
Parametric and Kinetic Minimum Spanning Trees

Pankaj K. Agarwal∗ David Eppstein† Leonidas J. Guibas‡ Monika R. Henzinger

Abstract

We consider the parametric minimum spanning tree
problem, in which we are given a graph with edge weights
that are linear functions of a parameterλ and wish to
compute the sequence of minimum spanning trees gener-
ated asλ varies. We also consider the kinetic minimum
spanning tree problem, in whichλ represents time and the
graph is subject in addition to changes such as edge in-
sertions, deletions, and modifications of the weight func-
tions as time progresses. We solve both problems in time
O(n2/3 log4/3 n) per combinatorial change in the tree (or
randomized O(n2/3 logn) per change). Our time bounds
reduce to O(n1/2 log3/2 n) per change (O(n1/2 logn) ran-
domized) for planar graphs or other minor-closed families
of graphs, and O(n1/4 log3/2 n) per change (O(n1/4 logn)
randomized) for planar graphs with weight changes but no
insertions or deletions.1

∗Center for Geometric Computing, Department of Computer Science,
Duke Univ., Durham, NC, 27708-0129; http://www.cs.duke.edu/∼pankaj/;
pankaj@cs.duke.edu. Work supported in part by Army Research Of-
fice MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by an NYI
award, and by a grant from the U.S.-Israeli Binational Science Foundation.
†Dept. of Information and Computer Science, Univ. of California,

Irvine, CA 92697-3425; http://www.ics.uci.edu/∼eppstein/; eppstein@ics.
uci.edu. Work supported in part by NSF grant CCR-9258355 and by
matching funds from Xerox Corp.
‡Dept. of Computer Science, Stanford Univ., Stanford, CA, 94305;

http://graphics.stanford.edu/∼guibas/; guibas@cs.stanford.edu. Work
supported in part by Army Research Office MURI grant DAAH04-96-1-
0007 and NSF grant CCR-9623851

Compaq Systems Research Center, 130 Lytton Ave., Palo Alto,
CA, 94301-1044; http://www.research.digital.com/SRC/personal/Monika
Henzinger/home.html; monika@pa.dec.com.

1Copyright 1998 IEEE. Published in the Proceedings of FOCS’98, 8-11
November 1998 in Palo Alto, CA. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works, must be obtained from the IEEE. Contact:
Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes
Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: +
Intl. 732-562-3966.

1. Introduction

The parametric minimum spanning tree problemdeals
with minimum spanning trees of weighted graphs,G =
(V, E), in which the weight of each edge is a linear function
of some parameterλ, instead of a real number. That is, the
weight of each edgee ∈ E , we(λ), is of the formxe− λye,
wherexe, ye are real numbers. Asλ varies, the weight of
each edge varies and therefore the weight of the minimum
spanning tree ofG also varies. At certain discrete values
of λ, the minimum spanning tree itself changes. The two
central questions related to this problem are: how many dif-
ferent trees doesG have asλ varies from−∞ to+∞, and
how can one compute this sequence of trees?

As Katoh [23, 24] has described, parametric minimum
spanning trees can be used to solve many other problems
in combinatorial optimization, in which one seeks to find
a treeT minimizing a function of the formf (X,Y) where
f is quasiconcave andX = ∑

e∈T xe andY = ∑
e∈T ye.

For example, the problem of computing a spanning tree
that minimizes the ratio of cost to reliability can be ex-
pressed in the above form by settingf (X,Y) = X exp(Y),
wherexe is the cost of edgee, ye = − ln(1 − pe), with
pe the failure probability of edgee. The stochastic pro-
gramming problem of finding a tree with high probabil-
ity of having low weight can be expressed with the choice
f (X,Y) = X + √Y, and the problem of finding a tree
with the minimum variance in edge weight can be similarly
expressed withf (X,Y) = X−Y2. For each of these prob-
lems, any spanning tree ofG gives rise to a point(X,Y) in
the plane. The quasiconcave nature off implies that the
optimum tree is a vertex of the convex hull of the set of all
such points, and the trees giving rise to the vertices of the
convex hull are exactly those which are enumerated in the
parametric minimum spanning tree problem forG with edge
weightsxi −λyi . Thus, one can solve the original static op-
timization problem by finding the best of the trees listed by
a parametric minimum spanning tree algorithm. Note es-
pecially that in this type of application, there is no need to
output each tree explicitly; we can spend sublinear time per
tree as long as we can determine fast the two numbersX
andY for each tree.

Parametric optimization problems such as this are a spe-

cial case of a more general class of algorithms,kinetic algo-
rithms, recently proposed by Guibas et al.[3, 19]. A kinetic
problem focuses on exploiting the coherence implicit in the
continuous evolution of a system whose elements move or
change according to known laws, while allowing arbitrary
changes in these motion laws in an on-line fashion. A gen-
eral kinetic problem combines dynamic data structures (in
which sets of objects undergo single-object insertions and
deletions) with parametric optimization (in which static ob-
jects have continuously varying weights). In such a prob-
lem, one starts with a parametric problem in which the pa-
rameterλ represents time; as time progresses, objects may
be deleted or inserted, or their weight functions changed,
and the task is to maintain the optimal solution at each
value of time. Kinetic algorithms model well real-world
phenomena where objects move along trajectories that are
predictable in the short term, but subject to unpredictable
changes in the long term.

We distinguish two possible types of kinetic algorithms
for the minimum spanning tree problem:

• A structurally kineticalgorithm can handle arbitrary
insertions or deletions of parametrically weighted
edges. Edge weight function changes can be simulated
by deleting and re-inserting the edge.

• A functionally kineticalgorithm can only handle up-
dates that change the weight function of an existing
edge. Edge deletions and insertions can be simulated
by changing weights to or from some very large value;
however this simulation comes at the cost of increasing
the number of edges (and perhaps violating restrictions
such as that the graph remain planar).

