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Abstract. This paper describes a small object-oriented programming lan-
guage and its axiomatic semantics. The language includes common object-
oriented features like methods and subtyping. Objects are implicitly refer-
ences, and the semantics handles the aliasing that arises. The paper formal-
izes in first-order logic what it means for a method implementation to meet
its specification.

0 Introduction

In the cornucopia of object-oriented programming languages, one is hard-pressed to find
a language with an axiomatic semantics. Examples of axiomatic semantics for imper-
ative languages are Hoare logic [5] and Dijkstra’s weakest-precondition calculus [4],
both of which have achieved considerable success in the last decades. Reasoning using
an axiomatic semantics is done at a higher level than with an operational semantics. For
example, reasoning about a method invocation is done by reasoning about the method’s
specification rather than by examining its implementations.

This paper defines a small object-oriented language called Ecstatic. The axiomatic
semantics of Ecstatic is based on Dijkstra’s weakest liberal preconditions. The language
includes common object-oriented features like methods and subtyping. Objects are ref-
erences to data fields and methods, and the semantics handles the aliasing among these
references.

Some efforts have been directed at providing an axiomatic semantics for an object-
oriented language. In his thesis, Leavens gave verification rules for a small language
with objects [8]. However, those rules apply only to programs without aliasing. Nau-
mann has given a predicate-transformer semantics for a programming language that in-
cludes record extension and procedure type variables [12]. However, that semantics also
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assumes the absence of aliasing. My thesis shows how to translate features of object-
oriented languages into Dijkstra’s guarded commands, for which weakest preconditions
are defined [10]. Abadi and I have written a Hoare-like logic for object-oriented pro-
grams [1]. The logic handles methods, subtyping, and aliasing, but excludes recursive
data types. The Ecstatic language allows recursive data structures.

The present work distinguishes itself from object-oriented specification languages
like Larch/C++ [7] and those surveyed by Lano and Haughton [6] in that the semantics
of Ecstatic is explicit about the connection between method specifications and imple-
mentations: the semantics precisely prescribes averification condition, an untyped first-
order predicate that formally expresses “the implementation meets its specification”.

The Ecstatic language grew from work on the Modula-3 Extended Static Checker
(ESC), a static analysis tool for detecting errors likenil -dereferencing, array index out-
of-bounds errors, deadlocks, and race conditions [0, 3]. ESC translates Modula-3 anno-
tated with specifications into verification conditions that are then passed to a mechanical
theorem prover called Simplify [0]. Ecstatic’s prescription of verification conditions is
similar to that used by ESC. In fact, I have written a checker for Ecstatic that parses and
type-checks Ecstatic programs, generates the verification conditions, and passes them to
Simplify. This checker was implemented directly from Ecstatic’s definition in (a recent
version of) this paper.

One can imagine mapping (subsets of) languages like Modula-3 and Java to Ecstatic.
Such a mapping combined with the axiomatic semantics of Ecstatic would then provide
an axiomatic semantics for the language at hand. For the purpose of being the target of
such mappings, the Ecstatic commands could be more primitive. As it stands, Ecstatic
is not parsimonious with features: it includes methods with in- and out-parameters,
modi�es clauses, and a rich syntax for expressions, any of which could have been
left as a “simple extension”. The reason for including these features is to gather in one
place the details describing them, and to make Ecstatic a language in which program-
ming is fun. Not included are, most notably, arrays, iteration (but recursion is allowed),
abstraction, and modules. Such are left for future inclusion.

The organization of this paper is as follows. Section 1 on declarations describes
the major building blocks of the language; Section 2 on commands and expressions de-
scribes the smaller building blocks of the language. These sections provide a language
definition roughly at the level of the Modula-3 definition [13]: it defines syntax, type-
checking, and an operational description that includes checked run-time errors. Sec-
tion 3 gives the axiomatic semantics of the language, and prescribes how verification
conditions are generated. Lastly, Section 4 shows some examples, Section 5 discusses
some possible extensions to the language, and Section 6 offers some concluding re-
marks.
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1 Declarations

A program is an (unordered) set of declarations. The language consists of four kinds of
declarations. These are used to declare types, data fields, methods, and method imple-
mentations. The first three of these introduce identifiers that name the types, data fields,
and methods.

Before giving the details, let me give a short (artificial) example program to convey
the flavor of the language.

type T

�eld x :T ! int

�eld y:T ! nat

methodm(t :T ; z : int)
requires 0 � y[t ] + z

modi�es x [t ]
ensures x [t ] � x0[t ] + y[t ] + z

impl m(t :T ; z : int) is
x [t ] := x [t ] + 2 � y[t ] + z

(0)

This program declares an object typeT with two fields, x and y . It also declares a
methodm that takes the self parametert and another parameterz . The method is
given a specification: it requires as a precondition that the sum of they field of object
t and in-parameterz be natural, and it ensures that the post-state value of data fieldx

at objectt is at least the sum of its pre-state value, the value of they field at t , and the
given parameterz , and that nothing else is modified. The example program also gives
an implementation ofm . The implementation consists of one assignment statement.

Now for the details of the four declarations.

1.0 Types

A type is a name that denotes a set of values. The types of a program are partially
ordered by asubtyperelation. If typeU is a subtype of typeT , then every member of
(the set of values denoted by)U is a member ofT . The subtype relation is reflexive
and transitive. A subtype relationship is calledproper if the two types are distinct. Two
types arecompatibleif one is a subtype of the other.

The dual of the subtype relation is thesupertyperelation. A typeT is said to be a
direct supertype of a typeU if T is a proper supertype ofU and there is no type “in
between”T andU , that is, no proper subtype ofT is a proper supertype ofU .
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There are threesimple types: bool , nat , and int . These represent the booleans
false and true , the natural numbers, and the integers, respectively. Typenat is a
subtype ofint .

In addition to the values of simple types, there areobjects. An object is a value that
is either nil or a reference to a set of data fields and methods. Equality of objects is
reference equality. Anobject typedetermines the names and types of a subset of the set
of fields and methods of its members. Ecstatic features one built-in object type,obj ,
which is a supertype of all object types. The declaration

type T <: U ;

whereT is a name andU is an object type, introduces the nameT as an object type
whose direct supertype isU . Hence, each declared object type has a unique direct
supertype; in the jargon, Ecstatic featuressingle inheritance. If U is obj , “ <: U ”
may be omitted from the declaration.

No two types may have the same name. Furthermore, from each declared object
type, it must be possible to follow the sequence of direct supertypes and arrive at type
obj . That is, a program must not contain declarations that produce cycles in the subtype
relation. For example, the declarations

type T <: U
type U <: T

are not both allowed in the same program.
Every expression has a statically determined type. This type contains every value to

which the expression can evaluate. For the purpose of describing how static typing is
done, I introduce a special typenull , which is treated as a subtype of every object type
(but is not considered to be an object type). The idea is thatnull contains the valuenil ,
and that the type of the expressionnil is null (see Section 2.1 on expressions). The
type null cannot be mentioned in a program; it is used only in the language definition
for the purpose just described.

Every non-nil object has anallocated type, which manifests itself at run-time when
the object is allocated and is never changed thereafter. Ecstatic’s type rules ensure that
if an expression has (static) typeT and evaluates at run-time to a non-nil object t ,
then the allocated type oft is a subtype ofT .

1.1 Data fields

A data fieldis a map from objects to values. The declaration

�eld x :T ! U
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introduces the namex as a data field that maps from object typeT to typeU . We say
that typeT possessesfield x , that T is theindex typeof x , and thatU is therange
typeof x .

For example, the following program snippet declares a data structure for linked lists
of integers.

type Node

�eld val :Node ! int

�eld next :Node ! Node

The expressionx [t ] denotes thex field of an objectt . Stated differently, since
fields are maps, the expressionx [t ] denotes the value ofx at t . The expressionx [t ]
is called aselect expression, and t is called itsindex. If T is a subtype ofU , andU
possesses a fieldx , then, since every member ofT is a member ofU , objects of type
T can be used to indexx .

A program can have several fields of the same name. Allowing different fields to
have the same name is provided merely as a syntactic convenience; it does not imply
any kind of relation between different fields with the same name. However, no two
fields may have the same name and index type; that is, no type may possess two fields
with the same name. For example, the two declarations

�eld x :T ! : : :

�eld x :T ! : : :

are not both allowed in one program, because thenT would possess two fields with the
namex , whereas the two declarations

�eld y:T ! : : :

�eld y:U ! : : :

are allowed, because the two fields have different index types. As part of the syntactic
convenience is a rule forresolvingfield names occurring in a program, that is, mapping
field names to field declarations: for an expressiont whose (static) type is an object
type T , the namex in x [t ] is resolved to the field whose name isx and that is
possessed by typeU , whereU is the closest supertype ofT that possesses a fieldx .
The expression does not type-check if no such field exists. This rule is similar to the
rule for resolving names of local variables in a program, or resolving names of bound
variables in a mathematical formula.
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As an artificial example, consider the declarations

type U

�eld x :U ! : : :

type T <: U
�eld x :T ! : : :

and an expressiont of type T . According to the rule for resolving field names, thex
in expressionx [t ] refers to thex field possessed byT . To refer to the otherx field
of t , one needs to write an expressionx [t 0] where expressiont 0 evaluates to the same
value ast but has a different statically determined type. One way to achieve this is to
use anarrow expression in the following way:

x [narrow(t ;U )] :

Here, x resolves to the fieldx possessed by typeU . The narrow expression is
explained in Section 2.1.

