-
ness means that the implementation, which is checked to
meet the specification as interpreted in the scope contain-
ing the method body, actually lives up to a caller’s expecta-
tions, which are based on the specification as interpreted in
the scope of the call. A consequence of modular soundness
is that one can check a class even in the absence of its future
clients and subclasses.

This paper explores the interpretation of specifications
in the context of an object-oriented programming language
with subclassing and method overrides, for example like Java.
In particular, I consider annotations for describing what a
method may change and the interpretation of these annota-
tions. I show that there is a problem to be solved in the



specification of methods whose overrides may modify addi-
tional state introduced in subclasses. As a solution to this
problem, I introducedata groups, which adhere to modular
soundness and rather naturally capture a programmer’s de-
sign decisions.

For simplicity, I restrict my attention to the operations
on only one object, the implicitself parameter. Neverthe-
less, because of inheritance and method overriding, the im-
plementations of the methods of this object may be found in
superclasses and subclasses of the class being checked.

1 Extending the state of a superclass

To illustrate the problem, I introduce a simplified example of
a computer arcade game—an excellent application of object-
oriented programming indeed.

The design centers aroundsprites. A sprite is a game ob-
ject that appears somewhere on the screen. In this simple
example, every sprite has a position, a color, and methods
to update these. The main program, which I will not show,
essentially consists of a loop that performs one iteration per
video frame. Each iteration works in two phases. The first
phase invokes theupdate method on each sprite, which up-
dates the sprite’s position, color, and other attributes. The
second phase invokes thedraw method on each sprite, which
renders the sprite on the screen.

Here is the declaration of classSprite , in which the
methods have been annotated withmodifies clauses:

classSprite {
int x, y;
void updatePosition( ) /* modifiesx, y */
{ }

int col;
void updateColor( ) /* modifiescol */
{ }

void update( ) /* modifiesx, y, col */
{ updatePosition( ); updateColor( ); }

void draw( ) /* modifies(nothing) */
{ }

}
The defaultupdate method invokes theupdatePosition
andupdateColor methods, whose default implementations
do nothing. Any of these methods can be overridden in
Sprite subclasses. For example, a moving sprite that
never changes colors would override theupdatePosition
method, a stationary sprite whose color changes over time
would override theupdateColor method, and a sprite that
adds further attributes that need to be updated overrides the
update method and possibly also theupdatePosition and
updateColor methods.

Since the specifications I have given in the example show
only modifies clauses, checking that an implementation

meets its specification comes down to checking that it mod-
ifies only those variables that it is permitted to modify. The
implementations of theupdatePosition , updateColor ,
anddraw methods are no-ops, so they trivially satisfy their
specifications. Theupdate method invokes the other two
update methods, whosemodifiesclauses say they may mod-
ify x , y , andcol . Soupdate in effect modifiesx , y , and
col , and this is exactly what its specification allows. We
conclude that the methods in classSprite meet their spec-
ifications.

Let us now consider a subclassHero of Sprite , rep-
resenting the hero of the game. The hero can move about,
and hence theHero class provides its own implementation
of theupdatePosition method by overriding this method.
The next position of the hero is calculated from the hero’s
velocity and acceleration, which are represented as instance
variables. TheHero class is declared as follows:

classHero extendsSprite {
int dx, dy;
int ddx, ddy;
void updatePosition( )
{ x += dx+ ddx/2; y += dy+ ddy/2;
dx += ddx; dy += ddy;
}

. . .

}
The Hero implementation ofupdatePosition increases
x andy by appropriate amounts (1d = v0 · t + 1/2 · a · t2
wheret = 1). In addition, it updates the velocity according
to the current acceleration. (Omitted from this example is
the update of acceleration, which is computed according to
the game player’s joystick movements.) It seems natural to
update the velocity in the method that calculates the new
position, but the specification ofupdatePosition (given
in classSprite) allows onlyx andy to be modified, notdx
anddy which are not even defined in classSprite . (If the
update ofdx anddy instead took place in methodupdate ,
there would still be a problem, since themodifies clause of
update also does not include these variables.)

