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Abstract 1 Introduction

This work was triggered by two performance puzzles
We studied two aspects of the performance of Win-(circa 1995) related to Microsoft's SQL Server running
dows NT™: processor bandwidth requirements for on Alpha [SW95] PCs under the Windows NT operating
memory accesses in a uniprocessor systemingcom-  system: how could we speed up the uniprocessor ver-
mercial and benchmark applications, and locking behavsion, and how could we get closer to linear scaling for
ior of a commercial database on a small-scale multiprothe multiprocessor version?

cessor. Our studies are based on full dynamic execution Tg answer these questions we found that we needed to
traces of the systems, which incluakéinstructions exe-  |ook at the detailed behavior of the system under load.
cuted by the operating system and applications over periye created a tool for obtaining complete traces of the in-
ods of a few seconds (enough time to allow for significantstryction and data streams executed by the processor in
computation). The traces were obtained on Alpha PCsg|| operating system and application code. We proceeded
USing a new software tool called PatchWrx that takes ad'[o examine these traces and to use them to run simula-
vantage of the Alpha architecture’s PAL-code layer totjons that revealed interesting properties of the then cur-
implement efficient, comprehensive system tracing. Berent system. The results of the simulations also had im-
cause the Alpha version of Windows NT uses substanpncaﬁons for future processor design.

tially the same code base as other versions, and therefore-l-he first puzzle we studied is how the processor band-

executes nearly the same sequence gf calls, basic blo'c idth requirements of applications—the bandwidth re-
and data structure accesses, we believe our Condus'o'ﬁ'ﬁjired to service on-chip instruction and data cache

are relevant for non-Alpha systems as well. This papet .ccoq from off-chip caches or memory—limits the

describes our performance studies and interesting aspec{ayiavable execution speed of the applications. This
of PatchWrx. study was motivated by a discussion with some col-

We conclude from our studies that processor band!62gues about using a prefetching strategy to improve
width can be a first-order bottleneck to achieving goodPerformance. — Their studies showed that prefetching
performance. This is particularly apparent when study-WOUld not help in the partlcqlar situation pecause there
ing commercial benchmarks. Operating system coddvasn't enough processor-chip pin bandwidth to support
and data structures contribute disproportionately to théh€ workload.  When pin bandwidth is a bottleneck,
memory access load. We alsauhd that operating sys- SOMe common techniques for trying to improve perfor-
tem software lock contention was a factor preventing thenance do not help. These include multiple instruction
database benchmark from scaling up on the small muliSSu€, code scheduling, prefetching, and improved exter-
tiprocessor, and that the cache coherence protocol enft@! cache latency. Pin bandwidth puts ding on how

ployed by the machine introduced more cache interferfast an application can run. We discovered that pin band-
ence than necessary. width is indeed a bottleneck for interesting commercial

applications, as well as for data accesses in one of the
SPEC benchmarks that we studied.

The second puzzle we studied is how lock contention

*Published in the Proceedings of the Second USENIX Symposium]Cor a multiprocessor application limits the scalability of

on Operating Systems Design and Implementation (OSDI), Octobef€ application. Detailed execution traces reveal patterns
1996. Republished by permission. of locking that may not have been expected by the operat-




ing system designers, application designers, or hardwarginally, we wanted to work with arbitrary binaries for
designers responsible for tisache coherence protocol. which we did not have access to the source code.
Lock contention and the related cache coherence over- 1, technique we have adopted rewrites binary exe-

head prevent the application from scaling up beyond %utable images, inserting patches that record in a log the

va?/” nLrllmber ?;proci[assors. ‘ v h target of every change of control flow (branch, call, re-
e choose these two aspects to stuegause they turn, system call, system return, interrupt, and return-

seem to be important factors in overall workload perfor'from-interrupt) and some base register values for d-

mzilrnhce. tributi f thi K threefold: stream memory accesses. A reconstruction program
id € ?O‘I’” f uflonso IS Worb arde 'drtehel'o 't. twe pro'dworking from the log and binary program images re-
Vide evidence of processor pin bandwl imitations an produces the trace of the full i-stream and d-stream that

iocldqng probIeTs :‘c;r cotr:me.ruai fla}[;pllcatlfons; vvte N \vas executed. Our logs are typically about 5-10 times
roduce a new tool for obtaining fullaces of a system (1o ihon the resultingaces.

that allows us to study such problems; and we are mak-

ing available some of the tracepon which our studies ~ With the entire operating system patched for just
are based for other researchers to lsalso, the un-  branches (notload/store) and logging on, everything runs
derstanding we gained from this work led to significantat about 1/4 of normal speed until the log buffer fills up.
improvements to the hardware and software involved, sd hen logging is turned off and the run speed is about 1/2

the results presented here do not fully apply to currently0f normal speed. This is sufficiently fast that our per-
shipping hardware and software. sonal machines have run patched all the time for over a

In the next section we describe some of the more interyear. With loads and stores patched in the operating sys-
esting aspects of the tracing tool, called PatchWrx. Sectem and applications, the worst slowdown we've seen is
tion 3 describes our studies of pin bandwidth require-2bout 1/8 of normal speed. Patched images are 30-50%
ments for four different applications on two different larger than the originals.

