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Abstract. This paper formalizes a small object-oriented programming notation.
The notation features imperative commands where objects can be shared (aliased),
and is rich enough to allow subtypes and recursive object types. The syntax, type
checking rules, axiomatic semantics, and operational semantics of the notation
are given. A soundness theorem showing the consistency between the axiomatic
and operational semantics is also given. A simple corollary of the soundnessthe-
orem demonstrates the soundness of the type system. Because of the way types,
fields, and methods are declared, no extra effort is required to handle recursive
object types.

0 Introduction

It is well known that C.A.R. Hoare’s logic of the basic commands of imperative, pro-
cedural languages [9] has been useful in understanding imperative languages. Object-
oriented programming languages being all the rage, one is surprised that the literature
has not produced a corresponding logic for modern object-oriented programs. The con-
trol structures of object-oriented programs are similar to those treated by Hoare, but
the data structures of object-oriented programs are more complicated, mainly because
objects are (possibly shared) references to data fields.

This paper presents a logic for an object-oriented programming notation. In an early
attempt at such a logic, Leavens gave an axiomatic semantics for an object-oriented
language [11]. However, the language he used differs from popular object-oriented lan-
guages in that it is functional rather than imperative, so the values of the fields of objects
cannot be changed. America and de Boer have given a logic for the parallel language
POOL [4]. This logic applies to imperative programs with object sharing (sometimes
called aliasing), but without subtyping and method overriding. In a logic that | will refer
to as logic AL, Abadi and | defined an axiomatic semantics for an imperative, object-
oriented language with object sharing [2], but it does not permit recursive object types.
Poetzsch-Heffter and MIer have defined (but not proved sound) a Hoare-style logic
for object-oriented programs that remove many of the previous limitations [18]. How-
ever, instead of following the standard methodological discipline of letting the designer
of a method define its specification and then checking that implementations meet the
specification, the specification of a method in the Poetzsch-Heffter atiéMogic is
derived from the method’s known implementations. The present logic deals with im-
perative features, subtyping, and recursive object types.



The literature has paid much attention to the type systems of object-oriented lan-
guages. Such papers tend to define some notion of types, the commands of some lan-
guage, the type rules and operational semantics for the commands, and a soundness
theorem linking the type system with the operational semantics. (Several examples of
this are found in Abadi and Cardelli's book on objects [1].) But after all that effort,
one still doesn’t know how teeasonabout the programs that can be written with the
provided commands, since no axiomatic semantics is given. In addition to giving a pro-
gramming notation and its axiomatic semantics, this paper, like the paper describing
logic AL, gives an operational semantics and a soundness theorem that links the opera-
tional semantics with the axiomatic semantics. The soundness theorem directly implies
the soundness of the type system.

A complication with type systems is that types canréeursive that is, an object
type T may contain afield of typd or a method whose return typeTs. The literature
commonly treats recursive data types by introducing some sort of fix-point operator
into the type system, good examples of which are a paper by Amadio and Cardelli
on recursive types and subtypes [3] and the book by Abadi and Cardelli. By treating
types in a dramatically different way, the present logic supports recursive object types
without the need for any special mechanism like fix-points. The inclusion of recursive
object types is one main advantage of the present logic over logic AL, which does
not allow them. (The other main advantage over logic AL is that the present logic can
be used with any first-order theory.) Because the giwemdness theorem implies the
soundness of the type system, the present work contributes also to the world of type
systems.

In difference to the paper by Amadio and Cardelli, which considers unrestricted
recursive types, the type system in the present paper uses a restriction along the lines
of name matching. In particular, types are simply identifiers, and the subtype relation
is simply a given partial order among those identifiers. This is much like the classes
in Java [8] or the branded object types in Modula-3 [17]. But in contrast to languages
like Java or Modula-3, fields and methods are declared separately from types in the
language considered in this paper. (This is also done in Cecil [5] and Ecstatic [13].) Not
only does this simplify the treatment without loss of applicability to languages like Java
and Modula-3, but it also makes explicit the separation of concerns. For example, as the
logic shows, having to know all the fields of a particular object type is necessary only
for the allocation of a new object.

