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1 Introduction

Over ten years ago, Guibas, Ramshaw, and Stol� [8]

introduced the kinetic framework for Computational

Geometry in two dimensions. They augmented the

standard boundary representation of planar shapes via

polygons or closed curves with certain additional infor-

mation, to make them into closed tracings. The advan-

tage of tracings is that they admit of a multilinear cal-

culus of operations that generalizes standard boolean

operations on shapes such as union, intersection, set

di�erence, etc. A particular accomplishment of the ki-

netic framework was to de�ne the operation of convo-

lution on planar tracings and to illustrate its use in a

variety of algorithmic problems. Loosely speaking, the

convolution B �R of two tracings B (the barrier) and

R (the robot) is another tracing that encodes the inter-

action of B with all possible translations of a copy of

R mirrored through the origin. The convolution allows

us to transform problems about two tracings B and R

into problems about a point and a composite tracing,

the convolution B �R. A related composition concept

is familiar in robotics, under the names Minkowski sum

or con�guration space obstacle [15, 14]; but that con-

cept lacks the advantageous multilinear structure of the

convolution.

In two dimensions, a closed curve is normally de-

�ned via a continuous map from the unit circle to the

plane. To augment the curve into a tracing, we make

a value of this map be not only a point in the plane,

but an associated direction as well, with the two re-
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lated by a `no-slipping' condition. Intuitively, we can

think of a tracing as being drawn by a tiny car; the

car can move forward, move backward, or turn while

standing still, but may not skid sideways. A standard

curve can be given an orientation at each point, cor-

responding to the sequence in which the points of the

curve are traversed by the car. A tracing in addition

speci�es the direction the car is facing at each point,

and that direction must be along the tangent to the

curve whenever the latter is de�ned. The combination

of flocation, directiong is called a state in [8]. The di-

rection of the car is the crucial new component that

enables the de�nition of the convolution operation and

gives it its desirable properties. The convolution is de-

�ned as a �ber product in [8], by matching states from

the two factor tracings with the same direction, and

then assembling those into a tracing.

Almost nothing is known about the convolution op-

eration in dimensions higher than two, except in the

special case of convex bodies, where it is equivalent to

the Minkowski sum; this case for 3-D polyhedral ob-

jects has been treated in [9, 2, 12, 17]. Unfortunately

the convex case is too special to suggest the proper ex-

tension of the concept of a tracing to three and higher

dimensions. If, in two dimensions, one thinks of a trac-

ing as a rule for assigning winding numbers to the ele-

ments (faces, but also edges and vertices) of the planar

subdivision de�ned by the tracing, then we get a struc-

ture we call a painting. Paintings of arbitrary dimen-

sion were studied by Schapira [18] under the name of

constructible functions. Using results from sheaf the-

ory, Schapira was able to de�ne a convolution oper-

ation on constructible functions and to show how it

corresponds to the convolution of tracings discussed

above. Nevertheless, Schapira's method does not give
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a de�nition of a tracing in higher dimensions, and as

such it is not directly useful in algorithmic problems.

A tracing can be thought of as a boundary represen-

tation of a painting; because of this, it can be cheaper

to represent, since it need not encode features, such as

self-intersections, that are artifacts of the embedding

of the domain manifold into the range space, and not

features of the mapping itself.

The main contribution of this paper is to de�ne the

notion of polyhedral tracings, which extends the clas-

sical notion of a polyhedron in exactly the same way

a polygonal tracing extends the notion of a polygon.

We also de�ne the convolution B � R of two polyhe-

dral tracings B and R and show that it has the same

desirable properties as in two dimensions. The techni-

cal challenge in getting this theory to work lies in how

to extend normal polyhedra into tracings and, less ob-

viously but equally importantly, how to orient the el-

ements of the �ber product de�ning the convolution

so that together they form another tracing manifold.

We describe a data structure for representing polyhe-

dral tracings based on the quad-edge data structure of

Guibas and Stol� [10] and give an e�cient algorithm

for computing the convolution of such tracings. Given

tracings B and R of size m and n respectively, their

convolution Q = B � R can have size �(mn) in the

worst case. If the actual size of Q is k, then we can

compute Q in output-sensitive time O(k�(k) log3 k).

This algorithm, which requires novel data structures,

is based on a new method we have for detecting red-

blue intersections between two families of segments, the

red and the blue; within each family the segments need

not be disjoint | in fact we require that they be con-

nected. To keep the length of this paper within reason,

the details of these data structures and the associated

analysis will be reported in a separate paper [3]. We

are currently working on extending to arbitrary dimen-

sions and to more general types of tracings our current

results on orienting �ber products, de�ning tracings

and convolutions, and the relationship of tracings with

paintings.

We view the importance of the work presented here

to robotics as follows. For a polyhedral robot translat-

ing amidst polyhedral barriers in the Euclidean three

dimensional space E3 (or for polyhedral approxima-

tions of more general objects), the standard motion-

planning solution involves the calculation of the free

space, i.e. the locus of all placements of the robot where

it does not collide with barriers. It is well-known that

the free space is also a polyhedral domain and can be

computed as the complement of the Minkowski sums of

the barriers with the robot re
ected through the origin.