Several fields can be introduced at the same time. The declaration

�eld x0 ; : : : ; xn�1 :T ! U

is shorthand for

�eld x0 :T ! U
...
�eld xn�1 :T ! U :

1.2 Methods

A methodis a procedure that can be invoked on an object. The language features no
procedures other than methods. To describe methods, I start with the following defini-
tion: abinding is a pair x :T , wherex is a name (called avariable) and T is a type.
The formal in- and out-parametersof a method are given as lists of bindings. The list
of in-parameters must be nonempty. The first in-parameter is called theself parameter,
and its type must be an object type.

Let formal -outs and formal -ins be lists of bindings, such thatx :T (whereT
is an object type) is the first binding offormal -ins , and let spec be aspecification
(defined below). Then, the declaration

method formal -outs := m(formal -ins) spec
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introduces the namem as a method for typeT . We say that typeT possessesmethod
m . The method has out-parametersformal -outs , in-parametersformal -ins , and spec-
ification spec . The names informal -outs and formal -ins must be distinct. If the list
formal -outs is empty, the “:= ” is omitted from the declaration.

A program can have several methods with the same name, but a single type may
not possess two methods with the same name. Allowing different methods to have the
same name is provided merely as a syntactic convenience; it does not imply any kind of
relation between different methods with the same name.

A specificationdescribes the conditions under which the method may be invoked
and the method’s effect on the state space when invoked. It is given in three parts:
thepreconditiondescribes those initial states from which a caller is allowed to invoke
the method, themodifies listspecifies which fields of which objects that the method is
allowed to modify, and thepostconditionrelates, for terminating method invocations, the
pre- and post-states of the invocation (there is no guarantee that the method invocation
will actually terminate).

Syntactically, a specification is given as a sequence ofrequires , modi�es , and
ensures clauses. The modifies list is the union of the lists given by themodi�es

clauses, and the pre- and postconditions are the conjunctions of the predicates given in
the requires and ensures clauses, respectively.

The forms ofrequires and ensures clauses are

requires pre

ensures post ;

wherepre and post arespecification predicates. The free identifiers occurring inpre
must be either fields or formal in-parameters. The free identifiers occurring inpost

must be either fields, formal in- or out-parameters, orinitial-value fields. An initial-
value fieldis a field subscripted by 0. It refers to the value of the field at the time the
method is invoked.

A modi�es clause has the form

modi�es w ;

wherew is a list of designator expressions. Adesignator expressionis a select expres-
sion x [E ] , wherex is a field andE is an expression whose type is notnull and whose
free identifiers are fields or formal parameters. The namex is resolved to a field using
the type ofE as described earlier. Data fields occurring inE refer to their pre-state
values.

There is a restriction on the use of initial-value fields in postconditions. Ifx0 is
an initial-value field occurring in the postcondition, thenx [E ] , for someE , must be
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present in the modifies list. This restriction does not hamper specification expressive-
ness, because, roughly, if nox [E ] occurred in the modifies list,x would not be allowed
to be modified at any object, sox would have the same value in the post-state as it does
in the pre-state, and hence there would be no reason to mentionx0 instead ofx in the
postcondition.

1.3 Method implementations

A methodm for a type T may be given one implementation per subtype ofT . A
method implementation is given by the declaration

impl formal -outs := m(formal -ins) is S ;

where formal -outs and formal -ins are lists of bindings,m is a name, andS is a
command(also known as astatement). The list formal -ins must be nonempty, and
the type of the first binding informal -ins , say U , must be an object type. We say
this implementation isgiven attype U . The namem is resolved to the method whose
name ism and that is possessed by typeT , whereT is the closest supertype ofU
that possesses a methodm . The method implementation declaration is allowed only if
such a method exists.

Furthermore, the number of bindings informal -outs and formal -ins , and their
types except the type of the first binding informal -ins , must be the same as those
of the formal out- and in-parameters of methodm ’s declaration. That is, the method
implementation is allowed to use different names for the formal parameters than those
used by the method declaration. The names informal -outs and formal -ins must be
distinct. If the list formal -outs is empty, the “:= ” is omitted from the implementation
declaration.

For each namev in formal -outs and formal -ins , free occurrences of variablev
in S are resolved to this formal parameter. CommandS must not contain any free
variables other than these.

1.4 Example: Mapping operations over a linked list

Although commands have not yet been defined, this is a good time to give a program
example. This example shows a linked list and itsmap method, which can map an
operation over the values stored in the linked list.
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A linked list is built up by objects of typeNode , declared by

type Node

�eld val :Node ! int

�eld next :Node ! Node :

(1)

It is often useful to map some operation over a linked list. As a simple example,
I declare a typeOp with a methodapply and a data fieldr . The method takes an
integer as a parameter and is allowed to operate on the fieldr .

typeOp

�eld r :Op ! int

method apply(op:Op; n: int)
modi�es r [op]

An Op object can be passed to themap method for typeNode , which invokes the
apply method of theOp object for each integer contained in the linked list. The decla-
ration and implementation of themap method are given as follows.

methodmap(node:Node; op:Op)
requires op 6= nil

modi�es r [op]
impl map(node:Node; op:Op) is
apply(op; val [node]) ;
if next [node] 6= nil then map(next [node]; op)�

I can now show some examples ofOp subtypes, each with its own implementation
of the apply method.

type SumOp <: Op
impl apply(sum:SumOp; n: int) is
r [sum] := r [sum] + n

type CountOp <: Op
impl apply(cnt :CountOp; n: int) is
r [cnt ] := r [cnt ] + 1

type PickOp <: Op
impl apply(p:PickOp; n: int) is
r [p] := n
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With these declarations, the program snippet

op := new(SumOp) ;
r [op] := 0 ;
map(list ; op)

has the effect of settingr [op] to the sum of the integers stored inlist (this assumes
that list is non-nil ). By replacingSumOp by CountOp , the program snippet would
instead setr [op] to the length oflist . And by instead using typePickOp , the program
snippet picks the last element from the list and stores it inr [op] .

2 Commands and expressions

This section presents the commands and expressions that can be part of a program.
It describes the parsing and type-checking of these, and gives an informal operational
description of the execution of commands and evaluation of expressions. A formal
semantics is given in Section 3.

2.0 Commands

This subsection introduces the various commands that are part of the language by infor-
mally stating the type-checking rules and operational meaning of each command.

The language consists of the following commands.

v := E simple assignment
v := new(T ) allocation
x [E ] := E 0 update
var bindings in S end block statement
S ; S 0 composition
if E then S else S 0 � conditional
var -list := m(expr -list) method invocation

In addition, the language provides some convenient shorthands,skip , wrong , and
assert P , that are defined in terms of these commands.

2.0.0 Simple assignment

The simple assignment statement has the form

v := E ;
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where E is an expression andv is a mutable variable, that is, a local variable (ex-
plained below) or a formal out-parameter.

The type ofE must be a subtype of the type ofv . The statement evaluatesE
(which may result in a run-time error ifE is partial, see Section 2.1), and then assigns
the result tov .

2.0.1 Allocation

The allocation statement creates a new object. It is written

v := new(T ) ;

where v is a mutable variable andT is an object type.T must be a subtype of the
type of v . This statement assigns tov a non-nil object that is “new”, that is, that has
never been the result of any allocation statement previously encountered in the program
execution. Thus, the new object is not in use by the executing program by the time the
allocation statement is executed. We say that the value was previously not allocated.

The allocated type of the new object isT . The new objectv also has the following
property, for every data fieldx whose index type is a supertype ofT and whose range
type is some typeU : the initial value of x [v ] is nil if U is an object type, and an
arbitrary value of typeU otherwise.

2.0.2 Update

Data fields are updated with the update command, which has the form

x [E ] := E 0

;

where x is a field, andE and E 0 are expressions. The type ofE must be an object
type. The namex is resolved to a field using the type ofE as described earlier for
select expressions.

The type of E 0 must be a subtype of the range type ofx . The command first
evaluatesE andE 0 . It is a run-time error ifE producesnil ; otherwise, the command
sets thex field of objectE to E 0 .

2.0.3 Block

The block statement is written

var bindings in S end ;
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where bindings is a nonempty list of bindings, the names in which are all distinct, and
S is a command. For each bindingv :T in bindings , the block statement introduces
v as alocal variableof type T for use inS . Free occurrences of variablev in S are
resolved to this local variable. The initial value ofv is nil if T is an object type, and
an arbitrary value of typeT otherwise.

2.0.4 Composition

Commands can be sequentially composed using the associative operator; . The com-
mand

S ; S 0

executes commandS upon whose termination it executes commandS 0 .

2.0.5 Conditional

The conditional statement is written

if E then S else S 0 � ;

where E is a boolean expression andS and S 0 are commands. IfE evaluates to
true , the conditional statement executesS ; otherwise it executesS 0 .

