Parametric and Kinetic Minimum Spanning Trees

Pankaj K. Agarwat David Eppsteiri Leonidas J. Guibas Monika R. Henzinger

Abstract 1. Introduction

We consider the parametric minimum spanning tree The parametric minimum spanning tree probletaals
problem, in which we are given a graph with edge weights with minimum spanning trees of weighted graplys,=
that are linear functions of a parameter and wish to (v, £), in which the weight of each edge is a linear function
compute the sequence of minimum spanning trees generef some parametey, instead of a real number. That is, the
ated asi varies. We also consider the kinetic minimum weight of each edge € &, we(1), is of the formxe — AYe,
spanning tree problem, in whichrepresents time and the wherex,, ye are real numbers. As varies, the weight of
graph is subject in addition to changes such as edge in-each edge varies and therefore the weight of the minimum
sertions, deletions, and modifications of the weight func- spanning tree of; also varies. At certain discrete values
tions as time progresses. We solve both problems in timeof A, the minimum spanning tree itself changes. The two
O(n?log*3n) per combinatorial change in the tree (or central questions related to this problem are: how many dif-
randomized @n?3logn) per change). Our time bounds ferent trees doe§ have as. varies from—oo to +co, and
reduce to @nY?log*2n) per change (@n*/2logn) ran- how can one compute this sequence of trees?
domized) for planar graphs or other minor-closed families As Katoh [23, 24] has described, parametric minimum
of graphs, and @**log*?n) per change (@n**logn) spanning trees can be used to solve many other problems
randomized) for planar graphs with weight changes but no jn combinatorial optimization, in which one seeks to find
insertions or deletions’ a treeT minimizing a function of the formf (X, Y) where
f is quasiconcave and =) .t Xe andY = > . Ve.
For example, the problem of computing a spanning tree
that minimizes the ratio of cost to reliability can be ex-
pressed in the above form by settifigX, Y) = X exp(Y),

whereX, is the cost of edge, Ve = —In(1 — pe), With
*Center for Geometric Computing, Department of Computer Science, Pe the failure probability of edge. The stochastic pro-
Duke Univ., Durham, NC, 27708-0129; http://www.cs.duke.eqlﬂnkajl; gramming problem of f|nd|ng a tree W|th h|gh probabil_

pankaj@cs.duke.edu. Work supported in part by Army Research Of- . - . . .
fice MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by an NYI ity of havmg low Welght can be eXpressed with the choice

award, and by a grant from the U.S -Israeli Binational Science Foundation. f (X, Y) = X + VY, and the problem of finding a tree
TDept. of Information and Computer Science, Univ. of California, with the minimum variance in edge weight can be similarly
Irvine, CA 92697-3425; http://www.ics.uci.eduéppstein/; eppstein@ics. expressed withf (X, Y) = X — Y2. For each of these prob-

uci.edu. Work supported in part by NSF grant CCR-9258355 and by
matching funds from Xerox Corp. lems, any spanning tree gfgives rise to a pointX, Y) in

tDept. of Computer Science, Stanford Univ., Stanford, CA, 94305; the'plane. Th_e quasiconcave naturefofmplies that the
http://graphics.stanford.eduguibas/; guibas@cs.stanford.edu. Work optimum tree is a vertex of the convex hull of the set of all
supported in part by Army Research Office MURI grant DAAH04-96-1- gych points, and the trees giving rise to the vertices of the

0007 and NSF grant CCR-9623851 .)
Compaq Systems Research Center, 130 Lytton Ave., Palo Alio, CONVEX hull are exactly those which are enumerated in the

CA, 94301-1044; http:/www.research.digital.com/SRC/personal/Monika Parametric minimum spanning tree problemdowith edge
Henzinger/home.html; monika@pa.dec.com. weightsx; — Ay;. Thus, one can solve the original static op-
Copyright 1998 IEEE. Published in the Reedings of FOCS'98, 8-11 timization prob|em by f|nd|ng the best of the trees listed by

November 1998 in Palo Alto, CA. Personal use of this material is permitted. : . - -
However, permission to reprint/republish this material for advertising or a parametric minimum spanning tree algorlthm. Note es-

promotional purposes or for creating new collective works for resale or P€cially that in this type of application, there is no need to
redistribution to servers or lists, or to reuse any copyrighted component output each tree explicitly; we can spend sublinear time per

of this work in other works, must be obtained from the IEEE. Contact: {rae gs long as we can determine fast the two numKers
Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes

Lane / P.O. Box 1331 / Piscataway, NJ 088551331, USA. Telephone: + andY foreachtree. _
Intl. 732-562-3966. Parametric optimization problems such as this are a spe-

cial case of a more general class of algorithkirsgtic algo- see, e.g.J1]) and a data structure for maintaining convex
rithms, recently proposed by Guibas et @l,.19]. A kinetic hulls of a point set subject to insertions and undo opera-
problem focuses on exploiting the coherence implicit in the tions.