Alpha processors. Section 4 describes studies of lock- patchWrx is an offshoot of the ATUM work in tracing
ing behavior of one of these applications—the MinOSOftusing microcode [ASH86], and work with binary trans-
SQL Server database—on a small multiprocessor. Seqation [SCK'93]. Our approach is similar to other in-

tion 5 concludes. line tracing efforts, but differs significantly in at least
one dimension. Most published studies are of user code
2  PatchWrx only [EKKL90, LB94], or are done on a single pro-

cessor [BKW90, CB93], or require rebuilding source
To understand thedces that are th@put to our perfor- code [SJF92], or trace only cache misses, not all instruc-
mance studies it is helpful to understand the propertiesions [CHRG95, TGH92]. None use Windows NT. The
of PatchWrx, the tool used to produce them. In this secexcellent Shade paper [CK94] summarizes about thirty
tion we give an overview of PatchWrx, and then describeprevious tools. Using that paper’s classification, Patch-
some of the highlights of its design and implementation.Wrx, like ATUM, traces executables, user and system
code, multiple domains, multiple processors, signals, dy-
namic linking, and bugs, with performance similar to
Shade.

We chose to producedces rather than do on-the-fly
data analysis [SE94] because of the difficulty of recre-
r%ﬁting complex execution environments months after the
original investigation. With a detailed trace, questions
asked a year or more later can still be investigated.

2.1 Overview

PatchWrx is a software-only technique for capturing full
time-stamped traces of tidgnamic instruction stream (i-
stream) and data stream (d-stream) of operating syste
and user code.

The goal of the PatchWrx effort is to capture traces
of every single instruction executed throughout many
seconds of a real operating system, running some com- Somewhat like an electron microscope for computing,
plex workload on a non-microprogrammed multiproces-the PatchWrx approach is for studying a small amount of
sor. We wanted to build a software-only solution, ratheré€Xecution in excruciating detail, rather than summarizing
than requiring one-of-a-kind hardware that cannot easilyong-running executions.
be applied at a customer computing environment. We  a|| of our experiments have been performed under
wanted to gather traces with less than a factor of tenyindows NT, version 3.5. The uniprocessor experiments
performance degradation, so that nothing in the operatyere run on an Alpha AXP 150 with 128 MB of main
ing system broke due to timeouts or excessive latenciesnemory. The multiprocessor experiments were run on

Lour uniprocessor traces are publicly available on CD-ROM to full- @ four-processor AlphaServer 2100, with 190 MHz pro-
time faculty members. Contact one of the authors to obtain a copy.  cessors and 256 MB of memory.




When an interrupt or page fault occurs during log-

opcode time stamp . . .
arget e ging, the address of the first instruction of the interrupt
or fault handler is put in the log, along with the address
of the first instructiomot executed because of the inter-
opcode fime stamp base register value rupt (the instruction that would normally be executed im-

mediately after the interrupt handler returns). This infor-

mation is used during trace reconstruction to determine
exactly where the interrupt occurred in the i-stream.

Additional log entries record information about mem-
ory load and store instructions, and process context

opcode time stamp new process id

switches.

In the Alpha implementation of PatchWrx, the log is
op vector of 60 taken/fallthrough 2-way branch bits recorded in a 45 MB pOI’tIOﬂ of phy5|cal main mem-

ory that is reserved at boot time, and is therefore in-
0 8 82 64 visible to the operating system. The log buffer holds
about 5.9 million eight-byte log entries, which is enough
Figure 1: Formats of PatchWrx log entries. Each entry isfor 5-20 seconds of real time. There is so much in-
64 bits. formation in a single reconstructed trace that we have
not been motivated to try stitching multipleatres to-
gether [CHRG95, AH90]; a single reconstructed trace
contains about 650 MB of dynamic i-stream with instruc-
The final output of PatchWrx is a trace containing the setion and data addresses.
guence of instructions executed by the operating system Recording the log in main memory is much faster than
and all applications from the time logging was enabledrecording on disk or tape. Recording in physical memory
up until the log buffer (from which the trace is recon- instead of virtual memory allows us to trace the lowest
structed) filled up. levels of the operating system, including the page-fault
Each instruction in a trace is tagged with its programhandler, without generating recursive page faults. It also
counter value, and if it is a load or store instruction, theallows us to trace across multiple threads running in mul-
memory virtual address that is its source or target. In diple address spaces, Wdut needing to write a log entry
multiprocessor tice, the instruction is also tagged with to one address space while executing in a different ad-
its processor number. dress space.
Some versions of our traces also contain times-
tamps on all branching instructions gxcept for tyvo-way2_4 PAL Subroutines for Logging
branches. These are used to help line up the i-streams
from different processors in the multiprocessaces, To implement the logging code, we use the Alpha ar-
and to compute lock holding times in our second studychitecture’s PALcall instruction, which traps to one of a
described in Section 4. set of Privileged Architecture Library (PAL) specialized
subroutines without disturbing any programmer-visible
state, such as registers. These subroutines have access
to physical main memory and to internal hardware regis-
While a patched system is running, a log is collectedters and they run with interrupts turned off. We extended
recording the information necessary to eventually reprothe PAL-code for Alpha NT with eight additional subrou-
duce a full system trace. A log is a sequence of entrie¢ines, and we modified some of the existing subroutines,
describing branching events or data references. Figure as summarized in Table 1. Other architectures may have
summarizes the different kinds of log entries. supervisor call or trap instructions that, in conjunction
As in most computer designs, the Alpha architecturewith modified operating system kernel interrupt routines,
has two basic forms of branching instructions: a jumpcould be used to get a similar effect.
to an address in a register, and a PC-relative two-way
conditional branch. For each jump instruction, we record2
one log entry. For two-way branches, we accumulate a
bit-vector recording the outcome of up to 60 two-way It is possible to capture data addresses by patching all
branches in a single log entry, one bit per branch. Thidoad and store instructions, but this fills up the log buffer
gives us a compact encoding of the exact flow within aquite quickly and so we would like to avoid it. We ob-
subroutine, taking only about 10% of the log entries.  serve that many pieces of code useltipie references

