
Online Throughput-Competitive Algorithm for Multicast Routing and

Admission Control

Ashish Goel �

Stanford University

Monika R. Henzinger y

DIGITAL Systems Research Center

Serge Plotkin z

Stanford University

Abstract

We present the �rst polylog-competitive online algorithm
for the general multicast problem in the throughput model.
The ratio of the number of requests accepted by the opti-
mum o�ine algorithm to the expected number of requests
accepted by our algorithm is O((log n + log logM)(log n +
logM) log n), where M is the number of multicast groups
and n is the number of nodes in the graph. We show that this
is close to optimum by presenting an
(log n logM) lower
bound on this ratio for any randomized online algorithm
against an oblivious adversary, whenM is much larger than
the link capacities. Our lower bound applies even in the re-
stricted case where the link capacities are much larger than
bandwidth requested by a single multicast. We also present
a simple proof showing that it is impossible to be competi-
tive against an adaptive online adversary.

As in the previous online routing algorithms, our algo-
rithm uses edge-costs when deciding on which is the best
path to use. In contrast to the previous competitive algo-
rithms in the throughput model, our cost is not a direct
function of the edge load. The new cost de�nition allows us
to decouple the e�ects of routing and admission decisions of
di�erent multicast groups.

1 Introduction

Future high-speed communication networks such as
ATM will use bandwidth-reservation in order to achieve
Quality of Service (QoS) guarantees. Given a request for
a Virtual Circuit (VC), the router has to either accept or
reject this request and, if it decides to accept it, allocate
the requested bandwidth along a path connecting the
endpoints of the VC.

In case of multicast requests, the bandwidth has to
be allocated along a tree spanning the nodes partici-
pating in the multicast group. In the general case, a
multicast request speci�es the user (endpoint) and the

�Department of Computer Science, Stanford CA 94305.

Research supported by Center for Telecommunications at

Stanford, ARO Grants DAAH04-95-1-0121/DAAG55-97-1-

0221, and NSF Grants CCR9304971/CCR9307045. Email:

agoel@cs.stanford.edu

ySystems Research Center, Digital Equipment Corporation,

130 Lytton Ave, Palo Alto CA 94301. Email: monika@pa.dec.com

zDepartment of Computer Science, Stanford CA 94305. Re-

search supported by ARO Grant DAAH04-95-1-0121, NSF Grants

CCR9304971/CCR9307045, and by Terman Fellowship. Email:

plotkin@cs.stanford.edu

multicast group that this user wants to participate in.
The router should either reject the request or accept it
and allocate bandwidth along a path connecting the new
endpoint with the already existing tree for this group.

In this paper we present the �rst polylog-
competitive algorithm for the general multicast prob-
lem. Our algorithm is randomized since it is impossi-
ble for any deterministic algorithm to achieve polylog
competitive ratio. The ratio of the number of requests
accepted by the optimum o�ine algorithm to the ex-
pected number of requests accepted by our algorithm
is O((logn+log logM)(logn+ logM) logn), whereM
is the number of multicast groups and n is the num-
ber of nodes in the graph. If each vertex is allowed to
serve at most one multicast group, the competitive ratio
simpli�es to O(log3 n).

Unicast Routing Routing and admission control
problems in the online setting were extensively studied.
Two related performance measures were considered. In
the congestion model, the algorithm is required to ac-
cept all of the requests, and the goal is to reduce the
maximum edge congestion (utilization). Here the con-
gestion is allowed to exceed 100%. In the throughput

model the algorithm is allowed to reject some of the re-
quests and is not allowed to exceed 100% congestion on
any link. The goal is to maximize the total bandwidth-
duration product for all the accepted (routed) requests.

The �rst competitive algorithm in the congestion
model for general topology networks was presented
in [1]. The competitive ratio of this algorithm is
O(logn), where n is the number of nodes in the net-
work. The �rst competitive algorithm in the through-
put model was given in [10] for the case of a single-link
network and extended in [9] for a line network. Com-
petitive algorithm for general topology networks in the
throughput model was presented in [4]. This algorithm
achieves O(lognT) competitive ratio, where T is the
maximum duration (holding time) of a virtual circuit.
The competitive ratio improves to O(logn) for the Per-
manent Virtual Circuits case, i.e. circuits with in�nite
holding times. The algorithm assumes that each circuit

1

2

speci�es its holding time upon arrival. It is impossible
to achieve polylogarithmic competitive ratio if the hold-
ing times become known only upon termination of the
circuit [6, 19].

Routing in a probabilistic model where there are
assumptions on the distribution of call arrivals times
and source-destination pairs was considered in [15].
The results in this paper are incomparable to the
results mentioned above since they are based on the
edge-independence assumption stating that the random
variables describing instantaneous load on edges are
independent. This assumption is not satis�ed in general
topology networks. The randomized model without the
independence assumption was considered in [13]. In the
case where the durations are exponentially distributed
and the arrivals are Poisson with unknown rates, their
algorithm achieves a (1 + �) competitive ratio, where
� depends on the ratio of the minimum capacity to
maximum bandwidth of a single VC. Both [4] and [13]
assume at least logarithmic ratio between maximum VC
bandwidth and minimum link capacity. Similar results
without this assumption were developed for special
network topologies (see e.g. [17]).

All of the above algorithms are related to the
(o�ine) combinatorial approximation algorithms for
multicommodity
ow [16, 18, 20, 14]. As in these
algorithms, the basic idea is to assign each edge a cost
that is proportional to an exponent of the congestion
on this edge, and try to route along short paths with
respect to this cost.