continuous evolution of a system whose elements move or)

change according to known laws, while allowing arbitrary 1.1. Notation

changes in these motion laws in an on-line fashion. A gen- Th hout that h iahted
eral kinetic problem combines dynamic data structures (in roughout, we assume that we have a weignted, con-
nected graptg = (V, &) with n vertices andm edges,

which sets of objects undergo single-object insertions and,) . . .)
deletions) with parametric optimization (in which static ob- in which the weight of each edgeis a Imear function
jects have continuously varying weights). In such a prob- we(d) = Xe — AYe. (For structu_rally kinetic problems)

lem, one starts with a parametric problem in which the pa- e}ndm den.ote.the number of vertices anq edges at some par-
rameteri represents time; as time progresses, objects may[ICLllar point in the course of the algorithm.) The graph

be deleted or inserted, or their weight functions changed,mfw have multlple f\djacer}me;sh LM.Sr-:—f) Se_n.]?te a
and the task is to maintain the optimal solution at each minimum spanning tree @ for the weightswe(a); if we

value of time. Kinetic algorithms model well real-world break ties in favor of earlier-numbered edges, M@ (A)

phenomena where objects move along trajectories that ard® well defined and piecewise constant. If the underly-

redictable in the short term, but subject to unpredictable ™9 graph is obvious from the context, we will simply use
Ehanlges in tlhe long term ut subj unpred MST(2) to denoteMST;(1). Let7T = T(G) be the set
We distinguish two possible types of kinetic algorithms of all minimum spanning trees @ as the value of. varies

for the minimum spanning tree problem: from —oo to +oo. Setk = k(G) = |T(G)]. .
The goal of a parametric minimum spanning tree algo-

rithm is to compute the sef. We denote byP(n, m) the
maximum value ok(G), where the maximum is taken over
£/ (parametric) graphs with vertices andn edges. Dey7]
recently proved thaP(n, m) = O(mn'/3); the best lower
bound known isP(n, m) = Q(ma(n)) [9].

e A functionally kineticalgorithm can only handle up- In a kinetic minimum spanning tree algorithm, the pa-
dates that change the weight function of an existing rameteri represents time, and the goal is to maintain
edge. Edge deletions and insertions can be simulatedM ST(A) dynamically as the graph undergoes changes ei-
by changing weights to or from some very large value; ther to its structure or to its weight functions. We denote
however this simulation comes at the cost of increasing by K (n, m) the maximum number of distinct trees formed
the number of edges (and perhaps violating restrictionsby a kinetic problem on a graph withvertices subject to
such as that the graph remain planar). m edge insertions, edge deletions, or weight change opera-

tions starting from an empty graph. A third parameter for

In this paper, we provide efficient algorithms for both the the number of edge weight changes is superfluous, since the

functionally kinetic and structurally kinetic minimum span- number of distinct trees in a graph with> m changes is
ning tree problems. Since the parametric minimum span-easily seen to b& ((x/m)K (n, m)).) We do not use sep-
ning tree problem is a special case of either type of kinetic arate notations for the number of trees in functionally and
problem, our algorithms also appdyfortiori in the para- structurally kinetic problems, since the simulations between
metric case. each kind of kinetic algorithm causes these numbers to be

Parametric and kinetic minimum spanning trees form the same to within a constant factor.

an interesting combination of graph theory and computa- If a sequence of structurally kinetic changes to a graph
tional geometry: the minimum spanning tree part of the were known in advance, then we could simulate the kinetic
problem is purely graph-theoretic, while the weight func- problem by a parametric problem: simply replace each edge
tions can be viewed as lines in a weight-time plane, lend- e by a three-edge pathee;, with the weight ofe; equal to

ing the problem a geometric flavor. Our solution technique, that of the kinetic edge, witk, having a highly negatively
too, combines graph algorithms and computational geom-sloped weight function, and wites having a highly posi-
etry: we use sparsification and clustering techniques com-tively sloped weight function, chosen so that the interval in
mon to many dynamic graph algorithms, with convex hull which &, is the largest of the three weights is exactly the
data structures representing sets of edges in each clustelifetime of e. Then, in this modified graph, the minimum
We also apply several other techniques including paramet-spanning tree will consist of the two least weight edges in
ric search (a technique of Megidfz6] for turning decision each three-edge path, together with a third edge in a subset
algorithms into optimization algorithms, commonly used in of paths corresponding exactly to the minimum spanning
both parametric optimization and computational geometry; tree of the original graph. (Essentially the same three-edge-

e A structurally kineticalgorithm can handle arbitrary
insertions or deletions of parametrically weighted
edges. Edge weight function changes can be simulate
by deleting and re-inserting the edge.

path construction was used in the lower boundep) For If we allow randomization, the expected total time is
this reasork (n, m) < P(n 4+ 2m, 3m) = O(m*/3). O(pn*2logn).

We will also consider the special cases of planar and .] o
minor-closed graph families, for which the number of dis- ® For any parametric or functionally kinetic graph be-
tinct trees may be smaller than in the case of general graphs. ~ 10nging to a minor-closed family, we can keep track

For any minor-closed familyZ, we let Px(n) denote the of the minimum spanning tree in total tin@(n*? +
maximum number of distinct trees in a parametric prob- P(nn**log¥?n). If we allow randomization the ex-
lem on am-vertex graph, ané (n) denote the maximum pected total time i©(n%? + '3_(”)”1/4 logn). For pla-
number of distinct trees in a structurally kinetic problem. nar graphs thed(n®?) term in these bounds can be
Since minor-closed graph families consist only of sparse femoved. With Dey’s boun®(n) = O(n*?), our to-
graphs, there is no need to include a second parameter tal time is worst-case bounded I€)(n'%*?log®? n),

The method above of simulating edges by paths shows that ~ ©F randomized expected tin@(n*%*logn).

the maximum number of distinct trees in a functionally ki- .

netic problem is9 (Px(n)) wheneverF is closed underre- 2. Sparsification

placement of an edge by a series-parallel graph (in particu- o _ . .

lar, this is true for planar graphs); however it does not seem Sparsification[11] is a divide-and-conquer technique

possible to use this method to bouidg(n) by P (n). used in dynamic algorithms, whereby the edges of a graph
are split recursively into subsetscartificate? for each sub-
1.2. History and New Results set is maintained dynamically, and the overall property is

maintained using a dynamic graph algorithm applied to
Study of minimum spanning trees has a long rich his- the union of these certificates. Fandez-Baca et aj14]

tory [18]. Currently, it is known how to compute the mini- showed that a similar idea applies also to parametric prob-
mum spanning tree in randomized linear expected [zje lems. We combine both of these applications of sparsifi-
or deterministically in timeO(ma(m, n) loga(m, n)) [5]. cation to obtain an efficient data structure for the kinetic
Efficient algorithms have been developed for maintaining problem, which is a common generalization of dynamic and
the minimum spanning tree of a graph as edges are insertegparametric problems.
into or deleted from the gragdhi, 15, 20, 21] The paramet- o
fic minimum spanning tree problem has also been previ- 2.1. General Graph Sparsification
ously studied, most recently by Fexmdez-Baca et ajl14].

