
Exploring Unknown Environments

Susanne Albers� Monika R. Henzingery

Abstract

We consider exploration problems where a robot has

to construct a complete map of an unknown environ-

ment. We assume that the environment is modeled

by a directed, strongly connected graph. The robot's

task is to visit all nodes and edges of the graph us-

ing the minimum number R of edge traversals. Kout-

soupias [12] gave a lower bound for R of
(d2m), and

Deng and Papadimitriou [9] showed an upper bound

of dO(d)m, where m is the number edges in the graph

and d is the minimum number of edges that have to be

added to make the graph Eulerian. We give the �rst

sub-exponential algorithm for this exploration problem,

which achieves an upper bound of dO(logd)m. We also

show a matching lower bound of d
(logd)m for our al-

gorithm. Additionally, we give lower bounds of 2
(d)m,

resp. d
(logd)m for various other natural exploration al-

gorithms.

1 Introduction

Suppose that a robot has to construct a complete

map of an unknown environment using a path that is

as short as possible. In many situations it is conve-

nient to model the environment in which the robot op-

erates by a graph. This allows to neglect geometric

features of the environment and to concentrate on com-

binatorial aspects of the exploration problem. Deng

and Papadimitriou [9] formulated thus the following ex-

ploration problem. A robot has to explore all nodes

and edges of an unknown, strongly connected directed

�
Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123

Saarbr�ucken, Germany. E-mail: albers@mpi-sb.mpg.de. Work

supported in part by the Deutsche Forschungsgemeinschaft,

Project Al 464/1-1.

y
Systems Research Center, Digital Equipment Corpora-

tion, 130 Lytton Ave, Palo Alto, CA 94301. Email:

monika@pa.dec.com. This work was supported by an NSF CA-

REER Award, Grant No. CCR-9501712.

graph. The robot visits an edge when it traverses the

edge. A node or edge is explored when it is visited for

the �rst time. The goal is to determine a map, i.e. the

adjacency matrix, of the graph using the minimumnum-

ber R of edge traversals. At any point in time the robot

knows (1) all visited nodes and edges and can recog-

nize them when encountered again; and (2) the number

of unvisited edges leaving any visited node. The robot

does not know the head of unvisited edges leaving a vis-

ited node or the unvisited edges leading into a visited

node. At each point in time, the robot visits a current

node and has the choice of leaving the current node by

traversing a speci�c known or an arbitrary (i.e. given

by an adversary) unvisited outgoing edge. An edge can

only be traversed from tail to head, not vice versa.

If the graph is Eulerian, 2m edge traversals su�ce [9],

where m is the number of edges. This immediately im-

plies that undirected graphs can be explored with at

most 4m traversals. For a non-Eulerian graph, let the

de�ciency d be the minimumnumber of edges that have

to be added to make the graph Eulerian. Deng and

Papadimitriou [9] suggested to study the dependence of

R on m and d and showed the �rst upper and lower

bounds: they gave a graph such that any algorithm

needs
(d2m= logd) edge traversals, and they also pre-

sented an algorithm that achieves an upper bound of

dO(d)m. Koutsoupias [12] improved the lower bound

to
(d2m). Deng and Papadimitriou asked the ques-

tion whether the exponential gap between the upper

and lower bound can be closed. Our paper is a �rst

step in this direction: we give an algorithm that is sub-

exponential in d, namely it achieves an upper bound of

dO(logd)m. We also show a matching lower bound for

our algorithm and exponential lower bounds for various

other exploration algorithms.

Note that d arises also in the complexity of the \o�-

line" version of the problem: Consider a directed cycle

with one edge replaced by d + 1 parallel edges. On

this graph any Eulerian traversal requires
(dm) edge

traversals. A simple modi�cation of the Eulerian on-

line algorithm solves the o�ine problem on any directed

graph with O(dm) edge traversals.

Related Work. Exploration and navigation prob-

lems for robots have been studied extensively in the

past. The exploration problem in this paper was formu-

lated by Deng and Papadimitriou based on a learning

problem proposed by Rivest [14]. Betke et al. [6] and

Awerbuch et al. [1] studied the problem of exploring

an undirected graph and requiring additionally that the

robot returns to its starting point every so often. Ben-

der and Slonim [7] showed how two cooperating robots

can learn a directed graph with indistinguishable nodes,

where each node has the same number of outgoing edges.

Subsequent to the work in [9], Deng et al. [8] investi-

gated a geometric exploration problem, whose goal is

to explore a room with or without polygonal obstacles.

Ho�mann et al. [11] gave an improved exploration strat-

egy for rooms without obstacles. More generally, theo-

retical studies of exploration and navigation problems in

unknown environments were initiated by Papadimitriou

and Yannakakis [13]. They considered the problem of

�nding a shortest path from a point s to a point t in

an unknown environment and presented many geomet-

ric and graph based variants of this problem. Blum

et al. [5] investigated the problem of �nding a short-

est path in an unfamiliar terrain with convex obstacles.

More work on this problem includes [2, 3, 4].

Our Results. Our main result is a new robot strat-

egy that explores an arbitrary graph with de�ciency d

and traverses each edge at most (d + 1)6d2 logd times,

see Section 3. (The total number of traversals is also

O(minfdn2+m;nmg), where n is the number of nodes.)

The algorithm does not need to know d in advance.

In Section 4 we demonstrate that our analysis is tight:

There exists a graph that is explored by our algorithm

using d
(logd)m edge traversals. We also show that

various variants of the algorithm have the same lower

bound. In Section 2, we sketch lower bounds of 2
(d)m,

resp. d
(logd)m for various other natural exploration al-

gorithms to give some intuition for the problem.

Our exploration algorithm tries to explore new edges

that have not been visited so far. That is, starting at

some visited node x with unvisited outgoing edges, the

robot explores new edges until it gets stuck at a node

y, i.e., it reaches y on an unvisited incoming edge and y

has no unvisited outgoing edge. Since the robot is not

allowed to traverse edges in the reverse direction, an

adversary can always force the robot to visit unvisited

nodes until it �nally gets stuck at a visited node.

The robot then relocates, using visited edges, to some

visited node z with unexplored outgoing edges and con-

tinues the exploration. The choice of z is the only di�er-

ence between various algorithms and the relocation to z

is the only step where the robot traverses visited edges.

