
Abstract
At VL’96, we presented CAT, a system for building

Web-based collaborative active textbooks on algorithms.
CAT augmented the expressive power of Web pages for
publishing passive multimedia information with a full-
fledged interactive algorithm animation system. Views of a
running program could reside on different machines, which
made CAT particularly well-suited for electronic class-
rooms. In such a setting, a teacher would control the
animation, while students would view the animation by
pointing their Web browsers at the appropriate page. CAT
was based on our in-house family of Web browsers, which
supports applets written in Obliq, a distributed scripting
language. This paper describes a Java-based implemen-
tation of CAT, which can be used with standard Web
browsers.

Keywords: Algorithm animation, program visualiza-
tion, electronic textbooks, electronic classrooms, Java,
applets, distributed applications, remote objects.

1. Introduction

This paper describes JCAT, a Java-based system for
building Web-based collaborative active textbooks on
algorithms.

Pages of a JCAT textbook consist of passive
multimedia material combined with interactive algorithm
animations. The passive multimedia is specified using
HTML and can exploit the expressive power of Web pages

† Current affiliation: Ariba Technologies, Mountain View,

CA, USA mhb@ariba.com
‡ Current affiliation: Department of Computer Science, Uni-

versity of Tampere, Tampere, Finland rr@cs.uta.fi

(e.g., text, images, audio, and video). The interactive anima-
tions make use of a full-fledged algorithm animation system.

From the user’s point of view, there are multiple views
of a running program, and all are updated simultaneously as
the program runs. In addition, there is a control panel for
starting and stopping the animation and for adjusting its
speed, and one for giving input data to the algorithm.

Each view in JCAT, as well as the control panels, is
implemented as an applet. Because JCAT is based on Java’s
Remote Method Invocation (RMI) technology for allowing
applets on different machines to communicate with each
other, the views of an algorithm can reside on any machine.
Thus, in an electronic classroom, a teacher can control an
animation on his machine (specifying the input, single-
stepping the program to some point, and so on), and
students in the class (or even off-site) can see views of the
program on their machines by pointing their browsers at the
appropriate page.

Figure 1 shows Netscape Navigator displaying a page
from a prototype JCAT textbook on binpacking algorithms.
Although the page is not very glamorous (there is no audio,
no video, and little explanatory text), it does show the basics
of a page from a JCAT textbook. We’ll look at this screen
image in more detail later.

JCAT is a Java implementation of the CAT system [3].
CAT was implemented using a family of in-house Web
browsers that supported applets written in Obliq [8], an
inherently distributed language. Although Java does not
have the language level support that Obliq has for applets on
different machines to communicate with one another, the
RMI library provides much of the same functionality.

The early stages of the JCAT system were described
elsewhere [4]. This paper extends that report to reflect the
evolution of the system.

There are numerous Java-based algorithm animations
available on the Web. For example, Erickson maintains an

A Java-Based Implementation of Collaborative Active Textbooks

Marc H. Brown†

Marc A. Najork
Roope Raisamo‡

Digital Equipment Corporation, Systems Research Center
130 Lytton Ave

Palo Alto, CA 94301 USA

Contact: najork@pa.dec.com

index listing several dozen Web-based animations of
computational geometry algorithms [10]. Most of these
animations are stand-alone, self-contained applets, while
others follow a client-server model where the visualization
is displayed by an applet and the algorithm is executed on a
remote server. Hausner and Dobkin’s system is
representative of the stand-alone approach [11]; Mocha is
an excellent example of the client-server paradigm [1].

CAT and JCAT stand out in a number of ways. To the
user, CAT and JCAT animations are the only Web-based
algorithm animations with multiple views of a program. In
addition, these animations are the only Web-based algo-
rithm animations with support for collaboration. To the
programmer implementing an algorithm animation, CAT
and JCAT provide rich support for constructing algorithm
animations. The support comes in two flavors: there’s a
bona fide framework for separating the algorithm from the
views, and there is a powerful animation package. Both the
framework [5] and the animation package (based on [9]) are
well-proven in practice.

By design, CAT and JCAT are virtually indistin-
guishable to the end user, and very similar to the animation
author.

To the end user, the only difference is the browser in
which the pages are viewed. In CAT, users were limited to

using our in-house browsers (e.g., DeckScape [6] and Web-
Card [2]); in JCAT, any Java-enabled browser can be used.∗

To the animation author, the difference is the
programming language that is used, Obliq in CAT and Java
in JCAT. The conceptual model for preparing the
animations in both systems is based on BALSA’s notion of
interesting events to communicate the operations of the
algorithm to the views [5].