As evidenced in this example, the reason for overriding a
method is not just to change what the method does algorith-
micly, but also to change what data the method updates. In
fact, the main reason for designing a subclass is to introduce
subclass-specific variables, and it is the uses and updates of
such variables that necessitate being able to override meth-
ods. For example, classSprite was designed with the in-
tention that subclasses be able to add sprite attributes and
update these in appropriate methods. So how does one in a
superclass write the specification of a method such that sub-
classes can extend the superclass’s state (that is, introduce
additional variables) and override the method to modify this
extended state?



2 Three straw man proposals

In this section, I discuss three proposals that I often hear
suggested for solving the problem of specifying the modifi-
cation of extended state. I show that these proposals don’t
work. This is what it means for a proposal to work:

• the proposal must provide a way to annotate classes
like Sprite and Hero such that the desired method
implementations in these classes will meet their speci-
fications,

• the interpretation of specifications must be useful to
callers (for example, specifications should not all be
treated as “can do anything whatsoever”),

• the annotations should not be unnecessarily tedious to
write down, and

• the proposal must adhere to modular soundness.

Here is the first proposal:

Straw man 0. A subclass canrefine the specification of a
method when it overrides it. That is, a subclass can
weakenthe precondition of the method in the super-
class (that is, say that the overridden method imple-
mentation will work in more situations) andstrengthen
the postcondition (that is, be more specific about the
effect of the method).

It is well known that this proposal is sound. However, it
doesn’t solve the problem at hand. To strengthen the post-
condition means to be more precise about the final values
of variables. This is just the opposite of what we’d like—
we’d like the new postcondition to allow more variables to
be modified, that is, to put no restrictions at all on the final
values of these variables. Stated differently, whileshrinking
the list in themodifies clause is sound,enlargingit is what
we want when specifying a subclass’s method overrides.

Another straw man proposal is the following:

Straw man 1. Let m be a method declared and specified in a
classT . An implementation ofm is allowed to modify
those variables listed in themodifies clause ofm , plus
any variable declared in any proper subtype ofT .

Although sound, this straw man is too liberal about the mod-
ification of variables in subclasses. In fact, a subclass loses
the advantage ofmodifies clauses with this proposal. To il-
lustrate, I will show an example that builds on classSprite .

Consider a class ofmonsterswith a strength attribute.
Rather than storing this attribute as an instance variable in
every monster object, suppose a classMonster has a method
that returns the value of the strength attribute. Thus, differ-
ent Monster subclasses can decide on their own represen-
tation of the strength attribute. For example, if the strength
of a class of monsters is constant, the method can return that

constant, without taking up any per-object storage. This de-
sign trades quick access of an attribute for flexibility in how
the attribute is represented.

The following declaration shows classMonster , which
uses the strength attribute in updating the sprite position.

classMonster extendsSprite {
int getStrength( ) /* modifies(nothing) */
{ return 100; }

void updatePosition( )
{ if (getStrength( ) < 10) {

x += 2;
} else{

x += 4;
} }

}
A particularMonster subclass isAgingMonster , which

adds an age attribute and overrides thedraw method so as
to render the monster differently according to its strength-to-
age ratio.

classAgingMonster extendsMonster {
int age;
. . .

void draw( )
{ int bitmapID;

if (age == 0) {
bitmapID = MONSTER INFANT;

} else{
int s = getStrength( );
int relativeStrength= s/age;
if (relativeStrength< 5) {

bitmapID = MONSTER WIMPY;
} elsif (relativeStrength< 10) {

bitmapID = MONSTER NORMAL;
} else{

bitmapID = MONSTER STRONG;
} }
Bitmap.Draw(x, y, bitmapID);
}

}
The nameBitmap.Draw denotes some procedure that can
draw a bitmap given a screen coordinate and an ID.