In that paper an algorithm was described that takes timeI ina | hich sh h h |
O(mnlogn) to list all trees. However this still remains OWing lemma, which shows that graphs can be replaced

far from Dey’s bound of0(mn/3) on the number of such by sparse certifi_catewithout changin_g .the solution to the
trees. Parametric optimization problems have been studied"iNimum spanning tree problem. This is a result about stat-
for several other graph problems as well; §2 28] for a ically weighted graphs, put it hold'sfortlor[for any partic-
sample of such results. There are no known previous algo-U/a" value ofx occurring in a kinetic algorithm.

rithms for the kinetic minimum spanning tree problem. A
related problem, which has been studied, iskinetic Eu-
clidean MSTproblem([4], in which we want to list all dif-
ferent Euclidean minimum spanning trees of a set of points,
each of which is moving along a line or curve.

Let p denote the number of edge insertions, edge dele-
tions, or minimum spanning tree topology changes. Here
we show the following results, substantially improving what
was previously known.

The key result needed to apply sparsification is the fol-

Lemma 1 (Eppstein et. dl11]). The minimum spanning
tree of a graphg U H is equal to the minimum spanning
tree of the subgraph formed by the union of the minimum
spanning trees of andH.

We then use a divide and conquer approach, applying
this lemma to combine solutions to subproblems. The para-
metric case of the following lemma is implicit [m4].

Lemma 2. Suppose that we have a data structure that can
solve structurally kinetic minimum spanning tree problems
in time O(f(m, n)) per insertion, deletion, or topology
change, and that fm,n) = Q(mM°) for some constant

¢ > 0. Then we can solve structurally or functionally ki-
netic problems in time (K (n, m) f (2n, n)), and paramet-

ric problems in time QP (n, m) f (2n, n)).

e We can maintain a structurally kinetic graph, and keep
track of the minimum spanning tree, in total time
O(min{ pm?3log*®m, K (n, m)n%3log”3 n}). If
we allow randomization, the expected time is
O(min{pn?3logm, K (n, m)n3logn}).

e For any structurally kinetic graph belonging to a

minor'doseq family, we can keep track of the min- 27pe certificates are subgraphs of the original graph: they should not be
imum spanning tree in total time®(pn1/2 Iog3/2 n). confused with the distinct notion of certificate used in kinetic pr¢a).

Proof: We outline the general method here; $e4 for tracting all degree-two vertices not¥1 ThenT has at most
details. We divide the edges of the graph arbitrarily into 2|X| — 1 edges, and/(G) = G U T is a minor of the over-
two equal subsets, and solve recursively the kinetic prob-all graph. We form a parametric problem by keeping the
lems for each subset. The solutions to these subproblemsveights of edges ig fixed and assigning a weight function
consist of a sequence of changes to the minimum span-we(A) = A to the edges iff. Then in this parametric prob-
ning trees of the subproblems. We use our assumed datéem, M STy g (+00) NG is just the minimum spanning tree
structure to solve a kinetic problem on the union of these of G itself, as paths through are too expensive to be useful
two trees, by merging these two sequences of updates. Afor connecting nodes iG. Also, MSTy g (—o0) is a tree
any time there are at mosthZdges in the kinetic prob- formed by adding some of the the edges and verticds, of
lem, and the number of updates coming from each subsetvhile removing some edges froM STy (g, (+00) (We now

is K(n,m/2), hence we get a recurrence ®{m,n) = use all the cheap bypasses providedty

2T (m/2,n)+0O(K (n, m) f (2n, n)) for the overall problem.

As described here, this might lead to an additional logarith-
mic factor over the stated bounds; the “improved sparsifica-
tion” techniqug11] avoids this extra logarithm by reducing Lemma 4. Any edge e ir§j that is not in M Sk g) (+00)
the number of vertices as well as the number of edges in theis not in the minimum spanning tree @fJ H.

recursive subproblems

Lemma 3. Any edge e in M S (—o0) N G is an edge
in the minimum spanning tree 6fU H.

We call an edge of G uncertainif e € M STy (g)(4+00)
bute ¢ MSTy g (—o0). We cannot be sure whether an
uncertain edge is in the minimum spanning tree of the entire
graph without knowing the weights of the edge&inlif we

We applied sparsification to speed up our kinetic algo- delete fromM STy (g, (—o0) all the vertices and edges not
rithms for genera| graphs_ We now Simi|ar|y ap@ypa- in g, this tree is Sp“t |ntQX| connected Components, each
rator based Sparsificatio[ﬂ_z] to Speed up our a|gorithms Containing exaCtIy one vertex of. It can be checked that
for planar graphs and for minor-closed graph families. The the uncertain edges ¢f connect these components to form
basic idea of this approach is to divide the graph into two MST(G). This immediately implies the following.

subgraphs by aeparator a small setX of vertices shared | gryma 5. Any uncertain edge is part of a path in

by both subgraphs, so that each subgraph has only a cony g7, (+00) between two vertices of X. The number
stant fraction of the_ original graph'_s.vertlces. For planqr of uncertain edges igX| — 1.