2.2 Trace Contents

2.3 Log Entries

.5 Collecting Data Addresses



| PAL routine | Action/Recorded info. |
PalReset J‘ (Set aside log memory)
InterruptStackDispatch next addr., interrupt target
Softwarelnterrupt next addr., interrupt target
DispatchMmFault next addr., page fault target
UNALIGNED next addr., align. fault targe
RFE return from exception target
CALLSYS sys. call target
RETSYS return from sys. call target
SWPCTX new process ID
pwrdent read log entry from buffer
pwctrl init. log, turn logging on/off
pwbsr branch entry
pwjsr jumpl/call/return entry
pwldst load/store base register entry
pwbrt cond. branch taken
pwhbrf cond. branch fall-through
pwpeek (for debugging only)

next-log-entry pointer, and requires encoding the proces-
sor number in each log entry.

Rather than interleaving single entries, we allocate
chunks of 128 entries teach processor. This cuts down
the frequency of atomic updates by two orders of mag-
nitude and lets us encode the processor number once per
chunk of entries, rather than in every entry. With log
entries generated on each processor at the ratbafta
one per microsecond, a group of four chunks represents
about 100 microseconds of real time on a four-processor
system.

2.7 Trace Reconstruction from Logs

Reconstruction of a full trace given a log and a set of
binaries is mostly straightforward. As described above,
some special care and techniques are applied for obtain-
ing data addresses from a limited set of base register
values recorded in a log. Two additional tricky issues

Table 1: Logging-related PAL subroutines. First setinolve handling interrupts and merging multiprocessor
are modifications to existing PAL subroutines. Secondtraces.

set (starting with pwrdent) are new PAL subroutines for

PatchWrx.

off the same base register.

Since the i-stream reco

The first issue concerns where to insert interruptsin a
reconstructed i-stream. During reconstruction, one po-
tential place to divert the i-stream to the interrupt han-

rdler is after all jump entries that precede the interrupt

struction recovers the actual instructions executed, w&@ve been consumed, when the instruction that matches

will have these address specifications in the dynamic i
stream. Thus, for a sequence of references over whiclf
changes to the base register value can be computed fro

the not-executed address in the next log entry is encoun-
red. If the not-executed instruction is inside a loop,
tRe interrupt must be delivered during the right iteration.

the i-stream, we need only record the base register’§°°p iterations are controlled by jumps or conditional

value once. The effect is that only one out of every
10 load or store instructions is actually patched, and thaP
for loops with constant strides through memory, only the

initial base-register value outside the loop eced.
Our patching and reconstruction algorithms are som

what simplistic, causing the reconstruction to reach som
loads and stores without knowing the base register valu
(as with certain interrupts). When this happens durin
reconstruction, we make up a random synthetic value,
for the base register, then track any incremental changetéD
from there. Even in code with no load/store patches a
all, this is surprisingly useful. The effect seen in the
d-stream is that the bases of arrays and structures al

stacks are random, but the relataecess patterns within
each aggregate are accurately reflected.

2.6 Handling Multiprocessors

er . . . :
gefore recording the trace entries for an interrupt. This

5_branches. So it is necessary to consume not only all the

receding jump entries in the trace, but also exactly the
right number of conditional branch bits before delivering
the interrupt. For this reason, we flush the partially accu-
mulated taken/fallthrough vector into the log buffer just

llows a perfect reconstruction of where to deliver an in-
rupt.

The second issue concerns merging traces from mul-
le processors. This requires special care because the
ime stamps within the entries come from four differ-
ent cycle clocks (oscillators) on a four-processor system.

n‘gwese clocks are not synchronized with each other, and

we observe drift of up to 100 parts per million (100 mi-
croseconds per second) within logs. All we really know
about the clocks is that the first time stamp in chuvk
was created after the first time stamp in chunk-1 and
before the first one in chunk + 1.

By carefully applying running inequalities between

When PatchWrx is running on multiple processors, thehundreds of chunks, we can map the drifting time bases
log entries for all processors are merged into a singlénto a single absolute time from the beginning of the log,
log buffer. This allows us to see the dynamics of the in-within a window about two microseconds wide. We use
teractions between processors. Writing a single mergethis derived absolute time base to interleave the instruc-
log requires doing a multiprocessor-atomic update of theions in the reconstructed merged i-stream. The effect is



that an instruction on one processor that stores to a sha
variable is close (within dozens of instructions at a 4

tracing slowdown) in the final i-stream to an instructiol To main memory
on another processor that reads the shared variable an f

fact sees the new value. Although we qannpt guarant [ Board Cache ]
that the store precedes the load in the final i-stream, \

find this close enough for understanding multi-process A

dynamics, includingache interactions. v Pin Bandwidth

2.8 I-stream Distortion
CPU Chip

[ D ]
Because the patches iatiuce extra instructions and ex- III
tra memory references on an instrumented system, th
is necessarily some distortion in the timing of the recor
structed i-stream. There is little distortion of the i-strear
itself, since the reconstruction excludes the patches. T
paths through subroutines and the sequence of subr Figure 2: Processor pin bandwidth
tine calls are the same in the reconstructed i-stream

they would have been in an uninstrumented system.
The reconstructed and uninstrumented i-streams difi Strumented code can have a subtle effect on the memory

in four subtle ways, however access patterns of a processor, but there appears to be no

First, the patched images are bigger than the originalé?tereSting distortion when aggregated over several sec-

so shared-library images loaded into consecutive memgnds'

ory locations end up at somewhat different addresses.