To minimizeR we have to minimize the total number of

edges traversed during all relocations. It turns out that

a locally greedy algorithm that tries to minimize the

number of traversed edges during each relocation is not

optimal: it has a lower bound of 2
(d)m (see Section 2).

Instead, our algorithm uses a divide-and-conquer ap-

proach. The robot explores a graph with de�ciency d by

exploring d2 subgraphs with de�ciencies d=2 each and

uses the same approach recursively on each of the sub-

graphs. To create subgraphs with small de�ciencies, the

robot keeps track of visited nodes that have more visited

outgoing than visited incoming edges. Intuitively, these

nodes are expensive because the robot, when exploring

new edges, can get stuck there. The relocation strategy

tries to keep portions of the explored subgraphs \bal-

anced" with respect to their expensive nodes. If the

robot gets stuck at some node, then it relocates to a

node z such that \its" portion of the explored subgraph

contains the minimum number of expensive nodes.

2 Lower bounds for various algorithms

In this section we give lower bounds of 2
(d)m, resp.

d
(logd)m for a locally greedy, a generalized greedy, a

depth-�rst, and a breadth-�rst algorithm. Let G be a

directed, strongly connected graph and let v be a node of

G. Let in(v) and out(v) denote the number of incoming,

resp. outgoing edges of v. Let the balance bal(v) =

out(v)� in(v). For a graph with de�ciency d there exist

at most d nodes si, 1 � i � d, such that bal(si) < 0.

Every node si with bal(si) < 0 is called a sink. Note

that �
P

s;bal(s)<0 bal(s) = d. We use the term chain to

denote a path. A chain is a sequence of nodes and edges

x1; (x1; x2); x2; (x2; x3); : : : ; (xk�1; xk); xk for k > 1.

Greedy: If stuck at a node y, move to the nearest

node z that has new outgoing edges.

Generalized-Greedy: At any time, for each path

in the subgraph explored so far, de�ne a lexicographic

vector as follows. For each edge on the path, determine

its current cost, which is the number of times the edge

was traversed so far. Sort these costs in non-increasing

order and assign this vector to the path. Whenever

stuck at a node y, out of all paths to nodes with new

outgoing edges traverse the path whose vector is lexico-

graphic minimum.

Depth-First: If stuck at a node y, move to the most

recently discovered node z that can be reached and that

has new outgoing edges.

Breadth-First: Let v be the node where the ex-

ploration starts initially. If stuck at a node y, move to

the node z that has the smallest distance from v among

all nodes with new outgoing edges that can be reached

from y.

Theorem 1 For Greedy, Depth-First, and Breadth-

First and for every d, there exist graphs of de�ciency

d that require 2
(d)m edge traversals. For Generalized-

Greedy and for every d, there exists a graph of de�ciency

d that requires d
(logd)m edge traversals.

Proof: Greedy: Basically Greedy fails since it is easy

to \hide" a subgraph. Whenever Greedy discovers this

subgraph, the adversary can force it to repeat all the

work done so far.

The graph G consists of two parts, (1) a cycle C0

of three edges and nodes v, v1(C0), and v2(C0), and

(2) a recursively de�ned problem P d. A problem P � of

de�ciency �, for any integer � � 2, is a subgraph that

has two incoming edges whose startnodes do not belong

to P � but whose endnodes do, and � outgoing edges

whose startnode belongs to P � but whose endnodes do

not. A problem P 1 of de�ciency 1 is de�ned in the same

way as a problem P �, � � 2, except that P 1 has only

one incoming edge. In the case of P d, the two incoming

edges start at v1(C0) and v2(C0), respectively; the d

outgoing edges all point to v.

A problem P �, � = 1; 2, consists of � chains of three

edges each. The �rst edge of each chain is an incoming

edge into P �; the last edge of each chain is an outgoing

edge. For � > 2, one of the incoming edges of P � is the

�rst edge of a chain D�
1 consisting of three edges, the

other incoming edge is the �rst edge of a long chain D�
2.

For each of these chains D�
j , j = 1; 2, (a) the last edge

is an outgoing edge of P �, and (b) each of the last two

interior nodes has one unvisited outgoing edge pointing

into a recursive subproblem P ��2
j . There are ��2 edges

leaving P ��2
1 , all of which also represent edges leaving

P �. Also, there are ��2 edges leavingP ��2
2 and pointing

to nodes of P ��2
1 such that each node in P ��2

1 that has k

more outgoing than incoming edges receives k incoming

edges from P ��2
2 . The total number of edges in D�

2 is 2

plus the number of edges of D�
1 plus the total number

of edges contained in the subproblem P ��2
1 below D�

1.

D
d
1D

d
2

C0

P
d�2
2

P
d�2
1

v

Figure 1: The graph for Greedy

Greedy is started at node v and traverses �rst chain

C0. Then it either explores Dd
1 or Dd

2 . In either case,

afterwards Greedy explores all edges of P d�2
1 since Dd

2 is

prohibitively long. Thus, P d�2
2 is \hidden" fromGreedy.

We exploit this in the analysis: Let N (�) be the num-

ber of times that Greedy explores edges of a problem

P �, gets stuck at some node and cannot relocate to a

suitable node by using only edges in P �. We show that

N (�) � 2�=2. Since the edge leaving v is traversed every

time the algorithm cannot relocate by using only edges

in P d, the bound follows.

A problem P � contains two subproblems P ��2
1 and

P ��2
2 . Note (a) that, because of chain D��2

1 , no node

in P ��2
1 can reach a node of P ��2

2 without leaving P �.

Note (b) that P ��2
1 is completely explored when the

exploration of P ��2
2 starts and all paths starting in P ��2

2

lead through P ��2
1 . Thus, every time Greedy gets stuck

in a subproblem P ��2
j , j 2 f1; 2g, and has to leave P ��2

j

in order to resume exploration, it also has to leave P �.

For P ��2
1 the statement follows from (a); for P ��2

2 it

follows from (a) and (b). Thus, N (�) � 2N (� � 2).

Since, for � = 1; 2, N (�) � 1, we obtain N (�) � 2�=2.

This implies that the edge e on C0 leaving v is tra-

versed 2
(d) times. The desired bound follows by re-

placing e by a path consisting of �(m) edges.