Furthermore, when a field or method is declared at some Typeach subtype of
T automatically acquires, dnherits that field or method. Consequently, one gets be-
havioral subtyping for free, something that can also be achieved by the inheritance dis-
cipline considered by Dhara and Leavens [6]. In contrast, subtype relations frequently
found in the literature (including the subtype relation used in logic AL), involves the
fields and methods of types. In such treatments of types, one often encounters words
like “co-variant”; there will be no further occurrence of such words in this paper.

The rest of this paper is organized as follows. Section 1 relates the present logic to
some work that has influenced it. Section 2 describes the declarations that can be used in
program environments, and Section 3 describes the commands: their syntax, axiomatic
semantics, and operational semantics. Section 4 discusses an example program. Then,



Section 5 states the soundness theorem. Section 6 discusses some limitations of the
logic, and the paper concludes with a brief summary.

1 Sources of Influence

My work with Abadi has inculcated the present logic with its style and machinery.
The present logic also draws from other sources with which | am quite familiar: my
thesis [12], my work on an object logic with Nelson [15], and the Ecstatic language [13].
This section compares the features of these sources of influence with the features of the
present logic.

My thesis includes a translation of common object-oriented language constructs into
Dijkstra’s guarded commandsn imperative language whose well-known axiomatic
semantics is given in terms afeakest preconditiong’]. My attempt at an object
logic with Nelson is also based on guarded commands, and Ecstatic is a richer object-
oriented programming language defined directly in terms of weakest preconditions.
Types, fields, and methods in these three sources are declared in roughly the same
way as in the present logic. While these sources do provide a way to reason about
object-oriented programs, they take for granted the existence of an operational seman-
tics that implements the axiomatic semantics. The present paper includes an operational
semantics for the given commands, and establishes the correctness of the operational
semantics with respect to the axiomatic semantics by proving a soundness theorem.

Like logic AL, the present logic has few and simple commands. Each command in
logic AL operates on an object store and produces a value placed in a special register
called r . In the present logic, commands are allowed to refer to the initial value of
that register, which simplifies many of the rules. (It also makes the commands “cute”.)
Another difference is that the present logic splits logic Alss command into two
commands: sequential composition and binding. The separation works eogllise
the initial value of register can be used. Perhaps surprisingly, another consequence
of using the initial value ofr is that the present logic manages fine without Abadi and
Cardelli’'s ¢ binder that appears in logic AL to bind a method’s self parameter.

2 Environments

This section starts defining the logic by describing program environments and the dec-
larations that a program environment can contain.

A program environmeris a list of declarations. A declaration introduces a type, a
field, or a method.

An identifier is said to be declared in an environment if it is introduced by a type,
field, or method declaration in the environment, or if it is one of the built-in types. |
write x ¢ E to denote that identifiex is not declared in environmeltt .

The judgementE - ¢ says thatE is a well-formed environment. The empty list,
written @, is a valid environment.

Empty Environment

Do



The next three subsections describe types, fields, and methods, and give the remaining
rules for well-formed environments.

2.0 Types

A typeis an identifier. There are two built-in typeBpoleanand Object. (Other types,
like integers, can easily be added, but | omit them for brevity.) Types otheBbatean
are calledobject typesA new object type is introduced bysaibtyping pairwhich has
the form T<:U, where T is identifier that names the new type, ahd is an object
type. Like in Java,Object denotes the root of the class hierarchy. The analogue of
a subtyping pairT<:U in Java is a classT declared as a subclass of a cldds
class T extends Y ... }.

Atype is said to be declared in an environment if ieolean, Object, or if it oc-
curs as the first component of a subtyping pair. To express this formally, the judgement
E Fype T says thatT is a type in environmenkE, and the judgemenE o T says
that T is an object type irE . The rules for these judgements are as follows. Here and
throughout this paper, | us€ and U, possibly subscripted, to denote types.