This can have a slight effect on instruction cache (-3 Pin Bandwidth Study

cache) simulations for large caches based on the traced

instruction addresses. Patching expands images by muPur first study using PatchWrx traces is a comparison

tiples of 64 kilobytes, so the larger size images haveof processor pin bandwidth requirements for a few dif-

no effect on small cache simulations; the low 16 bitsferent applications running under Windows NT on two

of patched and original i-stream addresses are identicaf\lPha processors. As shown in Figure 2, we are inter-

There can be a similar s||ght effect on data cache (dESted in the bandwidth between the processor Chlp (Wlth

cache) and translation buffer simulations, as patches ca@n-chip i- and d-caches) and the board-level cache. This

also cause data to be moved. memory traffic is due to i- and d-cache misses. The ques-
Second, the patched images can take i-stream padton is: how many bytes per second need to cross the

faults on the pages containing the patches. While th@ins of a processor chip when running a given program

patches themselves never show up in the reconstructed® full speed? The answer is a function of the workload,

stream, the extra page fault traps and processing do. Thigcluding user and system activity, the properties of the

appears to be only a slight distortion. processor chip, the clock speed, and the desired clock
Third, timer interrupts happen four times more fre- cycles per instruction (CPI). For our study, “full speed”

quently in the traced code than in the uninstrumenteds 1 CPI. The answers are interesting because, as we'll

code, due to the 4x tracing slowdown. In Win- S€€, processor pin bandwidth is a first-order bottleneck

dows NT 3.5, this increases the total number of instrucfor important applications.

tions executed by about 1 percent. We have chosen to

ignore this in our studies, but one could mechanically3 .1 Configuration

remove three of every four timer interrupts to further re- o
duce the distortion. We looked at four applications:

Finally, external interrupts (disk, network, etc.) hap- 1 icrosoft SQL Server, October 1994 beta version,
pen approximately four times sooner in thaded code a commercial database server, running the TPC-
than in the uninstrumented code (again due to the 4xtrac- g [Gra91] benchmark. The trace contains 64.5 mil-

ing slowdown). To the extent that they are a consequence  jio, instructions, spanning several hundred transac-
of the workload being traced, there are not more inter- tions.

rupts per million instructions executedzach one just

occurs relatively sooner in the i-stream. Running an in- 2. GEM compiler [B-92] back-end, from Digital’s
terrupt routine sooner than it would have run in the unin- commercially available optimizing C compiler,



System| Appl. | Synthetic| to cross the pins. Writes go into a group of four write

Ld/st | Ld/st data| buffers. A write to a different address causes 32 bytes
Application | #instr. | patched| patched addr. | to cross the pins to flush one of the dirty write buffers.
SQL Server| 64M n n 73% | The actual pin bandwidth on this processor is realisti-
GEM comp.| 29M n Y 8% | cally about 300 MB/sec. The maximum bandwidth is
Tomcatv 47M n Y 24% | about 600 MB/sec.
Ear 83M n n 14% The Alpha 21164 runs at 400 MHz and has a sin-

gle 96-kilobyte 3-way associative write-back combined
Table 2: Trace characteristics. i-cache and d-cache with a 64-byte cache line size. Each
i-cache miss and load miss causes 64 bytes to cross the
n- Pins. This processor has a write-back cache: writes that
hit in the cache do not cause any bytes to cross the pins
but do make a cache line dirty. Writes and reads that
3. tomcatv, from the SPEC92 floating point bench-cause a dirty cache line to be flushed (“victim writes”)
marks [SPE]. The trace contains 47 million instruc- cause 16—64 bytes to cross the pins, depending on what
tions. portion of the line has been modified; dirty bits are kept
for each 16-byteubblock. Writes that miss also cause a
4. ear, also from the SPEC92 benchmarks. The tracgache line to be allocated and filled from memory, so they
contains 83.84 million instructions. cause 64 bytes to cross the pins for the read. Note that

We chose these applications because they give a varf°Me of these reads will be unnecessary overhead if all
ety of data points, from heavy memory system usage 1H4 bytes are eventually ove"rwrltten (“rgdynglant readg” as
light usage. At the time we started the experiments, th&ompared to “useful reads”). The realistic pin bandwidth
SPEC95 benchmarks were not yet available. It would®" this machine is about 750 MB/sec, and the maximum
be interesting to do the same experiments for the gc@ndwidthis about 1.6 GB/sec.
SPEC95 benchmark, to see how it compares to the GEM
results. 3.2 Results
We took traces of these applicationsnning on a
uniprocessor Windows NT 3.5 system. The traces varFor each of the applications on each of the processors
ied as to how much load/store patching was done. Thave looked at a plot of the processor pin bandwidth re-
reasons for not just doing full load/store patching relateduirements over time. This shows the dynamics of the
to current PatchWrx limitations on image sizes and theraffic in addition to giving us upper bounds on the re-
slowdowns introduced by load/store patching. As showrfluirements.
in Table 2, none of the uniprocessaates had loads and
stores patched in the operating system. For the SQI3.2.1 SQL Server
Server and ear uniprocessor traces no loads or stores
were patched in the application images. For the GEMFigure 3 shows the simulation results for pin bandwidth
compiler and tomcatv traces, load and store instruction§equirements on the Alpha 21064 and 21164 processors
were patched in the application images. None of the ifor the SQL Server workload. The x-axis marks time in
stream references in these traces are synthetic, but tifdunks of 0.5 million instructions, and the y-axis shows
d-stream synthetic references vary from 8% to 73%.  the number of gigabytes per second of traffic across the
We used these traces to simulate the caching behains for a given instruction trace.
ior of different processor chips under the assumption that The left-hand graph shows the 21064 results. The traf-
the trace executes at 1 CPI. The simulation computes thtc is broken down into i-cache misses (imiss), d-cache
number of bytes that would need to cross the pins to théead misses (dmiss), and write buffer flushes (dwrite).
board-level cache. These numbers were broken down bt 1 CPI, the pins are overcommitted by a factor of two
the source of the traffic: instruction reference misses, antHst on instruction cache misses alone. Three bytes of
data reference misses of a variety of kinds. instruction miss in the cache for every four bytes exe-