Once a description of the free space is available, one

can develop algorithms for checking possible collisions

during proposed robot motions, answering connectivity

queries (the classical motion planning problem), ren-

dering portions of the free space for visualization pur-

poses, etc. In this paper we propose to accomplish the

same goals, but using convolutions instead of the clas-

sical Minkowski sums.

To focus the issues, let us assume there is only one

barrier B that the robot R must avoid. Why should we

prefer the convolution B � R over the Minkowski sum

B�R (actually we should be using �R in both cases)?

There are two answers. First, the convolution gives

us more information. Given a proposed placement of

the robot, the convolution gives us information about

the topology of the collision region between the barrier

and the robot (its Euler-Poincar�e characteristic) | not

simply a bit on whether they collide or not; this is an

advantage of the multilinear over the boolean formu-

lation of the problem. More importantly, the convo-

lution can be combinatorially much simpler than the

Minkowski sum, while still allowing us to develop ef-

�cient algorithms for the kinds of motion queries de-

scribed above. If, as above, B and R have sizes m

and n, then the Minkowski sum of B and R can have

size �(m3n3), while the convolution is always of size

at most O(mn). Again, this is because the Minkowski

sum has to explicitly represent features that correspond

to self-intersections of the embedding of the convolu-

tion in R3. Thus, even when the Minkowski sum is

what we really want, it is useful to think of the con-

volution as an implicit representation of it. The con-

volution is a structure that can be used to answer e�-

ciently queries about the Minkowski sum, while being

both smaller in size and easier to compute.

This paper is organized as follows. Section 2 intro-
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duces the general framework of tracings and paintings.

Section 3 de�nes polyhedral tracings and introduces a

data structure for representing them. Section 4 de-

scribes the convolution of two polyhedral tracings in

terms of these data structures, while Section 5 sketches

an algorithm to compute this convolution that runs in

time nearly linear in input plus output size. Section 6

investigates in more detail the relationship between the

Minkowski sum and the convolution, and Section 7 con-

cludes.

2 Tracings and paintings

In this section, we generalize to higher dimensions the

notion of tracings introduced in the kinetic framework,

and relate that notion to Schapira's constructible func-

tions, or paintings. We brie
y describe his convo-

lution operation on paintings and its relation to the

Minkowski sum, and proceed to de�ne an equivalent

convolution operation on tracings. In this paper we

restrict the discussion to the 3-D case: all manifolds

below are 2-manifolds; S2 denotes the 2-dimensional

sphere, and E3 denotes the oriented 3-dimensional Eu-

clidean space. A basis of E3 is called direct (resp. indi-

rect) if it has positive (resp. negative) orientation. The

indicator of a set X 2 E3 is the function whose value

is 1 on X and 0 everywhere else.

For the de�nitions below to make sense, we need to

place ourselves in a consistent framework. We may for

instance follow Schapira, and assume that our mani-

folds are real analytic, that the sets are subanalytic,

and that our functions are morphisms of real analytic

manifolds (the focus of this paper, however, is on piece-

wise linear tracings).

2.1 Tracings

In the kinetic framework, a point on a curve is enriched

into a state by the addition of a direction vector which

can point either forward or backward along the curve.

In three dimensions, we enrich a point on a surface into

a state by adding a whisker vector at that point, which

can point along either of the two directions normal to

the surface.

More formally, a tracing R is given by an oriented

compact manifold without boundary MR, together with

a pair of smooth functions: the location map r :MR !

E3, and the whisker map _r : MR ! S2. The two are

related by a no-slipping condition:

8x 2MR; Im(dr)x ? _r(x)

where Im(dr)x is the image of the di�erential of r at

x. That is, the location map r is restricted locally to

move in a direction orthogonal to _r.

The orientation of the manifold MR can be thought

of as a tiny rotating circle around each of its points. If

the image under the location map of this circle around

x is replaced by a rotating corkscrew, the direction in

which this familiar object starts moving will be referred

to as locally outward for MR at x, while the opposite

direction will be called locally inward.

There are two senses in which the whisker map _r

gives more information than the di�erential of the lo-

cation map:

� When the tangent space Im(dr)x is a plane, the

whisker provides exactly one bit of information,

by selecting the normal to this plane which points

locally inward or outward.

� The whisker map smoothly extends the notion

of tangent plane to ridges and corners (where

Im(dr)x is only a line or a point). Crossing a ridge

causes the whisker vector to swing through an arc

in S2, while the whiskers associated with a corner

�ll some region of S2.

2.2 Paintings

A painting � on E3 is a function that associates an

integer to each point of E3, in a \not too wild" fash-

ion. The paintings we will deal with correspond to

polyhedral subdivisions of E3 with an associated con-

stant integer value for each feature (vertex, edge, face,

chamber) of the subdivision. For instance, there are

two natural paintings that can be associated with a

polyhedron P . The closed painting of P has value 1

everywhere inside the polyhedron and on its boundary,

and zero elsewhere. The open painting of P is the same
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except for a value of 0 on the boundary. A painting � is

said to be locally closed at p 2 E3 if there exists an open

neighborhood A of p on which maxq2A �(q) = �(p)

Likewise, we de�ne locally open by replacing max with

min. These de�nitions generalize the notions of open

and closed sets to paintings. Since the overlay of spa-

tial subdivisions is another spatial subdivision, alge-

braic operations (sum, product) on paintings can be

de�ned in an obvious point-wise fashion.