If S 0 is skip , then “else S 0 ” may be omitted.

2.0.6 Method invocation

The final command, method invocation, is written

var -list := m(expr -list) ;

where var -list is a list of distinct, mutable variables,m identifies a method, and
expr -list is a list of expressions. The elements of listsvar -list and expr -list are
called theactual out- and in-parameters, respectively, of the invocation. Ifvar -list is
empty, the “:= ” is omitted.

The (static) type of the first expression inexpr -list , call it U , must be an object
type. The namem is resolved to the method whose name ism and that is possessed
by a typeT , whereT is the closest supertype ofU that possesses a methodm . The
command does not type-check if no such method exists.

If methodm is declared by

method formal -outs := m(formal -ins) spec ;
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then expr -list mustmatch formal -ins and formal -outs must matchvar -list . A list
of expressions or bindingse matchesa list of bindings or variablesw just whene and
w have the same lengths, and the type of every element ine is a subtype of the type of
the corresponding element inw .

A method invocation is executed as follows. First, a new set of formal parameters
for the method invocation is created. Then, the actual in-parameters are evaluated, their
values are bound to the formal in-parameters, and initial values are bound to the formal
out-parameters. It is a run-time error if the first expression inexpr -list evaluates tonil .
The initial value of a formal out-parameter of typeU is nil if U is an object type,
and an arbitrary value of typeU otherwise. Finally, theappropriate implementation
of m (explained below) is executed, upon whose termination the values of the formal
out-parameters are assigned to the actual out-parameters.

The appropriate implementationof an invocation of a methodm is determined at
run-time as follows. LetT be the allocated type of first actual in-parameter of the invo-
cation, and letS denote the set of supertypes ofT at which an implementation ofm is
given. The appropriate implementation of the method invocation is the implementation
given at the smallest (“subtype-most”) type of the types inS . Note that the types in
S are totally ordered; hence, there is a smallest type inS , provided S is nonempty.
Guaranteeing thatS is nonempty is done by the following (possibly rather strict) re-
quirement on programs: ifT is an object type one of whose supertypes possesses a
methodm , then either there is a supertype ofT at which an implementation ofm is
given, or the program contains no statement of the form

v := new(T ) :

This is a static constraint that can be checked by a simple inspection of the program text.

2.0.7 Some convenient shorthands

The commands presented above show the features of the language. However, it is often
convenient to use some abbreviations. For that purpose, I define some shorthands in
terms of the primary language features. The shorthands are defined in terms of the
commands above. This means that they get a precise definition, and also that I don’t
need to later give a formal semantics for the shorthands.

I define theskip , wrong , and assert statements as follows, whereP denotes an
expression.

skip = var v :nat in v := v end

wrong = var v :nat in v := narrow(�1 ;nat) end
assert P = if P then skip else wrong �
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The commandskip does not alter the state of the program. Executingwrong always
leads to a run-time error (narrow is defined below). The assert statement skips ifP

evaluates totrue , and goes wrong otherwise.

2.1 Expressions

Evaluating an expression at run-time produces its value if the expression is defined,
and results in a run-time error otherwise. The evaluation does not affect the program
state, that is, expressions are “side-effect free”. (Thus, for example,new(T ) is not an
expression.)

The simplest expressions are constants and variables. The constantsfalse and true
have typebool , and numeric constants formed from sequences of decimal digits have
type nat . The object constantnil has typenull . A variable is an expression whose
type and value are the type and value of the variable.

The select expression is writtenx [E ] , wherex is a field name andE is an expres-
sion whose type is an object type. The namex is resolved to a data field as described
in Section 1.1. If the value ofE is not nil , then x [E ] is the value ofx at objectE .
The expression is not defined ifE evaluates tonil .

The narrow expression is writtennarrow(E ;T ) , where E is an expression
whose type is compatible with the typeT . The value ofnarrow(E ;T ) is E and
its type isT . The expression is not defined if the value ofE is not a member of type
T , that is, if T is nat and E produces a negative integer, or ifT is an object type
andE produces a non-nil object whose allocated type is not a subtype ofT .

Expressions can have familiar operators. Defined on booleans are: , ^ , _ ,
) , ( , and � , and defined on integers are the binary operators+ , � , � ,

div , andmod , and the unary operator� . These operators have the usual semantics.
If both operands of+ , � , or div have typenat , or if the type of the second operand
of mod is nat , then the expression has typenat instead ofint .

If the run-time evaluation of the first operand tô , _ , ) , or ( produces
a value that determines the value of the expression, the second operand is not evaluated.
That is, if the first operand of these expressions producesfalse , true , false , and
true , respectively, the expression producesfalse , true , true , and true , respec-
tively, without evaluating the second operand. For this reason, these four operators are
calledshort-circuitboolean operators.

Integers can be compared using= , 6= , < , � , � , and > , producing booleans.
Booleans can be compared using= and 6= , and so can expressions whose types are
object types ornull and are compatible. Note that for comparing booleans, the boolean
operator � can be used in place of= , the advantage being that� has a lower
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binding power (and a difference being that� is associative whereas= is chaining,
as explained shortly).

Pairs of parentheses can be used in the usual manner around an expression to ex-
plicitly express binding. The following table shows the default binding powers of all
operators, from strongest to weakest.

unary prefix operators:�, :
�, div, mod

+,�
=, 6=, <,�,�, >
^ , _
) , (

�

The binary arithmetic operators associate to the left. The boolean operator� is
associative. So are the boolean operatorŝ and _ , but since ^ and _

have the same binding power, it would be ambiguous, and thus not allowed, to write an
expression like

A ^ B _ C :

Other operators do not associate, but the groups of operators=;�; < and=;�; > can
be chained. This means that they parse as if they were associative, but the parsing is
just a shorthand for writing each operator and its surrounding operands as a separate
conjunct. For example, the expression

w � x = y < z

is shorthand for

w � x ^ x = y ^ y < z ;

whereas

x � y � z

does not parse because� and� are not in the same chaining group, and

x = y 6= z

does not parse because6= is not a chaining operator at all. Note that= is chaining
whereas � is associative; thus for booleansx , y , and z ,

x = y = z
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is shorthand for

x = y ^ y = z ;

whereas

x � y � z

is equivalent to

(x � y) � z

and to

x � (y � z ) :

Since nat is a subtype ofint , natural expressions can be used anywhere integer
expressions can be. Similarly, ifT is a subtype of an object typeU , then an expres-
sion of typeT can be used anywhere an expression of typeU can be used, with one
exception: an expression of typenull cannot be used where an expression of an object
type is expected, as is the case, for example, in the select expression.

Since they are not evaluated at run-time, pre- and postconditions can mention a richer
set of expressions calledspecification predicates. A specification predicate is one of the
following.

� An expression whose operator is: , ^ , _ , ) , ( , or � , and whose
subexpressions are specification predicates.

� A quantified expressionh 8 bindings
>
>
> R . P i or h 9 bindings

>
>
> R . P i ,

wherebindings is a nonempty list of bindings, the names of which are all distinct,
and R and P are specification predicates. The names inbindings are called
dummy variables, R is called therangeof the quantification, andP is called the
termof the quantification. IfR is the constanttrue , it and the preceding “

>
>
> ”

may be omitted. The relation between the range and term is described by

h 8 bindings
>
>
> R . P i = h 8 bindings . R ) P i

h 9 bindings
>
>
> R . P i = h 9 bindings . R ^ P i :

For each namev is bindings , free occurrences of variablev in R and P are
resolved to this dummy variable.

� A booleanspecification expression, defined below.
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� The expressionfresh(E ) , whereE is a specification expression whose type is
an object type. Thefresh expression, which is allowed only in postconditions,
says thatE is a non-nil object that is allocated in the post-state of a method, but
not in its pre-state.

A specification expressionis an expression that, when it occurs in a postcondition, is al-
lowed to mention initial-value fields in select expressions. Such expressions are subject
to the restrictions placed on the use of initial-value fields (as described in Section 1.2).

3 Formal semantics

This section describes the semantics of the programming language formally in terms of
first-order logic. In particular, it defines a proof obligation associated with each method
implementation. By discharging the proof obligation for a method implementationS ,
one is assured that no run-time error will occur in any execution ofS , provided S

is invoked only when its precondition holds and the method invocations occurring inS

have the effects prescribed by their respective specifications. (One is not assured that the
method will terminate, however.) By discharging the proof obligation for every method
implementation of a program, the program is guaranteed never to result in a run-time
error.

Throughout this section, I assume that the program text has been preprocessed to
rename all identifiers to unique names. A simple way to do that in practice is to rename
an identifier (like a field or variable)x to something likex :53 :6 where 53 and 6 are
the line and column in the program text at whichx is declared. (See Section 4.4 for an
example.)

3.0 Verification conditions

The formal meaning of commands is based on Dijkstra’sweakest liberal preconditions
(wlp ) [4]. The functionwlp maps commands to predicate transformers: forS a com-
mand andR a first-order predicate on the post-state ofS , wlp:S :R is a first-order
predicate describing those initial states from which execution ofS incurs no run-time
errors and, if the execution terminates, terminates in a state satisfyingR . This wlp is
like Dijkstra’s, except that it forbids run-time errors [10].