Types in Environments Declared Types (Fype, Fobj)
E Fobj U T¢E Elo (E,T<U,E)Fo
(E,T<U)Fo E Fobj Object (E,T<U,E) bop T
Elo Elon T

E FypeBoolean  Elbyype T

The reflexive, transitive closure of the subtyping pairs forms a partial order called
thesubtyping orderThe judgementE - T <: U says thatT and U are types inE
that are ordered by the subtyping order. Typds then said to be subtypeof U . The
rules are:

Subtyping Order (- <:)

EFype T ET<UE)Fo EFTo<: Ty EFTi < Ty
EFT<T (E,T<U,E)FT<: U EFTo< T
2.1 Fields

A field is a map from an object type to another type. A fiélés introduced by dield
triple, written f: T — U, wheref is the identifier that names the field, is an object
type called théndex typeof f, and U is a type called theange typeof f. The analogue
of a field triple f: T — U in Java is an instance variabfeof type U declared in a
classT: classT{ ... Uf; ... }.

An environment can contain field triples. A fielfl is said to be declared in an
environmentE if it occurs in some field triplef: T — U in E. This is expressed by
the judgementE g f: T — U . The rules for these judgements are as follows. Here
and throughout, | usé, possibly subscripted, to denote field names.



Fields in Environments Declared Fields (Hield)

Ebony T EbgpeU  fEE EFT—UE)Fo
ERT>UkFo E T - UFB) Hegt: T—> U

For a typeTy declared in an environmeri , theset of fields of § in E, written
Fields(Ty, E) , is the set of all field tripled: T — U such thatE kg f: T — U and
EFTo<:T.

2.2 Methods

A method quadrupléas the formm: T — U : R, where m is an identifier denoting
amethod T is an object typeU is a type, andR is arelation. The analogue of a
method quadruplen: T — U : R in Java is a methoan with return typeU declared
inaclassT and given a specificatioR: class T{ ... Um() {...} ... }. Note that
the Java language does not have a place to write down the specification of a method.
In the present language, the declaration of a method includes a specification, which
specifies the effect of the method as a relation on the pre- and post-state of each method
invocation. Note also that methods take no parameters (other than the object on which
the method is invoked, an object commonly referred tesa$). This simplifies the
logic without losing theoretical expressiveness, since parameters can be passed through
fields.

An environment can contain method quadruples. A mettmod said to be declared
in an environment if it occurs in some method quadrupte: T — U : R in E. This
is expressed by the judgemeBt Fyethogm: T — U : R. Formally, the rules are as
follows. | use m, possibly subscripted, to denote methods.

Methods in Environments Declared Methods  (Fmethod)
Elon T Etype U EmMmT—>U:RE)Fo
EVFeR  m¢gE E,mT—U:RE)Fmethoam: T— U:R

EmMT—->U:RkFo

The judgementE, ¥ ¢ R, which will be described in more detail in Section 3.1,
essentially says thaR is a relation that may mention fields declaredEnbut doesn't
mention any local program variables.

For a type Ty declared in an environmeri, the set of methods of ¢Tin E,
written MethodsgTy, E) , is the set of all method quadruples: T — U : R such that
EFmethosM: T— U:RandEF Ty <: T.

2.3 Relations

Methods are specified usimglations A relation is an untyped first-order predicate on
a pre-state and a post-state. In order to make relations expressive, the present logic can
be used with aminderlying logi¢ which provides a set of function symbols and a set of
first-order axioms about those function symbols. The example in Section 4 shows how
an underlying logic may be used.

Syntactically, relations are made up only of:



— the constantdalse, true, and nil ;

constants for field names, and the special figldc ;

the special variables, 7, ¢, 7 ;

other variables (I will writev to denote a typical variable);
equality between terms;

applications of the functionselect and store;

applications of the functions of the underlying logic;

the usual logical connectives, A ,andV.