Any tracing R has an associated painting �, de�ned

via the winding number function. We can compute

the winding number at a point p of E3 that does not

lie on the range of the location map r(MR) of R as

follows. Take a smooth path � from p to in�nity, and

count +1 or �1 each time the path crosses r(MR). We

count the crossing as +1 if the `velocity vector' of �

at the crossing point is directed locally outwards (as

de�ned by the local orientation), and �1 otherwise.

The total count (the winding number) is independent

of the path chosen, and thus de�nes a unique value

except for those points that lie on r(MR). If p is such

a point, one would like to perturb the location map by

a tiny amount so as to move its image away from p,

and proceed as before. One role of the whisker map _r

is to indicate the direction in which this perturbation

should happen: the winding number is computed not

with respect to r, but with respect to r + � _r, for some

small enough � > 0. This perturbation transforms a

ridge into a sector of a cylinder and a corner into a

region of a small sphere centered at that corner. The

winding number is thus established on every point of

E3 and de�nes a painting � associated with R.

The distinction between open and closed sets is cru-

cial in Schapira's theory of constructible functions.

Tracings also make this distinction: it is one of their

novel features as a boundary representation for solids.

Consider a point p 2 E3 and assume, to simplify

matters, that it has only one pre-image under r, say

x 2 MR. If the whisker at p (i.e. _r(x)) points locally

outward on the surface of r around p, the associated

painting is locally closed at p, otherwise it is locally

open.

2.3 Convolution

Any polyhedral painting � can be triangulated, and

thus it is not hard to see that it can be expressed as

a �nite weighted sum of indicators of closed, simply

connected sets | such a decomposition, however, is

not unique. Schapira de�nes the integral of �,
R
�, as

the algebraic sum of these weights and shows that it

is independent of the choice of decomposition. This

integral has a familiar interpretation in certain cases.

For example, if � is the indicator of a closed set S, this

integral is simply the Euler-Poincar�e characteristic of

the set, i.e., in three dimensions, the number of compo-

nents, minus the number of tunnels, plus the number

of internal holes of S.

The convolution of two paintings �;  is then de�ned

with respect to this integral
R
, as

(� �  )(p) =

Z
q2E3

�(q) (p� q)

and it relates to intersection problems in the following

way [18]:

Theorem 2.1. If �;  are indicators of closed sets

B;R, then the value of � �  at a point p 2 E3 is the

Euler-Poincar�e characteristic of the intersection of B

with R re
ected through the origin and translated by p.

We now wish to describe a convolution operation on

tracings such that, given tracings B and R (blue and

red) that de�ne paintings � and  , the convolution

Q = B �R de�nes the painting � � . Disregarding the

topology of tracings, and viewing them as bags of states

as in [8], the convolution operation remains exactly the

same as in two dimensions: points x 2MB and y 2MR

de�ne a state (x; y) in the convolution just when their

whiskers match. In that case, the output feature keeps

the same whisker and its location is r(x) + b(y).

In our framework for tracings, the convolution do-

main is de�ned to be the following subset ofMB�MR:

MQ = f(x; y) 2MB �MR j _r(x) = _b(y)g

This is an instance of a general categorical construction

known as a �ber product [13] applied to the two whisker

maps _r and _b. Under mild assumptions (transversality)
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on the pair ( _r; _b), the �ber product MQ is an oriented

manifold of the same dimension asMB andMR, which

makes the above de�ne a valid tracing. The topology

of the �ber product MQ is not simply related to that

of MB and MR; for instance, MQ can have any num-

ber of components, even when both MB and MR are

connected. Deriving a consistent local orientation rule

for MQ is a problem which is fully addressed in [4].

Note that when de�ning the winding number at a

point in the image of the location map, the perturbed

tracing can be viewed as the convolution of the original

tracing with a ball of radius �.

3 Polyhedral tracings

In this section, we de�ne a polyhedral tracing as a spe-

cialized tracing de�ned in the framework of piecewise-

linear geometry. We describe an e�cient way to repre-

sent a polyhedral tracing using a signed oriented quad-

edge structure, and show how an ordinary polyhedron

can be made into a tracing using a sound set of con-

ventions.

A polyhedral tracing is a tracing such that its domain

manifold can be decomposed into (interior-disjoint)

simply connected subsets of three types: vertex do-

mains, edge domains, and face domains, with connec-

tivity properties akin to a subdivision as de�ned in [10],

and such that (Figure 1):

1. On a face domain, the whisker map is constant

and the location map is a bijection whose range is

a simple planar polygon,

2. On an edge domain, the location map range is a

line segment (corresponding to a shared edge be-

tween the polygonal ranges of the two adjacent

face domains), and the whisker map range is a

great circle arc of length less than � on S2, and

3. On a vertex domain, the location map is constant,

while the whisker map is a bijection, and its range

is a simple spherical polygon on S2 entirely con-

tained within a hemisphere [the hemisphere as-

sumption].

Figure 1: A cube tracing indexed by a sphere. Note

that the inverse image under the location map of points on

faces, edges, and vertices of the cube are 0-dimensional, 1-

dimensional, and 2-dimensional respectively.