Multicast Routing The techniques in the above
mentioned papers can be used to solve several restricted
multicast problems in the throughput model. In par-
ticular, [4] shows that if the participants in a single
multicast group arrive together(\batch arrivals"), and
the accept/reject decision is for the whole multicast
group, it is possible to achieve O(log n) competitive ra-
tio. Roughly, the idea is to route the multicast request
along a minimum-cost Steiner tree instead of along a
shortest path. The case where we keep the restriction of
batch arrivals, but allow rejection of some of the group
members and acceptance of others can be solved by
replacing an approximation algorithm for Steiner tree
with an approximation algorithm for the k-MST prob-
lem. The �rst polylogarithmic and constant factor ap-
proximations for this problem were presented in [2, 8],
and a 3-approximation algorithm was given in [11]. This
algorithm is relatively slow and is using polynomial
number of calls to an approximation algorithm for the
Prize Collecting Traveling Salesman problem [12]. The
technique developed in this paper can be directly used
to reduce calculations to a single call to the Prize Col-
lecting Traveling Salesman algorithm.

Recently, Awerbuch and Singh [5] have shown how
to combine the \winner-picking" technique [3] with the
techniques in [4] to achieve a polylog competitive ratio
for the case where members of each multicast group
arrive sequentially, i.e. the size and membership of the
group is unknown upon its creation. Their algorithm
can deal only with the non-interleaved case, i.e. when
all the members of a particular multicast group arrive
before a new group can be created.

The algorithm in [5] is not applicable in the general
case, where the arrivals of requests belonging to di�er-
ent multicast groups are interleaved. The main problem
is that this algorithm depends on the fact that, at every
instance, the algorithm is dealing with the construction
of only a single multicast tree and all accept/reject de-
cisions with respect to all existing multicast groups are
already known. As in [4], the algorithm in [5] uses edge
costs that are exponential in the current link load. One
of our contributions is a new de�nition of edge-costs
that are independent of the speci�c accept/reject deci-
sions made with respect to each multicast group. This
decoupling between multicast groups is what allows us
to generalize the algorithm in [5] and to combine it with
techniques in [4] to achieve a polylog competitive ratio
for the general multicast problem.

Lower Bounds A natural question to ask is if it
is possible to make the competitive ratio independent
of M, the number of multicast group. We address this
issue by showing a lower bound of
(logM logn) when
M is much larger than the link capacities. This is
the �rst bound for this problem that is stronger than

(logn) and that works even if we require that the
bandwidth requested by each multicast is signi�cantly
smaller than bandwidth of a single link. A similar
lower bound for the case where a multicast is allowed
to request a constant fraction of a link bandwidth was
shown in [3]. For the case where a multicast can
request bandwidth equal to bandwidth of a single link,
a polynomial lower bound was shown in [7].

It is interesting to note that the algorithm presented
in this paper works even against a semi-oblivious adver-
sary, i.e. the adversary is allowed to look at the tree
used by the online algorithm to service a multicast group
only after all the requests for that group have been pro-
cessed1. We show that no algorithm can do well against
an adaptive online adversary.

In Section 2 we introduce the model and the termi-
nology. Section 3 describes the algorithm, and Section
5 presents the proof of the competitive ratio. Lower
bounds are presented in Section 9.

1A semi-oblivious adversary is at least as powerful as an

oblivious adversary.

3

2 Model and De�nitions

A request to join a multicast group speci�es the group,
the node that wants to join, and the amount of the
requested bandwidth. The multicast routing and ad-
mission algorithm can either reject this \join" request
or accept it and allocate the requested bandwidth along
some path from the new node to the current tree associ-
ated with the requested multicast group. The algorithm
is not allowed to allocate above link capacity.

We model the network as a capacitated graph with
n nodes and m edges. For simplicity, we will assume
that all edges have capacity u and all requests are for
unit bandwidth. We also assume that the number of
multicast groups M is known in advance. The issue
of removing some of the assumptions is deferred to
Section 8.

We also assume that u � log�, where � is a
parameter that is polynomial in n;M de�ned later.2

We assume that multicast groups, once established,
never leave. The case where each multicast group has
a \holding time" will be addressed in the full version of
this paper.

3 The Algorithm

The online algorithm can be viewed as consisting of
L = logn + logM \virtual" algorithms for each one
of the M multicast groups. We call these algorithms
virtual because the routing and accept/reject decisions
of these algorithms are not implemented. Instead, they
only modify internal data structures and, in particular
the cost associated with each edge. The description
of the cost computation is deferred to Section 4. For
now, it is su�cient to assume that each edge has an
associated cost that is deterministic, depends only on
the input sequence of requests, and is monotonically
non-decreasing in time.

The jth virtual algorithm associated with the ith
multicast { VAi;j { is shown in Figure 1. The goal of
VAi;j is to build a tree Ti;j . This tree spans some of the
nodes that requested to be added to the ith multicast
group and that are already spanned by trees Ti;k, for
k < j. In other words, a request is �rst generated at
VAi;1; if it immediately gets added to Ti;1, it is passed
on to VAi;2, etc.