The proof obligation for a method implementation is that itmeet its specification.
Operationally, this means that, when started in a state satisfying the precondition, ex-
ecution of the implementation does not result in a run-time error and, if it terminates,
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has the effect prescribed by the postcondition and modifies list. Formally, a method
implementation and its specification are transformed into averification condition, an
untyped first-order logical formula; the proof obligation is to establish the validity of
this formula, a task for which a mechanical theorem prover may be used. This section
describes in detail how a verification condition is generated from the program text.

In principle, the formula

P ) wlp:S :R

expresses that a commandS meets a specification whose precondition isP and whose
postcondition isR [4]. However, this ignores an important part of a method specifi-
cation, the modifies list, which together with the postcondition prescribe the method’s
effect. To account for the modifies list, it is rewritten into a so-calledpostcondition
contribution, which constrains modifications of fields according to the modifies list. Let
Q denote that postcondition contribution (which is described in detail later). Then, our
next approximation of the verification condition is

P ) wlp:S :(R ^ Q) :

Some technical details remain to describe the verification condition in full. First,
an implementation is allowed to assume that the self parameter is notnil , that the
in-parameters have values of appropriate types, and that the out-parameters have been
properly initialized. Second, the verification condition must give a value to any initial-
value field that occurs inR . Third, the verification condition is a formula written in
untyped first-order logic. This means that the type information known about fields must
be encoded in some form of “type axioms”. These and related axioms form what is
called thebackground predicate, which is included in the antecedent of the verification
condition. Finally, the formal parameters mentioned in the specification must be re-
named to the formal-parameter names used by the implementation, the given pre- and
postconditions must be transformed from specification predicates to untyped first-order
predicates, and program expressions must be transformed into equivalent expressions in
the first-order logic.

Thus, the verification condition for a method implementation

impl formal -outs 0 := m(formal -ins 0) is S ;

whose specification is

method formal -outs := m(formal -ins)
requires P modi�es w ensures R
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has the form

BackgroundPred ^ InitialFields ^ Pr(P 0) ^ Y0 = Y ^ alloc0 = alloc ^

self 6= nil ^ Types(formal -ins 0) ^ Reset(formal -outs 0)
) wlp:S :(Pr(R0) ^ Q) ;

(2)

where

� BackgroundPred is the background predicate,

� InitialFields states that the values of all data fields have appropriate types,

� P 0 , w 0 , and R0 are P , w , and R , respectively, in which formal parameters
from formal -outs and formal -ins have been replaced by the names of the cor-
responding parameters informal -outs 0 and formal -ins 0 ,

� Pr is a function that maps a specification predicate to a first-order predicate,

� Y is the union of the listsFields(w 0) and Targets(S ) , the data fields that ap-
pear in the modifies listw 0 and those that are updated by the commandS , re-
spectively,

� Y0 is Y with every field initial-valued, soY0 = Y means the conjunction of
equalitiesy0 = y for every fieldy in Y ,

� alloc represents the set of allocated objects, andalloc0 is the initial value of
alloc ,

� self is the name of the self parameter, that is, the first name given informal -ins 0 ,

� Types(formal -ins 0) says that the in-parameters have values of the appropriate
types,

� Reset(formal -outs 0) says that the formal out-parameters have appropriate initial
values, and

� Q denotesPostCondContrib(Y ;w 0) , the postcondition contribution resulting
from the modifies list.

AntecedentsBackgroundPred , InitialFields , and alloc0 = alloc are the same for all
verification conditions in a program, whereas the rest of the verification condition is
specific to a particular method implementation.

In the rest of this section, I give the details of the components of this formula.
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3.1 The background predicate

This subsection describes how the program state and type information are encoded in
untyped first-order logic. It prescribes the construction of the background predicate.

I assume the background predicate does not need to mention any axioms for logical
operators (like: , ^ , 8 ), integer arithmetic (+ , � , � , div , mod ), and integer
inequalities (like� ).

To encode the state of data fields, I use two functions:[ ] (“select”) andstore . As
we have seen before,x [t ] denotes thex field at objectt . The value ofstore(x ; t ;E )
responds in the same way to applications of select as doesx , except possibly att where
the former yields the valueE . The relation between select andstore is described
formally by the following two axioms, called theselect-of-store axioms:

h 8 x ; t ; v . store(x ; t ; v)[t ] = v i
h 8 x ; t ; t 0; v . t 6= t 0 ) store(x ; t 0; v)[t ] = x [t ] i :

(3)

For every object typeT in the program, the first-order logic contains a termtc$T ,
called thetypecodeof T . (Here and throughout, I assume “$ ” to be a character that
does not appear in Ecstatic programs.) The typecodes are distinct: for every two distinct
object typesT andU , the background predicate contains a conjunct

tc$T 6= tc$U : (4)

To model the allocated type of an object, I use a functiontypecode from objects to
typecodes. The subtype relation can then be defined in terms of typecodes. I introduce
two functions,subtype1 and subtype . For every type declaration

type T <: U

in the program, the background predicate contains the axiom

subtype1 (tc$T ; tc$U ) : (5)

Function subtype is defined as the reflexive, transitive closure ofsubtype1 , as ex-
pressed by the following axioms:

h 8 tc . subtype(tc; tc) i
h 8 tc0 ; tc1 . subtype1 (tc0 ; tc1 ) ) subtype(tc0 ; tc1 ) i
h 8 tc0 ; tc1 ; tc2 . subtype(tc0 ; tc1 ) ^ subtype(tc1 ; tc2 )

) subtype(tc0 ; tc2 ) i :

(6)
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Since the direct supertype of a type is uniquely determined —that is, Ecstatic uses single
inheritance—, if two object types are not compatible, the only member they have in
common isnil . This is described by theincomparable subtype axiom:

h 8 t0 ; t1 ; tc0 ; tc1 ; tc .

t0 6= nil ^ t1 6= nil ^

subtype(typecode(t0 ); tc0 ) ^ subtype1 (tc0 ; tc) ^
subtype(typecode(t1 ); tc1 ) ^ subtype1 (tc1 ; tc) ^
tc0 6= tc1

) t0 6= t1 i :

(7)

The axiom says that if the types of two non-nil objects (t0 and t1 ) have a common
supertype (whose typecode is)tc , and the objects are of different direct subtypes oftc

( tc0 and tc1 ), then the two objects are distinct.
For each typeT , there is atype predicateis$T . The idea is thatis$T (E ) holds

just whenE denotes a value of typeT . The background predicate contains a definition
for each type predicate: for each object typeT , is$T is defined by

h 8 t . is$T (t) � t = nil _ subtype(typecode(t); tc$T ) i ; (8)

and the type predicates for simple types are defined by

h 8 v . is$bool(v) � v = false _ v = true i
h 8 v . is$nat(v) � 0 � v i

h 8 v . is$int(v) � true i :

(9)

Note that ifT is a subtype ofU , then is$T (E ) ) is$U (E ) .
The definition of is$int may seem puzzling: is every value an integer? The reason

is$int(v) is defined simply as the predicatetrue is that the Ecstatic type system is
strict enough that integers are never mixed with booleans or objects. For example, a
programmer is never under the obligation to show that some particular value is indeed
an integer and not, say, an object. (In a similar way,is$obj(t) could have been defined
as simplytrue .)

The boolean program valuesfalse and true are not the first-order predicatesfalse
and true . The reason for this, and the consequences thereof, are as follows. Variables
are terms in the first-order logic, and so are expressions. Consequently, boolean vari-
ables and the boolean constantsfalse and true are terms of the logic. Perhaps more
surprisingly, sincex < y is also an expression, it too must be a term of the logic, not
a predicate. For example, ifb is a boolean field, a program may contain a command
b[t ] := x < y , which, as we shall see, gives rise to an expression likestore(b; t ; x < y)
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in the verification condition, except that the third argument tostore must be a term. To
accommodate such expressions in the first-order logic, one needs to introduce special
functions for rudimentary boolean operations like= , < , and ^ , and then transform
program expressions into first-order expressions that use these functions. The special
functions require the introduction of a dozen axioms into the background predicate.
Luckily, in many particular cases, it is possible to transform program expressions into
first-order expressions without appeal to these functions, as is encoded by functionPr

defined in a later subsection, but the special functions are needed in general. The six
special functions areequal , less , atmost , not , and , and or , and the dozen axioms
about these are

h 8 c; d . equal(c; d) = false _ equal(c; d) = true i
h 8 c; d . less(c; d) = false _ less(c; d) = true i
h 8 c; d . atmost(c; d) = false _ atmost(c; d) = true i

h 8 c . not(c) = false _ not(c) = true i
h 8 c; d . and(c; d) = false _ and(c; d) = true i
h 8 c; d . or(c; d) = false _ or(c; d) = true i

h 8 c; d . equal(c; d) = true � c = d i
h 8 c; d . less(c; d) = true � c < d i
h 8 c; d . atmost(c; d) = true � c � d i
h 8 c . not(c) = true � c 6= true i

h 8 c; d . and(c; d) = true � c = true ^ d = true i
h 8 c; d . or(c; d) = true � c = true _ d = true i :

(10)

In addition, the background predicate contains an axiom that expresses that the two
boolean values are distinct:

false 6= true : (11)

An example that uses the special functions is given in Section 4.3.
Two functions needed in the transformation ofnarrow expressions arenatural

and narrow , for which the background predicate contains the two axioms

h 8 v . 0 � v ) natural(v) = v i
h 8 t ; tc . t = nil _ subtype(typecode(t); tc) ) narrow(t ; tc) = t i :

(12)

The type information provided by the declared types of data fields is encoded. For
each pair of types(T ;U ) that appears in some data field declaration

�eld x :T ! U ;
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the background predicate defines afield-type predicate�eld$T$U . The background
predicate relates each such field-type predicate to select by including the conjunct

h 8 x ; t . �eld$T$U (x ) ^ is$T (t) ^ t 6= nil ) is$U (x [t ]) i : (13)

This says that ifx is a field with index typeT and range typeU , then selectx at a
non-nil T object results in a value of typeU .