Depth-First: We can use the same graph as in the

case of the Greedy algorithm. Depth-First will explore

all edges in P d�2
1 before it will start exploring P d�2

2 .

Generalized-Greedy and Breadth-First: Proof omit-

ted. 2

3 The Balance algorithm

3.1 The algorithm

We present an algorithm that explores an unknown,

strongly connected graph with de�ciency d, without

knowing d in advance. First we give some de�nitions.

At the start of the algorithm, all edges are unvisited or

new. An edge becomes visited whenever the robot tra-

verses it. A node is �nished whenever all its outgoing

edges are visited. The robot is stuck at a node y if the

robot enters a �nished node y on an unvisited edge. A

sink is discovered whenever the robot gets stuck at the

sink for the �rst time. We assume that whenever the

robot discovers a new sink, the subgraph of explored

edges is strongly connected. This does not hold in gen-

eral, but by properly restarting the algorithm at most d

times the problem can be reduced to the case described

here (details are given in the full version of the paper).

Assume the algorithm knew the d missing edges

(s1; t1); (s2; t2); : : : ; (sd; td) and a path from each si to

ti. Then a modi�ed version of the Eulerian algorithm

could be executed: Whenever the original Eulerian al-

gorithm traverses an edge (si; ti), the modi�ed Eulerian

algorithm traverses the corresponding path from si to ti.

Obviously, the modi�ed algorithm traverses each edge

at most 2d + 2 times. Thus, the problem is to �nd the

missing edges and corresponding paths.

Our algorithm tries to �nd the missing edges

by maintaining d edge-disjoint chains such that the

endnode of chain i is si and the startnode of chain i

is our current guess of ti. As the algorithm progresses

paths can be appended at the start of each chain. At

termination, the startnode of chain i is indeed ti. To

mark chain i all edges on chain i are colored with color

i.

The algorithm consists of two phases.

Phase 1: Run the algorithm of [9] for Eulerian

graphs. Since G is not Eulerian, the robot will get stuck

at a sink s. At this point stop the Eulerian graph algo-

rithm and goto Phase 2. The part of the graph explored

so far contains a cycle C0 containing s [9]. We assume

that at the end of Phase 1 all visited nodes and edges

not belonging to C0 are marked again as unvisited.

Phase 2: Phase 2 consists of subphases. During each

subphase the robot visits a current node x of a current

chain C and makes progress towards �nishing the nodes

of C. The current node of the �rst subphase is s, its

current chain is C0. The current node and current chain

of subphase j depend on the outcome of subphase j�1.

A chain can be in one of three states: fresh, in

progress, or �nished. A chain C is �nished when all

its nodes are �nished; C is in progress in subphase j if

C was a current chain in a subphase j0 � j and C is not

yet �nished; C is fresh if its edges are explored, but C

is not yet in progress.

At the same time up to d+ 1 chains in progress and

up to d fresh chains can exist. The invariant that there

are always at most d+1 chains in progress is convenient

but not essential in the analysis of the algorithm. The

invariant that there exist always at most d fresh chains

in crucial. Every startnode of a fresh chain has more

visited outgoing that visited incoming edges and, thus,

the robot can get stuck there. In the analysis we require

that there always exist at most d such nodes.

The algorithm marks the current guess for ti with

a token �i, for 1 � i � d. In fact, every startnode of

a fresh chain represents the current guess for some ti,

1 � i � d, and thus has a token �i. To simplify the

description of the relocation process, each token is also

assigned an owner which is a chain that contains the

node on which the token is placed. Note that a node

can be the current guess for more than one node ti and,

thus, have more than one token.

From a high-level point of view, at any time, the sub-

graph explored so far is partitioned into chains, namely

C0 and the chains generated in Phase 2. During the

actual exploration in the subphases, the robot travels

between chains. While doing so, it generates or extends

fresh chains, which will be taken into progress later, and

�nishes the chains currently in progress.

We give the details of a subphase. First, the algo-

rithm tests if x has an unvisited outgoing edge.

1. If x does not have an unvisited outgoing edge and

x is not the endnode of C, then the next node of

C becomes the current node and a new subphase is

started.

2. If x has no unvisited outgoing edge and x is the

endnode of C, procedure Relocate is called to decide

which chain becomes the current chain and to move

the robot to the startnode z of this chain. Node z

becomes the current node.

3. If x has unvisited outgoing edges, the robot repeat-

edly explores unvisited edges until it gets stuck at a

node y. Let P be the path traversed. We distinguish

four cases:

Case 1: y = x

Cut C at x and add P to C. See Figure 2. The

robot returns to x and the next phase has the same

current node and current chain.

x x x

P

P

=)

C C

Figure 2: Case 1

Case 2: y 6= x, y has a token �i and is the startnode

of a fresh chain D (see Figure 3)

Append P at D to create a longer fresh chain, and

move the token from y to x. The current chain C

becomes the owner of the token, the previous owner

becomes the current chain, and y becomes the cur-

rent node.

C C0

x

P
D

y

Figure 3: Case 2

Case 3: y 6= x, y has a token �i but is not the

startnode of a fresh chain.

This is the same as Case 2 except that no fresh chain

starts at y. The algorithm creates a new fresh chain

of color i consisting of P . It moves the token from y

to x and C becomes the owner of the token. The pre-

vious owner of the token becomes the current chain

and y becomes the current node.

Case 4: y 6= x and y does not own a token.

In this case bal(y) < 0. If bal(y) = �k, then this

case occurs k times for y. Let i be the number of

existing tokens. The algorithm puts a new token

�i+1 on x with owner C, creates a fresh chain of

color i+ 1 consisting of P (the �rst chain with color

i + 1), and moves the robot back to s. The initial

chain C0 becomes the current chain, s becomes the

current node.

This leads to the algorithm given in Figure 4. We use

x to denote the current node, C to denote the current

chain, k the number of tokens used, and j the highest

index of a chain. Lines 4{17 of the code correspond

to item 3 above. Line 6 and 7 correspond to Case 1,

lines 8{13 correspond to Cases 2 and 3, and lines 14{

16 to Case 4. Lines 18 and 19 implement item 2 and

item 1, respectively.