Each request to join the ith multicast group is
considered as a potential unit of pro�t, and the virtual
algorithms use (\consume") this pro�t to \pay" for their
trees. VAi;j can expand its tree Ti;j by adding a subtree
only if it can pay for this subtree. We will refer to

2This requirement corresponds to a similar requirement in [4].

these subtrees as \fragments". As payment, VAi;j can
use only the pro�t that is on the nodes of this subtree
and that was not used by VAi;k for k < j (This is
denoted by Profiti;j(v) in Figure 1). More precisely,
VAi;j monitors the pro�t passed from VAi;j�1. Each
time it gets � units of pro�t at some node v, it adds
� to Profiti;j(v). It then tries to �nd a fragment
that includes v such that the ratio of the unused pro�t
associated with nodes of this fragment plus �0 is at least
d = dT � 1

6L log n
times the cost of adding this fragment to

Ti;j , where d
T = 1=(mu) and �0 � Profiti;j(v). The

goal of the algorithm is to minimize �0.

This subtree is added to the Ti;j , d times the cost
of this tree is \consumed", and the rest of the pro�t
(in fact, at most one unit) on the newly added nodes is
bequeathed to Vi;j+1.

Observe that, since costs are increasing, the total
pro�t used to construct Ti;j is bounded by its �nal
cost divided by d. Since VAi;j builds its tree in an
online fashion, there might be a larger (in terms of
the spanned nodes that requested participation in ith
multicast) tree that can be constructed o�ine using
the same pro�t. In Lemma 5.1 we show that this
\loss" is not very signi�cant. Also, note that the only
way virtual algorithms dealing with di�erent multicast
groups interact with each other is through edge costs.
Another important property is that for all j, the vertices
which contribute towards the pro�t collected by VAi;j

are a subset of the vertices that contribute towards the
pro�t collected by VAi;j�1.

The \real" algorithm is shown in Figure 2. For each
multicast group, it randomly chooses one of the virtual
algorithms and implements the construction of the tree
built by this virtual algorithm. We set the probability
of choosing VAi;j to pj = � � 2j , where � is chosen such

that
PL

j=1 pj = 1.

Observe that if the i-th real algorithm has chosen
VAi;j for a speci�c multicast, it does not get the pro�t
for the requests that were taken into account when VAi;j

was constructing its tree. Instead, it will get the pro�t
for the later requests. In particular, it will get the pro�t
that was inherited by VAi;j+1.

4 Edge Costs

Our algorithm can be viewed as a generalization of
the algorithm of Awerbuch and Singh [5]. The main
conceptual di�erence lies in de�nition of edge costs. In
this section we de�ne the cost metric and the way it
is updated as a result of each new request. The cost
metric is updated by the virtual algorithms and hence
is deterministic.

4

VAi;j

A Initialization (si is the root of the i-th multicast):

1 Ti;j fsig.

2 for all u

Profiti;j(u) 0.

Used-Profiti;j(u) 0 (Used-Profiti;j is used only for the analysis, specifically in

Lemma 5.1)

B Invoked due to receiving profit � at node v from VAi;j�1 (VAi;0 is invoked with unit profit due

to a join request at node v):

1 Profiti;j(v) Profiti;j(v) + �.

2 Contract Ti;j to a single vertex s.

3 Find smallest �0 � Profiti;j(v) such that 9 tree S with the following properties:

(i)v 2 S; s 2 S (ii) Cost(S) � (
P

u2S;u6=v
Profiti;j(u) + �0)=d.

4 if such �0 found

4.1 Let S be the tree which satisfies the conditions in Step 3.

4.2 for all u 2 S; u 6= v

Used-Profiti;j(u) Profiti;j(u);

Profiti;j(u) 0.

4.3 Used-Profiti;j(v) �0;

� Profiti;j(v)� �0;

Profiti;j(v) 0.

4.4 Uncontract Ti;j;

Ti;j Ti;j [S.

4.5 Update the cost of each edge e 2 S.

4.6 Pass profit � at node v to VAi;j+1.

Figure 1: The j-th Virtual phase of the i-th Real algorithm. Recall that d is the density value de�ned at the
beginning of Section 3.

Real(i)

1 Choose �i 2 [1 : : : L] such that Prob(�i = j) = � � 2j.

2 Follow the computation of VAi;�i and whenever an edge gets added to Ti;�i, add that edge to the

real tree being used to service the i-th multicast group.

Figure 2: The Real algorithm for multicast group i.

5

The online algorithm constructs the cost metric as
it goes along. When pro�t propagates from VAi;j�1 to
VAi;j , we consider this an \event". An event might
cause VAi;j to consume some pro�t and update its tree
Ti;j . Let ce(k) denote the cost of edge e after the
k-th event. When the kth event occurs, the virtual
algorithms use costs ce(k�1) for making their decision.
These decisions are then used to compute ce(k) in a
deterministic fashion.

Let ~� = (�1; : : : ; �M) represent the indices of the
virtual algorithms chosen for the M multicasts. Also,
let p~� represent the probability of making this sequence
of choices. De�ne the load on an edge as 1=u times the
number of trees it was used in by the real algorithm,

and let �
(~�)
e (k) represent the load on edge e after the

�rst k events have occurred, where ~� represents the
choices made by the Real algorithms. Since the random
choices of the Real algorithms for di�erent multicasts
are independent, p~� =

QM
i=1 p�i .

Let ce(0) = u for each edge e. Suppose costs c(0) to
c(k�1) were already computed. Then ce(k) is computed
as follows.

ce(k) = u
X
~�

p~��
�(~�)e (k)

The value of � is set to 4m6 log2M. The reason
for this value will become clear in Section 6. Observe
that, given ~�, the expression �

(~�)
e (k) is deterministic,

and hence the costs ce(k) are deterministic as well.