graphs and other minor closed families, there always exist N)

separators of siz®(n%?), and a recursive decomposition ~ The certificateC(G, H) for G is constructed from
into separators can be found in tin@&n%2) [2]; the time ~ MSTv (g (+00) N G as follows: First, we assign all un-
complexity of this step can be improved@xn) for planar ~ Certain edges their weights @, but the other edges are

2.2. Separator-Based Sparsification Certificates

graphg17]). given a weight of~co. Then, we repeatedly remove from
As in the general graph sparsification, we recursively MSTv(g)(+00) N G all degree-one vertices not K. Fi-
solve a problem in each subgraph, and construréifi- nally, as long as the remaining tree contains a degree-two

cateso that the overall MST can be found by combining the Vertexthatis notirk and that is adjacent to two edges with
two subgraph certificates in a single kinetic problem. How- Weight —co, we remove that vertex by contracting one of
ever, for this approach to work, the certificate must have the adjacent edges.

size proportional to the number of vertices in the separator| emma 6. The edges in the minimum spanning tree of

X, not to the size of the whole subgraph. G U H are the disjoint union of three sets: the edges in
Suppose we are given two edge-disjoint subgr&pasd M ST (g (—o0) N G, the edges in MSFa (—o0) N H,

H; their union is the whole graph, and their (vertex) inter- and the edges in the minimum spanning tree & @4) U

section is a separatof. We describe how to find a cer- ¢ (x, g).

tificate C(G, H) for G. The certificate is a graph of size)

O(|X]), obtained by contracting certain vertices and edges-€émma 7. If the weights oG change as part of a para-

of G. The construction fo is completely symmetric. Our ~ Metric or functionally kinetic problem, @,) undergoes

construction works for static weights: we will describe later O(P#(IV])) structural changes.

how to make it kinetic. Proof: This follows from the fact that the structure of
Without loss of generality (by inserting dummy edges of C(g, H) is determined by the structure of the two minimum

low weight, as described in more detail in a later section), spanning tree! STv(g) (+00) andM STy, (—o0). Each

we can assume that every vertexdnhas degree at most change to one of these spanning trees ca@gés changes

three. LetT be a forest formed by taking a spanning forest to C(G, H). O

of H, removing all degree-one vertices notX and con-

2.3. Separator-Based Sparsification

Lemma 8. Let F be a minor-closed graph family. Sup-
pose that we have a data structure that can solve struc-
turally kinetic minimum spanning tree problems restricted
to graphs inF in time O(f (n)) per insertion, deletion, or
topology change, where (i) > logn and B-=(n) f (n) =
Q(n° for some ¢> 1. Then we can solve functionally
kinetic or parametric problems on graphs i/ in time
O(n%? 4+ P£(n) f ({/n)). If F contains only planar graphs,
we can solve these problems in tim¢R2 (n) f (,/n)).

Proof: We form a separator decomposition of the Figure 1. Two sets of edges such that every pair of one edge from
graph. At each level of the decomposition, we have each set forms a swap.

two subgraphgj and H the union of which is a sub-
graph at the next higher level. We maintain the four trees
M STy g (+00), MSTyr(+00), MSTh(g) (—o0), and

M STy (#)(—o0) described in the previous section, and the
certificateC(G, H) or C(H, G) derived from those trees.
Recall that the certificates are obtained by contracting sub-
trees of M STy (g) (+00) and M STy (+00). In order to
update the certificates efficiently, we maintain these con-
tracted subtrees using the dynamic-tree data structure by
Sleator and Tarjafe7]. The two treesM STy (gur) (+00)

and M STy gux)(—o0) can then be found from this in-
formation together with the solution to two structurally Figure 2. First non-positive swap: in line arrangement (left), right-
kinetic problems on the graph&(G, H) U C(H, G) and most point above lines from tree edges and below lines from non-
C(G,H) UC(H,G) UT (whereT is a contracted tree rep- tree edges; in dual point arrangement (right), line with highest
resenting a subgraph at a higher level of the recursion, andslope above points from tree edges and below points from non-
has weights that do not vary). tree edges.

The resulting system of data structures contains two ki-
netic problems at each level of the recursion, each of which
undergoes a number of changes proportionalPye(x)
wherex is the size of the subgraph. The overall time bound AS our a|gorithm progresses, t0p0|ogy Changes arising
therefore satisfies the recurrence from insertions and deletions of edges will be relatively

easy to maintain. However, it will require work to locate
T =2T(/2) + P f (V). topglogy changes arising from changqes in relative ordering
O of edge weights. For a given spanning tieef G and two
edges, f € £, we say thateand f form aswapif e T,
f ¢ T, and the cycle induced bfyin T contains the edge
3. Data Structures For any fixed value of, define theveightof a swap(e, f),
denotedAc ¢ (1), to bews (L) — we(A); if e and f do not

We have shown how to use sparsification to speed upform a swap, we sehe (L) = +oo. Thatis,Ae (1) is the
structurally kinetic minimum spanning tree data structures. amount by which the tree weight would increase if the swap
We now describe some techniques for constructing thesewere performed. Given a valug andM ST(Aq), our algo-
data structures. rithm will need to find the first value of > g for which

As our kinetic or parametric algorithm progresses, the A¢ ¢ (1) < 0, for some paie, f € £. For a pairE, F C €&,
minimum spanning tree it maintains will change $waps whereE ¢ MST(Xo) andF N MST(Ag) = @, we define
in which one edge is removed and another inserted. Wethenext swagor first non-positive swapbetweenE and F
begin by giving a geometric interpretation for these swaps.to be the paie € E and f € F so thatAe 1 (A*) < O for
We then partition the vertices into clusters, and classify the somer* > Ao andA¢ /(1) > Ofor all pairse’ e E, f € F
swaps according to the inserted location of the endpointsand for allAg < A < A*. The pair of edgeg € E,h € F
of the edge in the clusters, and show how to find the next- for which Ag h(1o) has the minimum value is called thest
occurring swap within each class. swapat Ao.