Using a tracing to describe a polyhedron boundary

has several advantages. First, a tracing can encode

both open, closed, and mixed subsets of E3, whereas

no such distinction exists for a polyhedron. Second, a

tracing can represent a larger variety of paintings with

piecewise planar boundaries, and not just indicators

of polyhedra. Third, the convolution of two (closed)

polyhedra is in general not a polyhedron. Polyhedral

tracings have in fact just the right expressiveness to

allow the representation of convolutions of general non-

convex polyhedra.

3.1 Enriched quad-edge structure

A quad-edge structure [10] is an algebra

(V;E; F;Onext;Org;Lface; Sym), where V (resp. E,

F ) is the set of vertices (resp. edges, faces), with a

number of relations between the operations which we

do not review here. In such a structure, an edge has

a direction, from its origin (Org) to its destination

(Dest), and an orientation, from its left face (Lface) to

its right face (Rface). The symmetric (Sym) of an edge

is the same edge with both its orientation and direction

reversed. The next edge (Onext) to an edge e whose

origin is a vertex v is the edge with origin v whose

Rface is the Lface of e. In the case of a connected

orientable quad-edge, the quad-edge algebra is the

union of two disjoint subalgebras: an edge with a given

direction is present in both subalgebras, but with a

distinct orientation. An oriented quad-edge structure

is simply the choice of one of these subalgebras for

each connected component. In this case, the direction

of an edge determines its orientation and vice-versa,
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so that a face f has a ring of directed edges associated

with it (those whose Lface is f).

We represent the domain manifold of a polyhedral

tracing by an oriented quad-edge structure (V;E; F ).

In this setting, a vertex and an edge in the struc-

ture also represent two-dimensional domains (vertex

domains and edge domains) in the underlying mani-

fold. Next, we encode the location and whisker maps

by keeping only their values at vertices and faces re-

spectively, via the two functions:

� : V 7! E3

� : F 7! S2

where � gives the location of each vertex, and � gives

the whisker at each face.

Obviously, this representation loses some informa-

tion: the original domain manifold of the polyhedral

tracing is known only up to a homeomorphism, but

this level of precision is enough to de�ne a painting.

The location map can be smoothly reconstructed by

linear interpolation from the data for vertices, to edges

and faces, due to the assumption that the location map

is a bijection on a face domain.

The reconstruction of the whisker map for edges and

vertices from the whiskers of the faces is more deli-

cate. Consider �rst the case of an edge. Its whiskers

describe an arc joining the whiskers of its two adjacent

faces. There are two such arcs, but only the smallest of

the two satis�es the requirement that the whisker set

of an edge be an arc of length less than � on S2. For a

vertex domain, the assumption that the whisker map

is a bijection allows its speci�cation using the values

on its boundary, but, again, this boundary de�nes two

polygons on the sphere. It is the hemisphere assump-

tion that allows us to choose the smaller one without

ambiguity. From this choice, the whisker map on a

vertex domain is reconstructed up to an isomorphism.

3.2 Whisker and outward-pointing normal

Traditionally, when a quad-edge structure is used to

represent a polyhedron boundary, a record for a ver-

tex v stores its location �(v), and a record for a face f

stores its outward-pointing normal �(f). The outward-

pointing normal is such that, when an observer is look-

ing at a face f with �(f) pointing towards her, the

ring of oriented edges around f describes a counter-

clockwise cycle.

Due to the no-slipping condition, the outward-

pointing normal to a face is either the same as, or

opposite to, the whisker at that face. Thus, it is not

necessary to store it in our structure, as it is possible to

reconstruct it at the additional cost of only one extra

bit per face. We de�ne

� : F 7! f�1;+1g

such that for each face f , �(f) = �(f)�(f), and store

this sign bit with each face (hence the name \signed

quad-edge").

This sign bit has an important meaning for the cor-

responding painting. If the sign at a face is +1, the

whisker at that face points locally outwards, which de-

�nes a locally closed painting. If the sign is �1, the

tracing de�nes a locally open painting. Storing this

sign is redundant, as it can be reconstructed from the

whisker and the orientation of the ring of edges around

one face. However, this reconstruction is costly, as it

requires tracing the entire ring of edges for each face.

3.3 From a polyhedron to a polyhedral tracing

In most applications, a polyhedron is de�ned by its

boundary, represented by an oriented quad-edge struc-

ture, the location of each vertex, and the outward-

pointing normal to each face. This structure can be

easily converted into a polyhedral tracing, but there

are two issues that require some discussion: what signs

to choose for the faces, and how to enforce the hemi-

sphere requirements for the vertex whisker maps.

The choice of signs for faces depends on whether

the polyhedron is intended to represent a topologically

closed or open set. While this distinction is rarely

if ever considered in computational geometry, it may

have some relevance in solid modeling. As we saw be-

fore, having the whisker map point locally outwards

de�nes a locally closed painting. Thus, in order to rep-

resent a topologically closed polyhedron, one would set
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the sign bit of all faces to +1. To represent an open

polyhedron, one would set the sign bit of all faces to

�1. Once the signs are given, the `traci�cation' boils

down to replacing the outward-pointing normal data

with the whisker data for each face (in e�ect multi-

plying the face normal by the sign). This clearly sets

the values of the associated painting correctly on all

faces, but it remains to check whether the edges and

vertices have the correct values as well. We address

this question while checking for the other requirements

of a polyhedral tracing.

The choice of signs de�nes the whisker on each face.