De�ne X
(i;j)
e (k) as indicator variables, with X i;j

e (k)
being 1 if edge e is used by VAi;j during the �rst k events

and 0 otherwise. Notice that X
(i;j)
e (k) are deterministic

quantities. Now, �
(~�)
e (k) = (1=u) �

PM

i=1X
(i;�i)
e (k). We

can use this to rewrite the cost ce(k):

ce(k) = u
X
~�

MY
i=1

�
p�i � �

X
(i;�i)
e (k)=u

�

Interchanging the order of the summation and the
product, we get

ce(k) = u

MY
i=1

LX
j=1

pj�
X(i;j)
e (k)=u(4.1)

The above representation gives an easy way to
compute ce(k) e�ciently. Since only one of the sums
changes during any event, the online algorithm can
recompute that sum and obtain the new costs.

The following claim follows from the way we con-
struct the cost metric.

Claim 4.1. The cost ce(k) is the expectation of the

quantity u��e(k) where �e(k) is a random variable rep-

resenting the load on edge e after k events.

5 Proof of competitiveness

In order to prove the competitive ratio, we will di-
vide the multicast groups into \pro�table" and \unprof-
itable", based on the cost of the optimum trees for these
groups with respect to the cost metric constructed by
our algorithm. Here, by optimum trees we mean the
trees constructed by the optimum o�ine algorithm.

Consider the ith multicast group, and let the num-
ber of requests satis�ed by the optimal o�ine algorithm
be r�(i). Similarly, let r(i) be the pro�t obtained by the
online algorithm. Let w�(i) be the cost (in the �nal cost
metric) of the tree T �i used by the optimum algorithm
to service multicast group i. We call a multicast group
pro�table if the optimal's tree for this multicast group
has a high pro�t to cost ratio in the �nal cost metric:

Definition 1. The i-th multicast group is pro�table if
r�(i)

w�(i)
� dT , where dT = 1

mu
.

We use the quantities R� and R to representPM
i=1 r

�(i) and
PM

i=1 r(i), respectively. Let P and U

represent the set of pro�table and unpro�table multicast
groups, respectively. Also, we de�ne R�P =

P
i2P r

�(i)
and R�U =

P
i2U r

�(i) = R� �R�P .

We �rst show (Lemma 5.2) that the online algo-
rithm obtains almost as much pro�t from pro�table
groups as the optimal solution. Then we show that the
total pro�t obtained by the online algorithm can only be
poly-logarithmically smaller than optimal's pro�t from
unpro�table groups. To prove the latter claim, we take
an indirect route. We use capacity constraints to argue
that the quantity mR�U is bounded by the sum of the
�nal costs of all edges (Lemma 5.3). Finally, we bound
the �nal costs in terms of the expected pro�t obtained
by the online algorithm (Lemma 5.7).

Consider the quantities Profiti;j(v) and
Used-Profiti;j(v) at the end ie. after all
requests have been received. Let Pi;j(v) =
Profiti;j(v) + Used-Profiti;j(v). For any set
X of vertices, Pi;j(X) =

P
v2X Pi;j(v). The de�ni-

tions of Profiti;j and Used-Profiti;j are similarly
extended. Following lemma is similar to a lemma in [5].
Our proof is di�erent in order to allow us to show that
the algorithm can be implemented in polynomial time.
It also gives better constant factors.

Lemma 5.1. Pi;j(T
�
i) � 3w�(i)d logn.

Proof. We �rst bound the quantityProfiti;j(T
�
i). This

contribution comes from nodes in T �i which do not

6

belong to Ti;j . The pro�t consumed on these nodes by
VAi;j must be at most w�(i)d, else these nodes would
have formed a fragment on their own and been added
to Ti;j .

Now we bound Used-Profiti;j(T
�
i). This contri-

bution comes from nodes that belong to Ti;j . Recall
that V Ai;j acquires Ti;j in tree fragments. Consider an
Eulerian tour D of T �. Let a segment of tour D be a
maximal contiguous piece of D such that all edges of the
segment belong to the same fragment of Ti;j . Initially,
all segments are marked active. If two consecutive ac-
tive segments on this tour belong to the same fragment,
they are merged together along with the portion of the
tour between them to form a single segment. Let t(s)
denote the event at which the edges of segment s were
added to Ti;j .

Furthermore, we de�ne a pred and succ relation on
active segments such that pred(s;D) is the predecessor
of s in tour D and succ(s;D) is the successor of s in D.

Let D0 = D. For h � 1, let Hh = fs is an ac-
tive segment of Dh�1; t(s) < t(pred(s;Dh�1)); t(s) <

t(succ(s;Dh�1))g. Let Lh denote the remaining seg-
ments of Dh�1, and let Dh denote the tour Dh�1 with
each segment in Lh marked inactive. The segments in
Hh remain active in Dh. As mentioned above, consec-
utive active segments are merged if they belong to the
same fragment.

Note that for all h:

jLhj > jHhj:

This implies that there at most logn non empty sets
Lh. Let s 2 Lh for some h. Also, let s0 be the successor
or predecessor segment of s in Dh�1 with t(s0) < t(s)
and let p consist of the part of D between s and s0.

