KRML 65 -0

Ecstatic: An object-oriented programming
language with an axiomatic semantics

K. Rustan M. Leino
16 December 1996

Digital Equipment Corporation Systems Research Center
SRC 130 Lytton Ave., Palo Alto, CA 94301, U.S.A.

rustan@pa.dec.com

Abstract. This paper describes a small object-oriented programming lan-
guage and its axiomatic semantics. The language includes common object-
oriented features like methods and subtyping. Objects are implicitly refer-
ences, and the semantics handles the aliasing that arises. The paper formal-
izes in first-order logic what it means for a method implementation to meet
its specification.

O Introduction

In the cornucopia of object-oriented programming languages, one is hard-pressed to find
a language with an axiomatic semantics. Examples of axiomatic semantics for imper-
ative languages are Hoare logic [5] and Dijkstra’s weakest-precondition calculus [4],
both of which have achieved considerable success in the last decades. Reasoning using
an axiomatic semantics is done at a higher level than with an operational semantics. For
example, reasoning about a method invocation is done by reasoning about the method’s
specification rather than by examining its implementations.

This paper defines a small object-oriented language called Ecstatic. The axiomatic
semantics of Ecstatic is based on Dijkstra’s weakest liberal preconditions. The language
includes common object-oriented features like methods and subtyping. Objects are ref-
erences to data fields and methods, and the semantics handles the aliasing among these
references.

Some efforts have been directed at providing an axiomatic semantics for an object-
oriented language. In his thesis, Leavens gave verification rules for a small language
with objects [8]. However, those rules apply only to programs without aliasing. Nau-
mann has given a predicate-transformer semantics for a programming language that in-
cludes record extension and procedure type variables [12]. However, that semantics also

This paper appears in the Proceedings of the 4th International Workshop on Foundations of Object-Oriented Language€danuary 19
Republished here by permission.

KRML 65 -1

assumes the absence of aliasing. My thesis shows how to translate features of object-
oriented languages into Dijkstra’s guarded commands, for which weakest preconditions
are defined [10]. Abadi and | have written a Hoare-like logic for object-oriented pro-
grams [1]. The logic handles methods, subtyping, and aliasing, but excludes recursive
data types. The Ecstatic language allows recursive data structures.

The present work distinguishes itself from object-oriented specification languages
like Larch/C++ [7] and those surveyed by Lano and Haughton [6] in that the semantics
of Ecstatic is explicit about the connection between method specifications and imple-
mentations: the semantics precisely prescribesification conditionan untyped first-
order predicate that formally expresses “the implementation meets its specification”.

The Ecstatic language grew from work on the Modula-3 Extended Static Checker
(ESC), a static analysis tool for detecting errors likid-dereferencing, array index out-
of-bounds errors, deadlocks, and race conditions [0, 3]. ESC translates Modula-3 anno-
tated with specifications into verification conditions that are then passed to a mechanical
theorem prover called Simplify [0]. Ecstatic’s prescription of verification conditions is
similar to that used by ESC. In fact, | have written a checker for Ecstatic that parses and
type-checks Ecstatic programs, generates the verification conditions, and passes them to
Simplify. This checker was implemented directly from Ecstatic’s definition in (a recent
version of) this paper.

One can imagine mapping (subsets of) languages like Modula-3 and Java to Ecstatic.
Such a mapping combined with the axiomatic semantics of Ecstatic would then provide
an axiomatic semantics for the language at hand. For the purpose of being the target of
such mappings, the Ecstatic commands could be more primitive. As it stands, Ecstatic
is not parsimonious with features: it includes methods with in- and out-parameters,
modifies clauses, and a rich syntax for expressions, any of which could have been
left as a “simple extension”. The reason for including these features is to gather in one
place the details describing them, and to make Ecstatic a language in which program-
ming is fun. Not included are, most notably, arrays, iteration (but recursion is allowed),
abstraction, and modules. Such are left for future inclusion.

The organization of this paper is as follows. Section 1 on declarations describes
the major building blocks of the language; Section 2 on commands and expressions de-
scribes the smaller building blocks of the language. These sections provide a language
definition roughly at the level of the Modula-3 definition [13]: it defines syntax, type-
checking, and an operational description that includes checked run-time errors. Sec-
tion 3 gives the axiomatic semantics of the language, and prescribes how verification
conditions are generated. Lastly, Section 4 shows some examples, Section 5 discusses
some possible extensions to the language, and Section 6 offers some concluding re-
marks.

KRML 65 -2

1 Declarations

A program is an (unordered) set of declarations. The language consists of four kinds of
declarations. These are used to declare types, data fields, methods, and method imple-
mentations. The first three of these introduce identifiers that name the types, data fields,
and methods.

Before giving the details, let me give a short (artificial) example program to convey
the flavor of the language.

type T
field z: T — int
field y: T — nat
method m(¢: T, z:int)
requires 0 < y[t] + 2 (0)
modifies z[¢]
ensures z[t] > zo[t] + y[t] + 2
impl m(t: T, z:int) is
z[t]:==z[t]+ 2 - y[t]+ =

This program declares an object tyfdé with two fields, z and y. It also declares a
method m that takes the self parameterand another parameter. The method is
given a specification: it requires as a precondition that the sum oj thield of object
¢t and in-parametet be natural, and it ensures that the post-state value of datasfield
at objectt is at least the sum of its pre-state value, the value ofitlireld at ¢ , and the
given parametee , and that nothing else is modified. The example program also gives
an implementation of» . The implementation consists of one assignment statement.
Now for the details of the four declarations.

1.0 Types

A typeis a name that denotes a set of values. The types of a program are partially
ordered by asubtyperelation. If type U is a subtype of typel’, then every member of
(the set of values denoted byJ is a member ofT'. The subtype relation is reflexive
and transitive. A subtype relationship is calf@dperif the two types are distinct. Two
types arecompatiblef one is a subtype of the other.

The dual of the subtype relation is teepertypeaelation. A type T is said to be a
direct supertype of atypd/ if T is a proper supertype o/ and there is no type “in
between” T and U , that is, no proper subtype df is a proper supertype ol .

KRML 65 -3

There are thresimple types bool, nat, andint . These represent the booleans
false and true, the natural numbers, and the integers, respectively. Type is a
subtype ofint .

In addition to the values of simple types, there @logects An object is a value that
is either nil or a reference to a set of data fields and methods. Equality of objects is
reference equality. Aobject typedetermines the names and types of a subset of the set
of fields and methods of its members. Ecstatic features one built-in objectad¥yje,
which is a supertype of all object types. The declaration

type T <: U ,

where T is a name andJ is an object type, introduces the narffeas an object type
whose direct supertype i/ . Hence, each declared object type has a unique direct
supertype; in the jargon, Ecstatic featusasgle inheritance If U is obj, “<: U”

may be omitted from the declaration.

No two types may have the same name. Furthermore, from each declared object
type, it must be possible to follow the sequence of direct supertypes and arrive at type
obj. Thatis, a program must not contain declarations that produce cycles in the subtype
relation. For example, the declarations

type T <: U
type U <: T

are not both allowed in the same program.

Every expression has a statically determined type. This type contains every value to
which the expression can evaluate. For the purpose of describing how static typing is
done, | introduce a special typeull , which is treated as a subtype of every object type
(butis not considered to be an object type). The idea istlndk contains the valuail ,
and that the type of the expressiail is null (see Section 2.1 on expressions). The
type null cannot be mentioned in a program; it is used only in the language definition
for the purpose just described.

Every nonnil object has aallocated typewhich manifests itself at run-time when
the object is allocated and is never changed thereafter. Ecstatic’s type rules ensure that
if an expression has (static) typE and evaluates at run-time to a nail object ¢,
then the allocated type aof is a subtype ofT" .

1.1 Data fields

A data fieldis a map from objects to values. The declaration
fieldz: T — U

KRML 65 -4

introduces the name as a data field that maps from object tyfpeto type U . We say
that type 7' possesseBeld z , that T is theindex typeof z, and thatU is therange
typeof z .

For example, the following program snippet declares a data structure for linked lists
of integers.

type Node
field val: Node — int
field nezxt: Node — Node

The expressionz[t] denotes thez field of an objectt. Stated differently, since
fields are maps, the expressiaft| denotes the value of at ¢. The expressiorz|t]
is called aselect expressiqrand ¢ is called itsindex If T is a subtype ofU , and U
possesses a fielgl, then, since every member df is a member ofU , objects of type
T can be used to index .

A program can have several fields of the same name. Allowing different fields to
have the same name is provided merely as a syntactic convenience; it does not imply
any kind of relation between different fields with the same name. However, no two
fields may have the same name and index type; that is, no type may possess two fields
with the same name. For example, the two declarations

fieldz: T — ...
fieldz: T — ...

are not both allowed in one program, because tifewould possess two fields with the
namez , whereas the two declarations

field y: T — ...
field y: U — ...

are allowed, because the two fields have different index types. As part of the syntactic
convenience is a rule foesolvingfield names occurring in a program, that is, mapping
field names to field declarations: for an expresstowhose (static) type is an object
type T, the namez in z[t] is resolved to the field whose name is and that is
possessed by typ€ , where U is the closest supertype df that possesses a field.