3.1. Swaps, Duality, and Bitangents

To help understand the problem of computing the next its left and right tangents, split the sorted list of hull ver-
swap, we interpret swaps geometrically. Suppose we havdices at those two points, and rejoin the left side of the left
a subset of edges of a spanning tree @fand a subsef cut, the new vertex, and the right side of the right cut. We
of edges not in the spanning tree, where every (®iff) retain pointers to the discarded subtrees so that undo op-
of one edge from each set forms a swap (Figure 1). We carerations can similarly be performed I&(1) split and join
formaline arrangementin thg, w) plane, where each line operations.O
is the graph of the weight function of a single edge. The first
non-positive swap can be found as the first (leftmost) point

in the arrangement where a line frdfincrosses below a line 3.3. Parametric Search

from E; or, equivalently it is the last (rightmost) pointthat | several cases of our algorithm it will prove easier to
lies on or below all lines fronf and on or above all lines find the best swap for a fixed valuethan to find the value
from E (Figure 2). 1* leading to the first non-positive swap. Megiddo’s para-

We apply a projective duality to this configuration, in metric searcheé] provides a general mechanism for turning
which each linew = ax + b in the primal(A, w) plane an algorithm for the former problem into an algorithm for
is transformed into a poina, b) in the dual(x, y) plane, the latter.
and each pointx, w) in the primal plane is transformedinto The parametric search method starts from two given al-
aliney = Ax 4+ w in the dual plane. This transformation gorithms: adecision oraclethat determines if a giveh is
preserves point-line incidences and above-below relation-|ess or greater thax¥, and asimulated algorithnthat com-
ships. The dual transform maps the graph of the weight of yytes a functiorf (1) discontinuous at*. The conditional
each edge to a point. For a subset < &, let S denote pranches of the simulated algorithm must depend only on
the set of such points corresponding to the edges.irin low-degree polynomials in. Since the decision oracle is
the dual plane, the first non-positive swap corresponds togiscontinuous at.*, it is common to use the same algo-
the maximum-slope line that lies on or below all points in rithm in both roles. Parametric search then produces the

S and on or above all points ife. Such a line is ditan- sequences of steps the simulated algorithm would perform
gentto the lower convex hull o and the upper convex it it were giveni* as its argument; each conditional branch
hull of S (Figure 2(b)). is simulated by using the decision algorithm to compére

Because of this connection between non-positive swapsyith the roots of the polynomial tested at that branch. Be-
and bitangents, we can apply computational geometry tech-cause of the simulated algorithm’s discontinuity, we must
niques in our solution of the parametric and kinetic mini- eventually find a root equal ta*. If the decision oracle
mum spanning tree problems. If we are given a represen-akes timeTp, and the simulated algorithm is a parallel
tation of the two hulls above that supports binary searches g|gorithm taking timeTs with Ps processors, we can test
their bitangent can be found @(logn) time. Inthe special many roots at once using binary search, giving an overall
case in whichE or F consists of a single edge, we are sim- time of O(TpTslog Ps + TsPs). Standard techniques for
ply seeking a tangent through the corresponding dual pointspeeding this up further include moving as much as pos-
to the convex hull of the points corresponding to the other sjple out of the simulated algorithm, using partial results
set, and again this can be done in logarithmic time. to speed up the decision oracle, and Cole’s technique for
avoiding the logPs factor by allowing a constant fraction
of the simulated processors to fail to make progress at each

Because of the connection between swaps and hulls out® tepl6].

lined above, our algorithm will need to use some data struc-3 4. Restricted Partitions
tures for maintaining convex hulls of point sets. The specific

3.2. Dynamic Convex Hull Data Structure

operations we need are point insertion andooperations: Our algorithms use a technique of partitioning trees and
an undo deletes the most recently inserted point remainingforests into smaller subtrees, or clusters of vertices, that was
in the data structure. introduced by Fredericksop5s, 16] and used by him and

others as part of various dynamic graph algorithms. We will
Theorem 1. We can maintain the convex hull of a planar combine this clustering technique with some geometric data
point set, subject to insertions and undo operations, in time structures (primarily, planar convex hulls) in a manner sim-

O(logn) per update or query. ilar to techniques used in our previous paper on speedups in
the network simplex methddo].
Proof: We maintain a sorted list of the vertices on the hull ~ We first transform our input gragh into a new graplg’

using any of various balanced binary search tree data strucwith degree at most three, so any tregjinwill be binary.
tures. The time bound for queries then becomes immediateLet v be any edge of degre®e > 3; replacev by A — 2 ver-
To insert a point, we do two binary search queries to locatetices connected by a path. Path endpoints receive two of the

original edges of), and each interior vertex receives one. 3.5. Intra-Cluster Swaps
Path edges are given a cost function that is a sufficiently
small constant so that all path edges are always part of the 10 find the first non-positive intra-cluster swap in a given
current minimum spanning tree. This transformed graph is cluster, we apply parametric search. Recall that this requires
not hard to maintain a§ undergoes edge insertions or dele- tWo subroutines: alecision oraclefor comparing a given
tions: each update ii causes a constant number of updates Parametei to the optimal value.” we are seeking, and a
to ¢'. Thus, for the remainder of the description of our ki- Simulated algorithntliscontinuous at*.
netic algorithm, we assume our input graph has all vertex
degrees at most three.

The following definition is due to Frederickst®).

Lemma 9. A decision oracle for the first non-positive

intra-cluster swap in a cluster of @) vertices can be im-

plemented in time).