Assume Used-Profiti;j(s) > d(w�(s) + w�(p)).
Let v 2 s be the node with the last request in multicast i
among all nodes in s. When the request at v arrived, the
sum Profiti;j(s) =

P
u2sProfiti;j(u) is more than

d(w�(s) +w�(p)), because Profiti;j(s) is the source of
Used-Profiti;j(s). Thus, at that time we could have
used at most d(w�(s)+w�(p)) to add s+p as a fragment.
Since the algorithm always tries to create a fragment
using the minimum amount of pro�t, we have:

Used-Profiti;j(s) � d(w�(s) + w�(p)):

Considering that D visits every node twice it follows
that X

s2Lh

Used-Profiti;j(s) � 2w�(i)d:

Summing over all values of h it follows that the
pro�t consumed by V Ai;j from all nodes which belong

to T �\Ti;j is at most 2w�(i)d logn. This completes the
proof of this lemma.

It is easy to see that, for pro�table multicasts, the
pro�t obtained by our online algorithm is high:

Lemma 5.2. R � R�P =2.

Proof. Since there are L levels, Lemma 5.1 guarantees
that the total wasted pro�t for multicast group i is at
most 3Lw�(i)d logn. Plugging in d = dT � 1

6L log n
and

using the fact that i pro�table implies that r�(i) �
dTw�(i), we obtain a bound of r�(i)=2 on the wasted
pro�t. Therefore, r(i) � r�(i)=2 for all pro�table groups
i. Summing over all the pro�table groups, we get the
desired result.

Having bounded the pro�t from the pro�table
groups, we now concentrate on the unpro�table groups.
Recall that ce is the cost of edge e at the end i.e. after
all the events have taken place, and that the costs are
non-decreasing in time.

Lemma 5.3. mR�U �
P

e ce

Proof. Omitted.

Let wj(i) represent the cost incurred by VAi;j in
constructing the tree Ti;j . In other words, each tree
fragment of Ti;j contributes to wj(i) its cost associated
with the event of adding this fragment. We use w(i)
to denote w�(i)(i), where � represents the choice of the
real algorithm. Let rj(i) represent the pro�t consumed
in constructing this Ti;j . The following lemma implies
that if the expected pro�t is small, then the expected
cost of the constructed trees is small as well.

Lemma 5.4. E(r(i)) � (d=2)E(w(i)) � 1
M

, where w(i)
is the cost paid by the Real algorithm for multicast group

i.

Proof. If the real algorithm chooses to follow VAi;j , i.e.
�(i) = j, then it will get at least the pro�t used by
VAi;j+1. Therefore:

E(r(i)) �
L�1X
j=1

pjrj+1(i):

By de�nition, pj = pj+1=2, and hence

E(r(i)) �
LX
j=2

pjrj(i)=2:

By construction:

E(w(i)) =

LX
j=1

pjwj(i) � (1=d)

LX
j=1

pjrj(i):

7

Thus, we have

d � E(w(i)) � 2E(r(i)) + p1r1(i):

Now notice that r1(i) can be at most n, since each
request brings in one unit of pro�t, and there can be
at most n requests for a single multicast group. Also,
p1
PL

j=1 2
j�1 = 1, which implies that p1=2 < 2�L.

Substituting L = logn + logM, we obtain E(r(i)) �
(d=2)E(w(i)) � 1

M
.

We remark that in this proof the fact that the VAs
are deterministic is quite crucial; otherwise, the pro�ts
rj(i) would be conditioned on the random choices made
by the real algorithms and the above argument would
break down completely.

Now we prove that if the expected cost of the
constructed trees is small, then the total cost of all
the edges is small as well. But �rst, we need to prove
the following technical lemma. Roughly speaking, this
lemma implies that if an event caused an edge to be
used by one of the trees, the increase in the cost of this
edge is proportional to its current cost.

Consider an event k that caused VAi;j to augment
its tree, and let Ek represent the set of edges of the
newly added subtree.

Lemma 5.5. For all e 2 Ek, ce(k) � ce(k � 1) �
log�
u
pjce(k�1). For the edges e =2 Ek, ce(k) = ce(k�1).

Proof. Omitted.

Let W =
P

i wi represent the total cost of the
trees constructed by the online algorithm. The following
lemma relates the cost incurred by the algorithms and
the �nal cost of the edges.

Lemma 5.6.
log �
u
E(W) �

P
e(ce � u).

Proof. Let �e(k) = ce(k) � ce(k � 1) represent the
increase in cost on edge e during the kth event. Clearly,
ce = ce(0) +

P
k�e(k) where the summation is over all

events and ce(0) = u for all edges e. Now, let VAik;jk be
the virtual algorithm that updates its tree during event
k. Lemma 5.5 implies thatX
e

(ce�u) � (log�=u)
X
i

X
j

pj
X

k:ik=i;jk=j

X
e2Ek

ce(k�1):

Using de�nition of wj(i), we can rewrite this expression
as follows:X

e

(ce � u) � (log�=u)
X
i

X
j

pjwj(i)

= (log�=u)
X
i

E(w(i)):

Using linearity of expectations,
P

iE(w(i)) =
E(
P

i wi)), which completes the proof.

We are now ready to show that if the obtained pro�t
is small, then the total cost of all the edges is small as
well.