The remainder of this paper examines JCAT from three
perspectives: the end user’s view, the animation author’s
view, and the system implementer’s view. We illustrate
these perspectives using an animation of binpacking. We
chose the same example animation as in the VL’96 paper on
CAT [3] in order to help readers understand the similarities
and differences between the systems.

2. The User’s View

JCAT can be used as both a stand-alone electronic
textbook on algorithms and a collaborative active textbook
in an electronic classroom.

Figure 1 shows a page from a prototype stand-alone
electronic textbook using JCAT. The pages are from a
chapter on binpacking. The binpacking problem is as
follows: Given a set of blocks each weighing up to 1 unit,
group the blocks into the fewest bins possible, where each
bin can hold up to 1 unit. The “online” version of this
problem has the additional restriction that each block must
be processed as it is encountered in the input stream.
Although the optimal solution to this problem is NP-
complete, a “pretty good” packing can be accomplished
with the following simple algorithm: Examine the bins from
left to right and put the block in the first bin encountered
that has sufficient room. This algorithm is called first-fit
binpacking.

The top-left applet is the control panel. It allows the
user to start and stop the algorithm, advance the algorithm
step-by-step, and adjust the speed of the animation. The
control panel is algorithm-independent; this applet is used to
control all algorithms in the JCAT system.

The applet at the top-right is an algorithm input dialog
that is used for specifying input to the algorithm. This applet
is specific to each algorithm. The algorithm input dialog
used for binpacking algorithms allows users to specify the
number of bins available for packing, the number of blocks
to pack, and the range of possible weights of each block.

The two applets below the horizontal line are views.
The large applet on the left is the Probing view; it shows
each block as a vertical bar whose height reflects the weight

∗ JCAT runs on all Java-enabled browsers. However, the

collaborative features require a browser that supports
JDK1.1, such as HotJava 1.0.

Figure 1. A page from a prototype stand-alone JCAT
textbook on algorithms.

of the block. As the algorithm examines the bins, the new
block is graphically shown on the bin being examined. Once
a bin is found with enough room for the new block, the
color of the new block changes from gray to blue. The
smaller applet on the right is the Packing view; it shows how
the blocks have been arranged into the bins. Color is used to
redundantly encode the weight of each block.

The three figures on this page show how JCAT can be
used as a collaborative active textbook in an electronic
classroom. Again, we use the domain of binpacking.

Figure 2 shows the Web page that a teacher is visiting
in his browser. It contains the teacher control panel, the
algorithm input dialog, and the Probing view. We saw these
three applets before. The teacher can control the algorithm
as before.

Figures 3 and 4 show the screens of two students
captured at the same time that the teacher’s screen in Figure
2 was captured. The students are looking at different pages;
both of the pages contain views that are displaying the
algorithm controlled by the teacher.

The student in Figure 3 is visiting a page that contains
two views: the Glossary view at the top and the Probing
view at the bottom. The student in Figure 4 is visiting a page
that contains three views: The Packing view and the Probing
view on the top, and the Glossary view at the bottom. Both
pages also contain a student control panel. This applet
allows the student to specify the name of the teacher’s
machine where the algorithm is running.

Note how the Probing view and the Packing view scale

their contents to fit the page real estate allocated to them.
When the three screen images on this page were captured,
there were ten active applets from the JCAT system’s point
of view, three on the teacher’s computer, three on one
student’s computer and four on the other student’s
computer.

In JCAT, like in CAT, an unlimited number of students
can view the same running algorithm. The system ensures
that all views will be synchronized. The teacher controls the

Figure 2. A teacher's Web page.

Figure 3. A student's Web page captured at the same
time that the image in Figure 2 was taken.

Figure 4. Another student’s Web page captured at the
same time that Figures 2 and 3 were taken.

speed of the animation using the slider in the control panel.
Animations have the same duration on all computers in the
classroom, regardless of the type of machine. Thus, on low-
end machines, fewer frames will be displayed for a given
event than on high-end machines.

3. The Animation Author’s View

The framework for animating algorithms follows the
model pioneered by BALSA [5]: Strategically important
points of an algorithm are annotated with procedure calls
that generate interesting events (e.g., “swap elements” in a
sorting algorithm). These events are reported to an event
dispatcher, which in turn forwards them to all registered
views. Each view responds to each interesting event by
drawing appropriate images.

The task of preparing a page of a JCAT textbook
consists of four parts: defining the interesting events for the
algorithm; implementing the algorithm and annotating it
with the events; implementing one or more views; and
finally, creating Web pages that make use of the algorithm
and views. The Web pages are prepared using HTML; the
events, algorithm, and views are written in Java.