Additionally, the algorithm maintains a tree T such

that each chain C corresponds to a node v(C) of T and

Algorithm Balance

1. j := 0, k := 1, x := s, C := C0.

2. repeat

3. while C is un�nished do

4. while 9 new outgoing edge at x do

5. Traverse new edges starting at x until stuck at a node y. Call this path P .

6. if y = x then

7. Insert P into C;

8. else if y has a token then

9. if 9 chain D of color i starting in y and D is fresh then

10. C0 := owner(�i). Concatenate P with D;

11. else

12. j := j + 1; Cj := chain that consists of P ;

13. Place �i on x; owner(�i) := C; x := y; C := C0;

14. else (� y 6= x and y has no token �)
15. j := j + 1; Cj := chain that consists of P ;

16. k := k + 1; Place token �k on x; owner(�k) := C; x := s; C := C0;

17. Move robot to x;

18. Move robot to �rst un�nished node z that appears on C after its startnode; x := z;

19. C := Relocate(C); x = startnode of C;

20. until C = empty chain.

Figure 4: The Balance algorithm

v(C0) is a child of v(C) if the last subpath appended

to C0 was explored while C was the current chain. Re-

versely, we use C(v) to denote the chain represented by

node v. We use Tv to denote the subtree of T rooted

at v and say C is contained in Tv if v(C) lies in Tv.

We also say a token � or an edge e is contained in Tv
if owner(�), respectively the chain of e is contained in

Tv. If all chains in Tv are �nished, we say that Tv is

�nished. To represent T , the algorithm assigns a parent

to each chain.

To relocate the robot needs to be able to move on

explored edges from the endpoint of a chain C to its

startnode. This is always possible, since at the begin-

ning of each subphase the explored edges form a strongly

connected graph. To avoid that an edge is traversed

often for this purpose, we de�ne for each chain C a

path closure(C) connecting the endnode of C with the

startnode of C such that an edge belongs to closure(C)

for at most dO(logd) chains C. Finally, we will show that

closure(C) is traversed at most O(d2) times.

A path Q is called a C-completion if it connects the

endnode of a chain C with the startnode of C. A path

Q in the graph is called i-uniform if it is a concatenation

of chains of color i. Let u be a node of T . A path Q

in the graph is Tu-homogeneous if any maximal subpath

R of Q that does not belong to Tu is (a) i-uniform for

some color i; (b) the edge of Q preceding R is the last

edge of a chain of color i; and (c) the edge of Q after R

is the �rst edge of a chain of color i.

We try to choose closure(C) to be \as local to C" as

possible: Let S(C) be the set of explored edges when

C becomes the current chain for the �rst time. Given

S(C), a(C) is the lowest ancestor of v(C) in T such that

a Ta(C)-homogeneous completion of C exists in S(C).

Note that a(C) is well-de�ned since each chain has a

Tv(C0)-homogeneous completion. The path closure(C)

is an arbitrary Ta(C)-homogeneous completion of C us-

ing only edges of S(C). The algorithm can compute

closure(C) whenever C becomes the current chain for

the �rst time without moving the robot.

Procedure Relocate(C)

1. if all chains are �nished then

return(empty chain).

2. else Move robot to startnode of C along

closure(C);

3. while C 6= C0 and Tv(C) is �nished do

4. Move robot to startnode of parent(C)

along closure(parent(C));

5. C := parent(C);

6. while C is �nished do

7. Let C1; C2; : : : ; Cl be the chains with

parent(Ck) = C, 1 � k � l. Let Ck be

the chain such that Tv(Ck) contains the

smallest number of tokens among all

Tv(C1); : : : ; Tv(Cl) with un�nished chains;

8. C := Ck; x := startnode of C;

9. Move robot to x;

10. if C is not in progress then

11. Compute closure(C);

12. return(C).

We describe the Relocation procedure. In the reloca-

tion step, the robot repeatedly moves from the current

chain to its parent until it reaches a chain C such that

Tv(C) is un�nished. To move from a chain X to its par-

ent X0, the robot proceeds alongX to the endnode ofX

and traverses closure(X) to the startnode of X, which

belongs to X0. When reaching C, the robot repeatedly

moves from the startnode of the current chain X to

the startnode of one of its children until it reaches the

startnode of an un�nished chain. It chooses the child

X 0 of X such that among all subtrees rooted at children

of X and containing un�nished chains, Tv(X0) has the

minimum number of tokens.

3.2 The analysis of the algorithm

3.2.1 Correctness

Since the graph is strongly connected, all nodes of

the graph must be visited during the execution of the

algorithm. When the algorithm terminates, all visited

nodes are �nished. Thus, all edges must be explored.

We show next that each operation and each move of

the robot are well-de�ned. Proposition 1 shows that

if a chain of color i is fresh, then �i lies at the start-

node of the chain. Thus, in line 10, token �i lies on

y. By assumption there exists a path from any �nished

node to s. Thus, the move in line 17 is well-de�ned. In

line 18, the robot moves to the next un�nished node of

the current chain C. It would be possible to walk along

closure(C), but the proof of Lemma 4 shows later that

closure(C) is not needed.

3.2.2 Fundamental properties of the algorithm

Lemma 1 At most d tokens are introduced during the

execution of the Balance algorithm.

Proof: We say that the algorithm �rst introduces the

token �k at y in line 16.

Let inv(v) and outv(v) denoted the number of vis-

ited incoming and visited outgoing edges of v, respec-

tively. Let t(v) be the total number of tokens intro-

duced on node v in line 16. We show inductively that

maxfinv(v) � outv(v); 0g = t(v). Since at termination

inv(v) = in(v) and outv(v) = out(v), it follows that

�bal(v) � t(v) if bal(v) < 0 and t(v) = 0, otherwise.

Thus, d = �
P

v;withbal(v)<0 bal(v) �
P

v t(v):

The claim maxfinv(v) � outv(v); 0g = t(v) holds

initially. Let P be the newly explored path when

the �rst token is placed on v, i.e. when the algorithm

gets stuck at v for the �rst time. Before P enters v,

inv(v) = outv(v). Traversing P increments inv(v) by 1

and sets inv(v) � outv(v) = 1. Thus, the claim holds.

