
A Static 2-Approximation Algorithm for Vertex

Connectivity and Imcremental Approximation

Algorithms for Edge and Vertex Connectivity

Monika Rauch Henzinger?

Digital Systems Research Center,130 Lytton Avenue Palo Alto, CA 94301

Abstract. This paper presents insertions-only algorithms for maintain-

ing the exact and/or approximate size of the minimum edge cut and
the minimum vertex cut of a graph. The algorithms output the approx-

imate or exact size k in time O(1) and a cut of size k in time linear

in its size. For the minimum edge cut problem and for any 0 < � � 1,
the amortized time per insertion is O(1=�2) for a (2 + �)-approximation,

O((log �)((log n)=�)2) for a (1+ �)-approximation, and O(� log n) for the

exact size, where n is the number of nodes in the graph and � is the
size of the minimum cut. The (2 + �)-approximation algorithm and the

exact algorithm are deterministic, the (1 + �)-approximation algorithm

is randomized.
We also present a static 2-approximation algorithm for the size � of the

minimum vertex cut in a graph, which takes time O(n2 min(
p
n; �)). This

is a factor of � faster than the best algorithm for computing the exact
size, which takes time O((�3n+�n2)min(

p
n; �)). We give an insertions-

only algorithm for maintaining a (2 + �)-approximation of the minimum

vertex cut with amortized insertion time O(n=�).

1 Introduction

Computing the connectivity of a graph is a fundamental problem that has

achieved a lot of attention (see for example [1, 2, 6, 8, 9, 10, 11, 15, 16, 18, 20]).

In this paper we study the problem of maintaining the connectivity of the graph

during modi�cations of the graph.

Let G = (V;E) be an undirected, unweighted multigraph. Two vertices x

and y of G are k-edge connected if there exist k pairwise edge-disjoint paths

connecting x and y. A graph G is k-edge connected if every pair of vertices is

k-edge connected.

Let �(G; x; y) be the maximum k such that x and y are k-edge connected in

G and let �(G) be the maximum k such that G is k-edge connected. An edge

cut of G is a set of edges in G whose removal disconnects G. An edge cut C

separates x and y if x and y belong to di�erent connected components of G nC.
A minimum edge cut is a cut of minimum size. By Menger's theorem [19], (a)

? Maiden Name: Monika H. Rauch. This research was supported by an NSF CAREER

Award.

the size of the minimum edge cut is �(G), and (b) the size of the minimum edge

cut separating x and y is �(G; x; y).

Let G = (V;E) be an undirected, unweighted graph. We say two paths in

G are openly disjoint if they are vertex-disjoint except for their endpoints. Two

vertices of G are k-vertex connected if there exist k pairwise openly disjoint paths

connecting x and y. A graph G is k-vertex connected if jV j > k and every pair

of vertices is k-vertex connected.

Let �(G; x; y) be the maximum k such that x and y are k-vertex connected in

G and let �(G) to be the maximumnumber k such that G is k-vertex connected.
2 A vertex cut of G is a set C of vertices in G such that G n C is disconnected

and non-trivial 3. A vertex cut C separates x and y if x and y belong to di�erent

connected components ofGnC. Aminimum vertex cut is a vertex cut of minimum

size. By Menger's theorem [19], (a) the size of the minimum vertex cut is �(G) if

�(G) < jV j � 1, and (b) the size of the minimum vertex cut separating two non-

adjacent vertices x and y is �(G; x; y). Note that k-vertex connectivity implies

k-edge connectivity, but not vice versa.

Given an initial graphGwith n nodes andm0 edges a fully dynamic algorithm

maintains G during an arbitrary sequence of the following operations.

{ Insert(u; v): Insert the edge (u; v) into G.

{ Delete(u; v): Delete the edge (u; v) from G.

{ Query-Size: Return the exact (approximate) size of a minimum cut in G.

{ Query-Cut: Return an exact (approximate) minimum cut of G.

An incremental algorithm maintains the graph under an arbitary sequence

of Insert, Query-Size, and Query-Cut operations.

We say that k is a c-approximation of � (�) if � � k � c� (� � k � c�).