To encode which objects are allocated, I make use of anallocation statecalledalloc .
The fact that an objectt has been allocated in an allocation statea is denoted by the
predicateisDecl(t ; a) . For a fieldx whose range type is an object type,x is said to be
consistentwith an allocation statea , written isConsistent(x ; a) , if, for every objectt ,
x [t ] is allocated ina if t is. This is encoded as follows: for every field-type predicate
�eld$T$U whereU denotes an object type, the background predicate contains

h 8 x ; a; t . �eld$T$U (x ) ^ isConsistent(x ; a) ^
is$T (t) ^ t 6= nil ^ isDecl(t ; a)
) isDecl(x [t ]; a) i :

(14)

Although the background predicate is not explicit about theisDecl of nil , note that
axiom (14) is accordant withisDecl(nil; alloc) , but not with:isDecl(nil; alloc) .

The allocation state is changed by the allocation and method invocation commands.
As an allocation state changes, the new allocation state is said tosucceedthe previous
one. An object allocated in one allocation state remains allocated in successive alloca-
tion states. This is encoded by a predicatesucceeds and the axiom

h 8 t ; a; b . isDecl(t ; a) ^ succeeds(b; a) ) isDecl(t ; b) i : (15)

Finally, succession of allocation states preserves consistency, as expressed by the axiom

h 8 x ; a; b . isConsistent(x ; a) ^ succeeds(b; a)
) isConsistent(x ; b) i :

(16)

The background predicate is formed by conjoining the axioms (3), (6), (7), (9), (10),
(11), (12), (15), and (16), and the axiom schemas (4), (5), (8), (13), and (14) applied to
the types mentioned in the program.

3.2 Proper types and initial values

This subsection defines three functions on lists of bindings,Vars , Types , andReset ,
one function on lists of designator expressions,Fields , and two functions on lists of
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data fields,FieldTypes andFieldReset . It also defines the conjunctInitialFields that
is used in the verification condition (2).

FunctionVars projects to the variable components of the bindings,Types is used
in encoding the type and accessibility of formal in-parameters and dummy variables,
and Reset is used in encoding the initial values of local variables and formal out-
parameters. FunctionFields is similar to Vars , but is used with modifies lists, and
functionsFieldTypes and FieldReset are similar toTypes and Reset , but are used
with data fields.

For B a list of bindings,Vars(B) is the list of variablesv occurring in some
binding v :T in B .

For B a list of bindings,Types(B) and Reset(B) are first-order predicates. For
each bindingv :T in B whereT is not an object type, each of these predicates con-
tains a conjunctis$T (v) . For those bindings whereT is an object type,Types(B)
contains a conjunctis$T (v) ^ isDecl(v ; alloc) , and Reset(B) contains a conjunct
v = nil .

For example, ifB is the list of bindingsu: int ; v :T , whereT is some object
type, then

Vars(B) = u; v

Types(B) = is$int(u) ^ is$T (v) ^ isDecl(v ; alloc)
Reset(B) = is$int(u) ^ v = nil :

For w a list of designator expressions,Fields(w) is the list of data fieldsx oc-
curring in some designator expressionx [E ] in w . For example, ifw is the list
x [E ]; y[E 0]; x [E 00] , thenFields(w) is the list x ; y .

For W a list of data fields,FieldTypes(W ) is a first-order predicate. For each data
field x in W , if x is declared in the program by

�eld x :T ! U ;

then FieldTypes(W ) contains the conjunct�eld$T$U (x ) . If U is an object type,
FieldTypes(W ) also contains the conjunctisConsistent(x ; alloc) .

For W a list of data fields andv a variable,FieldReset(W ; v) , too, is a first-
order predicate. A fieldx in W contributes a conjunct toFieldReset(W ; v) only if
the range type ofx is an object type, in which caseFieldReset(W ; v) contains the
conjunctx [v ] = nil .

For example, suppose that, in the context of the program snippet (1) on page 8,W

is the list val ; next . Then,FieldTypes(W ) is

�eld$Node$int(val) ^ �eld$Node$Node(next) ^ isConsistent(next ; alloc)
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and FieldReset(W ; v) is

next [v ] = nil :

In the verification condition (2),InitialFields is the predicateFieldTypes(W ) ,
whereW is the list of all data fields declared in the program.

3.3 Transforming expressions and specification predicates

This subsection defines two functions,Pr and Tr , which transform expressions into
first-order logic.

Both Pr and Tr are defined inductively on the structure of their argument. Func-
tion Pr produces a first-order predicate, whereasTr produces a first-order term. Only
Pr is ever applied to a specification predicate.

I first describePr .

� Pr distributes over the operators: , ^ , _ , ) , ( , and � .

� Pr(hQ bindings
>
>
> R . P i) = hQ vars

>
>
> types ^ Pr(R) . Pr(P) i , where

vars = Vars(bindings) and types = Types(bindings) .

� Pr(fresh(E )) = (:isDecl(e; alloc0) ^ isDecl(e; alloc) ^ e 6= nil) , where
e = Tr(E ) .

� The following rules reduce the number of times the six special functions intro-
duced in Section 3.1 have to be used.

Pr(E0 = E1 ) = (Tr(E0 ) = Tr(E1 ))
Pr(E0 6= E1 ) = (Tr(E0 ) 6= Tr(E1 ))
Pr(E0 < E1 ) = (Tr(E0 ) < Tr(E1 ))
Pr(E0 � E1 ) = (Tr(E0 ) � Tr(E1 ))
Pr(E0 � E1 ) = (Tr(E0 ) � Tr(E1 ))
Pr(E0 > E1 ) = (Tr(E0 ) > Tr(E1 ))

� For any other expressionE , which necessarily is a boolean specification expres-
sion, Pr(E ) = (Tr(E ) = true) .

FunctionTr is defined as follows.

� For any constantc (i.e., false , true , nil , or a numeric constant),Tr(c) = c .
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� For any variablev , Tr(v) = v .

� Tr distributes over the arithmetic operators (+ , � , � , div , andmod ).

� For any select expression (possibly with an initial-valued field),Tr(x [E ]) =
x [Tr(E )] .

� If the type of E is a subtype ofT , then Tr(narrow(E ;T )) = Tr(E ) . If T

is nat and the type ofE is int , thenTr(narrow(E ;T )) = natural(Tr(E )) .
Otherwise,Tr(narrow(E ;T )) = narrow(Tr(E ); tc$T ) .

� The comparison operators are transformed using the special functions.

Tr(E0 = E1 ) = equal(Tr(E0 );Tr(E1 ))
Tr(E0 6= E1 ) = not(equal(Tr(E0 );Tr(E1 )))
Tr(E0 < E1 ) = less(Tr(E0 );Tr(E1 ))
Tr(E0 � E1 ) = atmost(Tr(E0 );Tr(E1 ))
Tr(E0 � E1 ) = atmost(Tr(E1 );Tr(E0 ))
Tr(E0 > E1 ) = less(Tr(E1 );Tr(E0 ))

� Boolean operators are also transformed using the special functions.

Tr(:E ) = not(Tr(E ))
Tr(E0 ^ E1 ) = and(Tr(E0 );Tr(E1 ))
Tr(E0 _ E1 ) = or(Tr(E0 );Tr(E1 ))
Tr(E0 ) E1 ) = or(not(Tr(E0 ));Tr(E1 ))
Tr(E0 ( E1 ) = or(Tr(E0 );not(Tr(E1 )))
Tr(E0 � E1 ) = equal(Tr(E0 );Tr(E1 ))

Section 4.3 gives an example involvingPr andTr .

3.4 Definedness of expressions

This subsection defines a functionDe�ned from expressions to first-order predicates.
The predicateDe�ned(E ) holds in those states in which the evaluation ofE does not
result in a run-time error.De�ned is used only with expressions that are evaluated at
run-time.
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FunctionDe�ned is defined inductively on the structure of expressions. It yields
true for constants and variables. For other expressions, except as noted below,De�ned

is the conjunction ofDe�ned on each subexpression.