The grammars for relationdx) and terms €) are thus:

Ri=g=e | R| RoARy | (VX I R)
ex=false| true | nil |f|F|F|o|c |V
| selectep, €1, &) | store(ep, €y, &, €3)
|pa(a)""’a(a—l)| tet |pZ(Q)’~-~’a<z—l) B

where pa, ..., pz denote the function symbols of the underlying logic with arities
ka, ..., kz, respectively. It will be convenientto also allow, v , = , <« ,

= ,and3 as the usual abbreviations of the operators above.

The semantics of a command (program statement) is defined in terms of a relation

on aregisterand a(data) store together called atate The variablest and ¢ denote
the register in the pre- and post-states of the command, respectivelyy amd &
denote the store in those respective states. The value of affiefdan objecte in
a storeo is denotedselecto, e, f) . The expressiorstorgo, e, f, €1) represents the
store that results from setting tHefield of object gy in store o to the valuee; . The
relationship betweerselect and store is defined as follows.

(Vo, e,e, fo, f1, e
selectstorg(o, &, fo, €), &, fo) = € A
(@#eVvi#h =
selectstorg(o, &, fo, ©), &, f1) = selecto, e, f1)) )

()

The special fieldalloc is used to record which objects in the data store have been
allocated; thealloc field of an object isfalse until the object is allocated, and isue
from there on.

As we shall see, the logic allows relations to be rewritten. A rewriting uses the rules
of logic and some axioms. In particular, a rewriting may use as axioms the definition of
selectand store (0), the distinctness of the boolean values and the distinctness of field
name constants:

false= true (1)
all field name constants (includiradjoc) are distinct (2)

and the axioms of the underlying logic.

3 Commands

This section describes commands: their syntax, their axiomatic semantics, and their
operational semantics.



3.0 Syntax

A commanchas a form dictated by the following grammar.

ai=c constant
| v local variable
| ag < a1 conditional
|ag; a1 composition
| withv. T do a binding
|[T: fi=c ', mj =g /<] object construction
| f field selection
| f:= field update
| m method invocation

c .= false | true | nil

Informally, the semantics of the language is as followsd&l from the previous
section that commands operate on a register and a store.)

— The constantdalse, true, and nil evaluate to themselves. That is, they have the
effect of setting the register to themselves.

— A local variable is an identifier introduced via a binding command. Every local
variable is immutable: once bound (usingth, see below), the value of a local
variable cannot be changed. A local variable evaluates to its value.

— The conditional command evaluates if the register is initiallyfalse, and evalu-
atesa; if the register is initiallytrue. Note that the guard of the conditional is not
shown explicitly in the command; rather, the initial value of the register is used as
the guard.

— The sequential composition &y and a; first evaluatesag and then evaluates
a; . The final values of the register and store in the evaluatioagofire used as
the initial values of the register and store in the evaluatiorapf Composition
is usually writtenag ; a;, but to keep the language looking like popular object-
oriented languages, | also allow the alternative syr#gaxa; (see examples below).

— The binding commanavith v. T do a introduces a local variable for use ina. Its
evaluation consists in evaluatirgwith v bound to the initial value of the register.

— The command T: fi = ¢ '¢', mj = g /] constructs a new object of typ&,
and sets the register to (a reference to the fields and methods of) the object. The
command must list every field from the set of fields ofT . The initial value
for field f; is the given constant; . The command must also list every method
m; from the set of methods of . The implementation of methodh, for the new
object is given as the commarg], which receives self as theitial value of the
register and returns the method result value as the final value of the register. The
commandg cannot reference local variables other than those it declares.

— Afield can be selectedf() and updatedf(:= v). Both operate on the object ref-
erenced by the initial value of the register. Selection sets the register foftblel
of the object. Update sets thHefield of the object to the value of, leaving the
register unchanged.



— The method invocatiom finds the implementation of methooh for the object
referenced by the initial value of the register, and thercgeds to evaluate that im-
plementation. The evaluation of the implementation begins with the initial register
and store values of the invocation, and the invocation ends with the final register
and store values of the evaluation of the implementation. Other than the initial and
final register values (which encode self and the result value, respectively), a method
does not have explicit parameters; instead, parameters can be passed via the fields
of the object.