Lemma 5.7. (5d
T

d
log�)mE(R) �

P
e ce

Proof. Summing up Lemma 5.4 over all multicast
groups, we have:

2

d

E(R) +

MX
i=1

1

M

!
� E(W):

As we will show below, E(R) � 1. Therefore, the above
inequality can be rewritten as 4

d
E(R) � E(W). Using

Lemma 5.6, and the fact that mdTu = 1, we obtain

X
e

ce �
log�

u
�
4

d
E(R) +mu

= m log�

�
4dT
d
E(R) +

u

log�

�
:

To complete the proof, it remains to show that the
�rst u= log� requests are always accepted, i.e. E(R) �
u= log�. Suppose the �rst k < u= log� requests have
been accepted. As a result, the load on each edge is
no more than k, and the cost of servicing the next

request can be at most mu�k=u < mu�
1

log � = 2mu.
By construction, the pro�t needed to pay for this cost
is at most

2mud = 2mu
1

mu

1

6L logn
=

1

3L logn

Thus, the unit of pro�t brought by this request is
enough to pay for extending the trees of all VA algo-
rithms dealing with the corresponding multicast group.
Thus, this request is going to be accepted by the real
algorithm as well. In other words, if there are less than
u= log� requests generated by the adversary then the
Real algorithm accepts them all and has a competitive
ratio of 1. Else, R (and therefore E(R)) is greater than
u= log�, which completes the proof of the claim.

Combining Lemma 5.3 and Lemma 5.7 with Lemma 5.2,
we obtain the following result:

Theorem 5.1. R�=E(R) = O(logn log�(logn +
logM))

6 Capacity Constraints

In the previous section we showed that the algorithm
accepts a signi�cant fraction of the requests accepted
by the optimum o�ine algorithm. It remains to show
that our online algorithm does not over
ow the available
capacities. To that end, we set � = 4m6 log2M. Note
that, by Theorem 5.1, this implies that we get an

8

O(logn(logn + log logM)(logn + logM))-competitive
algorithm. For the special case where each node is
allowed to serve at most one multicast group, we clearly
have an O(log3 n)-competitive algorithm.

We now show that the above value of � is su�cient
to ensure that the capacity constraints are never vio-
lated with high probability.

Lemma 6.1. For any edge e, the cost ce does not exceed

u�1=2.

Proof. Suppose ce(k) > u�1=2�1=u for some k. Since
� = 4m6 log2M and u � log�, we get ce > um3 logM.
Since maximum pro�t of a single tree fragment is n, this
cost is above maximum pro�t divided by d. Thus, this
edge will never be used again by any VA. The claim
follows from the fact that during any one event, ce(k)
can increase only by a factor of �1=u.

Lemma 6.2. With probability at least 1�1=m2, no edge

violates its capacity constraint.

Proof. Claim 4.1 states that ce is equal to the expected
value of the quantity u��e , where �e is the �nal load
on an edge. The event �e � 1 implies that u��e �
�1=2E(u��e). Using Markov inequality, the probability
of this event happening is at most ��1=2 < 1=m3.
Therefore, with probability at least 1� 1=m2, all edges
satisfy the capacity constraints.

If the algorithm tries to exceed capacity of an edge,
we terminate it. Lemma 6.2 guarantees that this does
not a�ect the competitive ratio given in Theorem 5.1.

7 Implementation of the algorithm

There are two issues we need to address to make our
algorithm run in polynomial time. First, in Step 3 of
VAi;j (Figure 1), we need to compute the minimum
pro�t �0 needed out of the new request to create an
appropriate tree fragment. Second, we need to provide
a polynomial time approximation algorithm for �nding
the fragment in Step 3 of VAi;j , given �

0.

The �rst problem can be solved by doing a binary
search to determine �0. It is su�cient to compute
�0 with precision of d. In the full version of the
paper we show that, given a value for �0, a su�ciently
good approximation to the fragment can be obtained
by a single invocation of the prize-collecting Steiner
tree algorithm of Goemans and Williamson [12]. This
is based on the following lemma. Suppose the prize
collecting algorithm is run with penalties �, where
�(u) = Profiti;j(u)=d if u 6= v, and �(v) = �0=d. Let
T be the tree returned by this algorithm with cost w
and pro�t r.

Lemma 7.1. (1) w � 2r=d. (2) If T is empty, there is

no tree T 0 rooted at v such that w0 � r=d.

The Lemma above is su�cient to prove Lemma 5.1
with a di�erent constant. Roughly speaking, all that is
needed is so show that if at Step 3 of the algorithm
it is possible to �nd a tree fragment T 0 such that
r(T 0) > 2dw(T 0), then we will �nd a fragment T 00 such
that r(T 00) > dw(T 0) and r(T 00) � 2r(T 0). The rest
of the lemmas go through with slightly larger constant
factors.

8 Relaxing some of the assumptions

In the �nal version of the paper we discuss how to relax
some of the assumptions made in Section 2. In particu-
lar, using techniques similar to those in [4], we show how
to handle the case where the bandwidth requirements
of di�erent multicast groups and the capacities of the
edges vary arbitrarily. As before, this requires a restric-
tion on the ratio between the smallest edge capacity and
the largest bandwidth used by a single multicast. We
also show how the competitive ratio is a�ected by allow-
ing di�erent multicast groups to have di�erent pro�ts,
again similar to [4]. Further, we show that we do not
need to know M in advance.

9 Lower bounds

The competitive ratio of our algorithm holds against a
semi-oblivious adversary { the adversary is allowed to
look at the multicast tree generated by the online algo-
rithm but only after all the requests for that multicast
group have been processed. The next obvious question
to ask is whether any algorithm can work well against
a more powerful adversary. We answer this question in
the negative in this section.