In this paper, we provide efficient algorithms for both the
functionally kinetic and structurally kinetic minimum span-
ning tree problems. Since the parametric minimum span-
ning tree problem is a special case of either type of kinetic
problem, our algorithms also applya fortiori in the para-
metric case.

Parametric and kinetic minimum spanning trees form
an interesting combination of graph theory and computa-
tional geometry: the minimum spanning tree part of the
problem is purely graph-theoretic, while the weight func-
tions can be viewed as lines in a weight-time plane, lend-
ing the problem a geometric flavor. Our solution technique,
too, combines graph algorithms and computational geom-
etry: we use sparsification and clustering techniques com-
mon to many dynamic graph algorithms, with convex hull
data structures representing sets of edges in each cluster.
We also apply several other techniques including paramet-
ric search (a technique of Megiddo[26] for turning decision
algorithms into optimization algorithms, commonly used in
both parametric optimization and computational geometry;

see, e.g.,[1]) and a data structure for maintaining convex
hulls of a point set subject to insertions and undo opera-
tions.

1.1. Notation

Throughout, we assume that we have a weighted, con-
nected graphG = (V, E) with n vertices andm edges,
in which the weight of each edgee is a linear function
we(λ) = xe − λye. (For structurally kinetic problems,n
andm denote the number of vertices and edges at some par-
ticular point in the course of the algorithm.) The graph
may have multiple adjacencies. LetMSTG(λ) denote a
minimum spanning tree ofG for the weightswe(λ); if we
break ties in favor of earlier-numbered edges, theMSTG(λ)
is well defined and piecewise constant. If the underly-
ing graph is obvious from the context, we will simply use
MST(λ) to denoteMSTG(λ). Let T = T (G) be the set
of all minimum spanning trees ofG as the value ofλ varies
from−∞ to+∞. Setk = k(G) = |T (G)|.

The goal of a parametric minimum spanning tree algo-
rithm is to compute the setT . We denote byP(n,m) the
maximum value ofk(G), where the maximum is taken over
all (parametric) graphs withn vertices andm edges. Dey[7]
recently proved thatP(n,m) = O(mn1/3); the best lower
bound known isP(n,m) = �(mα(n)) [9].

In a kinetic minimum spanning tree algorithm, the pa-
rameterλ represents time, and the goal is to maintain
MST(λ) dynamically as the graph undergoes changes ei-
ther to its structure or to its weight functions. We denote
by K (n,m) the maximum number of distinct trees formed
by a kinetic problem on a graph withn vertices subject to
m edge insertions, edge deletions, or weight change opera-
tions starting from an empty graph. A third parameter for
the number of edge weight changes is superfluous, since the
number of distinct trees in a graph withx > m changes is
easily seen to be2((x/m)K (n,m)).) We do not use sep-
arate notations for the number of trees in functionally and
structurally kinetic problems, since the simulations between
each kind of kinetic algorithm causes these numbers to be
the same to within a constant factor.

If a sequence of structurally kinetic changes to a graph
were known in advance, then we could simulate the kinetic
problem by a parametric problem: simply replace each edge
eby a three-edge pathe1e2e3, with the weight ofe1 equal to
that of the kinetic edge, withe2 having a highly negatively
sloped weight function, and withe3 having a highly posi-
tively sloped weight function, chosen so that the interval in
which e2 is the largest of the three weights is exactly the
lifetime of e. Then, in this modified graph, the minimum
spanning tree will consist of the two least weight edges in
each three-edge path, together with a third edge in a subset
of paths corresponding exactly to the minimum spanning
tree of the original graph. (Essentially the same three-edge-

path construction was used in the lower bound of[9].) For
this reasonK (n,m) ≤ P(n+ 2m,3m) = O(m4/3).

We will also consider the special cases of planar and
minor-closed graph families, for which the number of dis-
tinct trees may be smaller than in the case of general graphs.
For any minor-closed familyF , we let PF (n) denote the
maximum number of distinct trees in a parametric prob-
lem on ann-vertex graph, andKF (n) denote the maximum
number of distinct trees in a structurally kinetic problem.
Since minor-closed graph families consist only of sparse
graphs, there is no need to include a second parameterm.
The method above of simulating edges by paths shows that
the maximum number of distinct trees in a functionally ki-
netic problem is2(PF (n)) wheneverF is closed under re-
placement of an edge by a series-parallel graph (in particu-
lar, this is true for planar graphs); however it does not seem
possible to use this method to boundKF (n) by PF (n).

1.2. History and New Results

Study of minimum spanning trees has a long rich his-
tory [18]. Currently, it is known how to compute the mini-
mum spanning tree in randomized linear expected time[22]
or deterministically in timeO(mα(m,n) logα(m,n)) [5].
Efficient algorithms have been developed for maintaining
the minimum spanning tree of a graph as edges are inserted
into or deleted from the graph[11, 15, 20, 21]. The paramet-
ric minimum spanning tree problem has also been previ-
ously studied, most recently by Fern´andez-Baca et al.[14].
In that paper an algorithm was described that takes time
O(mnlogn) to list all trees. However this still remains
far from Dey’s bound ofO(mn1/3) on the number of such
trees. Parametric optimization problems have been studied
for several other graph problems as well; see[13, 28] for a
sample of such results. There are no known previous algo-
rithms for the kinetic minimum spanning tree problem. A
related problem, which has been studied, is thekinetic Eu-
clidean MSTproblem[4], in which we want to list all dif-
ferent Euclidean minimum spanning trees of a set of points,
each of which is moving along a line or curve.

Let p denote the number of edge insertions, edge dele-
tions, or minimum spanning tree topology changes. Here
we show the following results, substantially improving what
was previously known.

• We can maintain a structurally kinetic graph, and keep
track of the minimum spanning tree, in total time
O(min{pm2/3 log4/3 m, K (n,m)n2/3 log4/3 n}). If
we allow randomization, the expected time is
O(min{pm2/3 logm, K (n,m)n2/3 logn}).
• For any structurally kinetic graph belonging to a

minor-closed family, we can keep track of the min-
imum spanning tree in total timeO(pn1/2 log3/2 n).