De�ned(x [E ]) = De�ned(E ) ^ Tr(E ) 6= nil

De�ned(E div E 0) = De�ned(E ) ^ De�ned(E 0) ^ Tr(E 0) 6= 0

De�ned(E modE 0) = De�ned(E ) ^ De�ned(E 0) ^ Tr(E 0) 6= 0

De�ned(E ^ E 0) = De�ned(E ) ^ (:Tr(E ) _ De�ned(E 0))
De�ned(E _ E 0) = De�ned(E ) ^ (Tr(E ) _ De�ned(E 0))
De�ned(E ) E 0) = De�ned(E ) ^ (:Tr(E ) _ De�ned(E 0))
De�ned(E ( E 0) = De�ned(E ) ^ (Tr(E ) _ De�ned(E 0))

For narrow expressions,

De�ned(narrow(E ;T )) = De�ned(E )

if the static type ofE is a subtype ofT , and otherwise

De�ned(narrow(E ;T )) = De�ned(E ) ^ is$T (Tr(E )) :

The axiomatic semantics of Ecstatic gives the first-order logic some freedom in its
approach to dealing with undefined expressions. One approach is to treat an undefined
expression as an uninterpreted function of its subexpressions, but other approaches are
also possible.

3.5 Weakest liberal preconditions

This subsection defines the semantics of each command by giving its weakest liberal
precondition,wlp . Throughout this subsection, I useR as any arbitrary first-order
predicate.

The wlp of the simple assignment statementv := E is defined by

wlp:(v := E ):R = De�ned(E ) ^ R[v := e] ;

where e = Tr(E ) . This says that to guarantee that the commandv := E ends in
a state satisfyingR (if the command terminates at all) without incurring any run-time
error, the command must be started in a state in whichE is defined andR with free
occurrences of variablev replaced bye holds.
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For the allocation statement, we have

wlp:(v := new(T )):R =
h 8 v ; alloc0

>
>
> typecode(v) = tc$T ^ v 6= nil ^ FieldReset(W ; v) ^
:isDecl(v ; alloc) ^ succeeds(alloc0; alloc) ^
h8 t . isDecl(t ; alloc0) � isDecl(t ; alloc) _ t = v i .

R[alloc := alloc0] i ;

whereW is the list of all data fields whose index type is a supertype ofT . Viewed
operationally, this says thatnew is free to “pick” any non-nil , unallocated object
whose allocated type isT and whose fields have proper initial values, and such an
object is always assumed to exist. (Note that a compiler writer may choose to implement
new by allocating a sufficient amount of memory to hold the new object and then setting
the fields to proper initial values. Such an implementation is allowed by the semantics
given here, since the difference is not observable to programs.)

The update command is defined by

wlp:(x [E ] := E 0):R =
De�ned(E ) ^ De�ned(E 0) ^ e 6= nil ^ R[x := store(x ; e; e 0)] ;

wheree = Tr(E ) and e 0 = Tr(E 0) .
The block statement is defined by

wlp:(var bindings in S end):R = h 8 vars
>
>
> reset . wlp:S :R i ;

wherevars = Vars(bindings) and reset = Reset(bindings) .
Composition is defined as follows.

wlp:(S ; S 0):R = wlp:S :(wlp:S 0

:R)

The conditional statement is defined by

wlp:(if E then S else S 0 �):R =
De�ned(E ) ^ (g ) wlp:S :R) ^ (:g ) wlp:S 0:R) ;

whereg = Pr(E ) .
Finally, an invocation of a methodm is defined in terms of the specification of

m . I will show the wlp for the invocation of a method that takes two in- and two
out-parameters. Generalizations to other numbers of parameters is straightforward. If a
methodm is declared by

method u0 :U0 ; u1 :U1 := m(t0 :T0 ; t1 :T1 )
requires Pre

modi�es w

ensures Post ;
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then we have

wlp:(v0 ; v1 := m(E0 ;E1 )):R =
De�ned(E0 ) ^ De�ned(E1 ) ^
h8 t0 ; t1

>
>
> t0 = Tr(E0 ) ^ t1 = Tr(E1 ) .

t0 6= nil ^ pre ^

h8 u0 ; u1 ;W ; alloc
>
>
> types ^ �eldtypes ^ succeeds(alloc; alloc0) ^
post ^ Q .

R[v0 ; v1 := u0 ; u1 ] i[W0; alloc0 := W ; alloc]
i ;

where

� pre = Pr(Pre) and post = Pr(Post) ,

� W is Fields(w) , andW0 is W with every identifier initial-valued,

� types = Types(u0 :U0 ; u1 :U1 ) , and�eldtypes = FieldTypes(W ) , and

� Q = PostCondContrib(W ;w) .

Note the conjunctt0 6= nil which enforces that the actual self parameter isn’tnil at
the time of the method invocation.

I will give an example application of this rule in Section 4.2.

3.6 Postcondition contributions from modifies lists

This subsection defines the predicatePostCondContrib(Y ;w) for a list of designator
expressionsw and a list of data fieldsY . Informally, the predicate, which relates a
post-state and a pre-state, expresses that every data fieldy in Y differs from y0 only
at newly allocated objects and objects that are listed as indices ofy in w .

PredicatePostCondContrib(Y ;w) contains a conjunctpcc(y;w ;Y ) for each data
field y in Y . For a data fieldy whose index type isT , the macropcc(y;w ;Y ) is
defined as

h 8 s
>
>
> is$T (s) ^ isDecl(s; alloc0) . y0[s] = y[s] _ IsModPoint(y;w ; s;Y ) i;

where s is an identifier not occurring in the program. MacroIsModPoint(y;w ; s;Y )
yields a disjunct

s = e[Y := Y0]
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for every designator expressiony[E ] in w , where e = Tr(E ) and Y0 is Y with
every identifier initial-valued.

For example, consider a program that contains that following declarations:

type T

�eld val :T ! int

�eld left ; right ; parent :T ! T :

Let w denote the list

left [t ]; val [left [t ]]; val [right [t ]] ;

and let Y denote the listval ; left ; parent . It may help to think ofw as being the
modifies list of a method andY as being the data fields that occur on the left-hand side
of update commands in an implementation. PredicatePostCondContrib(Y ;w) is then
the conjunction

pcc(val ;w ;Y ) ^ pcc(left ;w ;Y ) ^ pcc(parent ;w ;Y ) ;

which expands to

h 8 s
>
>
> is$T (s) ^ isDecl(s; alloc0) .

val0[s] = val [s] _ IsModPoint(val ;w ; s;Y ) i ^
h 8 s

>
>
> is$T (s) ^ isDecl(s; alloc0) .

left0[s] = left [s] _ IsModPoint(left ;w ; s;Y ) i ^
h 8 s

>
>
> is$T (s) ^ isDecl(s; alloc0) .

parent0[s] = parent [s] _ IsModPoint(parent ;w ; s;Y ) i ;

which in turn expands to

h 8 s
>
>
> is$T (s) ^ isDecl(s; alloc0) .

val0[s] = val [s] _ s = left0[t ] _ s = right [t ] i ^
h 8 s

>
>
> is$T (s) ^ isDecl(s; alloc0) . left0[s] = left [s] _ s = t i ^

h 8 s
>
>
> is$T (s) ^ isDecl(s; alloc0) . parent0[s] = parent [s] i :

By conjoining this predicate to the postcondition, the method implementation is con-
strained to modifyval , left , and parent only at the objects specified in the modifies
list and at any newly allocated object.
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3.7 Targets

This subsection definesTargets , a function from a command to a list of data fields.
Intuitively, a data fieldx is in Targets(S ) , and is thus said to be atarget of S , if x

is possibly changed by an execution ofS , as determined by a simple inspection of the
program text.

Function Targets is defined inductively on the structure of its argument. For a
statement compositionS , Targets(S ) is the union of the targets of the command com-
ponents ofS . If S is an update commandx [E ] := E 0 , Targets(S ) is the singleton
list x . If S is an invocation of a method whose modifies list isw , Targets(S ) is the
list Fields(w) . For all other commandsS , Targets(S ) is the empty list.

The verification condition (2) on page 18 mentionsTargets(S ) so that updates of
the targets ofS are constrained to the updates allowed by the modifies list and updates at
newly allocated objects. Data fields that are not targets ofS cannot possibly be changed
by S , and thus they need not be constrained explicitly as a postcondition contribution.

Well, there is one exception to the claim that data fields that aren’t targets cannot be
modified: S may invoke methods, and method implementations are allowed to modify
data fields at newly allocated objects without getting explicit permission from a modifies
list. However, an object considered newly allocated with respect to a nested method
invocation is also considered newly allocated with respect toS . Hence,S is allowed
the modifications of newly allocated objects done by nested method invocations, so such
modifications need not be constrained explicitly as postcondition contributions.

4 Examples

This section gives some additional program examples and discusses their verification
conditions.

The first example shows the background predicate for a small program. The second
example gives a proof that a simple method implementation meets its specification. The
third example contrasts thewlp generated for the implementation of a method with the
wlp generated for an invocation of the method. The fourth example shows the interplay
between boolean program values and first-order predicates. The final example illustrates
the renaming of identifiers to unique ones.
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4.0 An example background predicate

This subsection shows the background predicate that results from the declarations (1)
on page 8.

Regardless of the program at hand, the background predicate contains the axioms

(3) ^ (6) ^ (7) ^ (9) ^ (10)^ (11)^ (12)^ (15)^ (16) : (17)

In addition, we need to instantiate some axiom schemas according to the types and fields
declared in the program.