Let P be the newly explored path when token i is placed

on v. It follows inductively that inv(v)�outv(v) = i�1

before P enters v and traversing P increments the value

by 1 as before. 2

We prove next some invariants.

Proposition 1 1. For every chain C that is in

progress or �nished, parent(C) is �nished.

2. Let C be a chain of color i, 1 � i � d. (a) If C is

fresh, C does not own a token, �i is located at the

startnode of C, and parent(C) = owner(�i). (b) If

C is in progress and not the current chain, then C

is the owner of some token � .

3. Every chain C is the parent of at most d chains.

Proof: Part 1. Procedure Relocate ensures that par-

ent(C) is �nished before C is taken into progress.

Part 2a. When C is �rst created in line 12 or 15 of

Balance, �i is placed on the startnode of C. Whenever

the robot gets stuck at the current startnode of C and

removes �i, chain C is extended by a path P because

C is not in progress. Token �i is placed on the new

startnode of C. Lines 13 and 16 ensure that the parent

of C is always the owner of �i.

Part 2b. We show that whenever C is the current

chain and Balance leaves C to continue work on an other

chain, C becomes the owner of a token. Chain C is

un�nished. Thus, if C is the current chain, Balance can

only leave C to continue work on an other chain during

lines 5{17 of the algorithm. In this situation, Balance

places a token on a node of C and C becomes the owner

of that token.

Part 3. Chain C can become the parent of other

chains while C is in progress and un�nished. During

this time, every chain C0 with parent(C0) = C is un�n-

ished and not in progress, see Part 1. By Part 2a, the

startnode of such a chain C0 holds a token and C is the

owner of that token. Since there are only d token, the

proposition follows. 2

The next lemma shows that our algorithm always

balances the number of tokens contained in neighboring

subtrees of T . For a subtree Tv of T , let the weight

w(Tv) be the number of tokens contained in Tv. Let

active(Tv) = 1 if the current chain is in Tv; otherwise

let active(Tv) = 0.

Lemma 2 Let u; v 2 T be siblings in T such that

Tu and Tv contain un�nished chains. Then jw(Tu) +
active(Tu)� w(Tv) � active(Tv)j � 1.

Proof: Let active(C) = 1 i� C is the current chain, and

let active(C) = 0 otherwise. Let token(C) be the num-

ber of tokens owned by C, and let g(C) = token(C) +

active(C). Finally, let g(v) =
P

C;v(C)2Tv
g(C) =

w(Tv) + active(Tv). We show by induction on the steps

of the algorithm that jg(u) � g(v)j � 1:

The claim holds initially. For a subtree Tv of T , the

values w(Tv) and active(Tv) only change in lines 13, 16,

and 19 of Balance and in lines 4 and 9 of procedure

Relocate. Additionally, T changes in lines 10, 12, and

15.

Note �rst that changes in T do not a�ect the invari-

ant: Whenever T changes, v(C) receives a new child

and C is not yet �nished (or the algorithm has not yet

determined that C is �nished). Thus, the children of C

are not yet in progress, i.e. they do not own any tokens

by Proposition 1. Thus, the claim holds for any pair of

children of v(C).

We consider next all changes to w(Tv) and active(Tv).

Line 13: Let C be the current chain before the exe-

cution of line 13. Note that token(C) increases by 1,

active(C) becomes 0, token(C0) decreases by 1, and

active(C0) becomes 1. Thus, g(C) and g(C0), and,

hence, g(v) is unchanged for every node v 2 T .

Line 16: Note that (i) g(C) is unchanged by the same

argument as for line 13, (ii) g(C0) is unchanged, since

token(C0) and active(C0) are unchanged, and (iii) g(C0)

is increased by 1. Since C0 only contributes to g(v(C0))

and v(C0) is the root of T , the claim holds.

Line 19 of Balance/Line 4 and 9 of Relocate: Let
�C be the current chain before the execution of line 3

or 7 and let C be the current chain afterwards. In

line 3, the claim does not apply to Tv(C), since Tv(C)

is �nished. Thus, we are left with line 7. Note that

active(�C) drops to 0 and active(C) increases to 1. Thus,

for every node v such that Tv contains either both

the parent and its child or neither the parent nor its

child, g(v) is unchanged. The only remaining subtree

is Tv(C). Before the execution of line 7, for any sibling

C0 of C, w(Tv(C)) � w(Tv(C0)) � w(Tv(C)) + 1. Since

active(C0) = 0, jw(Tv(C)) � w(Tv(C0)) + active(C) �
active(C0)j � 1: 2

Lemma 3 Let C be a chain of color i, 1 � i � d, and,

at the time when C is taken in progress, let u 2 T be

the closest ancestor of v(C) that satis�es the following

condition. The path from u to v(C) in T contains d

nodes u1; u2; : : : ; ud such that each uj with 1 � j � d

has a child vj

(a) Tvj contains a node of color i; and (b) v(C) =2 Tvj .

If there is no such ancestor u, then let u be v(C0). Then

there exists a Tu-homogeneous C-completion.

Proof: By assumption, the graph of explored edges is

strongly connected, which implies that there exists a

Tv(C0)-homogeneous C-completion. Suppose that there

are d nodes u1; : : : ; ud satisfying (a) and (b). For j =

1; : : : ; d, let Cuj be the chain corresponding to uj . If

one of the nodes u1; : : : ; ud, say uk, is of color i, then

there is the following Tuk-homogeneous C-completion:

Follow edges of color i until you reach the startnode of

Cuk , then walk \down" in Tuk along ancestors of C to

the startnode of C.

Thus, we are left with the case that none of the nodes

u1; : : : ; ud has color i. For j = 1; : : : ; d, let Cj;1 2 Tvj be

a chain of color i such that no ancestor of Cj;1 contained

in Tvj has color i. Let Cj;2; : : : ; Cj;l(j) be the ancestors

of Cj;1 in Tuj . More precisely, for k = 1; : : : ; l(j) � 1,

Cj;k+1 = parent(Cj;k) and Cj;l(j) = Cuj is the chain

corresponding to uj.

