
TOOL DEMONSTRATION
An Extended Static Checker for Modula-3

K. Rustan M. Leino and Greg Nelson
Systems Research Center, Digital Equipment Corporation

frustan,gnelson g@pa.dec.com

This paper briefly introduces the Extended Static Checker for Modula-3 (called
ESC), a programming tool that will catch errors at compile time that ordinarily are not
caught until runtime, and sometimes not even then. Examples are array index bounds er-
rors,NIL-dereferences, and deadlocks and race conditions in multi-threaded programs.
The tool is useful because the cost of an error is greatly reduced if it is detected early in
the development process.

The checker is implemented using the technology of program verification. The
program is annotated with specifications; the annotated program is presented to aver-
ification condition generator, which produces logical formulas that are provable if and
only if the program is free of the particular class of errors under consideration, and these
formulas are presented to an automatic theorem-prover.

This sounds like program verification, but it is not: firstly because wedon’t try
to prove that a program does what it is supposed to do, only that it is free of certain
specific types of errors; secondly because we are interested in failed proofs only, not in
successful ones. Failed proofs are more useful than successful ones, since they warn
the programmer of possible errors. Also, failed proofs are found more quickly than
successful ones.

This idea of extended static checking is not new. The first Ph.D. thesis that we know
of that addressed the idea was by Dick Sites thirty years ago, and the problem has held
its own as a Ph.D. thesis topic ever since. But the research prototype checkers that
have been implemented over the years have made too many simplifying assumptions.
They may handle only sequential control structures; they may handle no data structures
except integers and integer arrays; they may require that the entire program consist of
a single module; they may require the user to guide the theorem-prover or to provide
complicated loop invariants. These assumptions facilitate the implementation of pro-
totype checkers, but they also destroy the engineering utility of the checker. We argue
that these simplifying assumptions can be dropped; that the time has come for extended
static checking to be deployed instead of studied.

Our checker handles multi-threaded multi-module object-oriented programs. The
theorem-proving is completely automatic. Our checker reports errors by line number
and error type. Our checker works on Modula-3 programs, but the techniques would
work for any language in which address arithmetic is restricted, including Oberon, Ada,
Java, and FORTRAN.

To deal with multi-threaded programs, we introduce a technique that we calllocking-
level verification. Basically this means that the programmer declares which locks
(semaphores) protect which shared variables, and which locks can or must be held
at entry to various procedures. The programmer also declares a partial order in which
locks are allowed to be acquired. The system checks that shared variables are never
accessed without holding the appropriate locks, and that locks are never acquired out of



order. This technique doesn’t prove correctness—more expensive methods like monitor
invariants would be required for that—but it does catch many common errors.

Our checker is modular: you can use it to check selected modules of a program with-
out checking the entire program. Since modern programming is inconceivable without
libraries, we consider modular checking to be essential. The strategy also allows you to
check for selected classes of errors; for example, it is often useful to check for deadlocks
and race conditions without checking for array index range errors.

Using the checker in its most picky mode, where it checks for all runtime errors and
also for race conditions and deadlocks, we have checked essentially all of the standard
Modula-3 input/output library (which is based on readers and writers, which are object-
oriented buffered streams), and also the standard generic sequence implementation, and
also several modules from the checker itself. Using the checker in a more forgiving
mode, in which it checks only for deadlocks and race conditions, we have checked the
Trestle Tutorial, a suite of about a dozen programs that exercise the Trestle window
system. The checker discovered a locking error in the tutorial.

When the checker produces spurious warnings, there are a variety of ways to sup-
press them, that is, to get the checker to ignore the spurious warnings and continue to
report real errors.

Although our checker is a research prototype, with plenty of rough edges, we feel
that it demonstrates effective solutions to the biggest outstanding problems that have
confined extended static checking to the realm of the Ph.D. thesis.

ESC catches errors that no type checker could possibly catch, yet it feels to the
programmer more like a type checker than a program verifier. The specifications re-
quired are statements of straightforward facts like inequalities, the error messages are
specific and understandable, and the theorem-proving is carried out behind the scenes
automatically.

Example We have applied ESC to reasonably large libraries, but here we have space
only for a very simple example: we describe how ESC might find errors in a small
procedure on the scale of an exercise in an introductory programming course.

The exercise is to program a procedure that accepts an array of integers as an ar-
gument and returns aTEXT (Modula-3’s predeclared string type) that contains the con-
catenation of the decimal representations of the elements of the array. To avoid the
quadratic cost of repeated text concatenations, the procedure allocates atext writer,
which is a form of buffered output stream whose output can be retrieved as aTEXT,
writes the elements of the array to the text writer in order, and finally retrieves and re-
turns a text containing everything that was written. Before presenting the procedure,
we present the annotated text writer interface:

INTERFACE TextWr;

TYPE T <: ROOT;

<� SPEC VAR valid : MAP T TO BOOLEAN �>
<� SPEC VAR state : MAP T TO ANY �>

PROCEDURE Init(t : T); (* Initialize the text writert. *)
<� SPEC Init(t) MODIFIES valid[t]; state[t] ENSURES valid0[t] �>

PROCEDURE PutInt(t : T; i : INTEGER); (* Write the ASCII version ofi to t. *)
<� SPEC PutInt(t; i) MODIFIES state[t] REQUIRES valid[t] �>



PROCEDURE GetText(t : T) : TEXT; (* Return the text that has been written tot. *)
<� SPEC GetText(t) MODIFIES state[t] REQUIRES valid[t] �>

PROCEDURE Close(t : T); (* Destroyt, reclaiming its internal buffers. *)
<� SPEC Close(t) MODIFIES valid[t]; state[t] �>

ENDTextWr:

This interface declares anopaque typeTextWr:T. The client of the interface knows
the name of the type and the fact that it is a subtype ofROOT (that is, that it is an object
type) and knows the signatures of the proceduresInit, PutInt, GetText, andClose,
but the client knows nothing else about the type. The representation of the type is
declared in another, more private module, which will not be shown here.

