
Distributed Applets

Marc H. Brown
Marc A. Najork

DEC Systems Research Center
130 Lytton Ave.

Palo Alto, CA 94301 USA
+1 415 853-215[23]

{mhb,najork}@pa.dec.com

ABSTRACT
This video shows several examples of distributed active
web content, that is, applets that can communicate with
other applets running on different machines.

Keywords
Active objects; applets; distributed applications; groupware.

BACKGROUND
One of the most exciting recent developments in Web-
browser technology is active content, where the browser
downloads a program, executes it, and displays the
program's user interface in a Web page. Sun's HotJava
browser with Java applets pioneered active content, and
now, the industry-standard browsers support active content,
written in a variety of languages.

We have worked on distributed applets, that is, applets that
can communicate with other applets located on different
machines. We provide high-level support for distributed
computation, thereby making it easy to write collaborative
applications such as groupware and multi-player games.

Our distributed applet technology is based on Obliq [5], an
object-oriented scripting language that was specifically
designed for constructing distributed applications in a
heterogeneous environment. We call applets written in
Obliq Oblets (Obliq applets) [2]. We have built a family of
Web browsers that support Oblets [1, 4].

Obliq supports distributed computation by implementing all
objects as network objects. The methods of a network
object can be invoked by other processes, in addition to the
process that created the object. The initial connection
between two processes occurs when one process registers
an object with a name server under a unique name, and
another process subsequently imports the object from that
name server. Once the connection is established, other
network objects can be passed between processes just as
simply as passing any other type of data.

For network objects, method calls and field accesses have
the same syntax regardless of where the object resides. It
might reside in the same process as the caller, or in a
different process either on the caller's machine or on some

other (possibly different type of) machine. Thus, from a
programmer's perspective, there is no difference between
local and remote objects. As a result, network objects
provide a uniform way for communication among Oblets,
regardless of whether the Oblets are on the same Web page
or on different Web pages displayed by different browsers
on different machines. Moreover, network objects
communicate directly, without server intervention. Thus,
Oblets do not impose any load on an HTTP server, nor does
a heavily loaded server affect their performance.

This video shows four distributed applications we have
built using this technology.

EXAMPLE 1: “HELLO WORLD”
This example show a simple distributed application that
illustrates the fundamentals of Oblets. The application
consists of two Oblets running on different machines. One
Oblet, the server (left), allows a user to select one of four
colors. The other Oblet, the client (right), displays the name
of the chosen color inside a rectangle of that color.

The server Oblet's user interface consists of four radio
buttons, labeled “Red,” “Green,” “Blue,” and “Black.” The
client Oblet's user interface consists of a colored rectangle
surrounding a string. When the user of the server Oblet
clicks one of the radio buttons, a callback procedure
attached to this button calls a method of the client Oblet,
which changes the string and the color of the rectangle.
Each Oblet consists of just 13 lines of code, only one of
which is specific to distributed applications.

EXAMPLE 2: TIC-TAC-TOE
This example shows a tic-tac-toe Oblet that allows two
users on different machines to play against each other. The
following screen dump shows a snapshot of a game in
progress. The left image shows the browser used by player
“O,” the right image shows the browser used by player “X”.© 1997. Copyright on this material is held

by the auhors.

The Oblet of player “O” is disabled, and the message line
indicates that player “X” is next.

A user starts a game by visiting the tic-tac-toe Web page,
which causes the tic-tac-toe Oblet to be loaded and
invoked. Upon invocation, the Oblet attempts to import an
opponent's tic-tac-toe Oblet from a dedicated name server.
This call succeeds if there is indeed another player waiting
for a game to begin. Otherwise, the Oblet exports itself to
the name server, disables its game board, and waits for a
second player to visit the Web page.

EXAMPLE 3: CHAT ROOM
This example shows an Oblet-based chat room application
that allows several users to communicate through a shared
text editor.

The Oblet's user interface has four parts: a status line at the
top, an editing region in the middle, and a type-in field and
a “Grab Floor” button at the bottom. When the user clicks
on the “Grab Floor” button, the status line on all
participating Oblets will indicate who owns the floor (using
the contents of the type-in field of the Oblet now owning
the floor), the editing region on all Oblets (other than the
one owning the floor) will become passive, and the editing
region in the Oblet owning the floor will become active and
its color will change to pink. When the user who owns the
floor types into the editing region, all of the participating
Oblets will be notified of the updated text.

The three screen dumps above show the chat room Oblet
running in different browsers. Each browser is running on a
different machine. The participants in the chat room are
Moe, Larry, and Curly (from left to right). Currently the
floor is with Moe, as indicated by the status line over the
editing region and by the color of the editing region in
Moe’s browser.

EXAMPLE 4: ALGORITHM ANIMATION
The final example shows how we have used Oblets for
building algorithm animations [3]. Embedding algorithm
animations into Web pages allows us to use the text and
multimedia capabilities of the Web for describing the
algorithms, and the applets to implement the algorithm
together with one or more animated, interactive views of it.
The result is an “electronic textbook” on algorithms.

Moreover, the distributed nature of Oblets makes such a
textbook suitable for “electronic classrooms” as well as
remote learning environments. In such a setting, an
instructor can control an animation, and students can all
view the animation simply by pointing their Web browsers
at the appropriate page or pages.

The screen dumps above are from a chapter on binpacking
from a prototype collaborative electronic textbook. The
instructor's screen (left) displays a Web page containing a
control panel, a “Probes” view, and a “Packing” view. A
student's screen (right) shows three views of the same
algorithm, embedded into a different Web page. A
“Glossary” view at the top shows the number of bins and
blocks specified by the instructor in the control panel.
Below that is the “Probes” view and a “Transcript” view.
The student can scroll through the “Transcript” view and
clear its contents. In other words, each student can control
his views, but only the instructor can control the algorithm.

REFERENCES
1. Brown, Marc H. WebCard = Email + News + WWW. In

CHI’97 Conference Companion.

2. Brown, Marc H. and Najork, Marc A. Distributed Active
Objects. Computer Networks and ISDN Systems, 28 (1996)
1037–1052 (Proc. 5th Intl. World Wide Web Conference).

3. Brown, Marc H. and Najork, Marc A. Collaborative
Active Textbooks: A Web-Based Algorithm Animation
System for an Electronic Classroom. In Proc. 1996 IEEE
Symposium on Visual Languages, 266–275.

4. Brown, Marc H. and Shillner, Robert A. DeckScape: An
Experimental Web Browser. In CHI’95 Conference
Companion, 320–321.

5. Cardelli, Luca. A Language with Distributed Scope.
Computing Systems, 8(1):27–59, Jan. 1995.