We looked at the behavior ofach application on cuted. The required bandwidth for all traffic is about
two different A|pha processors: the A|pha 21064 atl.z GB/sec, or about four times the bandwidth that the
200 MHz, and the Alpha 21164 at 400 MHz. processor realistically can deliver. In fact, the uninstru-

The Alpha 21064 runs at 200 MHz and has 8 kilo- mented workload achieves about 4.3 CPI, giving us con-
bytes each of direct-mapped V.Vme{.blmgh Icache and. °Note: the bandwidth pictures show only the first 25 million in-
d-cache with a 32-byte cache line size. Each instructiorctions of each trace; velitie changes in any of thedces beyond
cache miss and data read (load) miss causes 32 bytest.

compiling a 3000 line C program. The trace co
tains 29 million instructions.
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Figure 3: Pin bandwidth requirements of SQL Server running on Alpha 21064 and 21164 processors.

fidence that the cache simulations are valid. The simula3.2.3 SPEC Benchmarks

tion is intended to give lower bounds on CPIs based on

pin bandwidth requirements; the extra 0.3 CPI in prac-For comparison with the commercial workloads, we

tice is due to non-zero latencies that are not included iffhose two of the SPEC92 floating point benchmarks to
the simulation. examine.

. Figure 5 shows the simulation results for the tomcatv
The right-hand graph shows the 21164 results. Her?race. On th@1064, the i-stream essentially fits into the

we split up the d-cache write traffic into victim writes 8 ki .
. : . ilobyte i-cache. The program repeatedly goestigh
(dvict), and useful and redundant reads triggered by write hases where the pins are overcommitted by factors of

”?‘SSES (dread). The required' pin bandwidth he.re s a§.5 to 3 or more, and then are okay. The actual program
high as 1.7 GB/sec, so the pins are overcommitted b¥uns at between 1 and 1.5 CPI on this machine. On the

[nore than a fz'atct:t(;r. oft2 a? 1hCPI..The p||ns ar};;mrll of- 21164, more of the workload falls within the bandwidth
eh overcommitted just ongacne misses alone, 9 limitations, with the periodic lower plateaus well within

the i-cache miss traffic periodically dips down below thethe capacity of the processor pins, but there are still pe-

750 MB/sec that the processor typically delivers. riodic benchmark array access bursts that are factors of
two or more higher than the available bandwidth. Note
that the instruction stream mostly fits in the cache, and so
doesn’t contribute much to the bandwidth requirements.

3.2.2 Compiler Back-end Also, the demands for data bandwidth fall into a pre-
dictable pattern. Perhaps prefetching during times when

. . . ._bandwidth is underutilized could help for this workload.
The second trace for which we simulated the pin traffic™ h he simulafi its for th
is from the GEM compiler run. The results are shown Figure 6 shows the simulation results for the ear trace

in Figure 4. The left-hand graph shows that the requirec{unning on the Same two processors. We. see th"’?t even
pin bandwidth on the Alpha 21064 is about 600 MB/sec.On the 21'064, the pin bandwidth is essentially sufficient
This is about half as much as the SQL Server workloadVith required bandwidth about 200 MB/sec. The actu.al
on this machine, with a somewhat lower ratio of i-cacheorkload runs at 1 CP!I or less (because of the dual in-

to d-cache traffic. The pins aréilkovercommitted by a stryction issue capabilities of the processor). The re-
factor of two according to the simulation. The uninstru-duirements for ear on the 21164 400 MHz processor are

mented workload on this machine runs at about 2.5 cpiWell within the range of the processor. A large part of the
workload fits in the caches in this case.
The right-hand graph shows the results for this work-

load on the Alpha 21164 400 MHz processor. Note that

the i-stream here mostly fits into the 96-kilobyche, 3.3 Memory Maps

with about 200 MB per second of traffic left over. The to-

tal pin bandwidth requirements are generally under aboutooking at the patterns of memomccesses over time
500 MB/sec, with occasional spikes over 800 MB/sec.helps illuminate the results of the pin bandwidth simu-
Thus, pin bandwidth is mostly not a bottleneck for GEM lations shown above. Figures 7-11 show the memory
on the 21164. footprints for the first 25 million instructions ieach
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Figure 7: tomcatv memory access plot showing the dis-  Figure 9: ear memory accesses, user and system.
tribution of user-space addresses over time. Looking at

any vertical slice we see all the addresses (mod 4 MBis gzt
that were accessed within that time slice.
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imMB
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Figure 10: GEM memory accesses, user and system.

oM Instructions 25M

Figure 8: tomcatv memory accesses, user and systemthe way up from the bottom of the picture are the i-stream
for the timer interrupt routine (about four times too of-
ten because of the tracing slowdown). The other dots
. . ) ) X that correlate with these are the data references made
lions of instructions executed. The y-axis shows ,V',rtualin the timer routine. The occasional vertical lines of
adc'iresses'accessedodulo 4,MB (chosep bcaus'e Itis . high-density references are other operating-system activ-
an interesting board cache size). There is adotin the plq:[y1 including the thread scheduler and network traffic.
ture for each instruction address and for each Ioad/storq;hiS operating system code has less predictable branch-
data} address. . ing patterns and data accesses.