The expression does not type-check if no such field exists. This rule is similar to the
rule for resolving names of local variables in a program, or resolving names of bound
variables in a mathematical formula.

KRML 65 -5

As an artificial example, consider the declarations

type U
fieldz: U — ...
type T <: U
fieldz: T — ...

and an expression of type 7. According to the rule for resolving field names, the

in expressionz[t] refers to thez field possessed by". To refer to the other field

of ¢, one needs to write an expressioft’] where expressiort’ evaluates to the same
value ast but has a different statically determined type. One way to achieve this is to
use anarrow expression in the following way:

z[narrow(t, U)]

Here, z resolves to the field: possessed by typ& . The narrow expression is
explained in Section 2.1.
Several fields can be introduced at the same time. The declaration

field zp,...,2,_: T — U

is shorthand for
fieldz;: T — U

fieldz,_;: T — U

1.2 Methods

A methodis a procedure that can be invoked on an object. The language features no
procedures other than methods. To describe methods, | start with the following defini-
tion: abindingis a pairz: T', wherez is a name (called wariable) and T is a type.
Theformal in- and out-parametersf a method are given as lists of bindings. The list
of in-parameters must be nonempty. The first in-parameter is callesethparameter,
and its type must be an object type.

Let formal-outs and formal-ins be lists of bindings, such that: 7' (where T
is an object type) is the first binding gbormal-ins, and let spec be aspecification
(defined below). Then, the declaration

method formal-outs := m(formal-ins) spec

KRML 65 -6

introduces the name: as a method for typd’ . We say that typel’ possessesiethod
m . The method has out-parametgosmal-outs , in-parametergormal-ins , and spec-
ification spec. The names irformal-outs and formal-ins must be distinct. If the list
formal-outs is empty, the *="1is omitted from the declaration.

A program can have several methods with the same name, but a single type may
not possess two methods with the same name. Allowing different methods to have the
same name is provided merely as a syntactic convenience; it does not imply any kind of
relation between different methods with the same name.

A specificationdescribes the conditions under which the method may be invoked
and the method’s effect on the state space when invoked. It is given in three parts:
the preconditiondescribes those initial states from which a caller is allowed to invoke
the method, thenodifies listspecifies which fields of which objects that the method is
allowed to modify, and thpostconditiorrelates, for terminating method invocations, the
pre- and post-states of the invocation (there is no guarantee that the method invocation
will actually terminate).

Syntactically, a specification is given as a sequenceegfuires, modifies, and
ensures clauses. The modifies list is the union of the lists given by thedifies
clauses, and the pre- and postconditions are the conjunctions of the predicates given in
the requires and ensures clauses, respectively.

The forms ofrequires and ensures clauses are

requires pre
ensures post ,

where pre and post arespecification predicateslhe free identifiers occurring ipre
must be either fields or formal in-parameters. The free identifiers occurringst
must be either fields, formal in- or out-parametersinitial-value fields An initial-
value fieldis a field subscripted by 0. It refers to the value of the field at the time the
method is invoked.

A modifies clause has the form

modifies w ,

where w is a list of designator expressions.d&signator expressias a select expres-
sion z[E], wherez isafieldandE is an expression whose type is noill and whose
free identifiers are fields or formal parameters. The nairis resolved to a field using
the type of E as described earlier. Data fields occurringAnrefer to their pre-state
values.

There is a restriction on the use of initial-value fields in postconditionsz, Ifs
an initial-value field occurring in the postcondition, thef#], for some E', must be

KRML 65 -7

present in the modifies list. This restriction does not hamper specification expressive-
ness, because, roughly, if agE] occurred in the modifies list; would not be allowed

to be modified at any object, so would have the same value in the post-state as it does
in the pre-state, and hence there would be no reason to megtiorstead ofz in the
postcondition.

1.3 Method implementations

A method m for a type T' may be given one implementation per subtypeZf A
method implementation is given by the declaration

impl formal-outs := m(formal-ins) is S ,

where formal-outs and formal-ins are lists of bindings,m is a name, andS is a
command(also known as a&tatement The list formal-ins must be nonempty, and
the type of the first binding irformal-ins, say U, must be an object type. We say
this implementation igiven attype U . The namem is resolved to the method whose
name ism and that is possessed by tyfde, where T is the closest supertype di
that possesses a methed. The method implementation declaration is allowed only if
such a method exists.

Furthermore, the number of bindings jflarmal-outs and formal-ins, and their
types except the type of the first binding flarmal-ins, must be the same as those
of the formal out- and in-parameters of metheds declaration. That is, the method
implementation is allowed to use different names for the formal parameters than those
used by the method declaration. The namegoirmal-outs and formal-ins must be
distinct. If the list formal-outs is empty, the *="is omitted from the implementation
declaration.

For each name in formal-outs and formal-ins, free occurrences of variable
in S are resolved to this formal parameter. Commahdmust not contain any free
variables other than these.

1.4 Example: Mapping operations over a linked list

Although commands have not yet been defined, this is a good time to give a program
example. This example shows a linked list and4tap method, which can map an
operation over the values stored in the linked list.

KRML 65 -8

A linked list is built up by objects of typéVode , declared by

type Node
field val: Node — int (1)
field nezt: Node — Node

It is often useful to map some operation over a linked list. As a simple example,
| declare a typeOp with a methodapply and a data field-. The method takes an
integer as a parameter and is allowed to operate on the-field

type Op

field : Op — int

method apply(op: Op, n:int)
modifies r[op]

An Op object can be passed to theep method for typeNode , which invokes the
apply method of theOp object for each integer contained in the linked list. The decla-
ration and implementation of thexap method are given as follows.

method map(node: Node, op: Op)
requires op # nil
modifies r[op]
impl map(node: Node, op: Op) is
apply(op, val[node]) ;
if next[node| # nil then map(nezt[node], op) fi

| can now show some examples Ok subtypes, each with its own implementation
of the apply method.

type SumOp <: Op
impl apply(sum: SumOp, n:int) is
r[sum] := r[sum]+ n

type CountOp <: Op
impl apply(cnt: CountOp, n:int) is
r[ent] := rlent] + 1

type PickOp <: Op
impl apply(p: PickOp, n:int) is
[p] = n

KRML 65 -9

With these declarations, the program snippet

op := new(SumOp) ;

lop] = 0
map(list, op)

has the effect of setting[op]| to the sum of the integers stored i3t (this assumes
that list is non-nil). By replacing SumOp by CountOp , the program snippet would
instead setr[op] to the length oflist . And by instead using typ@ickOp , the program

snippet picks the last element from the list and stores #[uvp] .

2 Commands and expressions

This section presents the commands and expressions that can be part of a program.
It describes the parsing and type-checking of these, and gives an informal operational
description of the execution of commands and evaluation of expressions. A formal
semantics is given in Section 3.

2.0 Commands

This subsection introduces the various commands that are part of the language by infor-
mally stating the type-checking rules and operational meaning of each command.
The language consists of the following commands.

v:=F simple assignment
v:=new(T) allocation

z[E] = F' update

var bindings in S end block statement
S; S composition

if £ then S else §'fi conditional
var-list := m(ezpr-list) method invocation

In addition, the language provides some convenient shorthadkdp,, wrong, and
assert P, that are defined in terms of these commands.

2.0.0 Simple assignment

The simple assignment statement has the form

v:=F

?

KRML 65 -10

where E is an expression and is a mutable variable that is, a local variable (ex-
plained below) or a formal out-parameter.

The type of E must be a subtype of the type of. The statement evaluates
(which may result in a run-time error i is partial, see Section 2.1), and then assigns
the result tov .

2.0.1 Allocation

The allocation statement creates a new object. It is written
v :=new(T) ,

where v is a mutable variable and’ is an object type.T must be a subtype of the

type of v . This statement assigns 0 a non-nil object that is “new”, that is, that has

never been the result of any allocation statement previously encountered in the program

execution. Thus, the new object is not in use by the executing program by the time the

allocation statement is executed. We say that the value was previously not allocated.
The allocated type of the new object#. The new objecty also has the following

property, for every data field whose index type is a supertype &t and whose range

type is some typel : the initial value of z[v] is nil if U is an object type, and an

arbitrary value of typelU otherwise.

2.0.2 Update
Data fields are updated with the update command, which has the form
z[E] .= F' ,

where z is a field, andE and E’ are expressions. The type & must be an object
type. The namez is resolved to a field using the type @& as described earlier for
select expressions.

The type of E/ must be a subtype of the range type of The command first
evaluatest' and E’. Itis a run-time error ifE producesnil ; otherwise, the command
sets thez field of objectE to E’.

2.0.3 Block

The block statement is written

var bindings in S end ,

KRML 65 -11

where bindings is a nonempty list of bindings, the names in which are all distinct, and
S is a command. For each binding T' in bindings , the block statement introduces

v as alocal variableof type T for use inS . Free occurrences of variablein S are
resolved to this local variable. The initial value ofis nil if 7 is an object type, and
an arbitrary value of typel’ otherwise.