We take the convention that the whisker set of an edge

is the shortest arc that joins the whiskers of its adjacent

faces. Therefore, there is no special conversion neces-

sary to represent an edge in the tracing. This conven-

tion mirrors a similar one used for turns in two dimen-

sions [8]. It gets its full relevance from the open/closed

interpretation of tracings. Indeed, with this choice, an

edge adjacent to two closed faces is closed (i.e. the

painting has the same value on the edge as in the poly-

hedron interior). An edge adjacent to two open faces

is open.

The vertex case is more delicate. The path stroked

by the whiskers of the edges whose origin is a vertex v

might not �t in a hemisphere (Figure 2), or might even

self-intersect (Figure 3), hence requiring a normaliza-

tion process. There is no canonical way to normalize,

but the simplest is probably to \triangulate" the vertex

as follows: single out a face f adjacent to v, and intro-

duce zero-length edges between f and each of the other

faces adjacent to v. This cuts v into many vertices, each

of which has degree three and de�nes a triangle on the

sphere of directions. A triangle is not self-intersecting

and is contained within a hemisphere, so this de�nes a

valid tracing. Note that the edges introduced in this

process are zero-length, but their whiskers span an arc

on the sphere of directions (Figure 3).

It remains to see whether vertices have the desired

value in the associated painting, i.e. whether they

have value 1 if one settled for the closed polyhedron,

and value 0 for the open polyhedron. This is indeed

the case, provided that, for each vertex, there exists a

hemisphere that contains all the whiskers to the faces

Figure 2: A vertex v whose whisker map does not �t in

any hemisphere. We can choose either of the two regions

bounded by the spherical polygon on the right to be the range

of the whisker map on the domain of v. Reversing this

choice changes, by 1, the value of the associated painting at

v.

Figure 3: (a) The simplest vertex that has a self inter-

secting path on the sphere of directions; (b,c) two ways to

normalize it, cutting it into two vertices v1; v2 at the same

location, by an adjunction of a zero-length edge. The top

view shows the two vertices slightly displaced to emphasize

the connectivity.

adjacent to this vertex. Indeed, consider the closed

case: for each vertex v the corresponding hemisphere

gives us a direction (a whisker) with which the whiskers

of all adjacent faces form an angle of less than �=2. Say

that this direction is \up". Whichever normalization is

used (if any is needed) at v, a convolution with a ball

of radius � will locally pull up all the adjacent faces.
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Hence the winding number at v is the same as that

of a point slightly inside the polyhedron, i.e. +1. If

the hemisphere requirement is not satis�ed at a ver-

tex (Figure 2), it is unclear how to choose the whisker

map so that the associated painting has value 1 at that

vertex.

4 Convolution of polyhedral tracings

Since a polyhedral tracing is a special case of a tracing

as de�ned in Section 2, the convolution operation is

well de�ned. Moreover, the result is also a polyhedral

tracing. Given the signed quad-edge representations of

two input polyhedral tracings B and R, we show in this

section how to obtain the convolution Q in the same

representation. In the rest of the paper, we refer to

features of B;R; and Q as blue, red, and purple respec-

tively. The underlying manifold of the convolution is

the �ber product of the whisker maps of B and R. It is

described implicitly by the signed quad-edge structure

of Q.

The features of the convolution are obtained by con-

volving pairs of matching features of B and R. A pair

of features is said to match if the whisker sets of the

two features have a non-empty intersection. In order

to keep the notation simple, we assume that the in-

tersection of the whisker sets of any two features is

simply connected (and thus de�nes only one feature,

whose whisker set is the intersection of the two orig-

inal sets). In two dimensions, a forward move com-

bined with a right turn becomes a backward move in

the convolution. Likewise, in three dimensions, we ex-

pect that some faces will change sign in the convolu-

tion. A face f 0 in the convolution can arise when a face

f of one tracing is convolved with a matching vertex

v in the other. As f and f 0 have the same whisker,

a change of sign requires a reversal of the edge ring

(Figure 4). A face in the convolution is also obtained

when a blue and a red whisker arc intersect on the

sphere; their corresponding edges generate a parallel-

ogram (the Minkowski sum of the two edges). The

whisker of this new face is well de�ned, but its sign has

to be determined.

Figure 4: In this convolution, the orientation of the little

triangle is switched to create a consistent tracing. This re-

versal is captured by a negative sign assigned to the saddle

vertex. Some pairs of edges whose whisker sets intersect

create parallelogram faces in the convolution.

4.1 Orienting the convolution

In the two-dimensional kinetic framework, the authors

captured the reversals of sign in a very simple rule:

forward moves and left turns have sign +1, backward

moves and right turns have sign �1; furthermore, the

sign of an output feature is the product of the signs of

the corresponding input features. Guessing a similar

sign rule in three dimensions, if it exists, is more dif-

�cult. We can deduce this sign rule from the general

convolution de�nitions by calculating the orientation of

the �ber product manifold on the domains correspond-

ing to each feature of the convolution. The topology

of this manifold also gives the connectivity of its quad-

edge representation. We now proceed to de�ne signs for

edges and vertices for a tracing; we assume that these

signs are also stored in the signed quad-edge structure.