9.1 Against an oblivious adversary A lower
bound of logn for the problem studied in this paper im-
mediately follows from [4]. The challenge in the online
multicast problem is to decide which requests to service
(\winner picking") and how to route a request (\online
routing"). We now show how to combine a lower bound
for winner picking [3] with the lower bound for online
routing [4] to achieve a lower bound of logM logn for
the online multicast problem. This is the �rst lower
bound stronger than logn for the online multicast prob-
lem if the bandwidth requested by each multicast can
be signi�cantly smaller than bandwith of a single link.

Theorem 9.1. No algorithm for selective online mul-

ticast can have a competitive ratio better than

(log(M=u) logn) even against an oblivious adversary,

and even when the requests are non-interleaved.

Proof. The basic idea behind the winner picking lower
bound for online multicast is the following: Assume
M multicasts are created, but both the online and

9

the o�ine algorithm are just allowed to pick one. A
multicast consists of at least one and up to logM
classes, each class consisting of c requests for some
parameter c. Half of the multicasts, chosen randomly
from all multicasts, consist of exactly c request. One
fourth of the multicasts, chosen randomly from the
remaining half of the multicasts, consist of exactly 2c
request, etc. Thus, the expected pro�t of online is 2c,
while the expected pro�t of o�ine is c logM.

The lower bound for online routing works in phases:
There are logn+1 phases, with the \pro�t", i.e. number
of requests, doubling in each phase. It can be shown
that there must be a phase such that the expected pro�t
that online has received so far is at most 2= logn of the
pro�t that is available in the current phase. In this
phase, o�ine services all the request, i.e., takes all the
pro�t, and the sequence of requests terminates.

We show next how to combine these two bounds. To
simplify the presentation we assume that all demands
and all edge capacities are 1, but it is permissible to
satisfy a fractional demand and obtain a fractional pro�t
(the pro�t for a multicast group is the product of the
satis�ed demand and the number of satis�ed requests).
We explain later how this result carries over to our
model.

We restrict ourselves to values ofM such that
p
n >

logM. Consider the graph G on n+2 vertices which is
de�ned as follows. The vertex set is fr; x; v1; : : : ; vng.
There is an edge from r to x, and there is an edge
from x to each of v1 : : : vn. For convenience, de�ne
M = M= logn and N = n= logM . Notice that the
restriction we have placed on M implies that N >

p
n.

The adversary operates in at most logN phases: we
describe the i-th phase, 1 � i � logN . In phase i the
adversary divides the vertices v1 : : : vn into classes of size
2i�1. Notice that there must be at least logM classes.
The adversary then generates M multicasts, each with
r as the root. The requests for these multicasts will
be non-interleaved. For each multicast, the adversary
generates a request at each of the nodes in the �rst
class. Then the adversary
ips a coin. If the coin toss is
a Head (ie. with probability half) the adversary moves
on to the next multicast. Else, it generates a request
at each node in the next class,
ips another coin, and
repeats the same process again. If requests have been
generated at logM classes for the same multicast, the
adversary moves on to the next multicast. At the end
of all M multicasts for this phase, the adversary moves
on to the next phase. Notice that setting the class size
to 2i�1 is equivalent to doubling available pro�t by 2 for
each phase.

Let c(i) be the capacity on the edge (r; x) used by
the online algorithm during phase i. Also, let p(i) be
the pro�t obtained by online during the i-th phase.
Let p�(i) and c�(i) be the corresponding quantities
for the solution generated by the oblivious adversary.
Notice that

P
i c(i) can be at most 1. De�ne S(k) =

1
2k

P
1�i�k E(p(i)). The total expected pro�t obtained

by the algorithm in the �rst k phases is 2kS(k).

The following two claims now hold:

Claim 9.1. E(p(i)) < 2iE(c(i)).

Proof. Suppose the online algorithm decides to satisfy
a fractional demand of x for a speci�c multicast in
the i-th phase. The cost incurred is x. Suppose
that this commitment is made by the algorithm after
the j-th request for this multicast group comes in.
Then the expected pro�t from this multicast group is
2i�1 �x

P
j�j0�M 2j

0�j < 2ix. Now we sum this up over
all the multicast groups in phase i to get the desired
result.

Claim 9.2. During any phase i, the adversary can

ensure that E(p�(i)) � logM
4

2ic�(i).

Proof. During phase i, the adversary can pick the
multicast with the maximum number of classes of
requests. Let P<(i) denote the probability of this
number being less than i. Now, P<(i) = (1=2 + 1=4 +
: : : 21�i)M = (1 � 21�i)M , for i < logM . Clearly,
P<(2

3
logM) < 1=3.3 This tells us that the expected

number of classes is greater than logM
2

. To complete
the proof of this claim we observe that each class in the
i-th phase has 2i�1 requests.

We now prove that there exists a phase k such
that the total expected pro�t obtained by the online
algorithm during the �rst k phases is no more than
2k+1= logN . Suppose this is not true. Then, S(i) >
2= logN for all i. In particular,

P
1�i�logN S(i) >

2. But
P

i S(i) =
P

iE(p(i))
P

i�j�logN
1
2j

�

2
P

iE(p(i))=2
i. Using Claim 9.1, we have

P
iE(c(i)) >

1. But this is a contradiction, as the online is not al-
lowed to over
ow capacities. This proves the existence
of a phase k with S(k) � 2= logN .

The oblivious adversary cannot see the coin tosses of
the online algorithm but it can compute in advance the
quantities S(i). Having found the value k guaranteed by
the above argument, the adversary stops after phase k
and does not generate any more multicast requests. The
adversary also generates a `good' solution as follows: It
does not satisfy any demands in the �rst k � 1 phases,
and in the last phase, it uses up the entire edge (r; x).