2.0.4 Composition

Commands can be sequentially composed using the associative operaidre com-
mand

S8

executes command upon whose termination it executes commafid

2.0.5 Conditional
The conditional statement is written
if £ then S else S’ fi ,

where E is a boolean expression antl and S’ are commands. I evaluates to
true, the conditional statement executés otherwise it executes’ .
If S’ is skip, then “else S’” may be omitted.

2.0.6 Method invocation
The final command, method invocation, is written
var-list := m(ezpr-list) ,

where var-list is a list of distinct, mutable variablesy. identifies a method, and
expr-list IS a list of expressions. The elements of lister-list and ezpr-list are
called theactual out- and in-parametersespectively, of the invocation. War-list is
empty, the “="is omitted.

The (static) type of the first expression #apr-list , call it U, must be an object
type. The namen is resolved to the method whose namerisand that is possessed
by atype T, where T is the closest supertype df that possesses a methed. The
command does not type-check if no such method exists.

If method m is declared by

method formal-outs := m(formal-ins) spec ,

KRML 65 -12

then ezpr-list mustmatch formal-ins and formal-outs must matchvar-list . A list
of expressions or bindings matches list of bindings or variables just whene and
w have the same lengths, and the type of every elemeatigha subtype of the type of
the corresponding element i .

A method invocation is executed as follows. First, a new set of formal parameters
for the method invocation is created. Then, the actual in-parameters are evaluated, their
values are bound to the formal in-parameters, and initial values are bound to the formal
out-parameters. Itis a run-time error if the first expressioeupr-list evaluates tmil .

The initial value of a formal out-parameter of tydé is nil if U is an object type,

and an arbitrary value of typd/ otherwise. Finally, th@ppropriate implementation

of m (explained below) is executed, upon whose termination the values of the formal
out-parameters are assigned to the actual out-parameters.

The appropriate implementationf an invocation of a methodr is determined at
run-time as follows. LetT" be the allocated type of first actual in-parameter of the invo-
cation, and letS denote the set of supertypes &f at which an implementation af. is
given. The appropriate implementation of the method invocation is the implementation
given at the smallest (“subtype-most”) type of the typesSin Note that the types in
S are totally ordered; hence, there is a smallest typé& irprovided S is nonempty.
Guaranteeing thaf is nonempty is done by the following (possibly rather strict) re-
quirement on programs: if" is an object type one of whose supertypes possesses a
method m , then either there is a supertype &f at which an implementation of: is
given, or the program contains no statement of the form

v :=new(T)

This is a static constraint that can be checked by a simple inspection of the program text.

2.0.7 Some convenient shorthands

The commands presented above show the features of the language. However, it is often
convenient to use some abbreviations. For that purpose, | define some shorthands in
terms of the primary language features. The shorthands are defined in terms of the
commands above. This means that they get a precise definition, and also that | don’t
need to later give a formal semantics for the shorthands.

| define theskip, wrong, and assert statements as follows, whé&ralenotes an
expression.

skip = var v:nat in v := v end
wrong = var v:nat in v := narrow(—,nat) end
assert P = if P then skip else wrong fi

KRML 65 -13

The commandkip does not alter the state of the program. Execuwwngng always
leads to a run-time erromarrow is defined below). The assert statement skipB if
evaluates tatrue , and goes wrong otherwise.

2.1 Expressions

Evaluating an expression at run-time produces its value if the expression is defined,
and results in a run-time error otherwise. The evaluation does not affect the program
state, that is, expressions are “side-effect free”. (Thus, for examgle, T') is not an
expression.)

The simplest expressions are constants and variables. The corfalaatand true
have typebool, and numeric constants formed from sequences of decimal digits have
type nat . The object constaniail has typenull. A variable is an expression whose
type and value are the type and value of the variable.

The select expression is writteri £, where z is a field name and? is an expres-
sion whose type is an object type. The names resolved to a data field as described
in Section 1.1. If the value oF is not nil, then z[E] is the value ofz at objectE .

The expression is not defined # evaluates tail .

The narrow expression is writtemarrow(E, T'), where E is an expression
whose type is compatible with the typ®. The value ofnarrow(E, T') is £ and
its type is T'. The expression is not defined if the value Bfis not a member of type
T ,thatis, if T is nat and E produces a negative integer, or1f is an object type
and £ produces a nomil object whose allocated type is not a subtypefof

Expressions can have familiar operators. Defined on booleans are\ , Vv

= , <« ,and = , and defined on integers are the binary operatprs—, -,
div, and mod, and the unary operator . These operators have the usual semantics.
If both operands of+, -, or div have typenat, or if the type of the second operand
of mod is nat , then the expression has typat instead ofint .

If the run-time evaluation of the first operandta , vV , = ,or <« produces
a value that determines the value of the expression, the second operand is not evaluated.
That is, if the first operand of these expressions proddedés:, true, false, and
true, respectively, the expression produdiadse, true, true, and true, respec-
tively, without evaluating the second operand. For this reason, these four operators are
calledshort-circuitboolean operators.

Integers can be compared using, #, <, <, >, and >, producing booleans.
Booleans can be compared usiag and #, and so can expressions whose types are
object types omull and are compatible. Note that for comparing booleans, the boolean
operator = can be used in place 6f, the advantage being that= has a lower

KRML 65 -14

binding power (and a difference being that is associative whereas is chaining,
as explained shortly).

Pairs of parentheses can be used in the usual manner around an expression to ex-
plicitly express binding. The following table shows the default binding powers of all
operators, from strongest to weakest.

unary prefix operators:, —
-, div, mod

The binary arithmetic operators associate to the left. The boolean operator is
associative. So are the boolean operators and Vv , butsince A and V

have the same binding power, it would be ambiguous, and thus not allowed, to write an
expression like

ANBV C

Other operators do not associate, but the groups of operators < and =, >, > can

be chained This means that they parse as if they were associative, but the parsing is
just a shorthand for writing each operator and its surrounding operands as a separate
conjunct. For example, the expression

wlz=y<z
is shorthand for
w<z ANz=y N y<z ,
whereas
r<y>z
does not parse becausé and > are not in the same chaining group, and
T=yF#z

does not parse becausé is not a chaining operator at all. Note that is chaining
whereas = s associative; thus for booleans vy, and z,

T=yY==z

KRML 65 -15

is shorthand for

T=y N y==z)
whereas

T =Y =z

is equivalent to

Il
N

(z = y)

and to
z = (y = 2)

Since nat is a subtype ofint , natural expressions can be used anywhere integer
expressions can be. Similarly, i’ is a subtype of an object typ&', then an expres-
sion of type T' can be used anywhere an expression of tgpecan be used, with one
exception: an expression of typmll cannot be used where an expression of an object
type is expected, as is the case, for example, in the select expression.

Since they are not evaluated at run-time, pre- and postconditions can mention a richer
set of expressions callegecification predicate®\ specification predicate is one of the
following.

e An expression whose operatoris, A , V , = , <« ,or = ,andwhose
subexpressions are specification predicates.

e A quantified expressionV bindings | B > P) or (3bindings | R > P),
where bindings is a nonempty list of bindings, the names of which are all distinct,
and R and P are specification predicates. The namesindings are called
dummy variablesR is called theangeof the quantification, and is called the
termof the quantification. IfR is the constantrue, it and the preceding | ”
may be omitted. The relation between the range and term is described by

(Vbindings | R> P) = (Vbindings > R = P)
(dbindings | R> P) = (Jbindings > RN P)

For each namey is bindings , free occurrences of variable in R and P are
resolved to this dummy variable.

¢ A booleanspecification expressionefined below.

KRML 65 -16

e The expressiorfresh(E), where E is a specification expression whose type is
an object type. Thdresh expression, which is allowed only in postconditions,
says thatF is a nonnil object that is allocated in the post-state of a method, but
not in its pre-state.

A specification expressias an expression that, when it occurs in a postcondition, is al-
lowed to mention initial-value fields in select expressions. Such expressions are subject
to the restrictions placed on the use of initial-value fields (as described in Section 1.2).

3 Formal semantics

This section describes the semantics of the programming language formally in terms of
first-order logic. In particular, it defines a proof obligation associated with each method
implementation. By discharging the proof obligation for a method implementaftion

one is assured that no run-time error will occur in any executior$ ofprovided S

is invoked only when its precondition holds and the method invocations occurrifig in
have the effects prescribed by their respective specifications. (One is not assured that the
method will terminate, however.) By discharging the proof obligation for every method
implementation of a program, the program is guaranteed never to result in a run-time
error.

Throughout this section, | assume that the program text has been preprocessed to
rename all identifiers to unique names. A simple way to do that in practice is to rename
an identifier (like a field or variable} to something likez.55.6 where 53 and 6 are
the line and column in the program text at whighis declared. (See Section 4.4 for an
example.)

3.0 \Verification conditions

The formal meaning of commands is based on Dijkstraakest liberal preconditions
(wlp) [4]. The functionwlp maps commands to predicate transformers:§oa com-
mand andR a first-order predicate on the post-stateof wip.S.R is a first-order
predicate describing those initial states from which executio§ ohcurs no run-time
errors and, if the execution terminates, terminates in a state satisi/inghis wip is
like Dijkstra’s, except that it forbids run-time errors [10].