This paper presents simple incremental algorithms for maintaining the exact and

approximate size of the minimumedge cut and the approximate size of the min-

imum vertex cut. The basic idea is to use the static algorithm for computing the

solution and to build a data structure that quickly tests if the solution computed

last by the static algorithm is still the correct solution for the current graph. If

yes, the data structure is updated, otherwise, a new solution is computed using

the static algorithm. The di�culty lies in �nding an appropriate data structure

and to amortize the cost for the static algorithm over previous insertions. The

algorithms can output the exact or approximate size of the minimumcut in time

O(1) and a minimum or approximate minimum cut in time linear in its size.

We denote by m the total number of edges in the graph, consisting of m0

initial edges and m1 inserted edges, by � the minimumdegree in the �nal graph,

by � the size of the minimum edge cut in the �nal graph, and by � the size of

2 Our de�nition of �(G;x; y) for two adjacent nodes x and y di�ers from the literature:

Usually �(G;x; y) for two adjacent nodes x and y is de�ned to be n � 1, while we
allow �(G;x; y) to be less than n � 1. Our de�nition is introduced for notational

convenience and does not a�ect the de�nition of �(G).
3 A graph is trivial if is consists of 1 vertex.

2

the minimum vertex cut in the �nal graph. Note that � � � � � and m0+m1 =

(�n), i.e. �n = O(m0 +m1).

The incremental algorithms presented in this paper are almost optimal, (up

to a factor of logn= log(n=�), resp. 1=�, resp. log(�=�)) in the following sense: A

faster incremental algorithm would lead to an improvement in the running time

of the best static algorithm.

For example, we give an exact minimum edge cut algorithm with amortized

time O(� logn) per operation. Any incremental algorithm with amortized time

t(n;m) = o(� log(n=�)) per insertion leads to a static minimum cut algorithm

with time O(m+�nt(n;m)), which would improve the current best deterministic

bound of O(m + �2n log(n=�)) [9]: The static algorithm is created from the

incremental algorithm by (1) computing a 3-approximation of the minimumedge

cut, (2) computing a subgraph of the graph with the same minimum cut but at

most 3�n edge, and (3) adding all edges of this subgraph to an initially empty

graph. Step (1) takes time O(m) using Matula's 3-approximation [18], Step (2)

takes time O(m + n) using the algorithm of Nagamochi and Ibaraki [20], and

Step (3) takes time O(�nt(n;m)) using the incremental algorithm.

Minimum Edge Cuts. We give incremental algorithms that maintain the

exact size, (1 + �)-, or (2 + �)-approximate size of the minimum edge cut. The

algorithms for minimum edge cuts apply to any multigraph G = (V;E).

The �rst algorithm maintains a (2 + �)-approximation of � in total time

O((m0 + �n)=� + m1=�
2) for any 1 � � > 0. It is an incremental version of

Matula's static (2 + �)-approximation algorithm [18], which takes time O(m=�).

If the initial graph is empty, our amortized time per operation is O(1=�2).

The second algorithm is an incremental version of Gabow's (exact) mini-

mum edge cut algorithm [9], which computes the size of the minimum edge cut

in time O(m + �2n log(n2=(m + 1))) = O(m + �2n log(n=(� + 1))). Our incre-

mental algorithm takes time O(m0 + m1 + �2n log(n=(�0 + 1))), where �0 is

the size of the minimum edge cut in the initial graph. If the initial graph is

empty, the amortized time per insertion is O(�2(logn)n=m1) =O(� logn), since

m1 =
(�n). Apart from answering Query-Size or Query-Cut operations, our

algorithm can answer queries that ask if two given nodes are separated by a

cut of size � in amortized time O(�(n; n)). If � is a constant, our running time

is close to the running time of the best \special purpose" algorithms: Deter-

mining if two nodes are connected, 2-edge-connected, or 3-edge-connected takes

amortized time O(�(m;n)) per insertion or query[22, 12, 17].

Gabow's algorithm implies a fully dynamic algorithm which allows insertions

and deletions of edges in worst-case time O(m log(n=�)). Our algorithm can be

modi�ed to improve this bound to O(�max logn) amortized time per insertion

and O(�n log(n=�)) amortized time per deletion, where � is the size of the min-

imum cut during the operation and �max is the maximum size of the minimum

cut during the whole sequence of operations.