Definition 1. A restricted partition of ordez with respect

to a treeT in which all vertex degrees are at most three is a Proof: We need to detect whether the given value.of

partition of the vertices o¥ such that: is before or after the first non-positive swap; equivalently,

whether there exists a non-positive swap. dtiself. Since

a given spanning tree is the minimum only within a single

2. Each setin the partition induces a connected subtree ofnterval of values of, we perform this test by computing
T. the values of all intra-cluster edges at the parameter value

A, and testing whether the given tree is still the minimum

3. For each se$in the partition, ifS contains more than spanning tree at that parameter using a minimum spanning
one vertex, then there are at most two tree edges havingree verification algorithns, 25]. O

one endpoint irs.

1. Each set in the partition contains at mpsertices.

4. No two sets can be combined and still satisfy the other

conditions. Lemma 10. We can find the first non-positive intra-cluster

swap in a cluster of @) vertices in Qzlogz) time.

We call each set in the partitioncduster The endpoints
of an edge off connecting two different clusters are called Proof: We apply parametric search with the decision or-
terminal vertices Each cluster has at most two terminal acle described above. For a simulated algorithm, we use
vertices. A cluster wittk terminal vertices will be referred ~ sorting, since the sorted order is discontinuous at all swaps.
to as ak-terminal cluster Cole [6] shows how to apply parametric search to sorting

Frederickson also showed that such a partition can easilywith O(logn) calls to the decision oracle ar@(nlogn)
be found in linear time. There are at m&in/z) clusters additive overhead
in a restricted partition of an-vertex tree. If we change the
tree by performing a swap, we can update the restricted par-
tition in time O(2) by splitting and re-mergin@(1) clus- 3.6. Dual-Cluster Swaps

ters[16].) . . To find dual-cluster swaps, we combine the dynamic
_Givenarestricted partition of the current minimum span- . nyex hull data structure described earlier with Frederick-
ning tree in a parametric or kinetic MST problem, we can g jgea ombivalent data structuredet C be a cluster
classify the potential swaps into three types according 10, 3 regtricted partition. A non-tree edge whose one end-
how many clusters are involved in the endpoints of the qint jies inC and the other does not lie @ is called an
swapped edges: externaledge ofC. For each cluste€, we want to main-
Definition 2. Let edges e and f form a swap in a tree tain the next dual swap that involves an external edge.of
for which we have a restricted partition, so that e is a tree Recall thalC has at most two terminal vertices. An external

edge on the tree path between the endpoints of f. Then idge ofC incident upon a verteu of C can swap only with
both endpoints of are in a single cluster, e must be in the 8N €dge o€ that lies on the path fromto a terminal vertex

same cluster as f; we call this antra-cluster swaplf f of C. For each such external edge and each terminal vertex
has endpoints in different clusters, and e belongs to one of? of C, we will therefore store the edgeon the path from
these two clusters, we call thisdaal-cluster swapFinally, U to v for whichwy (1) — we(%) becomes zero first. Let us

if the endpoints of f do not lie in the same cluster and e denote this edge by, (). Note that ifv lies on the path

does not belong to one of these two clusters, we call this anin the minimum spanning tree between the endpoints, of

We next show how to maintain the next swap that can Lemma 11. LetII be a restricted partition of order z, and
occur, for each of these three types of swap. let C be a newly formed cluster @t. For all non-tree

edges f having exactly one endpoint in C and for each ter- nique based on the intra-cluster swap technique described
minal vertexv of C, we can computg,(f) in total time in Section 3.5.
O(zlogz). Recall that we will be maintaining a restricted partition
. of orderz of the minimum spanning tree of the graph. For
Proof: Letwv be a terminal vertex o€. We traverse the any vajue of, consider forming the following contracted
subtree contained i€, starting fromv, and keep track of graphg’(1) from G, with only O(m/z) vertices: Contract
the edges on the path from the current vereto v. As each 1-terminal cluster, with the terminal veriexo a sin-
outlined in Section 3.1 the weights of the edges in this path gje nodev. Contract each 2-terminal cluster, with terminal
correspond to points in a plane, and we use the dy”amicverticesu, v, to an edggu, v) whose weight is equal the
convex hull data structure described in Theorem 1 to mai”'weight of the heaviest edge on the path conneaiingdv.
tain the convex hull of these points. When our traversal first | o C,. C, be two clusters, and let andwv, be the terminal
visits an edge of the tree we insert the corresponding point, g tices ofC1, C,, respectively, that lie on the path connect-
into the hull, and when we return from traversing an edge ing C1 to C,. We contract all non-tree edges betwe@n
we perform an undo operation to remove the point from the 5,4 C, to a single edgéu:, v2) whose weight is equal to

hull. Then, gs Qescribed in Section 3.1, for an external noN-ihe lightest weight among all the non-tree edges between
tree edgef incident uporu, u,(f) can be found by com- C, andC,.

puting a tangent from the point corresponding te weight

function to the current hull, in tim®(log2). O Lemma 13. We can maintain a data structure in time

O(zlogz) per change to the restricted partition, so that for

Lemma 12. As we dynamically maintain a restricted par- &nY#, the graphi’(2) described above can be found in time

tition of order z on a spanning tree of a dynamic m-vertex ©(10gn) per edge.
degree-three graph, we can maintain a data structure in o) N

let us query the first non-positive dual-cluster swap in time derz of the minimum spanning tree ¢f. We can maintain
O(1) per pair of clusters. the convex hull of the points corresponding to the path con-

necting the two terminals of each two-terminal cluster, and
Proof: We store for each endpoint of each non-tree edge of the points corresponding to the edges connecting each
the information described in Lemma 11. Since each updatepair of clusters. The weight of each edgé&ircan be found
modifies onlyO(1) clusters, we can recompute this infor- in time O(logn) by binary search in the appropriate hull.
mation inO(zlog z) per update, as described in that lemma. O
For each cluste€, we partition the external edges@hinto
O(m/z) groups, so that all edges whose other endpoints lie
in the same clusteC; # C belong to the same group. For | emma 14. The first non-positive inter-cluster swapéh
each such group; and for each terminal vertaxof C, we is the first non-positive swap & (3.*).
store the paif, (Ci) = (u, (), f) for whichws — w,, (1)
becomes zero first among all edges= Fi. Thisinforma- | emma 15. We can maintain a data structure in time
tion can be updated in tim®(z) whenever a clusteris mod- 5, 1og2) per change to the restricted partition, such that

ified. We also store a Iowest-commpn-ancestor data Struc+t the graphg’ (1) described above has’radges, the best
ture for the tree formed by contracting each cluster of the jiar_cluster swap can be found in time(® log? n).