Program (1) declares one type,Node . Like the built-in object typeobj , Node

gives rise to a typecode. Axiom schema (4) says that the typecodes are distinct. Applied
to the program at hand, we get

tc$obj 6= tc$Node : (18)

According to axiom schema (5), the declaration of typeNode also gives rise to a
subtype1 relation:

subtype1 (tc$Node; tc$obj) : (19)

The type predicates for typesobj and Node , as dictated by axiom schema (8), are
defined by

h 8 t . is$obj(t) � t = nil _ subtype(typecode(t); tc$obj) i
h 8 t . is$Node(t) � t = nil _ subtype(typecode(t); tc$Node) i :

(20)

Program (1) declares two fields,val and next . The types of these give rise to
field-type predicate, about which the following axioms are generated, by axiom schema
(13):

h 8 x ; t . �eld$Node$int(x ) ^ is$Node(t) ^ t 6= nil ) is$int(x [t ]) i
h 8 x ; t . �eld$Node$Node(x ) ^ is$Node(t) ^ t 6= nil ) is$Node(x [t ]) i :

(21)

Finally, since the range type of the fieldnext is an object type, axiom schema (14)
stipulates that the background predicate contain the axiom

h 8 x ; a; t . �eld$Node$Node(x ) ^ isConsistent(x ; a) ^
is$Node(t) ^ t 6= nil ^ isDecl(t ; a)
) isDecl(x [t ]; a) i :

(22)

In summary, the background predicate for program (1) is the conjunction of (17),
(18), (19), (20), (21), and (22). The next example shows how parts of the background
predicate are used in the proof of a method implementation.
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4.1 The proof of a simple program

In this example, I prove that the implementation of methodm in program (0) on page 2
meets its specification.

I start by writing down the antecedent of the verification condition (2):

BackgroundPred : omitted (for an example, see previous subsection)
InitialFields : �eld$T$int(x ) ^ �eld$T$nat(y)
Pr(P 0) : 0 � y[t ] + z

Y0 = Y : x0 = x

alloc0 = alloc : alloc0 = alloc

self 6= nil : t 6= nil

Types(formal -ins 0) : is$T (t) ^ isDecl(t ; alloc) ^ is$int(z )
Reset(formal -outs 0) : true :

The consequent of the verification condition is

wlp:(x [t ] := x [t ] + 2 � y[t ] + z ):(Pr(R0) ^ Q) ; (23)

wherePr(R0) is simply the given postcondition

x [t ] � x0[t ] + y[t ] + z

andQ is PostCondContrib(x ; x [t ]) which is

h 8 s
>
>
> is$T (s) ^ isDecl(s; alloc0) . x0[s] = x [s] _ s = t i :

Applying thewlp for the update statement, (23) becomes

true ^ (t 6= nil ^ t 6= nil) ^ t 6= nil ^
store(x ; t ; x [t ] + 2 � y[t ] + z )[t ] � x0[t ] + y[t ] + z ^
h8 s

>
>
> is$T (s) ^ isDecl(s; alloc0) .

x0[s] = store(x ; t ; x [t ] + 2 � y[t ] + z )[s] _ s = t i :

(24)

We are now ready to embark on a calculation to discharge the verification condition.
Under the antecedent of the verification condition, we massage the consequent (24) of
the verification condition in the following calculation.

true ^ (t 6= nil ^ t 6= nil) ^ t 6= nil ^
store(x ; t ; x [t ] + 2 � y[t ] + z )[t ] � x0[t ] + y[t ] + z ^

h8 s
>
>
> is$T (s) ^ isDecl(s; alloc0) .

x0[s] = store(x ; t ; x [t ] + 2 � y[t ] + z )[s] _ s = t i
= f from the antecedent,t 6= nil and x0 = x g
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store(x ; t ; x [t ] + 2 � y[t ] + z )[t ] � x [t ] + y[t ] + z ^

h8 s
>
>
> is$T (s) ^ isDecl(s; alloc0) .

x [s] = store(x ; t ; x [t ] + 2 � y[t ] + z )[s] _ s = t i

= f logic g

store(x ; t ; x [t ] + 2 � y[t ] + z )[t ] � x [t ] + y[t ] + z ^

h8 s
>
>
> is$T (s) ^ isDecl(s; alloc0) .

s 6= t ) x [s] = store(x ; t ; x [t ] + 2 � y[t ] + z )[s] i
= f the two select-of-store axioms (3)g

x [t ] + 2 � y[t ] + z � x [t ] + y[t ] + z ^

h8 s
>
>
> is$T (s) ^ isDecl(s; alloc0) . s 6= t ) x [s] = x [s] i

= f logic, and arithmetic g
y[t ] � 0

= f background predicate (9)g
is$nat(y[t ])

( f background predicate (13)g
�eld$T$nat(y) ^ is$T (t) ^ t 6= nil

= f antecedentg
true

And with that calculation, we have discharged the proof obligation.

4.2 Implementation versus invocation

In this example, I contrast the proof obligation for a method implementation with the
proof obligation for invoking the method.

In the context of the linked list declarations (1) on page 8, consider the following
method declaration and implementation.

method n:Node := prepend(node:Node; value: int)
ensures fresh(n) ^ next [n] = node ^ val [n] = value

impl n:Node := prepend(node:Node; value: int) is
n := new(Node) ;
next [n] := node ;
val [n] := value

This method prependsvalue to the given listnode and returns the new head of the list
n . Note that the method has an empty modifies list, yet the implementation modifies the
next and val fields of n . This is permitted, becausen is allocated inside the method
implementation. To see how this rule manifests itself in the formal semantics, let’s take
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a look at thewlp of the method implementation and thewlp of an invocation of the
method.

The consequent of a verification condition has the form

wlp:S :(Pr(P 0) ^ Q) :

In this example,Pr(P 0) differs from the given postcondition because of the use of
fresh . PredicatePr(P 0) is

:isDecl(n; alloc0) ^ isDecl(n; alloc) ^ n 6= nil ^

next [n] = node ^ val [n] = value :

The postcondition contributionQ , that isPostCondContrib(Y ;w 0) , is more interest-
ing. The modifies listw 0 is empty, andY , which considers the targets of the method
implementation, is the listnext ; val . Expanding the postcondition contribution yields

h 8 s
>
>
> is$Node(s) ^ isDecl(s; alloc0) . next0[s] = next [s] i ^

h 8 s
>
>
> is$Node(s) ^ isDecl(s; alloc0) . val0[s] = val [s] i :

Applying the appropriatewlp to Pr(P 0) ^ Q gives the formula

h 8n; alloc0
>
>
> typecode(n) = tc$Node ^ n 6= nil ^ next [n] = nil ^
:isDecl(n; alloc) ^ succeeds(alloc0; alloc) ^
h8 t . isDecl(t ; alloc0) � isDecl(t ; alloc) _ t = n i .

:isDecl(n; alloc0) ^ isDecl(n; alloc0) ^ n 6= nil ^
store(next ;n;node)[n] = node ^ store(val ;n; value)[n] = value ^
h8 s

>
>
> is$Node(s) ^ isDecl(s; alloc0) .

next0[s] = store(next ;n;node)[s] i ^
h 8 s

>
>
> is$Node(s) ^ isDecl(s; alloc0) .

val0[s] = store(val ;n; value)[s] ii :

Under the range of this quantification and the antecedent of the verification condition,
we embark on a calculation on the term of the quantification:

:isDecl(n; alloc0) ^ isDecl(n; alloc0) ^ n 6= nil ^
store(next ;n;node)[n] = node ^ store(val ;n; value)[n] = value ^
h8 s

>
>
> is$Node(s) ^ isDecl(s; alloc0) .

next0[s] = store(next ;n;node)[s] i ^
h 8 s

>
>
> is$Node(s) ^ isDecl(s; alloc0) .

val0[s] = store(val ;n; value)[s] i
= f alloc0 = alloc , :isDecl(n; alloc) , isDecl(n; alloc0) , n 6= nil g
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store(next ;n;node)[n] = node ^ store(val ;n; value)[n] = value ^

h8 s
>
>
> is$Node(s) ^ isDecl(s; alloc0) .

next0[s] = store(next ;n;node)[s] i ^
h 8 s

>
>
> is$Node(s) ^ isDecl(s; alloc0) .

val0[s] = store(val ;n; value)[s] i
= f the first select-of-store axiom (3)g

h 8 s
>
>
> is$Node(s) ^ isDecl(s; alloc0) .

next0[s] = store(next ;n;node)[s] i ^
h 8 s

>
>
> is$Node(s) ^ isDecl(s; alloc0) .

val0[s] = store(val ;n; value)[s] i
( f next0 = next , val0 = val , the second select-of-store axiom (3)g

h 8 s
>
>
> is$Node(s) ^ isDecl(s; alloc0) . n 6= s i

= f logic g
h 8 s

>
>
> is$Node(s) ^ n = s . :isDecl(s; alloc0) i

= f alloc0 = alloc , and:isDecl(n; alloc) g
true .