Here are some examples that compare the present commands with programs written
in other languages. The Modula-3 program stateniétit then S else T ends writ-
ten as the commandb ; (T < S . The Modula-3 expressiomew(T, f := true).f,
where T is an object type with one field and no methods, is written as the com-
mand [T : f = true] ; f, or with the alternative syntax for composition, the com-
mand is written T : f = tru€].f. The Modula-3 progranx.f := true is written
true; with v. Booleando X :=v.

As an example of object sharing, the command

[T: f=c]; withv. T dowithw T do(v.f:=y; w.f)

allocates a newl' object whosef field is set toc, creates two references to the object
(v and w), updates the object’s field via v, and readd back viaw, returningy.

The following example shows the construction ofTa object whose methoabr
computes the disjunction of fields and y :

[T: x =false y = falsg or = with self: T do(x; (self.y < true))]

Note that although primitive, the programming notation is expressive enough to
admit common object-oriented languages features like object construction, method in-
vocation, and object sharing. The programming notation is kept minimal in order to
simplify the associated rules.

3.1 Axiomatic Semantics

This subsection gives the axiomatic semantics of the commands. The judgement
E. VFEFa: T—U:R

says that command in command environmentg, V) can be started in a state where
the register contents has tyfde, and terminates in a state where the register contents
has typeU . The execution ofa is such that its pre- and post-states satisfy the relation
R. The rules of the axiomatic semantics double as type checking rideaube with a
trivial R (such ast = ), the judgement expresses what it means for commneard
be well-typed.

Before giving the axiomatic semantics, some other definitions and rules pertaining
to constants, local variables, and command environments are in order.

There are three constant&lse, true, and nil . The judgementE copst C: T €x-
presses that constaothas typeT .



Type of Constants  (const)
Eto Eto Etop T
E Feonstfalse Boolean  E Fconsttrue: Boolean — E Feongtnil: T

A local variable declaratiorhas the formv: T, wherev is an identifier denoting a
local variableand T is a type. Acommand environmerd a pair (E, V) , whereE is
a program environment and is a list of local variable declarations. A local variable
v is said to be declared in a command environm@atV) if it occurs in some local
variable declaratiorv: T in V. This is expressed by the judgeméestV g Vi T.
Thus, in a command environmefi, V) , E contains declarations of types, fields, and
methods, wherea¥ contains declarations of local variables. This separation allows a
simple characterization of a command environment without local variable declarations:
(E, @) . We saw this in the “Methods in Environments” rule in Section 2.2, and we will
see itin the “Object Construction” rule below and in Theorems 0, 1, and 2 in Section 5.

The judgement

E,VFe R

says thatR is a relation whose free variables are fields or local variables declared in
(E, V), or are among the special fields and variab#dlec, t, f, o, and 6. The
obvious formal rules for this judgement are omitted. Thus, the judgerfefitt R
used in the hypothesis of the “Methods in Environments” rule in Section 2.2 implies
that R does not mention local variables.

| write x & (E, V) to denote that identifiex is not declared in command environ-
ment (E, V) . The formal rules of the above are then:

Well-formed Command Environment Declared Local Variables (*yar)
EFo EVEko VEEYV) ElypeT E,(V,vT,V)Fo
E,0F ¢ E,(V,vT)Fo E,(V,v.T,V)Ha V. T

Now for the rules of the axiomatic semantics. There is one rule for each command,
and one subsumption rule.

Subsumption EVia:Ti— T:R

EFTo<: Ty EFT, <: T3 Ho R= R E,VHa R
E,.VFka:Top—> T3: R

The judgement, P represents provability in first-order logic, under axioms (0), (1),
and (2) from Section 2.3 and the axioms of the underlying logic.