The correctness of theAgingMonster implementation
of draw relies on the fact that the call togetStrength does
not modify age . In particular, if getStrength were to
setage to 0 , then the computation ofrelativeStrength
would result in a division-by-zero error. ThegetStrength
method is specified with an emptymodifiesclause, but Straw
Man 1 gives implementations ofgetStrength permission
to modify age , sinceage is declared in a proper subclass
of Monster . Thus, the interpreted specification for method
getStrength is not strong enough for one to conclude that
methoddraw will execute correctly.



There is a workaround. If a class is allowed to refine
the specifications of methods declared in superclasses, class
AgingMonster can strengthen the postcondition of method
getStrength with agepre == agepost . But this would
quickly get annoying, because programmers would then some-
times rely on the absence ofage in the modifies clause to
conclude thatage is not changed, and sometimes rely on an
explicit postconditionagepre == agepost to conclude the
same thing. Even worse, strengthening the specification of
all methods declared in a superclass whenever a class intro-
duces new variables would quickly grow to be an unaccept-
ably tedious chore.

The next straw man proposal seeks to alleviate this chore
by making the mentioned postcondition strengthening the
default interpretation, and providing a new specification con-
structalso-modifiesthat can override the default interpreta-
tion:

Straw man 2. Let m be a method declared and specified in
a classT . An implementation ofm in a subclassU
of T is allowed to modify those variables listed in the
modifies clause ofm as given in classT , plus any
variable declared in anyalso-modifiesclause form as
given in some superclass ofU .

This straw man seems to solve the problem for theHero
example: One would simply annotate theupdatePosition
override with

also-modifiesdx, dy

This would give theupdatePosition implementation in
Hero permission to modify not justx andy (as granted by
the original specification ofupdatePosition in Sprite),
but also the variablesdx anddy . (One could also addddx
andddy to thealso-modifiesclause, if desired.)

Let us consider how Straw Man 2 stands up to modu-
lar soundness. Suppose that the game uses one hero object
throughout many game levels. As a new level starts, the pro-
gram will call a methodstartNewLevel on the hero object.
This method resets certain attributes of the hero object while
leaving other attributes unchanged, preparing it to begin the
new level. To this end, suppose classHero contains the fol-
lowing method declaration and specification, where the key-
word ensuresis used to express a given postcondition:

void startNewLevel( )
/* modifiesx, y, col, dx, dy, ddx, ddy

ensuresdxpost == 0 ∧ dypost == 0 */
{ dx = 0; dy = 0;
update( );
}

The given implementation ofstartNewLevel contains
an error: The invocation ofupdate results in a call to the
update implementation in classSprite , whose invocation

of updatePosition in turn results in a call to the imple-
mentation ofupdatePosition given in classHero (be-
cause of dynamic method dispatch). This implementation of
updatePosition modifies thedx anddy variables. Thus,
executions ofstartNewLevel may well end with non-zero
values for dx and dy , so the implementation of method
startNewLevel does not meet its specification.

Unfortunately, the methodology proposed by Straw Man
2 does not allow one to catch the error instartNewLevel .
The problem is that even though the interpretation of the
specification ofupdatePosition in classHero reveals that
dx anddy may be modified (since thealso-modifiesanno-
tation of updatePosition in classHero lists these vari-
ables), theupdate method is not overridden inHero and
thus gets its specification solely from the one given in class
Sprite . Hence, the interpretation of the specification of
update showsdx and dy as being unchanged, so a pro-
gram checker will not find anything wrong with the imple-
mentation ofstartNewLevel .

Note that the implementations in classSprite do meet
their specifications under Straw Man 2. For example, the
interpretation of the specification ofupdatePosition in
classSprite includes onlyx andy , both of which are al-
lowed to be modified also by the implementation ofupdate .
Hence, there is no error for the checker to report in class
Sprite either.