If we allow randomization, the expected total time is
O(pn1/2 logn).

• For any parametric or functionally kinetic graph be-
longing to a minor-closed family, we can keep track
of the minimum spanning tree in total timeO(n3/2 +
P(n)n1/4 log3/2 n). If we allow randomization the ex-
pected total time isO(n3/2+ P(n)n1/4 logn). For pla-
nar graphs theO(n3/2) term in these bounds can be
removed. With Dey’s boundP(n) = O(n4/3), our to-
tal time is worst-case bounded byO(n19/12 log3/2 n),
or randomized expected timeO(n19/12 logn).

2. Sparsification

Sparsification[11] is a divide-and-conquer technique
used in dynamic algorithms, whereby the edges of a graph
are split recursively into subsets, acertificate2 for each sub-
set is maintained dynamically, and the overall property is
maintained using a dynamic graph algorithm applied to
the union of these certificates. Fern´andez-Baca et al.[14]
showed that a similar idea applies also to parametric prob-
lems. We combine both of these applications of sparsifi-
cation to obtain an efficient data structure for the kinetic
problem, which is a common generalization of dynamic and
parametric problems.

2.1. General Graph Sparsification

The key result needed to apply sparsification is the fol-
lowing lemma, which shows that graphs can be replaced
by sparse certificateswithout changing the solution to the
minimum spanning tree problem. This is a result about stat-
ically weighted graphs, but it holdsa fortiori for any partic-
ular value ofλ occurring in a kinetic algorithm.

Lemma 1 (Eppstein et. al[11]). The minimum spanning
tree of a graphG ∪ H is equal to the minimum spanning
tree of the subgraph formed by the union of the minimum
spanning trees ofG andH.

We then use a divide and conquer approach, applying
this lemma to combine solutions to subproblems. The para-
metric case of the following lemma is implicit in[14].

Lemma 2. Suppose that we have a data structure that can
solve structurally kinetic minimum spanning tree problems
in time O(f (m,n)) per insertion, deletion, or topology
change, and that f(m,n) = �(mc) for some constant
c > 0. Then we can solve structurally or functionally ki-
netic problems in time O(K (n,m) f (2n,n)), and paramet-
ric problems in time O(P(n,m) f (2n,n)).

2The certificates are subgraphs of the original graph; they should not be
confused with the distinct notion of certificate used in kinetic proofs[19].

Proof: We outline the general method here; see[14] for
details. We divide the edges of the graph arbitrarily into
two equal subsets, and solve recursively the kinetic prob-
lems for each subset. The solutions to these subproblems
consist of a sequence of changes to the minimum span-
ning trees of the subproblems. We use our assumed data
structure to solve a kinetic problem on the union of these
two trees, by merging these two sequences of updates. At
any time there are at most 2n edges in the kinetic prob-
lem, and the number of updates coming from each subset
is K (n,m/2), hence we get a recurrence ofT(m,n) =
2T(m/2,n)+O(K (n,m) f (2n,n)) for the overall problem.
As described here, this might lead to an additional logarith-
mic factor over the stated bounds; the “improved sparsifica-
tion” technique[11] avoids this extra logarithm by reducing
the number of vertices as well as the number of edges in the
recursive subproblems.2

2.2. Separator-Based Sparsification Certificates

We applied sparsification to speed up our kinetic algo-
rithms for general graphs. We now similarly applysepa-
rator based sparsification[12] to speed up our algorithms
for planar graphs and for minor-closed graph families. The
basic idea of this approach is to divide the graph into two
subgraphs by aseparator, a small setX of vertices shared
by both subgraphs, so that each subgraph has only a con-
stant fraction of the original graph’s vertices. For planar
graphs and other minor closed families, there always exist
separators of sizeO(n1/2), and a recursive decomposition
into separators can be found in timeO(n3/2) [2]; the time
complexity of this step can be improved toO(n) for planar
graphs[17]).

As in the general graph sparsification, we recursively
solve a problem in each subgraph, and construct acertifi-
cateso that the overall MST can be found by combining the
two subgraph certificates in a single kinetic problem. How-
ever, for this approach to work, the certificate must have
size proportional to the number of vertices in the separator
X, not to the size of the whole subgraph.

Suppose we are given two edge-disjoint subgraphsG and
H; their union is the whole graph, and their (vertex) inter-
section is a separatorX. We describe how to find a cer-
tificate C(G,H) for G. The certificate is a graph of size
O(|X|), obtained by contracting certain vertices and edges
of G. The construction forH is completely symmetric. Our
construction works for static weights; we will describe later
how to make it kinetic.

Without loss of generality (by inserting dummy edges of
low weight, as described in more detail in a later section),
we can assume that every vertex inG has degree at most
three. LetT be a forest formed by taking a spanning forest
of H, removing all degree-one vertices not inX, and con-

tracting all degree-two vertices not inX. ThenT has at most
2|X| − 1 edges, andN (G) = G ∪ T is a minor of the over-
all graph. We form a parametric problem by keeping the
weights of edges inG fixed and assigning a weight function
we(λ) = λ to the edges inT . Then in this parametric prob-
lem,MSTN (G)(+∞)∩G is just the minimum spanning tree
of G itself, as paths throughT are too expensive to be useful
for connecting nodes inG. Also, MSTN (G)(−∞) is a tree
formed by adding some of the the edges and vertices ofT ,
while removing some edges fromMSTN (G)(+∞) (we now
use all the cheap bypasses provided byT).

Lemma 3. Any edge e in MSTN (G)(−∞) ∩ G is an edge
in the minimum spanning tree ofG ∪H.

Lemma 4. Any edge e inG that is not in MSTN (G)(+∞)
is not in the minimum spanning tree ofG ∪H.