The proof obligation for a method implementation is thaniet its specification
Operationally, this means that, when started in a state satisfying the precondition, ex-
ecution of the implementation does not result in a run-time error and, if it terminates,

KRML 65 -17

has the effect prescribed by the postcondition and modifies list. Formally, a method
implementation and its specification are transformed int@rication condition an
untyped first-order logical formula; the proof obligation is to establish the validity of
this formula, a task for which a mechanical theorem prover may be used. This section
describes in detail how a verification condition is generated from the program text.

In principle, the formula

P = wlhpS.R

expresses that a commaidmeets a specification whose preconditiorfisand whose
postcondition isR [4]. However, this ignores an important part of a method specifi-
cation, the modifies list, which together with the postcondition prescribe the method’s
effect. To account for the modifies list, it is rewritten into a so-cafkedtcondition
contribution which constrains modifications of fields according to the modifies list. Let
¢ denote that postcondition contribution (which is described in detail later). Then, our
next approximation of the verification condition is

P = whp.S(RAQ)

Some technical details remain to describe the verification condition in full. First,
an implementation is allowed to assume that the self parameter isihotthat the
in-parameters have values of appropriate types, and that the out-parameters have been
properly initialized. Second, the verification condition must give a value to any initial-
value field that occurs ink. Third, the verification condition is a formula written in
untyped first-order logic. This means that the type information known about fields must
be encoded in some form of “type axioms”. These and related axioms form what is
called thebackground predicatewvhich is included in the antecedent of the verification
condition. Finally, the formal parameters mentioned in the specification must be re-
named to the formal-parameter names used by the implementation, the given pre- and
postconditions must be transformed from specification predicates to untyped first-order
predicates, and program expressions must be transformed into equivalent expressions in
the first-order logic.

Thus, the verification condition for a method implementation

impl formal-outs' := m(formal-ins')is S ,
whose specification is

method formal-outs := m(formal-ins)
requires P modifies w ensures R

KRML 65 -18

has the form

BackgroundPred A InitialFields A Pr(P') A Yo = Y A allocy = alloc A
self # nil A Types(formal-ins') A Reset(formal-outs’) (2)
= wip.S.(Pr(R') A Q) ,

where

e BackgroundPred is the background predicate,

InitialFields states that the values of all data fields have appropriate types,

e P, w',and R' are P, w, and R, respectively, in which formal parameters
from formal-outs and formal-ins have been replaced by the names of the cor-
responding parameters jflarmal-outs’ and formal-ins’,

Pr is a function that maps a specification predicate to a first-order predicate,

Y is the union of the listsFields(w') and Targets(S), the data fields that ap-
pear in the modifies lists’ and those that are updated by the comma&ndre-
spectively,

e Y, is Y with every field initial-valued, soY, = Y means the conjunction of
equalitiesy, = y for everyfieldy in Y,

e alloc represents the set of allocated objects, aidc, is the initial value of
alloc ,

e self isthe name of the self parameter, that is, the first name givésrinal-ins’,

Types(formal-ins’) says that the in-parameters have values of the appropriate
types,

Reset(formal-outs’) says that the formal out-parameters have appropriate initial
values, and

@ denotesPostCondContrib(Y, w'), the postcondition contribution resulting
from the modifies list.

AntecedentsBackgroundPred , InitialFields , and allocy = alloc are the same for all
verification conditions in a program, whereas the rest of the verification condition is
specific to a particular method implementation.

In the rest of this section, | give the details of the components of this formula.

KRML 65 -19

3.1 The background predicate

This subsection describes how the program state and type information are encoded in
untyped first-order logic. It prescribes the construction of the background predicate.

| assume the background predicate does not need to mention any axioms for logical
operators (like-, A , V), integer arithmetic4, —, -, div, mod), and integer
inequalities (like<).

To encode the state of data fields, | use two functidns(“select”) and store . As
we have seen before|t] denotes ther field at objectt. The value ofstore(z, ¢, E)
responds in the same way to applications of select as éoegcept possibly at where
the former yields the valugZ . The relation between select andore is described
formally by the following two axioms, called theelect-of-store axioms

(Vz,t,v > store(z,t,v)[t] =v)
(Va,t,t' v t £t = store(z,t',v)[t] = z[t])) (3)

For every object typel' in the program, the first-order logic contains a teteiT ,
called thetypecodeof T'. (Here and throughout, | assumé ™to be a character that
does not appear in Ecstatic programs.) The typecodes are distinct: for every two distinct
object typesT and U, the background predicate contains a conjunct

te$T +£ tc$U . (4)

To model the allocated type of an object, | use a functigpecode from objects to
typecodes. The subtype relation can then be defined in terms of typecodes. | introduce
two functions, subtype! and subtype . For every type declaration

type T <: U
in the program, the background predicate contains the axiom
subtypel (tcT, tcU) : (5)

Function subtype is defined as the reflexive, transitive closure safbtype! , as ex-
pressed by the following axioms:

(Vtc > subtype(tc,tc))
(VtcO,tcl > subtypel(tcO,tcl) = subtype(tcl,tcl)) (6)
(Vitcl,tcl,tc2 > subtype(tcO,tcl) N subtype(tcl,tc2)

= subtype(tcO,tc2))

KRML 65 -20

Since the direct supertype of a type is uniquely determined —that is, Ecstatic uses single
inheritance—, if two object types are not compatible, the only member they have in
common isnil . This is described by th@comparable subtype axiom

(V1t0,t1,tc0,tcl,tc >
t0 # nil A t1 # nil A
subtype(typecode(t0), tc0) N subtypel (tc0,tc) A (7)
subtype(typecode(tl),tcl) N subtypel (tcl,tc) A
tc0 # tcl
= t0 #t1)

The axiom says that if the types of two naril objects (0 and ¢1) have a common
supertype (whose typecode i&), and the objects are of different direct subtypesof
(tc0 andtcl), then the two objects are distinct.

For each typeT', there is aype predicateis$T . The idea is thats$7'(£) holds
justwhen £ denotes a value of typ&' . The background predicate contains a definition
for each type predicate: for each object tyfpe s$7 is defined by

(Vt > 1s8T(t) = t = nil V subtype(typecode(t), tc$T)) , (8)
and the type predicates for simple types are defined by

(Vv > 1s§bool(v) = v = false V v = true)
(Vv > is$nat(v) = 0<wv) 9)
(Vv > is8int(v) = true)

Note that if T is a subtype ofU , then is$T(E) = is$U(FE).

The definition ofis$int may seem puzzling: is every value an integer? The reason
is$int(v) is defined simply as the predicateue is that the Ecstatic type system is
strict enough that integers are never mixed with booleans or objects. For example, a
programmer is never under the obligation to show that some particular value is indeed
an integer and not, say, an object. (In a similar wa$obj(¢) could have been defined
as simply true .)

The boolean program valudalse and true are not the first-order predicatéslse
and true . The reason for this, and the consequences thereof, are as follows. Variables
are terms in the first-order logic, and so are expressions. Consequently, boolean vari-
ables and the boolean constafiidse and true are terms of the logic. Perhaps more
surprisingly, sincez < y is also an expression, it too must be a term of the logic, not
a predicate. For example, i is a boolean field, a program may contain a command
b[t] := z < y, which, as we shall see, gives rise to an expressionstikee (b, ¢,z < y)

KRML 65 -21

in the verification condition, except that the third argumenif@e must be a term. To
accommodate such expressions in the first-order logic, one needs to introduce special
functions for rudimentary boolean operations likg <, and A , and then transform
program expressions into first-order expressions that use these functions. The special
functions require the introduction of a dozen axioms into the background predicate.
Luckily, in many particular cases, it is possible to transform program expressions into
first-order expressions without appeal to these functions, as is encoded by fuRetion
defined in a later subsection, but the special functions are needed in general. The six
special functions arequal , less, atmost, not, and, and or , and the dozen axioms
about these are

(Ve,d > equal(c,d) = false V equal(c, d) = true)
(Ve,d > less(c,d) = false V less(c, d) = true)
(Ve,d > atmost(c, d) = false V atmost(c, d) = true)
(V¢ > not(c) = false V not(c) = true)

(Ve,d > and(c,d) = false V and(c, d) = true)
(Ve,d > or(c,d) =false V or(c, d) = true) -
(Ve,d > equal(c,d) =true = c=4d) (10)
(Ve,d > less(c,d) =true = c < d)

(Ve,d > atmost(c,d) =true = ¢ < d)

(V¢ > not(c) =true = c¢ # true)

(Ve,d > and(c,d) = true = ¢ = true A d = true)

(Ve,d > or(c,d) =true = ¢ = true V d = true)

In addition, the background predicate contains an axiom that expresses that the two
boolean values are distinct:

false # true : (11)

An example that uses the special functions is given in Section 4.3.
Two functions needed in the transformation whrrow expressions areatural
and narrow , for which the background predicate contains the two axioms

(Vv > 0 <v = natural(v) = v)

(Vt,tc > t = nil V subtype(typecode(t), tc) = narrow(t,tc) =1t) (12)

The type information provided by the declared types of data fields is encoded. For
each pair of typeg T, U) that appears in some data field declaration

fieldz: T — U ,

KRML 65 -22

the background predicate definedigld-type predicatefieldTU . The background
predicate relates each such field-type predicate to select by including the conjunct

(Va,t > fieldSTSU (z) A is8T(¢) A ¢t # nil = 18U (z[t])) . (13)

This says that ifz is a field with index typeT and range typel , then selectz at a
non-nil 7T object results in a value of typ#& .