3This is a very loose statement. P<(
2

3
logM) is much,much

smaller, but we do not need a stronger bound.

10

Now from Claim 9.2, E(p�(k)) � 2k�2 logM . The
total expected pro�t obtained by the online algorithm
is 2kS(k) � 2k+1= logN . This gives a lower bound of

(logM logN) on the competitive ratio of any online
algorithm. Since N �

p
n and M = M= logn, this is

also a
(logM logn) lower bound.

In the above analysis, we assumed that
p
n >

logM. This is not a very restrictive assumption,
because for logM >

p
n, our proof shows that the

competitive ratio is already as bad as
(
p
n).

Now we adapt this lower bound proof to our model.
Assume that the capacity is u. Let M be the number
of multicasts, and let M0 = M=u. The adversary
proceeds as before, except that each phase gets repeated
u times. Also, the online algorithm is restricted to
satisfy the entire demand of 1 unit or none at all. The
same calculation as done above gives a lower bound of

(logM0 logn) =
(log(M=u) logn).

9.2 Against an adaptive-online adversary Recall
that an adaptive-online adversary is one which can
adapt the input sequence depending on the response of
the online algorithm; however the adversary must also
generate a solution as it goes along.

Theorem 9.2. No randomized algorithm for selective

online multicast can have better than
(min(n;M
u
))

competitive ratio against an adaptive-online adversary.

The lower bound holds even when the requests are non-

interleaved.

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts.

On-line load balancing with applications to machine

scheduling and virtual circuit routing. 25th ACM

Symposium on Theory of Computing, pages 623{31,

1993.

[2] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Im-

proved approximation guarantees for minimum weight

k-trees and prize-collecting salesmen. 27th ACM Sym-

posium on Theory of Computing, pages 277{283, 1995.

[3] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton.

Making commitments in the face of uncertainty: How

to pick a winner almost every time. 28th ACM

Symposium on Theory of Computing, pages 519{530,

1996.

[4] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput

competitive online routing. 34th IEEE symposium on

Foundations of Computer Science, pages 32{40, 1993.

[5] B. Awerbuch and T. Singh. Online algorithms for

selective multicast and maximal dense trees. 29th ACM

Symposium on Theory of Computing, 1997.

[6] Y. Azar, A. Broder, and A. Karlin. On-line load

balancing. In Proc. 33rd IEEE Annual Symposium

on Foundations of Computer Science, pages 218{225,

1992.

[7] Y. Bartal, A. Fiat, and S. Leonardi. Lower bounds

for on-line graph problems with application to on-

line circuit and optical routing. In Proc. of the 28th

Symposium on Theory of Computation, pages 531{540,

1996.

[8] A. Blum, R. Ravi, and S. Vempala. A constant factor

approximation for the k-mst problem. In28th ACM

Symposium on Theory of Computing, pages 442{448,

1996.

[9] J. Garay, I. Gopal, S. Kutten, Y. Mansour, and

M. Yung. E�cient on-line call control algorithms. In

Proc. of 2nd Annual Israel Conference on Theory of

Computing and Systems, 1993.

[10] J.A. Garay and I.S. Gopal. Call preemption in commu-

nication networks. In Proc. INFOCOM '92, volume 44,

pages 1043{1050, Florence, Italy, 1992.

[11] N. Garg. A 3-approximation for the minimum tree

spanning k vertices. 37th IEEE Symposium on Foun-

dations of Computer Science, pages 302{309, 1996.

[12] M. Goemans and D. Williamson. A general approxima-

tion technique for constrained forest problems. SIAM

J. Comput., 24(2):296{317, April 1995.

[13] A. Kamath, O. Palmon, and S. Plotkin. Routing

and admission control in general topology networks

with poisson arrivals. 7th ACM-SIAM Symposium on

Discrete Algorithms, pages 269{278, 1996.

[14] D. Karger and S. Plotkin. Adding multiple cost con-

straints to combinatorial optimization problems, with

applications to multicommodity
ows. In Proc. 27th

Annual ACM Symposium on Theory of Computing,

pages 18{25, May 1995.

[15] F. P. Kelly. Blocking probabilities in large circuit-

switched networks. Advances in Appl. Prob., 18:473{

505, 1986.

[16] P. Klein, S. Plotkin, C. Stein, and �E. Tardos. Faster

approximation algorithms for the unit capacity con-

current
ow problem with applications to routing and

�nding sparse cuts. SIAM Journal on Computing,

23(3):466{487, June 1994.

[17] J. Kleinberg and E. Tardos. Disjoint paths in densely

embedded graphs. 36th IEEE symposium on Founda-

tions of Computer Science, pages 52{61, 1995.

[18] T. Leighton, F. Makedon, S. Plotkin, C. Stein, �E. Tar-

dos, and S. Tragoudas. Fast approximation algorithms

for multicommodity
ow problems. J. Comp. and Syst.

Sci., 50:228{243, 1995. (Invited paper).

[19] Y. Ma and S. Plotkin. Improved lower bounds for load

balancing of tasks with unknown duration. Informa-

tion Processing Letters, (62):301{303, 1997.

[20] S. Plotkin, D. Shmoys, and �E. Tardos. Fast approx-

imation algorithms for fractional packing and cover-

ing problems. Math of Oper. Research, 20(2):257{301,

1995.

[21] D. Sleator and R. Tarjan. Amortized e�ciency of

list update and paging rules. Comm. of the ACM,

28(2):202{208, 1985.