We call an edgee of G uncertainif e∈ MSTN (G)(+∞)
but e 6∈ MSTN (G)(−∞). We cannot be sure whether an
uncertain edge is in the minimum spanning tree of the entire
graph without knowing the weights of the edges inH. If we
delete fromMSTN (G)(−∞) all the vertices and edges not
in G, this tree is split into|X| connected components, each
containing exactly one vertex ofX. It can be checked that
the uncertain edges ofG connect these components to form
MST(G). This immediately implies the following.

Lemma 5. Any uncertain edge is part of a path in
MSTN (G)(+∞) between two vertices of X. The number
of uncertain edges is|X| − 1.

The certificateC(G,H) for G is constructed from
MSTN (G)(+∞) ∩ G as follows: First, we assign all un-
certain edges their weights inG, but the other edges are
given a weight of−∞. Then, we repeatedly remove from
MSTN (G)(+∞) ∩ G all degree-one vertices not inX. Fi-
nally, as long as the remaining tree contains a degree-two
vertex that is not inX and that is adjacent to two edges with
weight−∞, we remove that vertex by contracting one of
the adjacent edges.

Lemma 6. The edges in the minimum spanning tree of
G ∪ H are the disjoint union of three sets: the edges in
MSTN (G)(−∞) ∩ G, the edges in MSTN (H)(−∞) ∩ H,
and the edges in the minimum spanning tree of C(G,H) ∪
C(H,G).
Lemma 7. If the weights ofG change as part of a para-
metric or functionally kinetic problem, C(G,H) undergoes
O(PF (|V|)) structural changes.

Proof: This follows from the fact that the structure of
C(G,H) is determined by the structure of the two minimum
spanning treesMSTN (G)(+∞) andMSTN (G)(−∞). Each
change to one of these spanning trees causesO(1) changes
to C(G,H). 2

2.3. Separator-Based Sparsification

Lemma 8. Let F be a minor-closed graph family. Sup-
pose that we have a data structure that can solve struc-
turally kinetic minimum spanning tree problems restricted
to graphs inF in time O(f (n)) per insertion, deletion, or
topology change, where f(n) ≥ logn and PF (n) f (n) =
�(nc) for some c> 1. Then we can solve functionally
kinetic or parametric problems on graphs inF in time
O(n3/2+ PF(n) f (

√
n)). If F contains only planar graphs,

we can solve these problems in time O(PF (n) f (
√

n)).

Proof: We form a separator decomposition of the
graph. At each level of the decomposition, we have
two subgraphsG and H the union of which is a sub-
graph at the next higher level. We maintain the four trees
MSTN (G)(+∞), MSTN (H)(+∞), MSTN (G)(−∞), and
MSTN (H)(−∞) described in the previous section, and the
certificateC(G,H) or C(H,G) derived from those trees.
Recall that the certificates are obtained by contracting sub-
trees ofMSTN(G)(+∞) and MSTN(H)(+∞). In order to
update the certificates efficiently, we maintain these con-
tracted subtrees using the dynamic-tree data structure by
Sleator and Tarjan[27]. The two treesMSTN (G∪H)(+∞)
and MSTN (G∪H)(−∞) can then be found from this in-
formation together with the solution to two structurally
kinetic problems on the graphsC(G,H) ∪ C(H,G) and
C(G,H) ∪ C(H,G) ∪ T (whereT is a contracted tree rep-
resenting a subgraph at a higher level of the recursion, and
has weights that do not vary).

The resulting system of data structures contains two ki-
netic problems at each level of the recursion, each of which
undergoes a number of changes proportional toPF (x)
wherex is the size of the subgraph. The overall time bound
therefore satisfies the recurrence

T(n) = 2T(n/2)+ PF (n) f (
√

n).

2

3. Data Structures

We have shown how to use sparsification to speed up
structurally kinetic minimum spanning tree data structures.
We now describe some techniques for constructing these
data structures.

As our kinetic or parametric algorithm progresses, the
minimum spanning tree it maintains will change byswaps,
in which one edge is removed and another inserted. We
begin by giving a geometric interpretation for these swaps.
We then partition the vertices into clusters, and classify the
swaps according to the inserted location of the endpoints
of the edge in the clusters, and show how to find the next-
occurring swap within each class.

F

E

Figure 1. Two sets of edges such that every pair of one edge from
each set forms a swap.

Figure 2. First non-positive swap: in line arrangement (left), right-
most point above lines from tree edges and below lines from non-
tree edges; in dual point arrangement (right), line with highest
slope above points from tree edges and below points from non-
tree edges.

3.1. Swaps, Duality, and Bitangents

As our algorithm progresses, topology changes arising
from insertions and deletions of edges will be relatively
easy to maintain. However, it will require work to locate
topology changes arising from changes in relative ordering
of edge weights. For a given spanning treeT of G and two
edgese, f ∈ E , we say thate and f form aswapif e ∈ T ,
f 6∈ T , and the cycle induced byf in T contains the edgee.
For any fixed value ofλ, define theweightof a swap(e, f),
denoted1e, f (λ), to bew f (λ) − we(λ); if e and f do not
form a swap, we set1e, f (λ) = +∞. That is,1e, f (λ) is the
amount by which the tree weight would increase if the swap
were performed. Given a valueλ0 andMST(λ0), our algo-
rithm will need to find the first value ofλ ≥ λ0 for which
1e, f (λ) ≤ 0, for some paire, f ∈ E . For a pairE, F ⊆ E ,
whereE ⊂ MST(λ0) and F ∩ MST(λ0) = ∅, we define
thenext swap(or first non-positive swap) betweenE andF
to be the paire ∈ E and f ∈ F so that1e, f (λ

∗) ≤ 0 for
someλ∗ ≥ λ0 and1e′, f ′(λ) > 0 for all pairse′ ∈ E, f ∈ F
and for allλ0 ≤ λ < λ∗. The pair of edgesg ∈ E,h ∈ F
for which1g,h(λ0) has the minimum value is called thebest
swapatλ0.