Following the edges of color i gives a Tu-homogeneous

path from C to every chain Cj;1 for 1 � j � d. We

want to show that there exists a Tu-homogenous path

to a chain Cj;l(j). We consider the following game on a

d � maxj l(j) grid, where for 1 � j � d, square (j; k)

has the color of Cj;k for 1 � k � l(j) and no color for

k > l(j). Thus, all squares (j; 1) have color i and no

other squares have color i. Initially all squares (j; 1)

are checked, all other squares are unchecked. A square

is checked if the robot can move to the startnode of

the corresponding chain on a Tu-homogeneous path.

The rules of the game are: (Note that the startnode

of Cj0;k0�1 belongs to Cj0;k0.)

� A square (j; k) of color i0 gets checked whenever

there exists a square (j0; k0) of color i0 such that

square (j0; k0�1) is checked and there exists a path

of color-i0 edges from the endnode of Cj0;k0 to the

startnode of Cj;k.

� The game terminates when one of the squares

(j; l(j)) is checked or when no more square can be

checked.

We will show that one of the squares (j; l(j)) can be

checked. This shows that there is a Tu-homogeneous

path from C to Cj;l(j). Since uj is an ancestor of v(C),

the same argument as above shows that there exists a

Tu-homogeneous C-completion.

We employ the pigeon-hole principle: Initially, there

are d checked squares (j; 1) for 1 � j � d and each

square (j; 2) has a color i0 6= i. Since there are at most

d� 1 other colors, there must be two squares (s; 2) and

(t; 2) with the same color i0. Since the edges of color i0

form a chain, there is either a path from Cs;2 to Ct;2 or

vice versa. Thus, one of the two squares can be checked.

Inductively, there are d checked squares (j; k(j)) such

that (j; k(j) + 1) is unchecked. None of the squares

(j; k(j) + 1) has color i and thus, there must be two

squares (j; k(j)+1) with the same color, which leads to

checking one of the two squares. The game continues

until one of the squares (j; l(j)) has been checked. 2

3.2.3 Counting the number of edge traversals

Lemma 4 Each edge is traversed at most d times dur-

ing executions of line 17 and at most 2d+2 times during

executions of line 18 of the Balance algorithm.

Proof: Let e be an arbitrary edge and let C be the

chain e belongs to. Every time e is traversed during an

execution of line 17, a new token is placed on the graph.

Since a total of d tokens are placed, the �rst statement

of the lemma follows.

Next we analyze executions of line 18. Let x and y

be the tail and the head of e, i.e. e = (x; y). Let C1

be the portion of C that consists of the path from the

startnode of C to x. Similarly, let C2 be the path from

y to the endnode of C.

It is not hard to show that e is traversed for the �rst

time in line 18 when all nodes on C1 are �nished and

the robot moves to the next un�nished node on C2. The

edge e can be traversed again (a) if the robot gets stuck

at a node on C1 and moves to the next un�nished node

of C, or (b) if the robot traverses C from its startnode,

since procedure Relocate returned chain C. Every time

case (a) occurs, a token is removed from C1, and this

token cannot be placed again on C1. Since there are

only d tokens, e can be traversed at most d more times

in case (a) after it was traversed the �rst time in that

line. Every time case (b) occurs, token(C)+active(C)

increases by 1, while no other step of the algorithm can

decrease this value as long as C is un�nished. Thus,

case (b) occurs at most d+ 1 times. 2

Thus, it only remains to bound how often an edge

is traversed in Relocate. A chain C0 is dependent on

a chain C if C0 2 Tv(C) and closure(C0) is not Tu-

homogeneous for any true descendant u of v(C).

Lemma 5 For every chain C, there exist at most

d2 logd+1 chains C0 2 Tv(C) that are dependent on C.

Proof: Let ni(C) be the total number of chains of color

i dependent on C. For a color i, 1 � i � d, and an

integer �, 1 � � � d, let

Ni(�) = maxCfni(C);Tv(C) contains at most � of

the d tokens whenever active(Tv(C)) = 1g.

We will show that for any �, 1 � � � d, and any color

i, (1) Ni(�) � d2Ni(b�=2c) and (2) Ni(1) = 1: This

implies Ni(d) � d2 logd: Since
Pd

i=1Ni(d) � d � d2 logd;
the lemma follows.

To prove (1), �x a color i and an integer �. Consider

a subtree Tv(C) that contains at most � tokens when

active(Tv(C)) = 1. Out of all chains dependent on C,

let C0 be the chain whose closure is computed last. We

show that when the algorithm computes closure(C0),

then the number of chains of color i that are already

dependent on C is at most d(d � 1)Ni(b�=2c). Thus,

ni(C) � d(d� 1)Ni(b�=2c) + 1 � d2Ni(b�=2c).
Let u1; u2; : : : ; ul be the sequence of nodes (from low-

est to highest) on the path from v(C0) to v(C) such that

every node uj , j = 1; 2; : : : ; l, has a child vj with (a) Tvj
contains a node of color i, and (b) v(C) =2 Tvj . By

Lemma 3, l � d. Suppose that node uj, 1 � j � d,

has c(j) children, vj;1; vj;2; : : : ; vj;c(j) with v 2 Tvj;1 . By

condition (b), 2 � c(j) � d.

For �xed j and k � 2, we have to show: Up

to the time when closure(C0) is computed, whenever

active(Tvj;k) = 1, then w(Tvj;k) � b�=2c. Consider the

point in time when closure(C0) is computed. Since

Tvj;1 contains C0, Tvj;1 is un�nished. By Lemma 2,

Balance distributes the tokens contained in Tuj evenly

among the subtrees Tvj;1 ; Tvj;2; : : : ; Tvj;c(j) that contain

un�nished chains. Thus, for each un�nished Tvj;k with

k � 2, w(Tvj;k) was up to now at most b�=2c when-

ever active(Tvj;k) = 1. For each �nished Tvj;k, consider

the last point of time when an un�nished chain of Tvj;k
becomes the current chain. Since vj;1 exists, Tvj;1 is un-

�nished and, by Lemma 2, w(Tvj;k) is up to this point

in time at most b�=2c whenever active(Tvj;k) = 1. We

conclude that up to the time when closure(C) is com-

puted, Tvj;k contains at most Ni(b�=2c) chains of color
i that can be dependent on the chain corresponding to

vj;k, and, thus, can be dependent on C. Summing up,

we obtain that Tv(C) contains at most

dX

j=1

c(j)X

k=2

Ni(b�=2c) � d(d� 1)Ni(b�=2c)

chains of color i that can be dependent on C.