partition; this takes tim&®(m/z) per update to maintain.
Suppose we want to find the next dual swap involving an oot The structure we maintain is simply the set of hulls

external edge whose one endpoint liesOnand the other described in Lemma 13. To find the best swap, we apply

in C,. We first find the terminal vertices,, U2_0f Ca, C;, a parametric search routine similar to the one described in
respectively, that connect the path fr@nto C, in the min- Section 3.5. We modify the minimum spanning tree ver-

imum spanning tree. This can be donedil) tlme using ification used as the decision oracle, to comp@teand

the lowest-common-ancestor data structure. It is easily seeNpan verify that the contraction of the current spanning tree

thatt,, (C2) andp,, (Cy) form swaps. Of these two, We re- s the trye minimum spanning tree 6f: this takes time

turn the one whose weight becomes zero fifst. O(m' logn) per oracle call. We also modify the simulated
algorithm, to comput&s’ before sorting its edge weights;

3.7. Inter-Cluster Swaps the computation off’ is just a collection of parallel bi-
nary searches and does not increase the overall complex-

We now need to show how to find the first non-positive ity beyond its previous bound @ (logm’) oracle calls and
inter-cluster swap. We first describe a deterministic tech- O(m’' logm’) additive overheadd

With the use of randomization, we can reduce this bound before the next insertion or deletion operation, we again up-

slightly: date our structures and continue. Setting m%3log'/*n
or m?? produces the bound abovel
Lemma 16. We can maintain a data structure in time
O(zlogz) per change to the restricted partition, such \we now apply sparsification to further improve these
that if the graphg’(1) described above has’nedges, pounds.
the best inter-cluster swap can be found in expected time
O(m' logn). Theorem 3. We can solve the kinetic minimum spanning
tree problem in time QK (n, mn¥3log*3n) or in ran-

Proof: ~ We perform two different cases, depending on yomized expected time(® (n, m)n%3 logn). We can solve
whether the contracted gragh is sparse or not. If it has pe parametric minimum spanning tree problem in time
at least as many non-tree edges as tree edges, we ChOO@(p(n’ mnZ3log¥3n) or in randomized expected time
randomly a non-tree edgeof G’, find the best swap in- O(P(n, mn?3logn).
volving that edge and one of the tree edges, and use this
swap to eliminate (in expectation) half the non-tree edges.4.2. Planar and Minor-Closed Graph Families
Alternately, if G’ has few non-tree edges, we choose a tree
edgee randomly, and use the best swap involvingthat edge ~ Our time bound becomes better for planar graphs or
to eliminate in expectation half the tree edges. Repeatingother minor-closed families of graphs, because the con-
this process eventually leads to an empty graph, at whichtracted graplg’ is sparse.
point we return the best swap found in the process. We omit

the details in this extended abstract. Theorem 4. We can maintain a graph, having at most n

vertices at any one time, belonging to some minor-closed
family 7, and keep track of the structurally kinetic minimum
4. Parametric and Kinetic MST Algorithms spanning tree, in total time n*2log®?n). If we allow
randomization the expected total time ig @2 logn).
The data structures described in the preceeding sections
let us find the next non-positive swap of each type. We areProof: Because the number of non-tree edgesGin

ready to put them together into our overall kinetic minimum S O(”/ZZ)! the tradeoff above reduces t0(zlogz +
spanning tree algorithm. (n/z) log” z), or randomizedd(zlogz + (n/z) logz). Set-

ting z to n¥2log"?n or n¥/2 produces the stated bounds.
4.1. General Graphs O

Theorem 2. We can maintain a graph, having at most again, applying sparsification leads to further improve-
m linearly weighted edges at any one time, and keepments.

track of the minimum spanning tree kinetically, in time
O(pm?3log*”3m), where p denotes the number of edge Theorem 5. We can maintain a graph, having at most n
insertions, edge deletions, or minimum spanning tree topol-vertices at any one time, belonging to some minor-closed
ogy changes. If we allow randomization the expected timefamily F, and keep track of the parametric or function-
is O(pn?/3logm). ally kinetic minimum spanning tree, in total time(1¥/2 +

_ _ P(n)n*4log®?n). If we allow randomization the expected
Proof: We apply the transformation described above t0 (yia time is Qn32 + P(n)n¥4logn). For planar graphs
makeG have degree at most three, which increases the NUMthe O(n%/2) term can be removed from these bounds.
ber of nodes tdD(m). Then we use the data structures de-
scribed above to keep track of the next non-positive swap, in - with Dey’s boundP(n) = O(n%3), our total time is
time O(zlogz+m/z+(m/2)? log” z) per update. Whenwe worst-case bounded b@(n'¥12log®2n), or randomized
encounter an edge insertion, we update these structures, angkpected timeD (n'%*2logn).
use them to test whether a non-positive swap exists at the
time of insertion; if so we perform the swap. When we en- 5. Conclusions
counter a deletion of a minimum spanning tree edge, we use
our convex hull data structures to find the best replacement We have given deterministic and randomized algorithms
edge in each group of edges connecting a pair of clustersfor solving the parametric and kinetic minimum spanning
there areO((m/z)?) such groups, so this step takes time tree problems for general graphs, and improvements for
O((m/2)%logn). When we encounter a deletion of a non- special families, such as minor-closed and planar graphs.
tree edge we update our structures and continue. And, whermrhe mixture of graph-theoretic and geometric attributes is
the next non-positive swap found after one update occursan especially appealing aspect of this problem.