To help understand the problem of computing the next
swap, we interpret swaps geometrically. Suppose we have
a subsetE of edges of a spanning tree ofG and a subsetF
of edges not in the spanning tree, where every pair(e, f)
of one edge from each set forms a swap (Figure 1). We can
form a line arrangement in the(λ,w) plane, where each line
is the graph of the weight function of a single edge. The first
non-positive swap can be found as the first (leftmost) point
in the arrangement where a line fromF crosses below a line
from E; or, equivalently it is the last (rightmost) point that
lies on or below all lines fromF and on or above all lines
from E (Figure 2).

We apply a projective duality to this configuration, in
which each linew = aλ + b in the primal(λ,w) plane
is transformed into a point(−a,b) in the dual(x, y) plane,
and each point(λ,w) in the primal plane is transformed into
a line y = λx + w in the dual plane. This transformation
preserves point-line incidences and above-below relation-
ships. The dual transform maps the graph of the weight of
each edgee to a point. For a subsetX ⊆ E , let SE denote
the set of such points corresponding to the edges inX. In
the dual plane, the first non-positive swap corresponds to
the maximum-slope line that lies on or below all points in
SF and on or above all points inSE . Such a line is abitan-
gent to the lower convex hull ofSF and the upper convex
hull of SE (Figure 2(b)).

Because of this connection between non-positive swaps
and bitangents, we can apply computational geometry tech-
niques in our solution of the parametric and kinetic mini-
mum spanning tree problems. If we are given a represen-
tation of the two hulls above that supports binary searches,
their bitangent can be found inO(logn) time. In the special
case in whichE or F consists of a single edge, we are sim-
ply seeking a tangent through the corresponding dual point
to the convex hull of the points corresponding to the other
set, and again this can be done in logarithmic time.

3.2. Dynamic Convex Hull Data Structure

Because of the connection between swaps and hulls out-
lined above, our algorithm will need to use some data struc-
tures for maintaining convex hulls of point sets. The specific
operations we need are point insertion andundooperations:
an undo deletes the most recently inserted point remaining
in the data structure.

Theorem 1. We can maintain the convex hull of a planar
point set, subject to insertions and undo operations, in time
O(logn) per update or query.

Proof: We maintain a sorted list of the vertices on the hull
using any of various balanced binary search tree data struc-
tures. The time bound for queries then becomes immediate.
To insert a point, we do two binary search queries to locate

its left and right tangents, split the sorted list of hull ver-
tices at those two points, and rejoin the left side of the left
cut, the new vertex, and the right side of the right cut. We
retain pointers to the discarded subtrees so that undo op-
erations can similarly be performed byO(1) split and join
operations.2

3.3. Parametric Search

In several cases of our algorithm it will prove easier to
find the best swap for a fixed value ofλ than to find the value
λ∗ leading to the first non-positive swap. Megiddo’s para-
metric search[26] provides a general mechanism for turning
an algorithm for the former problem into an algorithm for
the latter.

The parametric search method starts from two given al-
gorithms: adecision oraclethat determines if a givenλ is
less or greater thanλ∗, and asimulated algorithmthat com-
putes a functionf (λ) discontinuous atλ∗. The conditional
branches of the simulated algorithm must depend only on
low-degree polynomials inλ. Since the decision oracle is
discontinuous atλ∗, it is common to use the same algo-
rithm in both roles. Parametric search then produces the
sequences of steps the simulated algorithm would perform
if it were givenλ∗ as its argument; each conditional branch
is simulated by using the decision algorithm to compareλ∗

with the roots of the polynomial tested at that branch. Be-
cause of the simulated algorithm’s discontinuity, we must
eventually find a root equal toλ∗. If the decision oracle
takes timeTD, and the simulated algorithm is a parallel
algorithm taking timeTS with PS processors, we can test
many roots at once using binary search, giving an overall
time of O(TDTS log PS + TSPS). Standard techniques for
speeding this up further include moving as much as pos-
sible out of the simulated algorithm, using partial results
to speed up the decision oracle, and Cole’s technique for
avoiding the logPS factor by allowing a constant fraction
of the simulated processors to fail to make progress at each
step[6].

3.4. Restricted Partitions

Our algorithms use a technique of partitioning trees and
forests into smaller subtrees, or clusters of vertices, that was
introduced by Frederickson[15, 16] and used by him and
others as part of various dynamic graph algorithms. We will
combine this clustering technique with some geometric data
structures (primarily, planar convex hulls) in a manner sim-
ilar to techniques used in our previous paper on speedups in
the network simplex method[10].

We first transform our input graphG into a new graphG′
with degree at most three, so any tree inG′ will be binary.
Let v be any edge of degree1 > 3; replacev by1−2 ver-
tices connected by a path. Path endpoints receive two of the

original edges ofv, and each interior vertex receives one.
Path edges are given a cost function that is a sufficiently
small constant so that all path edges are always part of the
current minimum spanning tree. This transformed graph is
not hard to maintain asG undergoes edge insertions or dele-
tions: each update inG causes a constant number of updates
to G′. Thus, for the remainder of the description of our ki-
netic algorithm, we assume our input graph has all vertex
degrees at most three.

The following definition is due to Frederickson[16].

Definition 1. A restricted partition of orderz with respect
to a treeT in which all vertex degrees are at most three is a
partition of the vertices ofV such that:

1. Each set in the partition contains at mostz vertices.

2. Each set in the partition induces a connected subtree of
T .

3. For each setS in the partition, ifScontains more than
one vertex, then there are at most two tree edges having
one endpoint inS.

4. No two sets can be combined and still satisfy the other
conditions.

We call each set in the partition acluster. The endpoints
of an edge ofT connecting two different clusters are called
terminal vertices. Each cluster has at most two terminal
vertices. A cluster withk terminal vertices will be referred
to as ak-terminal cluster.