To encode which objects are allocated, | make use aflanation statecalled alloc .
The fact that an object has been allocated in an allocation states denoted by the
predicateisDecl(t, a) . For afieldz whose range type is an object type /s said to be
consistentvith an allocation state , written isConsistent(z, a) , if, for every objectt,

z[t] is allocated ina if ¢ is. This is encoded as follows: for every field-type predicate
fieldTU where U denotes an object type, the background predicate contains

(Vz,a,t > fieldTU(z) A isConsistent(z, a) A
is$T(t) A t # nil A isDecl(t, a) (14)
= 1sDecl(z[t],a))

Although the background predicate is not explicit about ihBec! of nil, note that
axiom (14) is accordant witlis Decl(nil, alloc) , but not with —isDecl(nil, alloc) .

The allocation state is changed by the allocation and method invocation commands.
As an allocation state changes, the new allocation state is saittt@edhe previous
one. An object allocated in one allocation state remains allocated in successive alloca-
tion states. This is encoded by a predicaieceeds and the axiom

(Vt,a,b > isDecl(t,a) A succeeds(b,a) = isDecl(t,b)) : (15)
Finally, succession of allocation states preserves consistency, as expressed by the axiom

(Vz,a,b > isConsistent(z,a) A succeeds(b, a)

= 1sConsistent(z,b)) (16)

The background predicate is formed by conjoining the axioms (3), (6), (7), (9), (10),
(12), (12), (15), and (16), and the axiom schemas (4), (5), (8), (13), and (14) applied to
the types mentioned in the program.

3.2 Proper types and initial values

This subsection defines three functions on lists of bindifgs:;s, Types, and Reset ,
one function on lists of designator expressio#3elds , and two functions on lists of

KRML 65 -23

data fields,Field Types and FieldReset . It also defines the conjundiitialFields that
is used in the verification condition (2).

Function Vars projects to the variable components of the bindin@gpes is used
in encoding the type and accessibility of formal in-parameters and dummy variables,
and Reset is used in encoding the initial values of local variables and formal out-
parameters. Functio#ields is similar to Vars, but is used with modifies lists, and
functions Field Types and FieldReset are similar to Types and Reset , but are used
with data fields.

For B a list of bindings, Vars(B) is the list of variablesv occurring in some
bindingv: T in B.

For B a list of bindings, Types(B) and Reset(B) are first-order predicates. For
each bindingv: T in B where T is not an object type, each of these predicates con-
tains a conjunctis$7(v) . For those bindings wherd" is an object type,Types(B)
contains a conjuncis$T'(v) A isDecl(v, alloc) , and Reset(B) contains a conjunct
v = nil .

For example, if B is the list of bindingsu:int , v: T, where T' is some object
type, then

Vars(B) = u,v
Types(B) = 1is¥int(u) A is$T(v) A isDecl(v, alloc)
Reset(B) = is$int(u) A v = nil

For w a list of designator expressiongjields(w) is the list of data fieldsz oc-
curring in some designator expressiafE] in w. For example, ifw is the list
z[E], y[E'], z[E"], then Fields(w) is thelistz, y.

For W alist of data fields Field Types(W) is a first-order predicate. For each data
field z in W ,if z is declared in the program by

fieldz: T — U ,

then Field Types(W) contains the conjuncfeldTU (z). If U is an object type,
FieldTypes(W) also contains the conjunétConsistent(z, alloc) .

For W a list of data fields and a variable, FieldReset(W, v), too, is a first-
order predicate. A field: in W contributes a conjunct tdeldReset(W, v) only if
the range type ok is an object type, in which cas&ieldReset(W, v) contains the
conjunctz[v] = nil .

For example, suppose that, in the context of the program snippet (1) on pd&ge 8,
is the list val, nezt . Then, Field Types(W) is

field$Node$int (val) A fieldSNode$Node(next) A isConsistent(next, alloc)

KRML 65 -24

and FieldReset(W ,v) is
nezt[v] = nil

In the verification condition (2),InitialFields is the predicateField Types(W),
where W is the list of all data fields declared in the program.

3.3 Transforming expressions and specification predicates

This subsection defines two functionBr and Tr, which transform expressions into
first-order logic.

Both Pr and Tr are defined inductively on the structure of their argument. Func-
tion Pr produces a first-order predicate, where&s produces a first-order term. Only
Pr is ever applied to a specification predicate.

| first describePr .

Pr distributes over the operators, A , V , = , <« ,and =

Pr({(Qbindings | Rv> P))=(Quars | types A Pr(R) > Pr(P)),where
vars = Vars(bindings) and types = Types(bindings) .

Pr(fresh(E)) = (—isDecl(e, allocg) A isDecl(e, alloc) N e # nil), where
e =Tr(F).

e The following rules reduce the number of times the six special functions intro-
duced in Section 3.1 have to be used.

Pr(E0 = E1) = (Tr(E0)= Tr(E1))
Pr(E0 # E1) = (Tr(E0)# Tr(E1))
Pr(E0 < E1) = (Tr(E0) < Tr(E1))
Pr(E0 < E1) = (Tr(E0)< Tr(E1))
Pr(E0 > E1) = (Tr(E0)> Tr(E1))
Pr(E0 > E1) = (Tr(E0)> Tr(E1))

e For any other expressiof, which necessarily is a boolean specification expres-
sion, Pr(E) = (Tr(E) = true).

Function Tr is defined as follows.

e For any constant (i.e, false, true, nil, or a numeric constant}l’r(c) = c.

KRML 65 -25

e For any variablev, Tr(v) = v.
e Tr distributes over the arithmetic operators (—, -, div, and mod).

e For any select expression (possibly with an initial-valued fiel@y(z[E]) =
z[Tr(E)].

e If the type of E is a subtype ofT", then Tr(narrow(E, T)) = Tr(E). If T
is nat and the type ofE is int, then Tr(narrow(E, T)) = natural(Tr(E)) .
Otherwise, Tr(narrow(E, T')) = narrow(Tr(E), tc$T).

e The comparison operators are transformed using the special functions.

Tr(E0 = E1) = equal(Tr(E0), Tr(E1))
Tr(E0 # E1) = mnot(equal(Tr(E0), Tr(E1)))
Tr(E0 < E1) = less(Tr(E0), Tr(E1))
Tr(E0 < E1) = atmost(Tr(E0), Tr(E1))
Tr(E0 > E1) = atmost(Tr(E1), Tr(E0))
Tr(E0 > E1) = less(Tr(E1), Tr(E0))

Tr(—E) = not(Tr(E))

Tr(EO AN E1) = and(Tr(E0), Tr(E1))
Tr(EOV E1) = or(Tr(E0), Tr(El))
Tr(E0 = FE1) = or(not(Tr(E0)), Tr(E1))
Tr(E0 < FE1) = or(Tr(E0),not(Tr(E1)))
Tr(E0 = F1) = equal(Tr(E0), Tr(E1))

Section 4.3 gives an example involvirgy and Tr .

3.4 Definedness of expressions

This subsection defines a functidiefined from expressions to first-order predicates.
The predicateDefined(E) holds in those states in which the evaluationf®fdoes not
result in a run-time error.Defined is used only with expressions that are evaluated at
run-time.

KRML 65 -26

Function Defined is defined inductively on the structure of expressions. It yields
true for constants and variables. For other expressions, except as noted bejoved
is the conjunction ofDefined on each subexpression.

Defined(z[E)) = Defined(E) A Tr(E) # nil
Defined(Ediv E') = Defined(E) A Defined(E') A Tr(E") # 0
Defined(Emod E') = Defined(E) N Deﬁned("YANTr(E")#0
Defined(E N E') = Defined(E) A (= Tr(E) V Defined(E"))
Defined(E V E') = Defined(E) A (T () V Defined(E'))
Defined(E = E') = Defined(E) A (—Tr(E) V Defined(E'))
Defined(E <= E') = Defined(E) A (Tr(E) V Defined(E"))

For narrow expressions,
Defined(narrow(E, T')) = Defined(FE)

if the static type ofE' is a subtype ofT", and otherwise
Defined(narrow (E, T)) = Defined(E) A is$T(Tr(E))

The axiomatic semantics of Ecstatic gives the first-order logic some freedom in its
approach to dealing with undefined expressions. One approach is to treat an undefined
expression as an uninterpreted function of its subexpressions, but other approaches are
also possible.