Figure 7 shows the memory footprint for the user-only Figure 9 shows, on the same scale, a trace of both

part of the.tomcat'v benchmark. The bottom solid I?nesystem and user addresses for the ear benchmark. The
?hﬁ\tle the mstru'ctlclm fetchesf forC:he _?ﬁ nci‘hfrpark,tall n amemory usage is relatively light, with few strong patterns
'ghtioop on a single page of code. 1he 1€tMost grouRq, o than the horizontal lines due to timer interrupts and

of six upward-slopinglines are data references SWEEPING,me accesses to application data structures, and the ver-

forward through six half-megabyte arrays. These are fo"tical lines due to operating system activity.

f f h h diff .
lowed by some faster forward sweeps through different Figure 10 shows, on the same scale, a trace of the

arrays, foyr backward sweeps, anq the data pat'tern reG-EM compiler benchmark. The horizontal lines rep-
peats. This program has very predictable branching pa resent frequently used subroutines and frequently used
terns and very predictable data accesses.

: : ata. The visually dominant diagonal line appears to
In Figure 8, we have added the operating system parij : o i
of the trace. The periodic vertical ticbaut one sixth of be the buffer of program text being compiled; the com

piler is sweeping forward through it (modulo 4 MB).
3[except for the ear trace, which has about 2lliom instructions 1 1€ timer-interrupts are still there, but a bit harder to
shown in this version] see. Most of the rest of the dots are data references to

tracé. The x-axis shows time from left to right, in mil-
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Figure 11: SQL Server memory accesses, user and sys-

) Figure 12: Incremental I-cache Hit Curves.
em.

linked-list data structures used by the operating system. e R~
This workload has less predictable memory access pat-
terns then tomcatv.

Finally, Figure 11 shows, on the same scale, a trace of *°~
the SQL Server benchmark. The trace looks somewhat
similar to white noise—there is very little correlation be- 2~
tween addresses. This application falsifies the premise
of a cache: that accessing a location goad predictor 10— Tomeatv
that the same or a nearby location will be accessed in the
near future. 0o—

These memory maps highlightthe differences between I 1 1 Lot L L b o L
the memory requirements of the workloads. There seems
to be at least some rough correlation between the den-
sity of the memory maps and the pin bandwidth require-
ments.

Figure 13: Incremental D-cache Hit Curves.

to be expected — if straightline code is executed with no
; : repetition from 64-byte (16 instructiogpche lines, we

3.4 Cache Demand in More Detail would expect 15/16 hits, or 937 hits/1000 instructions.
To understand the processor bandwidth results better, wehe short vertical bars mark 8K and 96K cache sizes.
looked at thencremental cache hiurves for cache sizes ~ The tomcatv i-stream fits almost entirely in 8KB, with
from 1KB to 16MB. Except for the smallest cache, the a little tail that hits only in main memory. The GEM
incremental hit rate for a given size cache is the numbecompiler i-stream extends out to 32KB before it drops
of additionalhits that occur in the given cache and miss off, and the SQL i-stream has significantincremental hits
in smaller caches. Portions of the incremental hit curveall the way out to a 1MB cache. This large footprint is
for sizes bigger than processor on-chip caches representhy the SQL i-stream puts such a bandwidth load on the
misses that produce the off-chip bandwidth demand.  processor pins. This result is roughly consistent with the

In this section, we used direct-mapped combined i--cache miss rates measured by [MDO94] for TPC-A and
and d-stream caches and a line size of 64 bytes, and raRPC-C (although they had a larger percentage of time
the simulations over the initial 25M instructionsedich  in operating system code than we observed). The GEM
trace. footprint produces a large bandwidth load with an 8KB

From the bandwidth charts above, we see a marke@n-chip cache but a small load with a 96KB cache. The
difference in i-stream miss rates across the uniprocessd@mcatv footprint presents very little off-chip bandwidth
workloads. Figure 12 shows the incremental i-cache hitoad.
curves for three of them (we exclude ear from this Sec- Figure 13 shows the incremental d-cache hit curves.
tion’s discussion because its memory demands are urAll three d-streams show a tail of references that miss
interesting). For all three curves, the 1KB points areeven in 16MB and go all the way to main memory. The
off the chart at 845-957 hits/1000 instructions. This istomcatv curve has peaks at 8KB (76 misses per 1000

10
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larly, the d-stream breakdowns show the system d-stream
T T Iy (O A I .
1K 4K 16K 64K 256K 1M 4M  16M Main to have a much larger footprint than the user one (al-
though tomcatv is close, due to the large amagesses).
Figure 14: SQL User vs. System I-stream. In addition to observing larger footprints in system
and SQL server code, the incremental cache hit curve
allows us to compute the relationship between the CPI of
N a workload and the performance of various levels of the
memory hierarchy. If we multiplygach point of the in-
cremental cache hit curves by the time it takes to service
that hit in a real memory subsystem, we get the total time
spent waiting on memorgiccesses for that workload.
Using realistic times for early Alpha computer sys-
o system tems, the SQL i-stream and d-stream hits beyond 96KB
Synthetic each total hout 1.8 CPIl. Combined with a 100%-hits
execution rate of about 1 CPI, these total about 4.6

System | Table 3: Average bytes per instruction of pin traffic due

User

20—

10—

0 st CPI. This is roughly consistent with the measurements
Jore e e L e e e e e in [CB94] of 4.3 CPI, and 20-25% operating system time,
and 39%+36% i-stream plus d-stream stall time, on the

Figure 15: SQL User vs. System D-stream. TP1 database workload on an older AlphaSystem 7000

computer.

instructions) and 4MB that correspond to sizes of fre-
guently accessed arrays in that program. The 4MB pea
is why the tomcatv d-stream puts a large periodic band\We conclude from these experiments that processor pin
width load on the processor pins. bandwidth is a bottleneck for some applications.