Frederickson also showed that such a partition can easily
be found in linear time. There are at mostO(n/z) clusters
in a restricted partition of ann-vertex tree. If we change the
tree by performing a swap, we can update the restricted par-
tition in time O(z) by splitting and re-mergingO(1) clus-
ters[16].

Given a restricted partition of the current minimum span-
ning tree in a parametric or kinetic MST problem, we can
classify the potential swaps into three types according to
how many clusters are involved in the endpoints of the
swapped edges:

Definition 2. Let edges e and f form a swap in a tree
for which we have a restricted partition, so that e is a tree
edge on the tree path between the endpoints of f . Then if
both endpoints of f are in a single cluster, e must be in the
same cluster as f ; we call this anintra-cluster swap. If f
has endpoints in different clusters, and e belongs to one of
these two clusters, we call this adual-cluster swap. Finally,
if the endpoints of f do not lie in the same cluster and e
does not belong to one of these two clusters, we call this an
inter-cluster swap.

We next show how to maintain the next swap that can
occur, for each of these three types of swap.

3.5. Intra-Cluster Swaps

To find the first non-positive intra-cluster swap in a given
cluster, we apply parametric search. Recall that this requires
two subroutines: adecision oraclefor comparing a given
parameterλ to the optimal valueλ∗ we are seeking, and a
simulated algorithmdiscontinuous atλ∗.

Lemma 9. A decision oracle for the first non-positive
intra-cluster swap in a cluster of O(z) vertices can be im-
plemented in time O(z).

Proof: We need to detect whether the given value ofλ

is before or after the first non-positive swap; equivalently,
whether there exists a non-positive swap atλ itself. Since
a given spanning tree is the minimum only within a single
interval of values ofλ, we perform this test by computing
the values of all intra-cluster edges at the parameter value
λ, and testing whether the given tree is still the minimum
spanning tree at that parameter using a minimum spanning
tree verification algorithm[8,25]. 2

Lemma 10. We can find the first non-positive intra-cluster
swap in a cluster of O(z) vertices in O(z logz) time.

Proof: We apply parametric search with the decision or-
acle described above. For a simulated algorithm, we use
sorting, since the sorted order is discontinuous at all swaps.
Cole [6] shows how to apply parametric search to sorting
with O(logn) calls to the decision oracle andO(n logn)
additive overhead.2

3.6. Dual-Cluster Swaps

To find dual-cluster swaps, we combine the dynamic
convex hull data structure described earlier with Frederick-
son’s idea ofambivalent data structures. Let C be a cluster
in a restricted partition. A non-tree edge whose one end-
point lies inC and the other does not lie inC is called an
externaledge ofC. For each clusterC, we want to main-
tain the next dual swap that involves an external edge ofC.
Recall thatC has at most two terminal vertices. An external
edge ofC incident upon a vertexu of C can swap only with
an edge ofC that lies on the path fromu to a terminal vertex
of C. For each such external edge and each terminal vertex
v of C, we will therefore store the edgee on the path from
u to v for whichw f (λ) − we(λ) becomes zero first. Let us
denote this edge byµv(f). Note that ifv lies on the path
in the minimum spanning tree between the endpoints off ,
then(µv(f), f) forms a swap.

Lemma 11. Let5 be a restricted partition of order z, and
let C be a newly formed cluster of5. For all non-tree

edges f having exactly one endpoint in C and for each ter-
minal vertexv of C, we can computeµv(f) in total time
O(z logz).

Proof: Let v be a terminal vertex ofC. We traverse the
subtree contained inC, starting fromv, and keep track of
the edges on the path from the current vertexu to v. As
outlined in Section 3.1 the weights of the edges in this path
correspond to points in a plane, and we use the dynamic
convex hull data structure described in Theorem 1 to main-
tain the convex hull of these points. When our traversal first
visits an edge of the tree we insert the corresponding point
into the hull, and when we return from traversing an edge
we perform an undo operation to remove the point from the
hull. Then, as described in Section 3.1, for an external non-
tree edgef incident uponu, µv(f) can be found by com-
puting a tangent from the point corresponding tof ’s weight
function to the current hull, in timeO(logz). 2

Lemma 12. As we dynamically maintain a restricted par-
tition of order z on a spanning tree of a dynamic m-vertex
degree-three graph, we can maintain a data structure in
time O(z logz+ m/z) per update to the graph which will
let us query the first non-positive dual-cluster swap in time
O(1) per pair of clusters.

Proof: We store for each endpoint of each non-tree edge
the information described in Lemma 11. Since each update
modifies onlyO(1) clusters, we can recompute this infor-
mation inO(z logz) per update, as described in that lemma.
For each clusterC, we partition the external edges inC into
O(m/z) groups, so that all edges whose other endpoints lie
in the same clusterCi 6= C belong to the same group. For
each such groupFi and for each terminal vertexv of C, we
store the pairµv(Ci) = (µv(f), f) for whichw f − wµv(f)

becomes zero first among all edgesf ∈ Fi . This informa-
tion can be updated in timeO(z)whenever a cluster is mod-
ified. We also store a lowest-common-ancestor data struc-
ture for the tree formed by contracting each cluster of the
partition; this takes timeO(m/z) per update to maintain.

Suppose we want to find the next dual swap involving an
external edge whose one endpoint lies inC1 and the other
in C2. We first find the terminal verticesv1, v2 of C1,C2,
respectively, that connect the path fromC1 to C2 in the min-
imum spanning tree. This can be done inO(1) time using
the lowest-common-ancestor data structure. It is easily seen
thatµv1(C2) andµv2(C1) form swaps. Of these two, we re-
turn the one whose weight becomes zero first.2

3.7. Inter-Cluster Swaps

We now need to show how to find the first non-positive
inter-cluster swap. We first describe a deterministic tech-

nique based on the intra-cluster swap technique described
in Section 3.5.