3.5 Weakest liberal preconditions

This subsection defines the semantics of each command by giving its weakest liberal
precondition, wlp . Throughout this subsection, | use as any arbitrary first-order
predicate.

The wilp of the simple assignment statement= E is defined by

wlp.(v:= E).R = Defined(E) A R[v := ¢] ,

where e = Tr(E). This says that to guarantee that the command= E ends in

a state satisfyingk (if the command terminates at all) without incurring any run-time
error, the command must be started in a state in wiiicis defined andRk with free
occurrences of variable replaced bye holds.

KRML 65 -27

For the allocation statement, we have

wlp.(v := new(T)).R =
(Vv,alloc' | typecode(v) = tc$T A v # nil A FieldReset(W,v) A
—isDecl(v, alloc) A succeeds(alloc’, alloc) A
(Vt > 1sDecl(t, alloc') = isDecl(t,alloc) Vt=v) b
Rlalloc := alloc'])

where W is the list of all data fields whose index type is a supertype&’of Viewed
operationally, this says thaiew is free to “pick” any nonail, unallocated object
whose allocated type ig" and whose fields have proper initial values, and such an
object is always assumed to exist. (Note that a compiler writer may choose to implement
new by allocating a sufficientamount of memory to hold the new object and then setting
the fields to proper initial values. Such an implementation is allowed by the semantics
given here, since the difference is not observable to programs.)

The update command is defined by

wlp.(z[E] := E').R =
Defined(E) A Defined(E') A e # nil A R[z := store(z, e, ¢€')]
wheree = Tr(E) and e’ = Tr(E').
The block statement is defined by

?

wlp.(var bindings in S end).R = (Vwvars | reset > wip.S.R)

?

where vars = Vars(bindings) and reset = Reset(bindings) .
Composition is defined as follows.

wlp.(S; S).R = wip.S.(wlp.S'.R)
The conditional statement is defined by

wlp.(if E then S else $'fi).R =
Defined(E) A (9 = wip.S.R) A (—g = wip.S".R)

whereg = Pr(E).

Finally, an invocation of a methoar is defined in terms of the specification of
m . | will show the wilp for the invocation of a method that takes two in- and two
out-parameters. Generalizations to other numbers of parameters is straightforward. If a
methodm is declared by

method v0: U0, ul: Ul := m(t0: T0,t1: T1)
requires Pre
modifies w
ensures Post

?

?

KRML 65 -28

then we have

wlp.(v0,vl := m(E0,E1)).R =
Defined(E0) N Defined(E1) A
(Yt0,t1 | t0 = Tr(E0) A't1 = Tr(E1) »
t0 # nil A pre A
(Vu0,ul, W,alloc | types A fieldtypes A succeeds(alloc, allocy) N
post A Q) >
R[v0,v1 := u0,ul])[Ws, allocg := W, alloc]

where
e pre = Pr(Pre) and post = Pr(Post),
o W is Fields(w),and W, is W with every identifier initial-valued,
o types = Types(ul0: U0, ul: Ul), and fieldtypes = FieldTypes(W), and
o Q = PostCondContrib(W,w).

Note the conjuncttd # nil which enforces that the actual self parameter isrilt at
the time of the method invocation.
| will give an example application of this rule in Section 4.2.

3.6 Postcondition contributions from modifies lists

This subsection defines the predicatestCondContrib(Y, w) for a list of designator

expressionsw and a list of data fieldsY . Informally, the predicate, which relates a

post-state and a pre-state, expresses that every data/fieldy” differs from y, only

at newly allocated objects and objects that are listed as indicgsiofw .
PredicatePostCondContrib(Y, w) contains a conjuncicc(y, w, Y) for each data

field y in Y . For a data fieldy whose index type isT", the macropcc(y, w, Y) is

defined as

(Vs | 1s8T(s) A isDecl(s, allocg) > yo[s] = y[s] V IsModPoint(y,w,s, Y)),

where s is an identifier not occurring in the program. MacfeModPoint(y, w,s, Y)
yields a disjunct

s=ce|Y := Y]

KRML 65 -29

for every designator expressiog{E] in w, wheree = Tr(E) and Y, is Y with
every identifier initial-valued.
For example, consider a program that contains that following declarations:

type T
field val: T — int
field left, right, parent: T — T

Let w denote the list
left[t], val[left[t]], val[right[t]] ,

and let Y denote the listval, left, parent. It may help to think ofw as being the
modifies list of a method and” as being the data fields that occur on the left-hand side
of update commands in an implementation. Predidaie CondContrib(Y, w) is then

the conjunction

pec(val,w, Y) A pec(left, w, Y) A pee(parent, w, Y) ,
which expands to

(Vs | 1s8T(s) A isDecl(s, allocy) >
val[s] = val[s] V IsModPoint(val,w,s, Y)) A
(Vs | 1s8T(s) A isDecl(s, allocy) >
lefto[s] = left[s] V IsModPoint(left, w,s, Y)) A
(Vs | 1s8T(s) A isDecl(s, allocy) >
parenty|s| = parent[s] V IsModPoint(parent, w,s, Y))

?

which in turn expands to

(Vs | 1s8T(s) A isDecl(s, allocy) >

val[s] = val[s] V s = lefto[t] V s = right[t]) A
(Vs | 1s8T(s) A isDecl(s, allocy) > lefty]s] = left[s] Vs=1) A
(Vs | 1s8T(s) A isDecl(s, allocy) > parenty[s| = parent][s])

By conjoining this predicate to the postcondition, the method implementation is con-
strained to modifywval , left , and parent only at the objects specified in the modifies
list and at any newly allocated object.

KRML 65 -30

3.7 Targets

This subsection define§argets, a function from a command to a list of data fields.
Intuitively, a data fieldz is in Targets(S), and is thus said to betargetof S, if z

is possibly changed by an execution ®f as determined by a simple inspection of the
program text.

Function Targets is defined inductively on the structure of its argument. For a
statement compositio§, Targets(.S) is the union of the targets of the command com-
ponents ofS . If S is an update command[E] := E', Targets(S) is the singleton
list z. If S is an invocation of a method whose modifies listis Targets(S) is the
list Fields(w) . For all other commands', Targets(S) is the empty list.

The verification condition (2) on page 18 mentiofisrgets(S) so that updates of
the targets ofS are constrained to the updates allowed by the modifies list and updates at
newly allocated objects. Data fields that are not target$ eannot possibly be changed
by S, and thus they need not be constrained explicitly as a postcondition contribution.

Well, there is one exception to the claim that data fields that aren’t targets cannot be
modified: S may invoke methods, and method implementations are allowed to modify
data fields at newly allocated objects without getting explicit permission from a modifies
list. However, an object considered newly allocated with respect to a nested method
invocation is also considered newly allocated with respecf toHence, S is allowed
the modifications of newly allocated objects done by nested method invocations, so such
modifications need not be constrained explicitly as postcondition contributions.

4 Examples

This section gives some additional program examples and discusses their verification
conditions.

The first example shows the background predicate for a small program. The second
example gives a proof that a simple method implementation meets its specification. The
third example contrasts thelp generated for the implementation of a method with the
wlp generated for an invocation of the method. The fourth example shows the interplay
between boolean program values and first-order predicates. The final example illustrates
the renaming of identifiers to unique ones.

KRML 65 -31

4.0 An example background predicate

This subsection shows the background predicate that results from the declarations (1)

on page 8.
Regardless of the program at hand, the background predicate contains the axioms
B)YAB)A(T)A(9) A (L0)A (1) A (12)A (15) A (16) : a7

In addition, we need to instantiate some axiom schemas according to the types and fields
declared in the program.

Program (1) declares one typ@jode . Like the built-in object typeobj, Node
gives rise to a typecode. Axiom schema (4) says that the typecodes are distinct. Applied
to the program at hand, we get

tc3obj # tc$Node . (18)

According to axiom schema (5), the declaration of tyNede also gives rise to a
subtypel relation:

subtypel (tc$Node, tc$obj) : (29)

The type predicates for typesbj and Node, as dictated by axiom schema (8), are
defined by

(Vt > 1sSobj(t) = t = nil vV subtype(typecode(t), tc$obj))

(Vt > 1s8Node(t) = t = nil V subtype(typecode(t), tc8Node)) (20)

Program (1) declares two fieldsa! and nezt. The types of these give rise to
field-type predicate, about which the following axioms are generated, by axiom schema
(23):

(Vaz,t > field8Nodeint(z) A is8Node(t) A t # nil = isSint(z[¢]))

(Vz,t > field3Node3Node(z) A is§Node(t) A t # nil = is§Node(z[t])) .(21)

Finally, since the range type of the fietekzt is an object type, axiom schema (14)
stipulates that the background predicate contain the axiom

(Vz,a,t > fieldSNode$Node(z) A isConsistent(z, a) A
is$Node(t) A t # nil A isDecl(t, a) (22)
= 1sDecl(z[t],a))

In summary, the background predicate for program (1) is the conjunction of (17),
(18), (19), (20), (21), and (22). The next example shows how parts of the background
predicate are used in the proof of a method implementation.