InFigure 14, we have broken down the SQL incremen- SQL Server needs about two to four times the band-
tal i-cache hits by system and user code. The system hitgidth of tomcatv, and is limited to about 4 CPI on at least
are per 1000 system instructions, and the user hits pasne current processor. According to another experiment
1000 user instructions. The SQL system code is abouthat we ran, a future processor similar to the Alpha 21164
25% of the total i-stream. The system code not only hasut running at 500 MHz would need at least 2 GB/sec
a bigger cache footprint, it has a larger tail of hits in main of pin bandwidth to run the SQL Server benchmark at
memory. 1 CPI.

The SQL d-stream breakdown, Figure 15, shows sys- Both SQL Server and GEM have higher pin band-
tem vs. user and also real vs. synthetic d-stream adwidth requirements due to i-stream traffic than either of
dresses. The d-stream has a high proportion of synthetithe SPEC benchmarks, as summarized in Table 3. This
addresses, so is not very precise. The major differencestream traffic contributes significantly to the pin band-
between the real and synthetic addresses is a larger preddth bottleneck for SQL Server. Therefore, chip de-
portion of synthetic addresses that miss all the way out t@igners should be looking at more than SPEC bench-
main memory. For both the real and synthetic d-streammarks if they want their future chips to run commercial
addresses, the system code has a larger footprint than tieorkloads well.
user code. Our experiments also suggest that it is increasingly im-

Both the GEM compiler and tomcatv i-stream break- portant for algorithm designers to pay attention to mem-
downs (not shown here) reveal the system i-stream tary structure and cache parameters if they want their
have a much larger footprintthan the user i-stream. Simicode to run fast. One example of such an effort is the

@.5 Discussion
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AlphaSort work [NBCF94], where careful attention to used for this purpose. Therefore, the picture showing
these memory details paid off handsomely. lock acquisition and release points is not perfect. How-
ever, we have taken some care to ensure that the pictureis
reasonably self-consistent, and consistent with the code.
While this picture shows just a small slice of the trace,

Our second study examines the locking behavior ofit reveals several interesting behaviors. The dispatcher
SQL Server running the TPC-B benchmark on a four-lock is held for relatively long stretches of time (200-900
processor AlphaServer 2100 symmetric multiprocessofnstructions). Also, it is held for a large percentage of
The traces were taken for SQL Server version 6.00.85&e time—about 45% of the total elapsed time. This sug-
(March 1995 beta release), running Windows NT 3.5,9€ests that the workload could not scale up beyond eight
with 12 clients running transactions against the databasérocessors, which would cause this lock to be held nearly
We chose this number of clients to minimize the idle time 100% of the time.

of the system, which ended up being about 2—3%. More that 16% of the time is spent spinning while

The trace contains about 69 million instructions. In Waiting for a lock, usually the dispatcher lock. This spin
contrast to the uniprocessor traces, operating systerime would go up substantially as the lock-held time ap-
loads and stores are patched. For the application cod®roaches 100%. Note the convoy effect in the second
only loads and stores to lock variables are patched. ~ rectangle, at about 0.041 seconds. Processors line up

We use the trace in two ways. First, we look at a pic-SPinning for the dispatcher lock.
ture showing the timeline of software lock acquisition During the long stretch where processor 0 holds the
and release activity. Then, we simulate the cache cohegispatcher lock, a disk interrupt arrives and the processor
ence protocol employed on the machine to understangervices it while still holding the lock. Other processors
how the locking activity affects communication among are waiting to get the lock during that time.
the processors. All of the evidence above suggests that the dispatcher
lock is a bottleneck. Bcause of the convoy effect, it
. would be nearly impossible to get beyond about 6 pro-
4.1 Software Lock Activity cessors’ worth of work from this code.

Figure 16 shows the timeline of locking activity fora 20-  The picture reveals that in addition to being held for a
millisecond portion of the SQL Serveiaize, encompass- long time overall, the dispatcher lock is held frequently.
ing portions of several transactions on the four procesThis is because the SQL Server user code goesitr
sors. The picture shows groups of four lines (with back-the dispatcher lock to block when one of its own locks
grounds alternately shaded white and lightgray), one lings unavailable. This type of lock usage was perhaps not
per processor, with shaded bars representing the elapsédaticipated by the Windows NT implementers. Showing
times that locks are held. Time runs from left to right the picture to the Windows NT kernel and SQL Server
and top to bottom. Each group of four horizontal linesimplementers at the same time brought out assumptions
represents 2 milliseconds of elapsed time. that each group was making@ut the other’s code.