Recall that we will be maintaining a restricted partition
of orderz of the minimum spanning tree of the graph. For
any value ofλ, consider forming the following contracted
graphG′(λ) from G, with only O(m/z) vertices: Contract
each 1-terminal cluster, with the terminal vertexv, to a sin-
gle nodev. Contract each 2-terminal cluster, with terminal
verticesu, v, to an edge(u, v) whose weight is equal the
weight of the heaviest edge on the path connectingu andv.
Let C1,C2 be two clusters, and letv1 andv2 be the terminal
vertices ofC1,C2, respectively, that lie on the path connect-
ing C1 to C2. We contract all non-tree edges betweenC1

andC2 to a single edge(v1, v2) whose weight is equal to
the lightest weight among all the non-tree edges between
C1 andC2.

Lemma 13. We can maintain a data structure in time
O(z logz) per change to the restricted partition, so that for
anyλ, the graphG′(λ) described above can be found in time
O(logn) per edge.

Proof: Suppose we maintain a restricted partition of or-
derz of the minimum spanning tree ofG. We can maintain
the convex hull of the points corresponding to the path con-
necting the two terminals of each two-terminal cluster, and
of the points corresponding to the edges connecting each
pair of clusters. The weight of each edge inG′ can be found
in time O(logn) by binary search in the appropriate hull.
2

Lemma 14. The first non-positive inter-cluster swap inG
is the first non-positive swap inG′(λ∗).

Lemma 15. We can maintain a data structure in time
O(z logz) per change to the restricted partition, such that
if the graphG′(λ) described above has m′ edges, the best
inter-cluster swap can be found in time O(m′ log2 n).

Proof: The structure we maintain is simply the set of hulls
described in Lemma 13. To find the best swap, we apply
a parametric search routine similar to the one described in
Section 3.5. We modify the minimum spanning tree ver-
ification used as the decision oracle, to computeG′ and
then verify that the contraction of the current spanning tree
is the true minimum spanning tree ofG′; this takes time
O(m′ logn) per oracle call. We also modify the simulated
algorithm, to computeG′ before sorting its edge weights;
the computation ofG′ is just a collection of parallel bi-
nary searches and does not increase the overall complex-
ity beyond its previous bound ofO(logm′) oracle calls and
O(m′ logm′) additive overhead.2

With the use of randomization, we can reduce this bound
slightly:

Lemma 16. We can maintain a data structure in time
O(z logz) per change to the restricted partition, such
that if the graphG′(λ) described above has m′ edges,
the best inter-cluster swap can be found in expected time
O(m′ logn).

Proof: We perform two different cases, depending on
whether the contracted graphG′ is sparse or not. If it has
at least as many non-tree edges as tree edges, we choose
randomly a non-tree edgee of G′, find the best swap in-
volving that edge and one of the tree edges, and use this
swap to eliminate (in expectation) half the non-tree edges.
Alternately, ifG′ has few non-tree edges, we choose a tree
edgee randomly, and use the best swap involving that edge
to eliminate in expectation half the tree edges. Repeating
this process eventually leads to an empty graph, at which
point we return the best swap found in the process. We omit
the details in this extended abstract.2

4. Parametric and Kinetic MST Algorithms

The data structures described in the preceeding sections
let us find the next non-positive swap of each type. We are
ready to put them together into our overall kinetic minimum
spanning tree algorithm.

4.1. General Graphs

Theorem 2. We can maintain a graph, having at most
m linearly weighted edges at any one time, and keep
track of the minimum spanning tree kinetically, in time
O(pm2/3 log4/3 m), where p denotes the number of edge
insertions, edge deletions, or minimum spanning tree topol-
ogy changes. If we allow randomization the expected time
is O(pm2/3 logm).

Proof: We apply the transformation described above to
makeG have degree at most three, which increases the num-
ber of nodes toO(m). Then we use the data structures de-
scribed above to keep track of the next non-positive swap, in
time O(z logz+m/z+(m/z)2 log2 z) per update. When we
encounter an edge insertion, we update these structures, and
use them to test whether a non-positive swap exists at the
time of insertion; if so we perform the swap. When we en-
counter a deletion of a minimum spanning tree edge, we use
our convex hull data structures to find the best replacement
edge in each group of edges connecting a pair of clusters;
there areO((m/z)2) such groups, so this step takes time
O((m/z)2 logn). When we encounter a deletion of a non-
tree edge we update our structures and continue. And, when
the next non-positive swap found after one update occurs

before the next insertion or deletion operation, we again up-
date our structures and continue. Settingz = m2/3 log1/3 n
or m2/3 produces the bound above.2

We now apply sparsification to further improve these
bounds.

Theorem 3. We can solve the kinetic minimum spanning
tree problem in time O(K (n,m)n2/3 log4/3 n) or in ran-
domized expected time O(K (n,m)n2/3 logn). We can solve
the parametric minimum spanning tree problem in time
O(P(n,m)n2/3 log4/3 n) or in randomized expected time
O(P(n,m)n2/3 logn).

4.2. Planar and Minor-Closed Graph Families

Our time bound becomes better for planar graphs or
other minor-closed families of graphs, because the con-
tracted graphG′ is sparse.

Theorem 4. We can maintain a graph, having at most n
vertices at any one time, belonging to some minor-closed
familyF , and keep track of the structurally kinetic minimum
spanning tree, in total time O(pn1/2 log3/2 n). If we allow
randomization the expected total time is O(pn1/2 logn).

Proof: Because the number of non-tree edges inG′
is O(n/z), the tradeoff above reduces toO(z logz +
(n/z) log2 z), or randomizedO(z logz+ (n/z) logz). Set-
ting z to n1/2 log1/2 n or n1/2 produces the stated bounds.
2

Again, applying sparsification leads to further improve-
ments.

Theorem 5. We can maintain a graph, having at most n
vertices at any one time, belonging to some minor-closed
family F, and keep track of the parametric or function-
ally kinetic minimum spanning tree, in total time O(n3/2 +
P(n)n1/4 log3/2 n). If we allow randomization the expected
total time is O(n3/2 + P(n)n1/4 logn). For planar graphs
the O(n3/2) term can be removed from these bounds.