In conclusion, Straw Man 2 seems pretty good at first, but
since it allows the specifications of different methods (in the
example,updatePosition andupdate) to be extended in
different ways (by having differentalso-modifiesclauses, or
none at all), the proposal does not adhere to modular sound-
ness. The proposal in the next section provides annotations
for data rather than for methods, the effect of which is to
make specification extensions apply in a uniform manner.

3 Data groups

In this section, I explain my proposal and demonstrate how
it solves the problems with the examples shown previously.
In Section 4, I show how a program checker can enforce the
proposal, and in Section 5, I argue that my proposal is sound.

The idea is to introducedata groups, which represent sets
of variables. A data group is declared in a class, just like an
instance variable is. The declaration of an instance variable
is annotated with the names of the data groups to which the
variable belongs. Data groups can be nested, that is, a group
can be declared as a member of another group. A data group
can be listed in amodifies clause, where it represents the set
of all members of the group.

Using data groups, the declaration ofSprite can be



written as:

classSprite {
/* group attributes; */
/* group position member-ofattributes; */
int x /* member-ofposition */ ;
int y /* member-ofposition */ ;
void updatePosition( ) /* modifiesposition */
{ }

/* group color member-ofattributes; */
int col /* member-ofcolor */ ;
void updateColor( ) /* modifiescolor */
{ }

void update( ) /* modifiesattributes */
{ updatePosition( ); updateColor( ); }

/* group drawState; */
void draw( ) /* modifiesdrawState */
{ }

}
This version of classSprite declares four data groups,at-
tributes , position , color , and drawState , and de-
claresposition andcolor to be members ofattributes ,
x andy to be members ofposition , andcol to be a mem-
ber of color . ClassSprite does not declare any members
of groupdrawState .

SinceupdatePosition is declared with the specifica-
tion modifiesposition , an implementation of this method
is allowed to modifyx and y . In addition, an implementa-
tion of this method is allowed to modify any variables de-
clared inSprite subclasses to be members ofposition .
An implementation ofupdatePosition is not allowed to
call methodupdateColor , for example, sincecolor is not
a member ofposition .

By introducing a data groupdrawState and listing it
in the modifies clause of methoddraw , implementations
of draw in Sprite subclasses are given a way to modify
instance variables (in particular, to modify variables that are
introduced as members ofdrawState).

The following illustrates how one can use data groups to
annotate classHero :

classHero extendsSprite {
int dx /* member-ofposition */ ;
int dy /* member-ofposition */ ;
int ddx /* member-ofposition */;
int ddy /* member-ofposition */;
void updatePosition( )
{ x += dx+ ddx/2; y += dy+ ddy/2;
dx += ddx; dy += ddy;
}

void startNewLevel( )
/* modifiesattributes

ensuresdxpost == 0 ∧ dypost == 0 */
{ dx = 0; dy = 0;
update( );
}

}
The override ofupdatePosition gets its permission

to modify dx and dy from the fact that these variables are
members of the data groupposition . This solves the prob-
lem of how to specifyupdatePosition in classSprite so
that a subclass likeHero can modify the state it introduces.

With data groups, the error instartNewLevel is de-
tected. Sincedx anddy are members ofposition , which
in turn is a member ofattributes , a program checker will
know thatdx anddy may be modified as a result of invok-
ing update . Since the specification ofupdate says noth-
ing further about the final values ofdx anddy , one cannot
conclude that they remain0 after the call.

As for theAgingMonster example, the data groups pro-
posal does allow one to infer that no division-by-zero er-
ror is incurred in the evaluation ofs/age : The guarding
if else statement guarantees thatage is non-zero before the
call to getStrength , and sinceage is not modified by
getStrength , whosemodifies clause is empty,age re-
mains non-zero on return fromgetStrength .

I will give two more examples that illustrate the use of
data groups.

First, note that the members of two groups are allowed to
overlap, that is, that a variable is allowed to be a member of
several groups. For example, if aSprite subclass declares
a variable

int k /* member-ofposition, drawState */;
then k can be modified by any of the methodsupdate ,
updatePosition , anddraw .