Constant Local Variable
E.VFo  EleonstCT  EbypeU E,VhuarV:T  EbgypeU
EVFc:U—=>T:f=cAoc=¢6 EVFEFV:U>T:f=vAoc=06
Conditional

E,VFay:Boolean— T: Ry E,VFa; :Boolean— T: Ry
E,.VFay < a;:Boolean— T : (f =false = Ry A ( =true = Ry)




Composition
E.VFka:To—>T1: Ry EVFEFa:T1—> TRy
f andg do not occur free iy or Ry
E,.Viag; a1:To— T2: (3F, 0 0 Rf,d:=F, 0] ARy[l,o:=F,0])

Binding E.(V,vT)Fa:T—>U:R
E,VFwithvTdoa: T— U:Rv:=t]
Object Construction

E,VIo ' E Fype U Eton T '

fi: i > U; ' are the elements ¢fields(T, E) E FeonstGi: Uj 1€ '

m;: T, — U, : R ¥ are the elements dflethodsT,E) E,#Fag:T — U;:RI¥

EVH[T:fi=¢'®, m=a19]:U—>T:f#nilA '
selects, f, alloc) = falseA 6 = stord- - - (storgs, f, alloc, true), ¥, f;, ¢) '€

Field Selection Field Update
E,VEo E'_fieldf:T_)U Ef—ﬁe|df:T0—>U0 EFTy <: To
E.VEf:T— U: E,V Fyar V:Up EFU; <:Up

f;ﬁnil:}r/=se|ect&,f,f)/\&=0/ EVFfi=v:T, > Tq:
I #nil =t =fAo¢=storgo,,f,v)
Method Invocation
E,VEo  Elmethoam: T — U:R
EVEmM: T—-U:t#nl = R

3.2 Operational Semantics

The operational semantics is defined by the judgement
r,o,u,SFa~r1', o',

It says that given an initiaperational state(r, o, 1) andstack S executingcommand

a terminates in operational state’, o/, 1) . Operational states are triples whose first

two components correspond to the register and data store components of states, as de-
fined above. The third component isnethod storeLet # denote a set of giveobject
names A stackis a partial function from local variables t& U {false true, nil}. A

method storés a partial functionu from # , such that

— u(h)(type) is the allocated type of objedt, and
— w(hy(m) , if defined, is the implementation of methad of objecth.

A store pairis a pair (o, ©) whereo is a data store angk is a method store.

In addition to keeping the method implementations of objects, the method store
keeps the allocated type of objects. The operational semantics records this information
as it allocates a new object, but doesn’t use it subsequently. The informationis used only



to state and prove the soundness theorem. By conveniently recording this information
in the operational semantics, where it causes no harm, one avoids the sereftgpe
(cf.[2]). The result is a simpler statement and proof of soundness.

To save space, | omit the rules for the operational semantics. They canretih
a SRC Technical Note [14].

4 Example

In this section, | show an example of a program that can be proved in the logic.

Let us consider a linked-list type with a method that appends a list to another. Rea-
soning about a program with such a type requires reasoning adachabity among
linked-list nodes. To this end, we assume the underlying logic to contain a function
symbol Reach (adapted from Greg Nelson’s reaciap predicate [16]). Informally,
Reacltiey, €1, o, f, &) is true whenever it is possible to reach from objegt to object
e, via applications off in o , never going through objec .

The example in this section assumes that the underlying logic contains the following
two axioms, which relatdReachto selectand store, respectively.

(Vep, &, 0,f,& . Reachiey, e, 0,f, &) =true = 3)
& = €1 V (& # & A Reacliselecto, e, f), e, 0, f, &) = true) )

(Vep,e1,0,fo, &, f1, 63,84 10 fo#F = @)
Reacliey, 1, o, fo, &) = Reacltey, €1, store(o, €3, f1, &), fo, &) )

Axiom (3) resembles Nelson’s axiom Al and says that every object reaches itself, and
that ey reachese; if g isnot e, and e.f reachese; . Axiom (4) says that whether
or not ey reachese; via fp is independent of the values of another fiéld