Finally we combine the previous two (deterministic) algorithms with ran-

dom sampling to achieve an incremental Monte Carlo algorithm that main-

tains a (1 + �)-approximation of the minimum edge cut with high probabil-

3

ity. The total expected time for m1 insertions is O((m0 +m1) log
2 n(log�)=�2).

Thus, if the initial graph is empty, the amortized expected time per inser-

tion is O(log2 n(log�)=�2). This technique was introduced by Karger [16] in his

static algorithm, which needs time O(m + n((logn)=�)3) to compute a (1 + �)-

approximation of �.

Related results: (1) For any �xed k, Dinitz and Westbrook [4] give an algo-

rithm that supports Same-k-Component? queries and edge insertions in a (k-

1)-edge-connected graph. It takes time O(q + n) with a preprocessing time of

O(m0 + k2n log(n=k)), where q is the total number of operations. (2) For any

�xed k, Eppstein et. al [5] give a fully dynamic algorithm that tests if the whole

graph is k-edge-connected in O(1) time. The times per edge insertion or deletion

is O(k2n log(n=k)). (3) Karger [15] gives a randomized algorithm, which main-

tains a
p
1 + 2=�-approximationof the minimumedge cut in expected time ~O(n�)

per insertion. Thus, for a (2+�)-approximation it takes time ~O(n2=(3+4�+�
2)) per

insertion and for a (1 + �)-approximation it takes time ~O(n1=�). Our algorithms

achieve exponential improvements. He also gives a fully dynamic algorithm that

maintains a
p
1 + 2=�-approximation algorithm in ~O(n1=2+�) time per edge in-

sertions and deletions. (4) Recently, Dinitz and Nutov [3] gave an algorithm that

maintains all cuts of size � or � + 1. The total time for m1 edge insertions and

q Same-(� + 2)-Component? queries is O((n +m1)�(m1; n) + q�(q; n)) for odd

� and O(m1 + n logn+ q�(q; n)) for even �.

Minimum Vertex Cuts. We present a static algorithm that computes a

2-approximation of the size � of the minimum vertex cut, i.e. it computes the

exact size of � if � � b�=2c and it returns b�=2c if � > b�=2c. It takes time

O(n2min(
p
n; �)). This is a speed-up of a factor of at least � over the fastest

exact algorithm for computing �, which takes timeO((�3n+�n2)min(
p
n; �)) [1,

11, 20]. Using this 2-approximation algorithm as subroutine gives an incremental

algorithm with total time O(m0 +m1n + �n2=�). If the initial graph is empty,

the amortized time per insertion is O(n=�).

Section 2 presents the basic structure that is common to all incremental

algorithms in this paper. In Section 3 we give some basic de�nitions. Section 4

presents the incremental algorithms for the minimum edge cut, Section 5 gives

the results for the minimum vertex cut.

2 A Generic Incremental Algorithm

To maintain the exact or approximate minimum edge or vertex cut in a graph

we use the following generic algorithm.

1. Compute the solution in the initial graph using the static algorithm.

2. while the current solution is correct do

if the new operation is a query then output the current solution

else add the new edge to the graph.

endwhile

3. Compute a new solution using previous solutions.

Goto 2.

4

The algorithm decomposes the sequence of insertions into subsequences, be-

tween which a new solution is computed in Step 3. The di�culty lies in deciding

(1) how to quickly test if the current solution is still correct and (2) how to

e�ciently compute a new solution using previous solutions. To analyze the run-

ning time we amortize the cost of computing a new solution over the sequence of

insertions since the last computation of a solution. We restrict our description to

answering Query-Size operations. However, it is straightforward to extend the

algorithms to answer Query-Cut operations.