The rest of this section shows how the binpacking
animations seen before were implemented.

The Interesting Events

The set of interesting events is specified as a Java
interface. Here are the interesting events for the first-fit
binpacking algorithm:

public interface Binpacking {
void setup(int numBins, int numBlocks);
void newBlock(double wt);
void probe(int bin);
void pack();

}

The setup event is called once when the algorithm
starts, to communicate to the views how many blocks will
be processed and how many bins are available. The
newBlock event is called each time the algorithm
encounters a new block, whose weight is specified as the
parameter. The probe event is called each time the
algorithm checks if the new block can be packed into the bin
specified as the parameter. The pack event is called to
indicate that the last bin probed is where the new block will
be placed.

It is important to realize that there is no right or wrong
set of events or parameters. Another programmer animating
first-fit binpacking might have chosen a different set of
events or different parameters. The choice of events and
parameters will affect how much additional state each view
must maintain, since views do not have access to the

algorithm’s data structure, and how easy it is to animate
related algorithms (e.g., best-fit binpacking).

JCAT comes with a preprocessor, CATalyst, which
takes the interesting event interface and derives abstract
classes for the algorithm and the views. The classes
generated by CATalyst, along with the JCAT base classes,
provide all the communication mechanisms between
algorithms and views, whether local or remote. These
mechanisms are described in Section 4.

The Algorithm

An algorithm is an applet that appears as the algorithm
input dialog. It is a subclass of the abstract algorithm class
generated by CATalyst, which is a subclass of JCAT’s
generic algorithm class, which in turn is a subclass of the
standard Java Applet class.

The following code shows the applet that implements
first-fit binpacking. The animation author implements the
algorithm by subclassing the algorithm class generated by
CATalyst (in this case, BinpackingAlg) and overriding
an abstract method called algorithm with the algorithm
in question. The algorithm code is annotated with calls to
interesting event methods (shown in bold); these methods
are provided by BinpackingAlg . Each of them creates
an Event object, and forwards this object to the teacher
control panel, which in turn forwards it to the views.

public class FirstFit extends BinpackingAlg {
EntryField binFld, blockFld, minFld, maxFld;

public void init() {. . .}

protected void algorithm() {
int numBins = binFld.getInt()
int numBlocks = blockFld.getInt();
double min = minFld.getDouble();
double max = maxFld.getDouble();
setup(numBins, numBlocks);
double totals[] = new double[numBins];
for (int b = 0; b < numBlocks; b++) {

double wt = Math.Random()*(max-min)+min;
newBlock(wt);
int bin;
for (bin = 0; bin < numBins; bin++) {

probe(bin);
if (totals[bin] + wt <= 1.0) break;

}
if (bin == numBins) break;
totals[bin] += wt;
pack();

}
}

}

Since FirstFit is a subclass of Applet , it inherits
various methods that are invoked when the applet has been
loaded, started, stopped, and discarded. In this example, the
init method (elided) creates the user interface elements of
the algorithm input dialog seen at the top-right of Figures 1
and 2.

A View

A view is an applet with an additional set of methods
corresponding to each interesting event defined in the
interesting events interface. The applet is a subclass of the
abstract view class generated by CATalyst (e.g.,
BinpackingView), which is a subclass of the JCAT class
View , which in turn is a subclass of the standard Java
Applet class. The abstract view class generated by
CATalyst defines an empty method for each interesting
event. The animation author creates a concrete view by
subclassing the abstract view class, and overriding those
methods for which animation effects are desired.

The actual code for the Probing view shown in the
previous screen images is as follows:

public class ProbingView extends BinpackingView {
GP gp = new GP();
Vertex v;
double currWt;
double totals[];
char id;
int lastProbe;

public void init() {
super.init();
add(gp);

}

public void setup(int numBins, int numBlocks) {
id = 'A';
totals = new double[numBins];
gp.clear();
gp.setWorld(-2.0, numBins + 1.0, 2.0, 0.0);
gp.redisplay();

}

public void newBlock(double wt) {
v = new Vertex(gp);
v.setSize (1.0, wt);
v.setPosition(-1.0, wt / 2.0);
v.setColor(Color.darkGray);
v.setBorder(0.01);
v.setLabelColor(Color.white);
v.setLabel(""+(id++));
gp.redisplay();
currWt = wt;

}

public void probe(int bin) {
v.move(bin, totals[bin] + currWt / 2.0);
gp.animate(1.0);
lastProbe = bin;

}

public void pack() {
totals[lastProbe] += currWt;
v.setColor(Color.blue);
gp.redisplay();

}
}

As mentioned, views of an algorithm implement the
methods that are defined in the interesting events interface.