Finally we show that Ni(1) = 1. If a subtree Tv(C)

contains at most one token whenever active(Tv(C)) = 1,

then each node in Tv(C) has only one child, by Propo-

sition 1. Since Tv(C) never branches, it can contain at

most one chain of color i that is dependent on C. 2

Lemma 6 For every chain C, there exist at most

d2logd+1 chains C0 2 Tv(C) such that closure(C0) uses

edges of C.

Proof: Let C be an arbitrary chain and let v 2 T be

the node corresponding to C. We show that if a chain

C0 2 Tv(C) is not dependent on C, then closure(C0) does

not use edges of C. Lemma 6 follows immediately from

Lemma 5.

If a chain C0 2 Tv(C) is not dependent on C, then the

path closure(C0) is Tu-homogeneous for a descendant u

of v. Suppose that a Tu-homogeneous path P would use

edges of C. Let i be the color of C. Chain C does not

belong to Tu. Thus, after P has visited C, it may only

traverse chains of color i until it reaches again a chain

of color i that belongs to Tu. Note that all chains of

color i that are reachable from C via edges of color i

must have been generated earlier that C. However, all

chain in Tu were generated later than C. We conclude

that a Tu-homogeneous path cannot use edges of C. 2

Lemma 7 For every chain C, there exist at most (d+

2)d2logd+2 chains C0 =2 Tv(C) such that closure(C0) uses

edges of C.

The proof is omitted.

Theorem 2 Using the Balance algorithm, the robot ex-

plores an unknown graph with de�ciency d and traverses

each edge at most (d+ 1)6d2 logd times.

Proof: Let e be an arbitrary edge of chain C. Edge e

is traversed for the �rst time when it is explored dur-

ing an execution of line 5 of the Balance algorithm. By

Lemma 4, it can be traversed 3d+2 times during execu-

tions of lines 17 and 18. By Lemmas 6 and 7, e belongs

to at most d2 logd+1+(d+2)d2 logd+2 paths closure(C0).

We show that each path closure(C0) is traversed at most

d(d+ 1) times. The path closure(C0) is used at most d

times during an execution of line 2 of Relocate, since

each time a token is removed from the �nished chain

C0. The path closure(C0) can also be used at most d2

times in line 4 of Relocate, since each time a token is

removed from the �nished subtree Tv(C00) of a child C00

of C0.

Finally, the edge e might be traversed d(d+ 1) times

in line 9 of Relocate. When e is traversed in line 9,

then (i) either the robot had moved to C0 after the

introduction of a new token (line 16) or (ii) there exists

an ancestor u of v(C) with a child x such that the robot

was stuck at a node in Tx and Tx is �nished. Thus, by

going \up" the tree T in lines 3{5, the robot reached

u. Case (i) occurs at most d times. When C becomes

the current chain for the �rst time, let u1; : : : ; ul be the

ancestors of v(C) such that each uj has a child vj with

(a) Tvj contains un�nished chains, and (b) v =2 Tvj . By

Proposition 1, the nodes u1; : : : ; ul can have a total of

d children satisfying (a) and (b). Since each subtree

rooted at one of these children can contain at most d

tokens, case (ii) occurs at most d2 times.

Thus, edge e is traversed at most

1 + 3d+ 2 + d(d+ 1)(d2 logd+1 + (d+ 2)d2 logd+2)

+d(d+ 1) � (d+ 1)5d2 logd

times. Multiplying the bound by d to account for

restarts shows the theorem. 2

We note that the total number of edge traversals used

by Balance is also O(minfdn2 + m;nmg), where n is

the number of nodes in the graph. For the O(dn2 +m)

bound observe that the robot gets stuck at every node

at most d times, i.e., it gets stuck a total of O(dn) times.

In each relocation step it traverses at most n edges. A

similar argument shows the O(nm) bound.

4 A tight lower bound for the Balance

algorithm and modi�cations

In this section we give �rst a lower bound for the

Balance algorithm and afterwards we give lower bounds

for modi�cations of Balance.

Theorem 3 For every d � 1, there exists a graph G of

de�ciency d that is explored by Balance using d
(logd)m

edge traversals.

Proof: We show that there exists a graph G = (V;E)

and an edge e 2 E that is traversed d
(logn) times while

Balance explores G. The theorem follows by replacing

e by a path of �(m) edges.

The graph is a union of chains C, each of which con-

sists of three edges, a startnode, an endnode and two

interior nodes v1(C) and v2(C). The interior nodes be-

long to exactly one chain and have up to one outgoing

edge. We describe G, see also Figure 5. Graph G con-

tains (a) a cycle C0 that starts and ends in a node v

(Balance is started at v and �nds C0 during Phase 1)

and (b) a recursively de�ned problem P d attached to

C0.

C0
Dd
1

Dd

d0

Dd
2

Cd
1;1; : : : ;C

d

1;d0+1

Pd0

1

Pd0

2

Pd0

d0

d0 + 1 chains

Figure 5: The graph G

A problem P � of de�ciency �, for any integer � �
6, is a subgraph that has two incoming edges whose

startnodes do not belong to P � but whose endnodes

do, and � outgoing edges whose startnode belongs to

P � but whose endnodes do not. A problem P �, with

� 2 f2; : : : ; 5g has two incoming and two outgoing edges;

a problem P 1 has one incoming and one outgoing edge.

In the case of P d, the two incoming edges start at v1(C0)

and v2(C0), respectively; the d outgoing edges all point

to v.

A problem P 1 consists of a single chain and, for � 2
f2; : : : ; 5g, P � consists of two chains. For � 2 f1; : : : ; 5g,
the �rst edge of each chain in P � represents an incoming

edge and the last edge represents an outgoing edge. The

interior nodes of the chain have no outgoing edges. For

� � 6, let �0 = b�=3c�1. Problem P � consists of �0(�0+

1) chains C�
j;k, 1 � j � �0, 1 � k � �0 + 1, as well as �0

chains D�
j and �

0 recursive subproblems P �0

j , 1 � j � �0.