1. The sign of an edge e, denoted � (e), is pos-

itive (resp. negative) if the triplet of vectors

(eDest�eOrg; eLface; eRface) de�nes a direct

(resp. indirect) basis.1

2. The sign of a vertex v, denoted � (v), is positive

(resp. negative) if a traversal of the ring of edges

around v via the Onext operator corresponds to

a counterclockwise (resp. clockwise) traversal of

the boundary of the whisker of v on the sphere of

directions (from the point of view of an observer,

1A zero-length edge can be given an arbitrary sign
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Figure 5: The three simplest types of vertices with their

ring of edges on the sphere of directions and their signs.

facing from the outside, the hemisphere containing

the whisker).

From the above de�nition, it follows that the sign of

an edge e is the same as that of e Sym. Also, when a

tracing represents a closed polyhedron the above sign

rule leads to giving convex edges a positive sign and

concave edges a negative sign (much like left and right

turns in polygonal tracings). Both convex and concave

vertices have a positive sign, whereas a vertex like the

one in Figure 4 has negative sign (Figure 5). If we view

the boundary of the whisker set of a vertex as a 2-D

tracing on the sphere of directions, then the sign of

the vertex is exactly the winding number this tracing

assigns to the region de�ning the whisker set. This is

not a coincidence, and further work is needed to clarify

and take advantage of this relationship.

4.2 Connectivity of the convolution

Let the vertex, edge, and face sets of B be Vb; Eb; and

Fb; and those of R be Vr; Er; and Fr. If features hb and

hr of B and R match, the resulting convolution feature

is denoted by the unordered pair (hb; hr). The assump-

tion that every such pair produces at most one feature

in the convolution makes the notation unambiguous. In

an implementation, an output feature would be iden-

ti�ed by a pointer, so that this assumption would be

unnecessary. We denote �e for e Sym, allowing expres-

sions like �(v)e, to refer to e or e Sym depending on the

sign of v.

We now de�ne the signed quad-edge structure of P

by enumerating its features and their connectivity.

V (P ) = f(vb; vr) 2 Vb � Vr j � (vb) \ � (vr) 6= ;g

E(P ) = f(e; v) 2 Eb � Vr [ Er � Vb j

� (e) \ � (v) 6= ;g

F (P ) = f(v; f) 2 Vb � Fr [ Vr � Fb j � (f) 2 � (v)g

[ f(eb; er) 2 Eb �Er j � (eb) \ � (er) 6= ;g

The pairs (e; e0), (e Sym; e0), (e Sym; e0), and

(e Sym; e0 Sym) refer to the same parallelogram face.

Before we de�ne the topological connectivity of the

convolution and the geometry and signs of its features,

we need to de�ne a primitive Fedge (v; e). This primi-

tive is de�ned only when � (v) and � (e) overlap.

De�nition 4.1. If e is an edge whose whisker inter-

sects the boundary of the whisker set of a vertex v, we

denote by Fedge (v; e) the edge e0 with e0Org = v, and

such that e0 is the �rst such edge crossed when going

from (� (v)� (e) e) Lface to (� (v)� (e) e)Rface on S2.

The way to compute Fedge (v; e) is not addressed

here. It will be a direct bi-product of the sweep-line al-

gorithm described in the next section. The rules for

constructing the polyhedral tracing representing the

convolution are summarized in table 4.2.

Note that, just like in the two dimensional case, the

topological adjacencies between features in the convo-

lution are induced by those of the factor tracings and

that the signs of its features are the products of the

corresponding signs of the matching factor features.

General results on tracings imply that the quad-edge

structure de�ned above is consistent, and represents

the tracing of the convolution. Except for the case of

closed convex polyhedra, where it is the well-known

Minkowski sum, the resulting convolution will in gen-

eral self-intersect and have locally open faces (Figure 4

again).

4.3 Normalization and convolution size

When discussing output sensitive algorithms, there is

an issue of what should be considered as the size of the

output. This issue was discussed at length by Guibas

and Seidel [9] for two-dimensional convolutions, and it
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Table 1: Connectivity and geometry of the convolution of two polyhedral tracings.

(v; e) Sym = (v; e Sym)

(v; e)Org = (v; � (v) eOrg)

(v; e)Onext =

(
(v; (� (v) e)Onext�(e)) if � (eLface) 2 � (v)

((� (v) e)Org;Fedge (v; e)) otherwise

(v; e) Lface =

(
(v; (� (e) e) Lface) if � (eLface) 2 � (v)

(e;Fedge (v; e)) otherwise

� (vb; vr) = � (vb) + � (vr)

� (eb; er) = � (eb) \ � (er)

� (v; f) = � (f)

� (v; f) = � (v) � (f)

� (eb; er) = � (eb)� (er)

is not surprising that it pops up again in three dimen-

sions. In the present setting, two tracings that have dif-

ferent quad-edge representations are always considered

distinct, although they might de�ne the same painting

(and the same \bag of states" in the vocabulary of the

original kinetic framework). In this sense, the output

described above is the only one that properly describes

the exact topology of the �ber product manifold of the

convolution.

This view is however slightly hypocritical, as the ob-

jects we are ultimately interested in are paintings, and

not one speci�c representation. As in the two dimen-

sional case, it is possible to construct two tracings of

sizesm;n, such that their convolution is of size �(mn),

while �(m+ n) features are su�cient to represent the

same painting. Even worse, the normalization process

used to obtain a polyhedral tracing from a polyhedron

may also lead to variations in the output size: if one

takes a polyhedron with n vertices like the one of Fig-

ure 3, and another polyhedron with m features cross-

ing one of the normalization lines, the convolution may

have a size that varies from linear to quadratic depend-

ing on which normalization line is used. It would be

desirable to review the normalization process to avoid

this inconsistent behavior.