KRML 65 -32

4.1 The proof of a simple program

In this example, | prove that the implementation of meth@dn program (0) on page 2
meets its specification.
| start by writing down the antecedent of the verification condition (2):

BackgroundPred : omitted (for an example, see previous subsection)
InitialFields : fieldTint (z) A field$T $nat(y)

Pr(P") 0 < ylt]+=2

Yo=Y D ==z

allocy = alloc : allocy = alloc

self # nil : t# nil

Types(formal-ins’) : is$T(t) A isDecl(t, alloc) A is$int(z)
Reset(formal-outs’) : true

The consequent of the verification condition is
wip.(z[t] :==z[t] + 2 - y[t] + 2).(Pr(R") A Q) : (23)
where Pr(R’) is simply the given postcondition
z[t] > aolt] + y[t] + 2
and @ is PostCondContrib(z, z[t]) which is
(Vs | is8T(s) A isDecl(s, alloco) > zo[s] = z[s] Vs =1t)
Applying the wip for the update statement, (23) becomes

true A (¢t #nil A t # nil) A ¢t # nil A
store(z,t,z[t]+ 2 - y[t] + 2)[t] > zo[t] + y[t] + 2 A
(Vs | 1s8T(s) A isDecl(s, allocy) >
zo[s] = store(z,t,z[t]+ 2 - y[t]+ 2)[s]Vs=1)

(24)

We are now ready to embark on a calculation to discharge the verification condition.
Under the antecedent of the verification condition, we massage the consequent (24) of
the verification condition in the following calculation.

true A (t#mnil A t#£nil) A ¢t #nil A
store(z,t,z[t]+ 2 - y[t] + 2)[t] > zo[t] + y[t] +2 A
(Vs | 1s8T(s) A isDecl(s, allocy) v
Zo[s] = store(z,t,z[t]+ 2 - y[t]+ 2)[s] V s=1)
= { fromthe antecedent, # nil andz =z }

KRML 65 -33

store(z,t,z[t]+ 2 - y[t] + 2)[t] > z[t] + y[t] + 2 A
(Vs | 1s8T(s) A isDecl(s, allocy) v
z[s] = store(z,t,z[t]+ 2 - y[t]+ 2)[s] V s=1)
= { logic }
store(z,t,z[t]+ 2 - y[t] + 2)[t] > z[t] + y[t] + 2 A
(Vs | 1s8T(s) A isDecl(s, allocy) v
s #t = z[s] = store(z,t,z[t]+ 2 - y[t] + 2)[s])
= { the two select-of-store axioms (3}
s[4 2 ylt) + 2 > alt] + yli] + 2 A
(Vs | 1s8T(s) A isDecl(s,allocg) > s #t = z[s] = z[s])
= { logic, and arithmetic }
y[t] >0
= { background predicate (9}
is$nat(y[t])
= { background predicate (13}
fieldTnat(y) A is$T(¢) A t # nil
= { antecedent}
true

And with that calculation, we have discharged the proof obligation.

4.2 Implementation versus invocation

In this example, | contrast the proof obligation for a method implementation with the
proof obligation for invoking the method.

In the context of the linked list declarations (1) on page 8, consider the following
method declaration and implementation.

method n: Node := prepend(node: Node, value: int)
ensures fresh(n) A nezt[n] = node A val[n] = value
impl n: Node := prepend(node: Node, value: int) is
n := new(Node) ;
nezt[n] := node ;
val[n] := value

This method prependealue to the given listnode and returns the new head of the list
n . Note that the method has an empty modifies list, yet the implementation modifies the
nezt and val fields of n. This is permitted, because is allocated inside the method
implementation. To see how this rule manifests itself in the formal semantics, let’s take

KRML 65 -34

a look at thewlp of the method implementation and thé&p of an invocation of the
method.
The consequent of a verification condition has the form

wlp.S.(Pr(P') A Q)

In this example, Pr(P') differs from the given postcondition because of the use of
fresh . PredicatePr(P’) is

—isDecl(n, allocy) A isDecl(n, alloc) A n # nil A
next|n] = node A val[n] = value

The postcondition contributiod) , that is PostCondContrib(Y, w'), is more interest-
ing. The modifies listw’ is empty, andY , which considers the targets of the method
implementation, is the liskezt, val . Expanding the postcondition contribution yields

(Vs | 1s8Node(s) A isDecl(s, allocy) > nezty[s] = next[s]) A
(Vs | 1s8Node(s) A isDecl(s, allocy) > valy[s] = val[s])

Applying the appropriateslp to Pr(P') A @ gives the formula

(Vn,alloc’ | typecode(n) = tc§Node A n # nil A nezt[n| = nil A
—isDecl(n, alloc) A succeeds(alloc’, alloc) A
(Vt > 1sDecl(t, alloc') = isDecl(t, alloc) Vt=mn) >
—isDecl(n, allocy) A isDecl(n, alloc’) A n # nil A
store(nezt, n, node)[n] = node A store(val, n, value)[n] = value A
(Vs | is8Node(s) A isDecl(s, allocy) >
nexty[s| = store(neazt, n, node)[s|) A
(Vs | is8Node(s) A isDecl(s, allocy) >

valy[s] = store(val, n, value)[s]))

Under the range of this quantification and the antecedent of the verification condition,
we embark on a calculation on the term of the quantification:

—isDecl(n, allocg) A isDecl(n, alloc') A n # nil A
store(nezt, n, node)[n] = node A store(val, n,value)[n| = value A
(Vs | 1s8Node(s) A isDecl(s, allocy) v
nexty[s] = store(nezt, n,node)[s]) A
(Vs | 1s8Node(s) A isDecl(s, allocy) v
valp[s] = store(val, n, value)[s])

= { allocy = alloc, —isDecl(n, alloc), isDecl(n, alloc'), n # nil }

KRML 65 -35

store(nezt, n, node)[n] = node A store(val, n,value)[n| = value A
(Vs | 1s8Node(s) A isDecl(s, allocy) v
nexty[s] = store(nezt, n,node)[s]) A
(Vs | 1s8Node(s) A isDecl(s, allocy) v
valp[s] = store(val, n, value)[s])
= { the first select-of-store axiom (3}
(Vs | 1s8Node(s) A isDecl(s, allocy) v
nexty[s] = store(nezt, n,node)[s]) A
(Vs | 1s8Node(s) A isDecl(s, allocy) v

valp[s] = store(val, n, value)[s])

0= { nezty = next, valy = val, the second select-of-store axiom (3)
(Vs | 1s8Node(s) A isDecl(s,allocg) > n# s)
= { logic }

(Vs | 1s8Node(s) A n = s > —isDecl(s, allocy))
= { allocy = alloc,and —isDecl(n, alloc) }
true

So much for the implementation. Now let us consider an invocation of the method:
head := prepend(head, 5) ,

and let us construct thelp of this command with respect to some first-order predicate
R . According to the definition ofwlp for method invocation, we get

true A true A
(V node, value | node = head A value = 5 >
node # nil A true A
(Vn,alloc | (is$Node(n) A isDecl(n, alloc)) A true A
succeeds(alloc, allocy) N
—isDecl(n, allocy) A isDecl(n, alloc) A n # nil A
next|n] = node A val[n] = value A
true >
R[head := n])[allocy := alloc]
)

The formula can be simplified, especially if one renames the dummy varédble to,

KRML 65 -36

say, alloc’ (because then the substituti@loc, := alloc] can be applied directly):

head # nil A
(Vn,alloc' | 1s8Node(n) A isDecl(n, alloc’) A succeeds(alloc’, alloc) A
—isDecl(n, alloc) A isDecl(n, alloc') A n # nil A
next|n] = head A val[n] = 5 >
Rlhead := n])

The thing to notice here is that the postcondition contribution is siniply¢ , because

the modifies list is empty—the targets of the implementation are not taken into account.
Thus, as far as the caller can tell, the method invocation does not changezthand

val fields of any object, but instead just allocates an object whose fields happen to have
the desired values. The fact that the implementation allocates an object and sets the
fields of that object to appropriate values cannot be observed by the caller.

4.3 Boolean values and predicates

Section 3.1 discussed the difference between boolean program valuetri&é® and

first-order predicates (likerue), and introduced some special functions. This subsec-

tion gives an example to show the impact of that discussion on verification conditions.
Consider the command

bitli=z <y ,
where b is a boolean-valued field; and y are integer variables, andis a variable of
an appropriate object type. Thelp of this command with respect to a predicateis
R[b := store(b, t,less(z,y))]

The use ofless is necessary because the arguments of functions,skike: , are ex-
pected to be terms of the logic. Therefore, th& of the update command makes use
of function Tr.

Contrast the command above with the command

if z < y then S else S’ fi ,

where z and y are the same variables as in the command above,S%rhd S’ are
commands. Thewlp of this command is
(z <y = wp.S.R)A(~(z <y) = wip.S".R)

Here, it is possible to use the first-order predicate< y directly, rather than using
less(z,y) = true, and functionPr , which is used by thevlp for if , takes advantage
of this possibility.