In this picture, we distinguish three cases: the thick The full-color version of this picture makes other lock-
black bars are the operating system’s dispatcher lockng patterns visible. For example, there is a repeated
(KiDispatcherLock), the thick gray bars are all other lock pattern of nine lock acquisitions (some of which are the
holding times, and the thin black lines are times spensame lock repeatedly acquired and released) in the same
spinning while waiting to acquire a lodkin the rectan-  order when manipulating the operating system page ta-
gle at 0.030 seconds, for example, processor 0 starts obes. Examining the code may suggest ways to make the
holding no locks, processor 1 holds the dispatcher lockassociated operation more efficient.
processor 2 is spinning on the dispatcher lock, and pro-
cessor 3 hold no locks. Processor 1 then releases the diﬁ-z
patcher lock and processor 2 acquires it. Four other locks
are used, then processors 1 and 2 use the dispatcher loTke software lock activity above for achieving mutual
again. Finally, processor 1 uses another lock and proceexclusion is best tuned by changing the software. We
sor 0 uses a lock. also looked at multiprocessor hardwarache interfer-

Lock acquisitions and releases are not reported dience caused by writes on one processor affecting caches
rectly in the trace, but rather, must be detected by patteran other processors.
matching against the common sequences of instructions We looked in detail at the behavior of tlwache co-

4We usually look at this picture in color, with different colors and herence protocol with four AIphaServer 2100 proces-

line widths for different locks, making more of the locking behavior SOIS. A pure invalidate pl’OtQCOl _iS used—a write by
apparent at once. one processor to a cache line invalidates all other cached

4 Multiprocessor Study

Interference from Cache Coherence
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Figure 16: SQL Server lock activity. Time runs left-to-right and top-to-bottom.

copies of the line in other processors. We found that 40%wvould be better to turn off interrupts before acquiring the
of the board-level cache misses in the 4-processor SQlock and turn them back on after releasing the lock.
trace were due to interference from other processors— The application code that triggers too-frequent use of
invalidates due to writes of shared variables. the dispatcher lock could adopt other locking strategies,
Most of these misses were in fact to aboutca¢he such as trying a handful of times to acquire an applica-
lines containing software locks. (Note that the time losttion lock before blocking or to do user-level dispatching
on servicing these misses is smaller than the time losbetween multiple transactions.
above spinning on held locks.) Some of the invalidations Examining the dynamic locking behavior of the sys-
came from false sharing. The programmers who wrotdem reveals properties that are more difficult or impossi-
the code assumed 32-byte cache lines and took care tie to see from statistical information. We can see clearly
put locks in different 32-byte lines than other variables.the convoy effect for locks that are in high demand, and
However, this particular machine has 64-byte lines, save can see patterns of locking that may suggest ineffi-
a lock and another unrelated shared variable could endiencies in the code. We can also identify cases where
up in the same line and cause unnecessary invalidationkcks are probably not a performance problem, as is true
The ability to track shared sub-blocks in the hardwarefor most of the locks in our trace.
would help this problem. A better cache coherence pro- Having the traces available for simulating cache co-
tocol for this workload would be a hardware design thatherence protocols helped us to understand the causes of
writes through for shared blocks, having recipients up-scaling problems in our multiprocessor system, and can
date or invalidate depending on how recently they hadhelp the designers of future systems to avoid these prob-
touched the line. Such a design was used in the Alphé&ems.
Demonstration Unit [TCS93].

5 Conclusions

4.3 Discussion . :
These studies have demonstrated that full, dynamic exe-

The Windows NT 3.5 operating system code holds thecution traces are useful for designing future systems, as
dispatcher lock for so long because it is doing a full con-well as for diagnosing difficult performance problems of
text switch while holding the lock. It would be better current systems.

to make the decision about what to dispatch next while Obtaining such traces is practical using PatchWrx.
holding the lock, release the lock, then perform the actuallhe overhead is low enough on the uniprocessor systems
context switch without delaying the other processors. Al-(about a factor of 2 slowdown) that we always ran the
lowing interrupts while holding the dispatcher lock also systems with instrumentationin place. Overhead on mul-
lengthens the path and slows down other processors. tiprocessor systems was reasonable enough to get useful
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traces. PatchWrx traces are in the rangebafua 50-100  Hunter generously provided time on a four-processor Al-
million instructions, which was enough to observe inter-phaServer 2100 system. Chuck Thacker, Dave Conroy,
esting dynamic behavior in the system while still being Bill Weihl, Greg Nelson, Amitabh Srivastava and Alan
practical to collect. Eustace provided continuing encouragement. Our sum-
The specific versions of software that we studied argmer interns, Cliff Mercer and David Martin struggled
inevitably already out of date with respect to currently with early software and each provided key insights for
available versions, and some of the specific problems reincreasing performance of the workloads studied. David
vealed in our studies may have been fixed by now. In factMartin was responsible for treache coherence protocol
the Microsoft SQL Server 95 and Windows NT 3.51 andsimulations. We also thank Jim Gray and David Cutler
4.0 products contain performance improvementkat  at Microsoft.
resulted from our studies [Gra95] . However, the same The observations of Richard Draves and the anony-

techniques and tools can be used to look for performancgous OSDI referees substantially improved the paper.

problems in the new versions and the traddspovide
valuable input for testing future chip designs.

We find that real pieces of large software are big-
ger than any practical on-chip caches, and therefore us&H90]
much more processor pin bandwidth. Pin bandwidth can
be a bottleneck to running commercial workloads at the
desired speed. For the near future at least, computer de-
sign is memory design, and software design is memor ASHS6]
design. Pin bandwidth is an important consideration (a
much as memory latency) because it sets a Idveemd
on the number of clock cycles per instruction needed to
execute a workload.

Although this paper emphasizes the effect of band-
width on the performance of these processors, one
shouldn't ignore the effect of latency. If there is insuffi- [B+92]
cient bandwidth to perform a given workload, the work-
load will run proportionally slowly, and there is nothing
software can do to compensate for this. Systems that
have sufficient bandwidth but high memory-access la-
tency can possibly perform well, but only for software [BKW90]
that is designed to hide the high latency. Both high
bandwidth and low latency are necessary for peak per-
formance on most commercial software.
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