The body of each method is responsible for updating the
screen in a way that is meaningful for the view. For
example, the probe method smoothly slides the rectangle
representing the block being processed from its current
position to a position on the bin being probed, specified as a
parameter to the event. In addition, it records which bin is
being probed so the pack event can update an array that
maintains the total weight of the blocks in each bin.

The class GP (not shown) is a rich, high-level
animation package based on the metaphor of a graph
consisting of vertices and edges. Each vertex has various
attributes associated with it, such as position, size, shape,
color, border width, and label. A vertex can be surrounded
by colored highlights, and a highlight can be moved
between vertices. An edge connects two vertices and has
attributes such as color, thickness, curvature, and
arrowheads. The GP package also provides colored
polygons, specified by a sequence of vertices. Vertices can
be repositioned, and such movement can be shown by
smooth animation. When a vertex is moved, all highlights,
edges, and polygons associated with it are smoothly moved
as well. GP is based on a Modula-3 animation package,
GraphVBT [9], whose animation features were inspired by
Stasko’s TANGO system [12].

Figures 5 through 8 show other animations developed
with JCAT.

4. The System Implementer’s View

The complete JCAT system consists of a collection of
classes that are independent of any particular animation, the
GP animation library, and the CATalyst preprocessor.

Figure 9 shows the hierarchy of the classes that
constitute the binpacking example from before. The classes
in the top layer are part of the standard Java distribution.
The classes in the second layer are those JCAT classes that
are not specific to any animation. Classes in this layer
include the generic teacher and student control panels; they
provide the communication between the algorithm and the
views, both local and remote; and they serve as superclasses
for classes in the third and fourth layers. The classes in the
third layer are generated by CATalyst, based on the
interesting events interface. There is a class for each
interesting event; encoding interesting events as objects
makes it possible to keep the communication infrastructure
generic (that is, in the second layer). The third layer also
includes the abstract algorithm and view classes. The
animation author subclasses these abstract classes, filling in
the concrete algorithm and views, as described in Section 3
and shown in the bottom layer.

Figure 7. This animation shows two different views of
heapsort: a view that shows the conceptual structure of
the heap (bottom) and a view that shows the
implementation of the heap as an array (top right). The
screen dump was captured while the 4 th element (the
key F) and the 9 th element (the key N) in the array were
exchanging. The exchange is shown with smooth
animation in both views. Colors are used consistentl y
in both views to distinguish the heap elements from
those elements of the array that are already sorted and
no longer part of the heap.

Figure 8. An animation of Manasse and Nelson’s
k-Shortest Paths algorithm, which finds the shortest
paths, the 2 nd-shortest paths, etc. up to the kth-shortest
paths from a starting vertex to all other vertices in a
weighted directed graph. In this example, k is 3, and the
starting vertex is a. The user can specify a URL from
which to obtain the graph data, and has the opportunity
to edit that data.

Figure 6. An animation of the package-wrapping
algorithm for computing the convex hull of a set of
points in the plane. The lower-left view shows how the
segments of the hull are wrapped around the points in
the plane; the lower right view shows the underlying
main data structure of the algorithm.

Figure 5. An animation of David Wheeler’s block-sorting
lossless data compression algorithm [7]. The upper-left
view illustrates the compression phase; the upper-right
view illustrates the decompression phase. The lower-
right view provides further insight into why the
decompression phase works. The lower-left view shows
a history of the interesting events; this view was
generated automatically by CATalyst.

Dispatching of Interesting Events

An interesting event annotation in an algorithm (the
bold lines in the FirstFit class shown above) is actually
a call to a method (e.g., setup) that is defined in the
abstract algorithm class generated by CATalyst. This
method creates an event object (e.g., setupEvent) that
encapsulates the interesting event and its arguments, and
passes it to the teacher control panel. The teacher control
panel acts as an event dispatcher: it forks a thread for each
view on the teacher’s machine and one for each student’s
machine. The threads for the teacher’s views invoke the
method of the view that corresponds to the interesting event
(e.g., setup). The threads for the students’ machines
forward the event to a student “remote object” (that is, an
object whose methods can be invoked from a different
address space). The student remote object forwards the
event to the student control panel, which dispatches the
event in parallel to all views on the student’s machine. Once
all threads have completed, the execution of the algorithm
resumes. This process is illustrated in Figure 10.