5 An e�cient algorithm for the convo-

lution

In this section, we brie
y describe an algorithm to com-

pute the signed quad-edge structure of a convolution Q

of two tracings B and R with a total of n vertices in

time O(k�(n) log3 n), where k is the number of ver-

tices of Q. We will assume that B and R all have faces

of sign +1, from which it follows that their whisker

maps cover the sphere of directions S2, and therefore

k � n. The key algorithmic problem we must solve is

to �nd the matching features of B and R. Geometri-

cally, this reduces to �nding the overlay, on the sphere

of directions, of the whisker sets of the two tracings.

This overlay will give us in fact the whisker sets of the

convolution | its features will directly correspond to

the elements of Q. The subdivision overlay problem

requires us to locate all vertices of one subdivision into

regions of the other, and to discover all pairs of inter-

secting red-blue edges. From the complexity point of

view, the dominant cost of such an algorithm is the

latter computation of all the bichromatic edge inter-

sections. In the rest of the paper, we will assume that

k actually represents the number of these bichromatic

pairs. In the case where B and R are convex tracings
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(that is, when each whisker value appears only once

per tracing) this problem has already been optimally

solved [9] in O(n+k) time. The di�culty with general

tracings is that their whisker maps can multiply cover

S2 | they are e�ectively Riemann surfaces over S2.

During the overlay operation we want to discover all

bichromatic edge intersections, but we cannot a�ord

to pay for looking at crossings of edges of the same

color (which would arise if we were to `
atten out' each

Riemann surface onto S2).

Through an appropriate polar map, our problem is

the same as the well-known problem of detecting red-

blue intersections among a set of red and blue segments

in the plane. This problem traditionally appears in

two versions: general and disjoint (more precisely, the

latter means that segments in each collection are re-

quired to have disjoint interiors). Neither is appropri-

ate for our purposes: our collections need not be dis-

joint, as we pointed out above (monochromatic pseudo-

intersections can arise from the overlay of di�erent Rie-

mann sheets), while at the same time a nearly linear

red-blue merge algorithm seems highly unlikely for the

general case. We show below how to exploit the fact

that our segment collections are connected | that is,

that the union of all points in the red segment collection

forms a connected subset of the plane (and similarly for

the blue). Agarwal and Sharir [1] investigated this ver-

sion, and gave an O(n�(n) log2 n) algorithm to �nd one

purple intersection when one exists, but their method

could not be extended to �nd all purple intersections.

A classical Bentley-Ottmann sweep technique [5] can

be applied for this problem, but it does not avoid the

possibly quadratic cost of processing all blue-blue and

red-red intersections (Figure 6). Our new algorithm,

called HeapSweep, revisits the sweep paradigm by re-

laxing the constraint that the segments be completely

ordered along the sweep line. It uses a novel data struc-

ture that can be used to e�ciently sweep the upper

envelope of a family of segments in the plane by main-

taining only a partial vertical ordering among the seg-

ments. We will report this algorithm and its detailed

analysis elsewhere [3] | below we just indicate some

of the ideas of the method.

The upper envelope of an arrangement of n line seg-

Figure 6: (a) A diamond and a synchronizing gear with

n = 7 teeth; (b) the arcs de�ned by the edges of the gear

(in thin stroke) have �(n2) intersections on the sphere, but

only �(n) intersections with the features of the diamond

(dashed stroke); (c) the convolution has only �(n) features.

ments is a well-known concept in computational geom-

etry [7] and it has size O(n�(n)) (where �(n) is the

familiar inverse Ackermann function). We propose a

new (non-optimal) algorithm to compute this structure

that can be used as a building block for a sweep-line

procedure in the red-blue intersection problem. The

idea is to perform a line sweep on the segments, keep-

ing track of a partial (instead of exact) order of the

segment intersections on the sweep line in a heap-like

data structure. Indeed, for the sweep line structure to

be maintained in the totally ordered case, all segment

intersections are events that have to be processed in

the priority queue, leading to a possibly bad running

time. In contrast, to maintain the heap-like structure,

only intersections that involve a parent and child in the

heap need to be scheduled and examined | we call

these tournament intersections. No result is known

about the maximum number of tournament intersec-

tions for standard heap implementations. In [3] we

introduce several heap-like structures for which we can

prove that the number of tournament intersections is

roughly linear.

We now make use of the above as a basic component

for an algorithm that computes the red-blue intersec-

tions in time O(k�(n) log3 n) in the connected version

of the problem. At a given position, the sweep line

is divided into blue blocks and red blocks. A block is

a maximal interval on the line that intersect only one

color of edges. All edges in a block are stored in a

heap-like structure, so that the two extreme edges of

the block are known at all times. Purple intersections
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(a) (b)

Figure 7: (a) A purple intersection: two new blocks are

created, and new purple intersection events are scheduled.

(b) A SPLIT of a blue block in two, triggered by an unex-

pected red node

can be discovered and scheduled by comparing the top

and bottom segments of every pair of adjacent blocks,

and can be processed in polylogarithmic time (see the

schematic representation in �gure 7-a).