So much for the implementation. Now let us consider an invocation of the method:

head := prepend(head ; 5 ) ;

and let us construct thewlp of this command with respect to some first-order predicate
R . According to the definition ofwlp for method invocation, we get

true ^ true ^
h8node; value

>
>
> node = head ^ value = 5 .

node 6= nil ^ true ^
h8n; alloc

>
>
> (is$Node(n) ^ isDecl(n; alloc)) ^ true ^

succeeds(alloc; alloc0) ^
:isDecl(n; alloc0) ^ isDecl(n; alloc) ^ n 6= nil ^

next [n] = node ^ val [n] = value ^
true .

R[head := n] i[alloc0 := alloc]
i :

The formula can be simplified, especially if one renames the dummy variablealloc to,
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say, alloc0 (because then the substitution[alloc0 := alloc] can be applied directly):

head 6= nil ^

h8n; alloc0
>
>
> is$Node(n) ^ isDecl(n; alloc0) ^ succeeds(alloc0; alloc) ^
:isDecl(n; alloc) ^ isDecl(n; alloc0) ^ n 6= nil ^

next [n] = head ^ val [n] = 5 .

R[head := n] i :

The thing to notice here is that the postcondition contribution is simplytrue , because
the modifies list is empty—the targets of the implementation are not taken into account.
Thus, as far as the caller can tell, the method invocation does not change thenext and
val fields of any object, but instead just allocates an object whose fields happen to have
the desired values. The fact that the implementation allocates an object and sets the
fields of that object to appropriate values cannot be observed by the caller.

4.3 Boolean values and predicates

Section 3.1 discussed the difference between boolean program values (liketrue ) and
first-order predicates (liketrue ), and introduced some special functions. This subsec-
tion gives an example to show the impact of that discussion on verification conditions.

Consider the command

b[t ] := x < y ;

whereb is a boolean-valued field,x and y are integer variables, andt is a variable of
an appropriate object type. Thewlp of this command with respect to a predicateR is

R[b := store(b; t ; less(x ; y))] :

The use ofless is necessary because the arguments of functions, likestore , are ex-
pected to be terms of the logic. Therefore, thewlp of the update command makes use
of function Tr .

Contrast the command above with the command

if x < y then S else S 0 � ;

where x and y are the same variables as in the command above, andS and S 0 are
commands. Thewlp of this command is

(x < y ) wlp:S :R) ^ (:(x < y) ) wlp:S 0

:R) :

Here, it is possible to use the first-order predicatex < y directly, rather than using
less(x ; y) = true , and functionPr , which is used by thewlp for if , takes advantage
of this possibility.
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4.4 Preprocessing names

In this final example, I show an artificial program to illustrate the details of dealing with
names.

Consider the obscure program

type T

�eld x :T ! bool

type U <: T
�eld x :U ! int

method x (t :T ; x : int)
modi�es x [t ]

impl x (u:U ; x : int) is
var t :T in

t := u ;
x [t ] := x < x [u]

end :

Note that types, fields, methods, and variables live in four different name spaces. The
use of a name in a program reveals to which of these four categories the name belongs.
For example, field names occur left of the “[ ” in select expressions, and method names
to the left of the first “( ” in method invocation commands.

To show how the names in this program are resolved, I rename every identifierx to
a unique name of the formx :m:n , wherem and n are the line and column at which
x is declared. The program then becomes:

type T :0 :5

�eld x :1 :6 :T :0 :5 ! bool

type U :2 :5 <: T :0 :5

�eld x :3 :6 :U :2 :5 ! int

method x :4 :7 (t :4 :9 :T :0 :5 ; x :4 :15 : int)
modi�es x :1 :6 [t :4 :9 ]

impl x :4 :7 (u:6 :7 :U :2 :5 ; x :6 :13 : int) is
var t :7 :6 :T :0 :5 in

t :7 :6 := u:6 :7 ;
x :1 :6 [t :7 :6 ] := x :6 :13 < x :3 :6 [u:6 :7 ]

end :

(I omitted such renamings in the previous examples to avoid clutter.)
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The consequent of the verification condition for this implementation is

h 8 t :7 :6
>
>
> t :7 :6 = nil .

(t :7 :6 6= nil ^

h8 s
>
>
> is$T :0 :5 (s) ^ isDecl(s; alloc0) .

x :1 :60[s] = x :1 :6 [s] _ s = u:6 :7 i

)[x :1 :6 := store(x :1 :6 ; t :7 :6 ; less(x :6 :13 ; x :3 :6 [u:6 :7 ]))]
[t :7 :6 := u:6 :7 ]

i ;

which simplifies to

u:6 :7 6= nil ^
h8 s

>
>
> is$T :0 :5 (s) ^ isDecl(s; alloc0) .

x :1 :60[s] = store(x :1 :6 ; u:6 :7 ; less(x :6 :13 ; x :3 :6 [u:6 :7 ]))[s]
_ s = u:6 :7 i :

Note that all name resolution is done using static types.

5 Language extensions

This section discusses some possible extensions to the language.
In addition to objects, Ecstatic provides booleans and integers. One can easily extend

the language to accommodate other simple types, such as real numbers. To do so, the
logical theory underlying the data type may need to be included. A very useful data type
is (open) arrays, which can be added to the language as described in KRML 55 [9].

A useful shorthand that can easily be defined is a block statement where variables
list their initial values. For example,

var x :T := E in S end (25)

would be a shorthand for

var x :T in x := E ; S end :

If the type ofE is T , then “:T ” can be omitted from (25).
Ecstatic does not feature iteration. Instead, a program must resort to using recursion.

However, an iterative construct can be added to the language. Such an addition would
have to include a convenient syntax for expressing loop invariants, and the verification
condition generation would have to be changed accordingly.
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Ecstatic allows expressions to be partial, but does not allow them to have side effects.
Convenient expressions with side effects include invocations ofnew and invocations
of methods with exactly one out-parameter. Also, allowing a statement that combines
the update statement with method invocation is often convenient. These conveniences
can be defined as shorthands in terms of the present language. The following example
conveys the idea: the statement

y[E ] := m(new(T );n(E 0

;E 00))

would be a shorthand for

var t0 :T0 ; t1 :T1 ; t2 :T2 ; t3 :T3 in

t0 := E ; t1 := new(T ) ; t2 := n(E 0;E 00) ;
t3 := m(t1 ; t2 ) ; y[t0 ] := t3

end ;

whereT0 , T1 , T2 , andT3 are appropriate types. Defining shorthands like these is
a clerical task. The only possibly non-trivial part is making sure the second operand of
short-circuit boolean operators is evaluated conditionally.

Ecstatic provides methods, but not regular procedures. Syntactically, methods re-
quire at least one in-parameter (the self parameter), which must be of an object type;
procedures have no such requirement. Operationally, the allocated type of the first actual
in-parameter determines which method implementation is called, whereas a procedure
has one implementation that is used for every invocation of the procedure. Axiomat-
ically, the only difference between methods and procedures is that a method has an
implicit preconditionself 6= nil .

Now to the major issue. It is fair to ask: “Isn’t it boring that a method can be
given only one specification?”. Yes, it is. As things stand, the language is mostly like
a programming language with procedures—not much is gained from object types and
inheritance. For example, in the linked-list example in Section 1.4, I showed two differ-
ent Op subtypes, each giving its own implementation of methodapply . Each subtype
is allowed to modify ther field in its own way. However, a subtype is not allowed to
introduce new fields and modify them, unless the modifies list ofapply were changed
to permit such modifications.

It would be possible to allow a subtype to weaken the precondition and strengthen
the postcondition of a method. However, the big problem is that it seems desirable
to let a subtype enlarge the modifies list of a method, so that the subtype can mod-
ify the additional fields it introduces. This problem can be solved bydata abstraction
and abstractionaldependencies[10], which can be layered on top of Ecstatic. Such
an endeavor includes allowing the declaration of abstract data fields that are functions
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of concrete ones, and appropriately rewriting the abstract fields that occur in pre- and
postconditions and modifies list. (To get an idea of how this is done in ESC, see the
ESC home page [0] or my thesis [10].) Once that is done, the semantics of the language
remains unchanged.

6 Summary and conclusion

I have described a simple language for writing object-oriented programs. The language
uses four kinds of declarations: types, data fields, methods specifications, and method
implementations. The language is different from most other object-oriented program-
ming languages in several ways. For example, types are declared separately from data
fields and methods—knowing the complete set of data fields and methods is necessary
when laying out the data structures of a compiled program in memory, but is not nec-
essary to describe the language and its semantics. Also, compared to many common
notions of subtyping (see, for example, Liskov and Wing [11]), subtyping in Ecstatic is
very simple: it is simply an ordering among the names of types.

More importantly, the present language is given a precise axiomatic semantics. The
semantics shows how object-oriented features like data fields, subtyping, aliasing, meth-
ods, modifies lists in the presence of objects, andnew allocations are handled.

I have shown some examples that demonstrate some of the basic features of the
language. It should be clear that the language is powerful enough to write interesting
programs, but because of the lack of data abstraction in the specification language, many
such programs cannot be specified and verified using the rules given here. Data abstrac-
tion can be layered on top of Ecstatic. However, the present paper contains enough
novelties that it would be inappropriate to describe data abstraction here at the same
time.
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