KRML 65 -37

4.4 Preprocessing names

In this final example, | show an artificial program to illustrate the details of dealing with
names.
Consider the obscure program

type T
field z: T — bool
type U <: T
field z: U — int
method z(¢: T, z:int)
modifies z[¢]
impl z(u: U, z:int) is
var ¢t: T in
t:=u;
z[t] ==z < z[u]
end

Note that types, fields, methods, and variables live in four different name spaces. The
use of a name in a program reveals to which of these four categories the name belongs.
For example, field names occur left of thg"in select expressions, and method names
to the left of the first { ” in method invocation commands.

To show how the names in this program are resolved, | rename every ideantifter
a unique name of the form.m.n , wherem and n are the line and column at which
z is declared. The program then becomes:

type T.0.5

field z.1.6: T.0.5 — bool

type U.2.5 <: T.0.5

field z.5.6: U.2.5 — int

method z.4.7(¢t.4.9: T.0.5,2.4.15:int)
modifies z.1.6[t.4.9]

implz.4.7(u.6.7:U.2.5,2.6.13:int) is
var t.7.6: T.0.5 in

t.7.6 . =u.6.7;
z.1.6[t.7.6]:=2.6.18 <z.3.6[u.6.7]
end

(I omitted such renamings in the previous examples to avoid clutter.)

KRML 65 -38

The consequent of the verification condition for this implementation is

(Vt.7.6 | t.7.6 =nil >
(¢.7.6 # nil A
(Vs | is$T.0.5(s) A 1sDecl(s, allocg) v
z.1.60[s]=2.1.6[s] V s=u.6.7)
Jz.1.6 := store(z.1.6,t.7.6,less(z.6.13,2.3.6[u.6.7]))]
[t.7.6 := u.6.7]

> ?

which simplifies to

u.6.7 # nil A

(Vs | 1s8T.0.5(s) A isDecl(s, allocy) v
z.1.60[s] = store(z.1.6,u.6.7,less(z.6.13,2.3.6{u.6.7]))][s]
Vs=ub.7)

Note that all name resolution is done using static types.

5 Language extensions

This section discusses some possible extensions to the language.

In addition to objects, Ecstatic provides booleans and integers. One can easily extend
the language to accommodate other simple types, such as real numbers. To do so, the
logical theory underlying the data type may need to be included. A very useful data type
is (open) arrays, which can be added to the language as described in KRML 55 [9].

A useful shorthand that can easily be defined is a block statement where variables
list their initial values. For example,

varz: T := Fin S end (25)
would be a shorthand for
varz: Tinz := F ; S end

If the type of £ is T, then “: T'” can be omitted from (25).

Ecstatic does not feature iteration. Instead, a program must resort to using recursion.
However, an iterative construct can be added to the language. Such an addition would
have to include a convenient syntax for expressing loop invariants, and the verification
condition generation would have to be changed accordingly.

KRML 65 -39

Ecstatic allows expressions to be partial, but does not allow them to have side effects.
Convenient expressions with side effects include invocationsedf and invocations
of methods with exactly one out-parameter. Also, allowing a statement that combines
the update statement with method invocation is often convenient. These conveniences
can be defined as shorthands in terms of the present language. The following example
conveys the idea: the statement

y[E] :== m(new(T), n(E", E'"))
would be a shorthand for

var t0: T0,t1: T1,t2: T2,t3: T8 in
t0 := E ;t1 :=new(T);t2 :=n(E' E"),
t8 := m(t1,t2); y[t0] := 3

end ,

where T0, T1, T2,and T8 are appropriate types. Defining shorthands like these is
a clerical task. The only possibly non-trivial part is making sure the second operand of
short-circuit boolean operators is evaluated conditionally.

Ecstatic provides methods, but not regular procedures. Syntactically, methods re-
quire at least one in-parameter (the self parameter), which must be of an object type;
procedures have no such requirement. Operationally, the allocated type of the first actual
in-parameter determines which method implementation is called, whereas a procedure
has one implementation that is used for every invocation of the procedure. Axiomat-
ically, the only difference between methods and procedures is that a method has an
implicit preconditionself # nil.

Now to the major issue. It is fair to ask: “Isn’'t it boring that a method can be
given only one specification?”. Yes, itis. As things stand, the language is mostly like
a programming language with procedures—not much is gained from object types and
inheritance. For example, in the linked-list example in Section 1.4, | showed two differ-
ent Op subtypes, each giving its own implementation of metlpgly . Each subtype
is allowed to modify ther field in its own way. However, a subtype is not allowed to
introduce new fields and modify them, unless the modifies lisigfly were changed
to permit such modifications.

It would be possible to allow a subtype to weaken the precondition and strengthen
the postcondition of a method. However, the big problem is that it seems desirable
to let a subtype enlarge the modifies list of a method, so that the subtype can mod-
ify the additional fields it introduces. This problem can be solvedidta abstraction
and abstractionallependenciegl0], which can be layered on top of Ecstatic. Such
an endeavor includes allowing the declaration of abstract data fields that are functions

KRML 65 -40

of concrete ones, and appropriately rewriting the abstract fields that occur in pre- and

postconditions and modifies list. (To get an idea of how this is done in ESC, see the

ESC home page [0] or my thesis [10].) Once that is done, the semantics of the language
remains unchanged.

6 Summary and conclusion

| have described a simple language for writing object-oriented programs. The language
uses four kinds of declarations: types, data fields, methods specifications, and method
implementations. The language is different from most other object-oriented program-
ming languages in several ways. For example, types are declared separately from data
fields and methods—knowing the complete set of data fields and methods is necessary
when laying out the data structures of a compiled program in memory, but is not nec-
essary to describe the language and its semantics. Also, compared to many common
notions of subtyping (see, for example, Liskov and Wing [11]), subtyping in Ecstatic is
very simple: it is simply an ordering among the names of types.

More importantly, the present language is given a precise axiomatic semantics. The
semantics shows how object-oriented features like data fields, subtyping, aliasing, meth-
ods, modifies lists in the presence of objects, aesv allocations are handled.

| have shown some examples that demonstrate some of the basic features of the
language. It should be clear that the language is powerful enough to write interesting
programs, but because of the lack of data abstraction in the specification language, many
such programs cannot be specified and verified using the rules given here. Data abstrac-
tion can be layered on top of Ecstatic. However, the present paper contains enough
novelties that it would be inappropriate to describe data abstraction here at the same
time.

Acknowledgements

I’'m grateful to Dave Detlefs, Allan Heydon, Greg Nelson, Jim Saxe, Raymie Stata, and
Mark Vandevoorde for valuable comments on different versions of this paper. The name
of the language was inspired by a news group posting by Lance Berc [2].

KRML 65 -41

References

[0] Extended Static Checking home page, Digital Equipment Corporation, Systems
Research Center. On the Webhdip://www.research.digital.com/
SRC/esc/Esc.html

[1] Martin Abadi and K. Rustan M. Leino. A logic of object-oriented programs. To
appear in the proceedings of TAPSOFT/FASE’'97, 1997.

[2] Lance Berc. Re: Angles and angels. Postingsto.writing by berc@
pa.dec.com , 13 April 1995, 23:33:48 -0700, Digital Equipment Corporation
Systems Research Center.

[3] David L. Detlefs. An overview of the Extended Static Checking systenPrin
ceedings of The First Workshop on Formal Methods in Software Pragimges
1-9. ACM SIGSOFT, January 1996.

[4] Edsger W. Dijkstra. A Discipline of Programming Prentice-Hall, Englewood
Cliffs, NJ, 1976.

[5] C. A. R. Hoare. An axiomatic basis for computer programmi@gmmunications
of the ACM 12(10):576-580,583, October 1969.

[6] Kevin Lano and Howard HaughtorObject-Oriented Specification Case Studies
Prentice Hall, New York, 1994.

[7] Gary T. Leavens. Larch/C++ reference manual, draft, $Revision: 4.16$, 16
July 1996. On the Web dittp://www.cs.iastate.edu/ ~leavens/
larchc++manual/lcpp toc.html , 1996.

[8] Gary Todd LeavensVerifying Object-Oriented Programs that Use Subtypg&isD
thesis, MIT Laboratory for Computer Science, February 1989. Available as Tech-
nical Report MIT/LCS/TR-439.

[9] K. Rustan M. Leino. Modeling subtypes with only one object type. KRML 55,
Digital Equipment Corporation Systems Research Center, August 1995.

[10] K. Rustan M. Leino.Toward Reliable Modular Programd?hD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-
03.

KRML 65 -42

[11] B.H. Liskov and J.M. Wing. A behavioral notion of subtypirCM Transactions
on Programming Languages and Systefr6):1811-1841, November 1994.

[12] David A. Naumann. Predicate transformer semantics of an Oberon-like language.
In E.-R. Olderog, editoProceedings of the IFIP WG2.1/WG2.2/WG2.3 Working
Conference on Programming Concepts, Methods, and Calculi, San Miniato, Italy,
6—10 June 1994pages 467-487. Elsevier, 1994.

[13] Greg Nelson, editorSystems Programming with Modula-Series in Innovative
Technology. Prentice-Hall, Englewood Cliffs, NJ, 1991.