Sometimes along the sweep, a blue block may en-

counter a red node that forces a split of the block into

two blocks (Figure 7-b), a possibly expensive opera-

tion. Similarly, all arcs of a blue block may end at the

same node, without a new arc to replace them, requir-

ing a costly merge of the two adjacent red blocks in

order to maintain the prescribed sweep line structure

(these two possibilities arise in the computation of the

convolution as soon as the input polyhedra are allowed

to be non-convex). The connectedness of our families

is the crucial hypothesis that makes the amortized cost

of these operations polylogarithmic.

Theorem 5.1. Let B;R be two polyhedral tracings

with n vertices in total, whose faces all have sign +1,

and whose convolution Q has k features. The algorithm

HeapSweep computes the signed quad-edge structure

of Q in time O(k�(n) log3 n)

6 Minkowski sum using convolution

Minkowski sums of polyhedra arise frequently in mo-

tion planning algorithms based on the con�guration

space approach [15, 14]. Though the case of computing

the Minkowski sum has been well studied when both

the polyhedra are convex [9, 6], non-trivial bounds are

not known for the computation of Minkowski sum for

general non-convex polyhedra [11]. We argue that the

convolution of polyhedra provides a low-storage alter-

nate representation which encodes much of the same

(and often more) information as the Minkowski sum.

First let us address the size issue. If the two polyhe-

dra are of sizes m and n their convolution is always

of size O(mn), whereas the Minkowski sum can be

�(m3n3) in the worst case (an example where this hap-

pens can be found in [11]). The key savings in space

and computation cost result from not computing or

storing self-intersections of the convolution; these still

give rise to features on the boundary of the Minkowski

sum.

By Theorem 2.1, the winding number at x with re-

spect to the convolution of closed tracings B and R

is the Euler-Poincar�e characteristic of the intersection

of B with R re
ected and translated by x. Thus the

winding number captures information about how the

robot and the barrier intersect. The intersection of

two tracings representing simple closed polygons in the

plane is always a set of simply connected components

with Euler-Poincar�e characteristic equal to the number

of components. This means that the winding number

with respect to the convolution is equal to the number

of components in the corresponding intersection, and

thus we can interpret this winding number as `depth of

collision.'

However, the correspondence between convolutions

and Minkowski sums of polyhedral tracings is not as

simple as in the case of polygonal tracings because the

intersection of closed polyhedral tracings may not be

simply connected. For example, imagine pushing two

glasses close to each other until their mouths inter-

penetrate. The intersection is a torus of zero Euler-

Poincar�e characteristic (one component { minus one

tunnel) even though it is a non-empty solid. Thus for

polyhedral tracings, the region of the convolution of

zero winding number is not the same as the comple-

ment of the Minkowski sum. However, the outer cell

of the Minkowski sum is in fact the outer cell of the

convolution in E3.



Polyhedral Tracings and their Convolution 13

6.1 Algorithmic issues

We expect that many algorithms using the Minkowski

sum can be speeded up by using the combinatorially

smaller convolution instead. For example, in order to

render the outer face of the Minkowski sum from an

external viewpoint, it is su�cient to render the faces

of the convolution in any sequence. The depth bu�er

of current graphics hardware will automatically en-

sure that only the visible sections of the Minkowski

sum are produced. Similarly, algorithms that interro-

gate the Minkowski sum in various ways, such as ray-

shooting, winding number and distance computations,

planar sectioning, extrema and bounding volume com-

putations, etc., can all bene�t from using the smaller

convolution in lieu of the Minkowski sum. Note that

the solution to several of these problems makes use

of the sign (orientation) information stored with the

convolution. For example, a winding number compu-

tation at a point p, based on connecting p to another

point of known winding number and then algebraically

summing the crossings with the convolution along the

connecting path, makes use of the signs. We also an-

ticipate that the convolution can be used in novel ways

along the lines of [16]. We intend to develop some of

these applications in greater detail in a future publica-

tion.

7 Conclusion and further work

In this paper we have presented the theory of polyhe-

dral tracings and their convolutions. Polyhedral trac-

ings generalize ordinary polyhedra by providing an ex-

plicit set of normals at all features of the polyhedron:

at vertices and edges, as well as at faces. This addi-

tional structure is not costly; it can be adequately rep-

resented by keeping just one additional bit (a \sign")

with each face of the polyhedron. It allows us to prop-

erly state which pieces of the boundary are part of the

polyhedron, and which are not. Furthermore, it per-

mits the de�nition of the convolution of two polyhedral

tracings, which compactly encodes information about

the topology of the intersection of the two polyhedra

under all possible translations. The convolution can

serve as an alternate representation of the Minkowski

sum of the polyhedra, which has found numerous appli-

cations in motion planning problems. When we com-

pare the two, we see that the convolution gives us more

information about the relative placement of the two

polyhedra, while at the same time being much smaller

combinatorially in the worst case. And while comput-

ing the Minkowski sum can be a challenging problem

in three-dimensional computational geometry, our es-

sentially optimal and output-sensitive convolution al-

gorithm uses e�cient planar data structures for its op-

eration.

Clearly much remains to be done in further develop-

ing the theory of convolutions for polyhedral tracings

and for more general instances. Other possible appli-

cations need to be investigated: object placement, dis-

tance computations, and more complex motion plan-

ning problems.
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