The example uses the following environment, which | shall refer t& as

Node<:Object  next: Node— Node
appendArg: Node— Node  append: Node— Node: R

whereR is the relation

I # nil = Reaclit, f, o, next, nil) A selecto, f, next) = nil A
selects, f, next) = selecto, t, appendArg) A
(Vo,f :: selecto, o, f) = selects, o, f) v
(0o =f A f=next) v f=appendArg)

Informally, this relation specifies that the method store its argument (which is passed in
via the appendArg field) at the end of the list linked via fieldext. More precisely,
the relation specifies that the method find an objeceachable front (self) via the
next field such thatf.next is nil . The method is to sef.next to the given argument
node. The method can modiff.next and can modify theappendArg field of any
object (since this field is used only as a way to pass a parametpgend anyway),
but it is not allowed to modify the store in any other way.

To present the example code, | introduce a new commignd,, which tests whether
or not the register isnil .



Nil Test E.VEo  EboyT

E,V I isnil : T — Boolean:
C=nil=>f=truee A #nil => f=false Ao =0

(Section 6 discusses expression commands suahilatests.) To write the program
text, | assume the following binding powers, from highest to lowest :. ; <
with ... do. Now, consider the following command.

[Node next = nil, appendArg = nil,
append = with self: Node doappendArg ; with n: Node do
self.next ; isnil ; (5)
( self.next.appendArg :=n; append
<> self.next :=n; self ) ]

This command allocates and returnsNide object whosenext and appendArg
fields are initially nil. The implementation ofappend starts by giving names to
the self object and the method’s argument. Then it either cafisend recursively
on self.next or setsself.next to the given argument, depending on whether or not
self.next is nil .

With axioms (3) and (4) in the underlying logic, one can prove the following judge-
ment about the given allocation command.

E, # + (5) : Object— Node:t =t (6)

Though the relation in this judgement (= t) is trivial, establishing the judgement
requires showing that the given implementatiorapipend satisfies its declared spec-
ification. | omit the proof, which is straightforward.

| conclude the example with three remarks. First, remember that to reason about a
call to a method, in particular the recursive callappend , one uses the specification
of the method being called, not its implementation. This makes the reasoning indepen-
dent of the actual implementation of the callee, which may in fact even be a different
implementation than the one shown.

Second, remember that only partial correctness is proved. That is, judgement (6)
says thatf the method terminates, its pre- and post-states will satisfy the specified
relation. Indeed, an invocation of methagpend on an object in a cyclic structure of
Node objects will not terminate.

Third, the static type of the fieléelf.next and the argumenself.appendArg is
Node, but the dynamic types of these objects in an execution may be any subtype of
Node. Note, however, that judgement (6) is independent of the dynamic types of these
objects. Indeed, having established judgement (6) means that the method works in every
execution. This is because the logic@mund as is shown in the next section.

5 Soundness

This section states a soundness theorem, which proves the correctness of the operational
semantics with respect to the axiomatic semantics. | first motivate the soundness the-
orem, and then state it together with an informal explanation. Some additional formal
definitions and the proof itself are found in a SRC Technical Note [14].



As a gentle step in presenting the full soundness theorem, consider the following
theorem.

Theorem 0.  If one can derive bottE, ¥ - a : Object— Boolean: f = true and
nil, oo, ¥, =a~sr, o, u, thenr = true.

Here and in the next two theoremsy denotes a data store that satisfiegh
H . selectoo, h, alloc) = false ), and ¥ denotes the partial function whose do-
main is empty. The theorem says that if in an environmEnbne can prove that a
commanda satisfies the transition relatioh = true, then any terminating execution
of commanda from a “reset” state ends with a register valuetafe.

A simple theorem about the result type of a command is the following.

Theorem 1. If one can deriveE, ¥ - a : Object > T : R and E ¢, T and
nil, oo, ¥, ¥ = a~»r, o, u, then the value has typeT , that is, eitherr = nil or
EF pn(r)(type) <: T.