Second, I give another example to illustrate that it is use-
ful to allow groups to contain other groups. Suppose a sub-
class ofSprite , Centipede , introduces a legs attribute.
ClassCentipede declares a data grouplegs and a method
updateLegs with license to modifylegs , which implies
the license to modify the members oflegs . By declaring
legs as a member ofattributes , the update method
gets permission to call methodupdateLegs :

classCentipede extendsSprite {
/* group legs member-ofattributes; */
int legCount /* member-oflegs */ ;
void updateLegs( ) /* modifieslegs */
{ legCount = . . . ; }

void update( )
{ updatePosition( ); updateColor( );
updateLegs( );
}

}



4 Enforcing the data groups proposal

This section describes more precisely how a program checker
handles data groups.

For every data groupg , the checker introduces a new
variablegResidue . This so-calledresidue variableis used
to represent those ofg ’s members that are not in scope—in
a modular program, there is always a possibility of a future
subclass introducing a new variable as a member of a previ-
ously declared group.

To interpret amodifies clause

modifiesw

the checker first replacesw with the variables in thedown-
ward closureof w . For any set of variables and data groups
w , the downward closure ofw , written down(w) , is defined
as the smallest superset ofw such that for any groupg in
down(w) , gResidue and the variables and groups declared
with

member-ofg

are also indown(w) .
For example, computing the downward closure of the

modifies listattributes in classHero as shown in Sec-
tion 3 yields

attributes, attributesResidue,
position, positionResidue, x, y, dx, dy, ddx, ddy,
color, colorResidue, col

Thus, in that class,

modifiesattributes

is interpreted as

modifiesattributesResidue, positionResidue,
x, y, dx, dy, ddx, ddy,
colorResidue, col

By handling data groups in the way described, theHero
implementation of methodstartNewLevel , for example,
is allowed to modifydx anddy and is allowed to call method
update (but the assignments todx anddy must take place
after the call toupdate in order to establish the specified
postcondition ofstartNewLevel). The implementation of
startNewLevel would also be allowed to call, for example,
updatePosition directly. But the checker would com-
plain if startNewLevel called draw , because the call to
draw would be treated as modifying the residue variable
drawStateResidue , and that variable is not in the down-
ward closure ofattributes .

5 Soundness

The key to making the data groups proposal sound is that it is
always known to which groups a given variable or group be-
longs, and that residue variables are used to represent mem-
bers of the group that are not in scope. The data groups
proposal is, in fact, a variation of the use of abstract vari-
ables and dependencies in my thesis [Lei95]. I will explain
the relation between the two approaches in this section, and
relegate the proof of soundness to that for dependencies in
my thesis.

A data group is like anabstract variable. An abstract
variable (also called aspecification variable) is a fictitious
variable introduced for the purpose of writing specifications.
The value of an abstract variable is represented in terms
of program variables and other abstract variables. In some
scopes, it is not possible, nor desirable, to specify the repre-
sentation of an abstract variable because not all of the vari-
ables of the representation are visible. This tends to happen
often in object-oriented programs, where the representation
is often subclass-specific. However, if the abstract variable
andsomeof the variables of the representation are visible
in a scope, then the fact that there is a dependency between
these variables must be known to a program checker in or-
der to achieve modular soundness. Consequently, an anno-
tation language that admits abstract variables must also in-
clude some construct by which one can explicitly declare the
dependency of an abstract variable on a variable that is part
of its representation. For example, ifposition were an
abstract variable, then

dependsposition on x

would declare that variablex is part of the representation
of position . My thesis introduced such dependency dec-
larations. The corresponding notion in this paper is the an-
notation that declares thatx is a member of the data group
position :

int x /* member-ofposition */ ;
Using dependencies, one can give a precise definition of

what the occurrence of an abstract variable in amodifies
clause means. For dependencies like the ones shown here,
this interpretation is the same as that defined for data groups
above: the downward closure.