These components are assembled as follows. One of

the incoming edges of P � is the �rst edge of C�
1;1. Node

v1(C�
j;k) is the startnode of C

�
j;k+1, 1 � j; k � �0. Node

v1(C�
j;�0+1) is the startnode of C�

j+1;1, 1 � j � �0 � 1.

The last edge of C�
1;k, 1 � k � �0+1, is an outgoing edge

of P �. The endnode of C�
j;k is equal to the startnode

of C�
j�1;k, 2 � j � �0 and 1 � k � �0 + 1. Nodes

v2(C�
j;k), 1 � j; k � �0, have no outgoing edge but nodes

v2(C�
j;�0+1), 1 � j � �0 � 1, do. Chain C�

�0;�0+1 has no

outgoing edges.

The second incoming edge of P � is the �rst edge

of a chain D�
1 and, for 2 � j � �0, the edge leaving

v2(C�
j�1;�0+1) is the �rst edge of D�

j . For 1 � j � �0,

the last edge of D�
j is an outgoing edge of P �. The two

edges leaving the interior nodes of the chain point into

a subproblem P �0

j . All outgoing edges of P �0

1 are edges

that also leave P �. Balance colors each P �0

j , 2 � j � �0,

in the same way as P �0

1 , but the outgoing edges of P �0

j

point into P �0

j�1.

We identify the sources of G, i.e. the nodes having

higher indegree than outdegree. At each source, inde-

gree and outdegree di�er by 1. The startnodes of the

chains Dd
j , 1 � j � d0, and Cd

d0;k, 1 � k � d0 + 1, repre-

sent a total of 2d0 + 1 sources. Finally, the subproblem

P d0

d0 of de�ciency d0 attached to Dd
d0 contains d

0 sources.

We analyze the number of edge traversals used by

Balance on G. Consider a problem P �, 6 � � � d, and

let �0 = b�=3c � 1. Suppose that Balance has just gen-

erated C�
j;l0+1, for some 1 � j � �0. Since the strand

of chains C�
j;1; : : : ; C

�
j;�0+1 contains �0 + 1 tokens, Bal-

ance does not explore the unvisited edges out of C�
j;�0+1

before the subproblem P �0

j attached to D�
j is �nished.

Let N (�) be the number of times the following event

happens while Balance works on a problem P �: Balance

generates a new chain, gets stuck and cannot reach a

node with new outgoing edges by using only edges in

P �. Problem P � contains �0 subproblems P �0

1 ; : : : ; P �0

�0 .

Every time Balance gets stuck in a subproblem P �0

j ,

1 � j � �0, and has to leave P �0

j in order to resume

exploration, it also has to leave P �. This is because of

the following facts: (1) When Balance explores P �0

j , the

subproblems P �0

1 ; : : : ; P �0

j�1 are already �nished. (2) The

chainsD�
1; : : : ; D

�
j ensure that Balance cannot reach any

chain C�
j;k, 1 � j � �, 1 � k � �0 + 1, from where the

un�nished chains in P � can be reached. Thus, for d �
� � 6, N (�) � �0N (�0) = (b�=3c�1)N (b�=3c�1): Since

N (�) � 1, for 1 � � � 5, we obtain N (d) = d
(logd). Fi-

nally, consider the edge e on C0 that leaves v. Balance

must traverse e at least N (d) = d
(logd) times. 2

We also modi�ed the Balance algorithm by relocating

to other nodes with new outgoing edges. Replace the

choice of Ck in line 7 of by one of the following rules.

Round Robin: Let Ck be the chain among

C1; : : : ; Cl that was selected least often in any execu-

tion of line 7.

Cheapest Subtree: Let Ck be the chain among

C1; : : : ; Cl, such that Tv(Ck) contains the fewest number

of dependent chains with respect to the current chain.

Theorem 4 For Round Robin and for Cheapest Subtree

and for all d � 1, there exist graphs of de�ciency d that

require d
(logd)m edge traversals.

The proof is omitted.

References

[1] B. Awerbuch, M. Betke, R. Rivest and M. Singh.

Piecemeal Graph Learning by a Mobile Robot.

Proc. 8th Conf. on Comput. Learning Theory, 321{

328, 1995.

[2] E. Bar-Eli, P. Berman, A. Fiat and R. Yan. On-line

navigation in a room. Proc. 3rd ACM-SIAM Symp.

on Discrete Algorithms, 237{249, 1992.

[3] P. Berman, A. Blum, A. Fiat, H. Karlo�, A. Ros�en

and M. Saks. Randomized robot navigation algo-

rithms. Proc. 7th ACM-SIAM Symp. on Discrete

Algorithms, 74{84, 1996.

[4] A. Blum and P. Chalasani. An on-line algorithm for

improving performance in navigation. Proc. 34th

Symp. on Foundations of Computer Science, 2{11,

1994.

[5] A. Blum, P. Raghavan and B. Schieber. Navigating

in unfamiliar geometric terrain. Proc. 23rd Symp.

on Theory of Computing, 494{504, 1991.

[6] M. Betke, R. Rivest and M. Singh. Piecemeal learn-

ing of an unknown environment. Proc. 5th Conf. on

Comput. Learning Theory, 277{286, 1993.

[7] M. Bender and D. Slonim. The power of teach ex-

ploration: two robots can learn unlabeled directed

graphs. Proc. 35th Symp. on Foundations of Com-

puter Science, 75{85, 1994.

[8] X. Deng, T. Kameda and C. H. Papadimitriou.

How to learn an unknown environment. Proc. 32nd

Symp. on Foundations of Computer Science, 298{

303, 1991.

[9] X. Deng and C. H. Papadimitriou. Exploring an

unknown graph. Proc. 31st Symp. on Foundations

of Computer Science, 356{361, 1990.

[10] X. Deng and C. H. Papadimitriou. Exploring an

unknown graph. Revised version of [9].

[11] F. Ho�mann, C. Icking, R. Klein and K. Kriegel. A

competitive strategy for learning a polygon. Proc.

8th ACM-SIAM Symp. on Discrete Algorithms,

166{174, 1997.

[12] E. Koutsoupias. Result reported in [10].

[13] C. H. Papadimitriou and M. Yannakakis. Shortest

paths without a map. Theoretical Computer Sci-

ence, 84:127{150, 1991.

[14] R. Rivest. Problem formulation cited in [9].