This theorem says that if one can prove, using the axiomatic semantics, that a command
a has final typeT , where T is an object type, and one can show that, operationally,
the program terminates with a register valuerothenr is a value of typeT (that is,
itis nil orits allocated type is a subtype df). This theorem shows the soundness of
the type system’s treatment of object types.

An interesting theorem that says something about the final object store of a program
is the following.

Theorem 2. If one can derive botlE, ¥ F a : Object— T : R and nil, 6o, @, ¥ -
a~r,0,u,thenR[t, o, f, s :=nil, og, r, o] holds as a first-order predicate.

This theorem says that if one can prove the two judgements adbptiten relationR
actually describes the relation between the initial and final states.

To prove the theorems above, one needs to prove something stronger. | call the
stronger theorem, of which the theorems above are corollaries, the main theorem. The
theorem is stated as follows.

Main Theorem. f(7) EEVFa: T—->U:R,8)r,o,u,SFa~ 1,0, u,
9 E,o,u IFr : T,(@0) EIF o,u,and (11)E,V,0, u IF S; then (12)
r,o,r',o’,SIF R, (13) (o, n) < (¢/, ), (14) E, o',/ IF v : U, and (15)
ElFo’, u .

In the antecedent of this theorem, (7) and (8) expresaudigegments that have been
derived for some command. One can hope to say something interesting in the con-
clusion of the theorem only if the execution under consideration is from a “reasonable”
state(r, o, u) and uses a “reasonable” stagk Therefore, judgement (9) states thiat
is a value of typeT , judgement (10) says that store p&ir, ©) matcheghe environ-
ment E, and judgement (11) says th&tis awell-typed stack

In the conclusion of the theorem, (12) expresses Ratoes indeed describe the
relation between the initial and final states of the execution, and (14) expresses that
has typeU . In addition, to use the theorem as a sufficiently strong induction hypothesis
in the proof, (13) says thato, 1) is continued by(o’, u’) . This property expresses a



kind of monotonicity that holds between two store pairs, the first of whiebgates the
other in some execution. Also, judgement (15) says that ') , like the initial store
pair, matches the environment.

By removing (12) from the conclusion of the main theorem, one gets a corollary that
expresses that the type system is sound with respect to the operational semantics. Such
a corollary follows directly from the main theorem, but could also be proved directly in
the same way the main theorem is.

6 Limitations of the Logic

The object construction command is rather awkward. Because it lists method imple-
mentations, a method cannot directly construct objects whose type and method imple-
mentations are the same as for self. Instead, one can declare object types representing
classes, as is done, for example, by Abadi and Cardelli [1] (see SRC TN 1997-025 for
an example [14]). One can consider modifying the present logic to remove the lim-
itation from the object construction command. For example, like in common class-
based object-oriented languages, one can extend the program environment to include
method implementations. One must then have a “link-time” check that ensures that ev-
ery method that may be called by the program at run-time has an implementation. Or,
like in common object-based languages, one can add a construct for cloning objects or
their method implementations.

Another omission from the present logic is the ability to compare objects for equal-
ity. Just like one would expect to add primitive types like integers to the present logic,
one would expect to add more general expressions, including comparison expressions.

A logic of programs provides a connection between programs and their specifica-
tions. In the present logic, method declarations contain specifications that are given
simply as transition relations. Transition relations are not practically suited for writing
down method specifications, because they are painfully explicit. Specification features
like modifies clauses and abstract fields would remedy the situation, but lie outside the
scope of this paper. To mention some work in this area, Lano and Haughton [10] have
surveyed object-oriented specifications, and my thesis [12] shows how to deal with
modifies clauses and data abstraction in modular, object-oriented programs. The logic
for POOL [4] includes some specification features that can be used to state properties
of recursive data structures.

7  Summary

| have presented a sound logic for object-oriented programs whose commands are im-
perative and whose objects are references to data fields. The programming notation
requires that types, fields, and methods be declared in the environment before they can
be used in a program. The main contributions of the paper are the logic itself, the sound-
ness theorem, and the way that types are handled, which makes the subtype relation and
the admission of recursive object types trivial.
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