My thesis contains a proof that the use of dependencies
in this way adheres to modular soundness, provided the pro-
gram meets two requirements and provided the interpreta-
tion includes residue variables. The two requirements, called
thevisibility and authenticity requirements, together state es-
sentially that a dependency declaration

dependsa on c

should be placed near the declaration ofc , that is, so that
every scope that includes the declaration ofc also includes



the dependency declaration. Because themember-of anno-
tation is made part of the declaration of the variable whose
group membership it declares, the two requirements are au-
tomatically satisfied.

There is one other difference between data groups and
abstract variables with dependencies. Suppose an abstract
variablea depends on a variablec , and that the downward
closure of themodifies clause of a method includesc but
not a . The interpretation of such amodifies clause says that
c may be modified, but only in such ways as to not change
the abstract value ofa [Lei95]. This is called aside effect
constrainton a .

But with data groups, it would be meaningless to use side
effect constraints, since data groups don’t have values. Thus,
if variable c is a member of a data groupa and the down-
ward closure of a methodm includesc but not a , then the
modifies clause does not constrain the implementation ofm
in how c is changed. Violations of modular soundness re-
sult from the deficiency that the different interpretations of a
specification in different scopes are inconsistent. So by re-
moving side effect constraints inall scopes, modular sound-
ness is preserved.

From our experience with writing specifications for ex-
tended static checking, we have found it useful to introduce
an abstract variable conventionally calledstate [LN98a].
This variable is declared to depend on variables represent-
ing the state of a class or module. Thestate variable is
used in manymodifies clauses, but not in pre- and postcon-
ditions. Furthermore,state is never given an exact defini-
tion in terms of its dependencies. Thus, the type ofstate
is never important, so we declared its type to beany, where
any is a new keyword that we added to the annotation lan-
guage.

The data groups proposal grew from a feeling that it was
a mistake to apply the side effect constraint on variables like
state whose type isany—after all, the exact value of such
a variable is never defined and thus cannot be relied on by
any part of the program. By changing the checking method-
ology to not apply side effect constraints on variables of
type any, one arrives at the interpretation of data groups
presented in this paper.

As a final note on modular soundness, I mention without
going into details that the absence of side effect constraints
makes the authenticity requirement unnecessary. This means
that it would be sound to declare the members of a data group
at the time the group is declared, rather than declaring, at the
time a variable is declared, of which groups the variable is a
member. For example, instead of writing

/* group g; */
. . .

int x /* member-ofg */;

one could write

int x;
. . .

/* group g containsx, . . . ; */

Using contains in this way adheres to modular soundness
(but declaring a group with both acontains and amember-
of phrase does not). However, while introducing a group
containing previously declared variables is sound and may
occasionally be convenient, it does not solve the problem
described in this paper.

6 Concluding remarks

In summary, this paper has introduceddata groupsas a natu-
ral way to document object-oriented programs. Data groups
represent sets of variables and can be listed in themodifies
clauses that document what methods are allowed to mod-
ify. The license to modify a data group implies the license
to modify the members of the data group as defined by the
downward closurerule.

Since data groups are closely related to the use of ab-
stract variables and dependencies [Lei95], they adhere to the
useful property ofmodular soundness, which implies that
one can check a program one class at a time, without need-
ing global program information. Although the literature has
dealt extensively with data abstraction and refinement, in-
cluding Hoare’s famous 1972 paper [Hoa72], it seems that
only my thesis and my work with Nelson [LN98a] have ad-
dressed the problem of having abstract variables inmodifies
clauses in a way that modern object-oriented programs tend
to use them.

The use of data groups shown in this paper corresponds to
static, as opposed todynamic, dependencies. Dynamic de-
pendencies arise when one class is implemented in terms of
another. Achieving soundness with dynamic dependencies is
more difficult than the case for static dependencies [LN98a,
DLN98].

Data groups can be combined with abstract variables and
dependencies. This is useful if one is interested in the ab-
stract values of some attributes and in the representation func-
tions defining these abstract values.