The annotation language of ESC is basically very conventional:each procedure
is annotated with a pre- and post-condition (introduced by the keywordsREQUIRES

andENSURES, respectively) and a modifies list, which is the list of variables that the
procedure is allowed to modify. For a variablex in the modifies list, the postcondition
uses the notationx0 to denote the post-value ofx and the unadorned identifierx to
denote its pre-value.

The annotation language also allows the declaration ofabstract variables, also
called specification variables. Two abstract variables are used in the annotations of
the text writer interface, as in many others:valid andstate. The concrete represen-
tations of these variables are revealed in the implementation of text writers and are not
visible in the interface, which is intended for clients of the abstraction. At an abstract
level, valid[t] holds iff the text writert has been properly initialized andstate[t]
represents all the rest of the client-visible state of the text writer (that is, its contents). If
we were doing full-scale program verification, the interface would specify a great deal
about the state, but for our purposes the interface specifies only that the state exists and
specifies which of the procedures change it.

Here is our hypothesized erroneous program written for converting an array of in-
tegers into aTEXT:

PROCEDURE ArrayToText(a : ARRAY OF INTEGER) : TEXT =
VAR twr := NEW(TextWr:T); BEGIN
FOR i := 1 TO NUMBER(a) DO TextWr:PutInt(twr;a[i]) END;
RETURN TextWr:GetText(twr)

END ArrayToText;

On this example, ESC reports two errors: the first error is an array bounds viola-
tion in ArrayToText. Here is the essence of the error message that ESC produces:
“warning: possible array bounds error:TextWr:PutInt(twr;a[i]) ”.

The error message also includes a so-callederror contextwhich is a long list of
atomic formulas that characterize the situation in which the error can occur. Because
it is long, we won’t show the error context here, but we remark that a careful study of
the context will reveal that it implies the formulai = NUMBER(a), which is in fact the
condition in which the bounds error can occur: in Modula-3, open arrays are addressed
from 0, but theFOR loop was written as though they were addressed from1. Correcting



the error in one natural way produces the following improvedFOR loop: FOR i :=
0 TO LAST(a) DO : : :

But ESC complains about this program too, as follows: “warning: precondition
failed: TextWr:PutInt(twr; a[i]) ”. A study of the error context reveals that it con-
tains the formulaNOT valid[twr]. That is, ESC has detected and warned about the
failure to initializetwr. Correcting this error changes the beginning of the procedure
implementation toVAR twr := NEW(TextWr:T); BEGIN TextWr:Init(twr);. And
with this program ESC is unable to find fault.

We would like to make several comments about this example.
First, although careful specifications were required for the text writer interface,

the beginning programmer was able to make use of ESC without writing any speci-
fications for his program at all. No preconditions or loop invariants were required in
ArrayToText. We think that this is as it should be: anybody qualified to design inter-
facesunderstands preconditions and postconditions and abstractions at some level, and
will find an explicit notation for their design decisions to be a tool rather than a burden;
on the other hand, many simple errors in programs that use an interface can and should
be identified by reading the unannotated erroneous program.

Second, in the actual Modula-3 I/O system, the typeTextWr is declared as a subtype
of a more general writer (Wr:T). Operations likePutInt andClose apply to any writer.
GetText applies to text writers only. We have ignored this aspect of the example to
save words, but the actual ESC checker handles objects and subtyping gracefully.

Third, the reader should be aware that this is only half an example. The other half
is the checking of the implementation of writers and text writers. In these implementa-
tions,representationdeclarations are made to give the meaning ofvalid[twr] in terms
of the concrete fields oftwr (including both generic and subtype-specific conjuncts).
These representations are used by ESC when checking the body of procedures like
PutInt(wr) andGetText(twr) that depend on the concrete meaning of validity.

Fourth, it is in fact true that initializing a text writer leaves its contents empty. If we
wanted to, we could reflect this in the postcondition ofInit as follows:

<� SPEC Init(t)
MODIFIES valid[t]; state[t] ENSURES valid0[t] AND state0[t] = \ " �>

It would be easy to concoct an artificial example in which this stronger specification
would be essential, if, say, the absence of array bounds errors in some client depended
on the fact that a newly initialized text writer was empty. But this is a slippery slope.
If Init’s effect on the state is specified fully, why notPutInt’s as well? Without
discipline, you can quickly slide into the black hole of full correctness verification.
Luckily, our experience has been that many ESC verifications can be successfully com-
pleted with almost no specifications at all about the contents and meanings of abstract
types, other than the specification of validity. You can go a long way just relying on the
valid/state paradigm—that is, the specifications for each procedure record accurately
how the procedure affects and requires validity, but all other side effects are swept un-
der the great rug ofMODIFIES state[t]. We believe this is a key reason why ESC
verifications are more cost effective than full correctness verifications.

More information and references can be found on the Web atwww.research
.digital.com/SRC/esc/Esc.html .