JCAT’s remote method calls are handled by Java’s
Remote Method Invocation (RMI) package [13]. RMI
makes it possible to invoke methods of objects that reside
on different machines than the caller. RMI requires the
programmer to supply stylized interfaces for classes that are
to be remotely accessible, and it uses a stub generator to
create various classes that handle the intricacies of
marshaling and unmarshaling data over sockets. JCAT’s
use of RMI is limited to classes in the second layer, and thus
completely invisible to the animation author.

5. Conclusion

This paper has described JCAT, a Java-based version
of the Collaborative Active Textbook system introduced at
VL’96. JCAT, like CAT, augments the expressive power of
HTML (which is passive) with interactive animations of the
algorithms in a distributed environment. Unlike CAT, JCAT
allows the use of standard Java-enabled Web browsers.
You can experience the examples from this paper by visiting
http://www.research.digital.com/SRC/JCAT .

JCAT base classes

java.rmi.server.UnicastRemoteObject

StudentRemObjTeacherRemObj

packEventprobeEventnewBlockEventsetupEvent

Event

java.applet.Applet

Algorithm

FirstFit

BinpackingAlg

View

ProbingView

TranscriptView

BinpackingView

StudentControlTeacherControl

Control

Written by the animation author

JDK 1.1 classes

Generated by CATalyst

Binpacking

Figure 9. The class-hierarchy of the primary classes used in the binpacking animation. The classes in the top layer
are part of the Java distribution. The classes in the second layer are those that comprise the JCAT system; these
classes are all algorithm independent. The classes in the third layer are generated by CATalyst, based on the interest
events interface. Finally, the classes in the bottom layer are written by the animation author.

References

[1] J. E. Baker, I. F. Cruz, G. Liotta et. al. Algorithm Animation
over the World Wide Web. In International Workshop on
Advanced Visual Interfaces (AVI’96), 203–222, May 1996.

[2] M. H. Brown. Browsing the Web with a Mail/News Reader.
1995 ACM Symposium on User Interface Software and
Technology, 197–198, November 1995.

[3] M. H. Brown, M. A. Najork. Collaborative Active Textbooks:
A Web-Based Algorithm Animation System for an Electronic
Classroom. 1996 IEEE Symposium on Visual Languages,
266–275, September 1996.

[4] M. H. Brown, R. Raisamo. JCAT: Collaborative Active
Textbooks Using Java. In CompuGraphics’96, December
1996.

[5] M. H. Brown, R. Sedgewick. A System for Algorithm
Animation, Computer Graphics, 18(3), 177–186, July 1984.

[6] M. H. Brown, R. A. Shillner. DeckScape: An Experimental
Web Browser. Computer Networks and ISDN Systems,
28(1995), 1097–1104.

[7] M. Burrows, D. J. Wheeler. A Block-sorting Lossless Data
Compression Algorithm. Research Report 124, Digital
Equipment Corp., Systems Research Center, May 1994.

[8] L. Cardelli. A Language with Distributed Scope. Computing
Systems, 8(1), 27–59, January 1995.

[9] J. D. DeTreville. The GraphVBT Interface for Programming
Algorithm Animations. 1993 IEEE Symposium on Visual
Languages, 26–31, August 1993.

[10] J. Erickson. “Computational Geometry Interactive Software”.
http://www.cs.duke.edu/~jeffe/compgeom/demos.html

[11] A. Hausner. “Algorithm Animation”.
http://www.cs.princeton.edu/~ah/alg_anim

[12] J. T. Stasko. TANGO: A Framework and System for Algo-
rithm Animation. IEEE Computer, 23(9):27–39, September
1990.

[13] Sun Microsystems, Inc. “RMI Documentation”.
http://java.sun.com/products/jdk/1.1/docs/guide/rmi

TeacherControl FirstFit

ProbingView

StudentControl

ProbingView

StudentRemObj

TeacherRemObj

GlossaryView

Figure 10. This figure identifies the applets on the teacher’s and student’s screen shown in Figures 2 and 3, and it
illustrates various communication paths. The solid gray arrows show the chain of method calls when a student
registers with the teacher. The student types an IP address into the student control panel, which then invokes a
method of the teacher remote object on that machine, which in turn forwards the information to the teacher control
panel. The dotted black arrows show the method calls for an interesting event in the algorithm. The event is passed
from the algorithm applet on the teacher’s machine through the teacher control panel to the views on the teacher’s
machine and also to the views on the students’ machines, by way of the student remote object and student control
panel on each student’s machine.