With Dey’s boundP(n) = O(n4/3), our total time is
worst-case bounded byO(n19/12 log3/2 n), or randomized
expected timeO(n19/12 logn).

5. Conclusions

We have given deterministic and randomized algorithms
for solving the parametric and kinetic minimum spanning
tree problems for general graphs, and improvements for
special families, such as minor-closed and planar graphs.
The mixture of graph-theoretic and geometric attributes is
an especially appealing aspect of this problem.

It would be desirable to find kinetic data structures for
maintaining the MST of a graph that do not require the
heavy arsenal of tools we have used: sparsification, both
general and separator-based, dynamic convex hulls, re-
stricted partitions, ambivalent data structures, and paramet-
ric search. We plan to work both on simplifying our meth-
ods and on improving our bounds.

References

[1] P. K. Agarwal and M. Sharir. Algorithmic techniques
for geometric optimization. InComputer Science To-
day: Recent Trends and Developments, Lecture Notes
in Computer Science, vol. 100 (J. van Leeuwen, ed.),
Springer-Verlag, 1995.

[2] N. Alon, P. Seymour, and R. Thomas. A separator
theorem for graphs with an excluded minor and its ap-
plications. InProc. 22nd ACM Symp. Theory of Com-
puting, 1990, 293–299.

[3] J. Basch, L. J. Guibas, and J. Hershberger., pp. 293–
299 Data structures for mobile data. InProc. 8th
ACM-SIAM Symp. Discrete Algorithms, 1997, 747–
756.

[4] J. Basch, L. J. Guibas, and L. Zhang. Proximity prob-
lems on moving points. InProc. 13th ACM Symp.
Computational Geometry, 1997, 344–351.

[5] B. Chazelle. A faster deterministic algorithm for mini-
mum spanning trees. InProc. 38th Symp. Foundations
of Computer Science, 1997, 22–31.

[6] R. Cole. Slowing down sorting networks to obtain
faster sorting algorithms.J. ACM, 34 (1987), 200–
208.

[7] T. K. Dey. Improved bounds on planark-sets
and k-levels. Discrete & Computational Geometry.
19 (1998), 373–382.

[8] B. Dixon, M. Rauch, and R. E. Tarjan. Verification
and sensitivity analysis of minimum spanning trees in
linear time. SIAM J. Computing, 21 (1992), 1184–
1192.

[9] D. Eppstein. Geometric lower bounds for parametric
matroid optimization. To appear inDiscrete & Com-
putational Geometry.

[10] D. Eppstein. Clustering for faster network simplex
pivots. In Proc. 5th ACM-SIAM Symp. Discrete Al-
gorithms, 1994, 160–166.

[11] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nis-
senzweig. Sparsification — A technique for speed-
ing up dynamic graph algorithms.J. ACM, 44 (1997),
669–696.

[12] D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer.
Separator based sparsification I: planarity testing and
minimum spanning trees.J. Computing & Systems
Sciences, 52 (1996), 3–27.

[13] D. Fernández-Baca and G. Slutzki. Parametric prob-
lems on graphs of bounded tree-width.J. Algorithms,
16 (1994), 408–430.

[14] D. Fernández-Baca, G. Slutzki, and D. Eppstein. Us-
ing sparsification for parametric minimum spanning
tree problems.Nordic J. Computing, 3 (1996), 352–
366.

[15] G. N. Frederickson. Data structures for on-line updat-
ing of minimum spanning trees.SIAM J. Computing,
14 (1985), 781–798.

[16] G. N. Frederickson. Ambivalent data structures for
dynamic 2-edge-connectivity andk smallest spanning
trees.SIAM J. Computing, 26 (1997), 484–538.

[17] M. T. Goodrich. Planar separators and parallel poly-
gon triangulation.J. Computing & Systems Sciences,
51 (1995), 374–389.

[18] R. L. Graham and P. Hell. On the history of the min-
imum spanning tree problem.Ann. Hist. Comput.,
7 (1985), 43–57.

[19] L. J. Guibas. Kinetic data structures — a state of the
art report. To appear inProc. 3rd Worksh. Algorithmic
Foundations of Robotics, 1998.

[20] M. R. Henzinger and V. King. Maintaining minimum
spanning trees in dynamic graphs. InProc. 24th Int.
Coll. Automata, Languages and Programming, Lec-
ture Notes in Computer Science, vol. 1256, Springer-
Verlag, 1997, 594–604.

[21] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-
logarithmic deterministic fully-dynamic algorithms
for connectivity and minimum spanning tree. InProc.
30th ACM Symp. Theory of Computing, 1998, 79–89.

[22] D. Karger, P. N. Klein, and R. E. Tarjan. A randomized
linear-time algorithm for finding minimum spanning
trees.J. ACM, 42 (1995), 321–329.

[23] N. Katoh. Parametric combinatorial optimization
problems and applications.J. Inst. Electronics, In-
formation and Communication Engineers, 74 (1991),
949–956.

[24] N. Katoh. Bicriteria network optimization problems.
IEICE Trans. Fundamentals of Electronics, Communi-
cations and Computer Sciences, E75-A (1992), 321–
329.

[25] V. King. A simpler minimum spanning tree verifica-
tion algorithm. InProc. 4th Worksh. Algorithms and
Data Structures, Lecture Notes in Computer Science,
vol. 955, Springer-Verlag, 1995, 440–448.

[26] N. Megiddo. Applying parallel computation algo-
rithms in the design of sequential algorithms.J. ACM,
30 (1983), 852–865.

[27] D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Computer and System Sciences,
26 (1983), 362–391.

[28] N. E. Young, R. E. Tarjan, and J. B. Orlin. Faster
parametric shortest path and minimum-balance algo-
rithms. Networks, 21 (1991), 205–221.