It would be desirable to find kinetic data structures for References

maintaining the MST of a graph that do not require the

heavy arsenal of tools we have used: sparsification, both [1] P. K. Agarwal and M. Sharir. Algorithmic techniques
general and separator-based, dynamic convex hulls, re-
stricted partitions, ambivalent data structures, and paramet-

ric search. We plan to work both on simplifying our meth-
ods and on improving our bounds.

(2]

(3]

for geometric optimization. Ii€omputer Science To-
day: Recent Trends and Developmehtcture Notes

in Computer Science, vol. 100 (J. van Leeuwen, ed.),
Springer-Verlag, 1995.

N. Alon, P. Seymour, and R. Thomas. A separator
theorem for graphs with an excluded minor and its ap-
plications. InProc. 22nd ACM Symp. Theory of Com-
puting, 1990, 293-299.

J. Basch, L. J. Guibas, and J. Hershberger., pp. 293—
299 Data structures for mobile data. Boc. 8th
ACM-SIAM Symp. Discrete Algorithin$997, 747—
756.

[4] J.Basch, L. J. Guibas, and L. Zhang. Proximity prob-

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

lems on moving points. IrfProc. 13th ACM Symp.
Computational Geometry1997, 344-351.

B. Chazelle. A faster deterministic algorithm for mini-
mum spanning trees. Proc. 38th Symp. Foundations
of Computer Scien¢& 997, 22—-31.

R. Cole. Slowing down sorting networks to obtain
faster sorting algorithms.J. ACM 34 (1987), 200—
208.

T. K. Dey. Improved bounds on plandt-sets
andk-levels. Discrete & Computational Geometry
19(1998), 373-382.

B. Dixon, M. Rauch, and R. E. Tarjan. Verification
and sensitivity analysis of minimum spanning trees in
linear time. SIAM J. Computing21 (1992), 1184—
1192.

D. Eppstein. Geometric lower bounds for parametric
matroid optimization. To appear iDiscrete & Com-
putational Geometry

D. Eppstein. Clustering for faster network simplex
pivots. InProc. 5th ACM-SIAM Symp. Discrete Al-
gorithms 1994, 160-166.

D. Eppstein, Z. Galil, G. F. ltaliano, and A. Nis-
senzweig. Sparsification — A technique for speed-
ing up dynamic graph algorithmg. ACM 44 (1997),
669—696.

D. Eppstein, Z. Galil, G. F. ltaliano, and T. H. Spencer.
Separator based sparsification |: planarity testing and
minimum spanning trees.J. Computing & Systems
Sciences52 (1996), 3-27.

D. Ferrdndez-Baca and G. Slutzki. Parametric prob-
lems on graphs of bounded tree-width Algorithms
16 (1994), 408-430.

[14] D. Ferrendez-Baca, G. Slutzki, and D. Eppstein. Us- [28] N. E. Young, R. E. Tarjan, and J. B. Orlin.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

ing sparsification for parametric minimum spanning
tree problems.Nordic J. Computing3 (1996), 352—
366.

G. N. Frederickson. Data structures for on-line updat-
ing of minimum spanning treesSIAM J. Computing
14 (1985), 781-798.

G. N. Frederickson. Ambivalent data structures for
dynamic 2-edge-connectivity alkdsmallest spanning
trees.SIAM J. Computing26 (1997), 484-538.

M. T. Goodrich. Planar separators and parallel poly-
gon triangulation.J. Computing & Systems Sciences
51 (1995), 374-389.

R. L. Graham and P. Hell. On the history of the min-
imum spanning tree problemAnn. Hist. Compui.
7 (1985), 43-57.

L. J. Guibas. Kinetic data structures — a state of the
art report. To appear iRroc. 3rd Worksh. Algorithmic
Foundations of Robotic4998.

M. R. Henzinger and V. King. Maintaining minimum
spanning trees in dynamic graphs. Rroc. 24th Int.
Coll. Automata, Languages and Programmirgpc-
ture Notes in Computer Science, vol. 1256, Springer-
Verlag, 1997, 594-604.

J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms
for connectivity and minimum spanning tree.Rroc.
30th ACM Symp. Theory of Computjri98, 79—-89.

D. Karger, P. N. Klein, and R. E. Tarjan. Arandomized
linear-time algorithm for finding minimum spanning
trees.J. ACM 42 (1995), 321-329.

N. Katoh. Parametric combinatorial optimization
problems and applicationsJ. Inst. Electronics, In-
formation and Communication Engineer®! (1991),
949-956.

N. Katoh. Bicriteria network optimization problems.
IEICE Trans. Fundamentals of Electronics, Communi-
cations and Computer Scien¢ds75-A (1992), 321—
329.

V. King. A simpler minimum spanning tree verifica-
tion algorithm. InProc. 4th Worksh. Algorithms and
Data StructuresLecture Notes in Computer Science,
vol. 955, Springer-Verlag, 1995, 440-448.

N. Megiddo. Applying parallel computation algo-
rithms in the design of sequential algorithrdsACM
30 (1983), 852—-865.

D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Computer and System Sciences
26 (1983), 362—391.

Faster
parametric shortest path and minimum-balance algo-
rithms. Networks 21 (1991), 205-221.