A related methodological approach to structuring the in-
stance variables and methods of a class ismethod groups,
first described by Lamping [Lam93] and developed further
by Stata [Sta97]. Method groups and data groups both pro-
vide ways to organize and think about the variables declared
in classes. Other than that, methods groups and data groups
have different aims. The aim of method groups is to allow
the variables declared in a superclass to be used in a different
way in a subclass, a feature achieved by the following disci-
pline: The variables and methods of a class are partitioned
into method groups. A variablex in a method groupA is al-
lowed to be modified directly only by the methods in group



A ; methods in other groups can modifyx only via calls to
methods in groupA . If a designer of a subclass chooses to
replace a variable or method of a method group, all vari-
ables and methods of the method group must be replaced.
The use of method groups can complement the use of data
groups, whose aim is to address nothowvariables are used
but rather the more fundamental question ofwhichvariables
are allowed to be changed by which methods. If one wants
to write specifications in terms of abstract values and allow
subclasses to change the representation functions of these
abstract values, then one can combine data groups, abstract
variables, and dependencies with method groups.

A related approach to specifying in a superclass what a
subclass method override is allowed to modify is usingre-
gion promises[CBS98]. These are used in reasoning about
software transformations. In contrast to data groups, the sets
of variables included in different regions are required to be
disjoint. This restriction facilitates reasoning about when
two method calls can be commuted, but burdens the pro-
grammer with having to invent a partition on the class vari-
ables, which isn’t always as natural.

The region promises are used in bothmodifies clauses
and so-calledreads clauses, which specify which variables
a method is allowed to read. Although not explored in this
paper, it seems that data groups may be as useful inreads
clauses as they are inmodifies clauses.

A complementary technique for finding errors in pro-
grams is explored by Jackson in his Aspect system [Jac95].
To give a crude comparison, Aspect features annotations with
which one specifies what a methodmustmodify, whereas
the modifies clauses considered in this paper specify what
a method isallowed to modify. To specify what a method
must modify, one usesaspects, which are abstract entities
that can be declared to havedependences, consisting of vari-
ables and other dependences. Such aspects are analogous to
data groups.

There are many specification languages for documenting
object-oriented software, including Larch/C++ [Lea96] and
the specification languages surveyed by Lano and Haughton
[LH94]. These specification languages do not, however, es-
tablish a formal connection between specifications and ac-
tual code. Without such a connection, one cannot build a
programming tool for finding errors in implementations. As
soon as one becomes interested in checking a method im-
plementation against a specification that is useful to callers,
one becomes concerned with what the implementation is al-
lowed to modify. Add subclassing to the stew and one faces
the problem described in this paper.

To motivate data groups in this paper, I spoke informally
about the semantics of the example code. There are sev-
eral Hoare-like logics and axiomatic semantics of object-
oriented programs that define the semantics formally [Lea89,
AdB94, Nau94, AL97, Lei97, PHM98, Lei98a]. Four of
these [AL97, Lei97, PHM98, Lei98a] deal with programs

where objects are references to mutable data fields (instance
variables) and method invocations are dynamically dispatched.
However, except for Ecstatic [Lei97], these logics have fo-
cused more on the axiomatization of language features and
object types than on the desugaring of useful specification
constructs.

In the grand scheme of annotating object-oriented pro-
grams in ways that not only help programmers, but that also
can be used by program analyzers, this paper has touched
only on the modification of extended state. Though they
sometimes seem like a nuisance in the specification of pro-
grams,modifies clauses are what give a checker precision
across procedure boundaries. Vandevoorde has also found
modifies clauses to be useful in improving program perfor-
mance [Van94].

Other important method annotations include pre- and post-
conditions, of which useful variations have also been stud-
ied [Jon91, LB97]. As for annotating data, object invari-
ants [Mey88, LW94, LH94, Lea96] is a concept useful to
programmers and amenable as annotations accepted by a
program checker. Like the modification of extended state,
achieving modular soundness with object invariants is an is-
sue [LS97].
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