3 Basic De�nitions

Let G = (V;E) be an undirected graph. A maximal spanning forest decompo-

sition (msfd) of order k is a decomposition of a graph G into k edge-disjoint

spanning forests Fi, 1 � i � k, such that Fi is a maximal spanning forest of

G n (F1 [F2 [: : :[Fi�1). If two nodes are connected in Fi, they are i-edge con-

nected. Nagamochi and Ibaraki [20] give a linear time algorithm (referred to as

decomposition algorithm (DA)) that computes a special msfd, called DA-msfd,

of order m in time O(m + n). A DA-msfd ful�lls the following additional con-

ditions [20]: If G is a graph then, (1) G is k-vertex connected i� F1 [: : : [Fk
is k-vertex connected. If G is a multigraph then, (2) for all 1 � i � k if x and

y are connected in Fi, then x and y are i-edge connected in G, (3) G is k-edge

connected i� F1 [: : :[Fk is k-edge connected, and (4) for any i and x; y 2 V ,

�([j�iFj; x; y) � min(�(G; x; y); i).

The decomposition algorithm also determines a linear order on the nodes,

called the maximum cardinality search order (mcs-order).

An edge (x; y) is contracted if x is identi�ed with y and all self-loops (but

not parallel edges) are discarded. A contraction reduces the number of nodes in

G, but does not reduce the size of the minimum edge cut. We contract a forest

F if we contract all edges of G that are in F .

We use the following fact repeatedly: If a graph is k-edge connected, it con-

tains
(kn) edges:

Lemma1. [14] If a n-node (multi)graph is k-edge connected, then it contains

at least kn=2 edges.

4 Incremental Algorithms for the Minimum Edge Cut

4.1 An Incremental (2 + �)-Approximation

Using the generic algorithm of Section 2 we create an incremental algorithm

that maintains a (2 + �)-approximation of the minimum cut. The results in this

section hold for any multigraph G = (V;E). We describe below (1) how to test

the correctness of the current solution after an insertion and (2) how to e�ciently

compute a new solution. Let �0 be �=2.

(1) Let k be the current solution, i.e. k=(2+ �) � � � k. At the start of each

subsequence of insertions we contract G in Procedure Contract such that in the

5

resulting n0-node graph the number m0 of edges in the contracted graph is at

most kn0=(2 + �0=2). Lemma 1 shows that � � k as long as m0 < (k + 1)n0=2.

Thus to test the correctness of the current solution k after an insertion we simply

check if m0 < (k + 1)n0=2.

(2) To e�ciently compute a new solution, we �rst test if we can �nd a cut of

size < k in the graph. If not, we repeatedly increase k until we �nd a cut of size

< k in the graph. This proves that k is an upper bound on �. To �nd a cut of

size < k we compute a DA-msfd, contracting the forest Fp of the DA-msfd with

p = dk=(2 + �)e, and checking if in the resulting n0-node graph (a) n0 > 1 and

(b) the number of edges m0 � kn0=(2 + �0=2). This implies that the contracted

graph contains a node with degree < k. The set of vertices of G contracted to

this node de�nes a cut of size < k in G.

To improve the e�ciency of the algorithm, every DA-msfd is computed on a

\sparse" graph that has a minimum cut of size � k i� the original graph has a

minimum cut of size � k: we use the graph consisting of the union of the forests

F1; : : : ; Fk of the most recent DA-msfd and all newly inserted edges. This idea

was developped independently also by Dinitz and Westbrook [4]. The algorithm

is given below. We denote by G0 = (V 0; E0) with n0 = jV 0j and m0 = jE0j the
graph resulting from the contractions.

An Incremental (2 + �)-Approximation Algorithm

1. �0 = �=4, N = ;.
Compute a (2 + �0)-approximation k of � using the static algorithm.

p = dk=(2 + �0)e
Call Contract(G0; k; p).

2. while m0 < (k + 1)n0=2 do

if the new operation is a query then return k

else add the inserted edge to N and to G0.

endwhile

3. Contract(G0; k; p).

while n0 = 1 do

k = k(1 + �0), p = dk=(2 + �0)e, V 0 = V , E0 = N [[q�kFq, N = ;.
Call Contract(G0; k; p).

endwhile

Goto 2.

Contract(G0; k; p)

repeat

Compute a DA-msfd ~F1; : : : ; ~Fm0 of G0 of order m0.

Contract all edges in the forest ~Fp and discard all self-loops.

until m0 � kn0=(2 + �0=2)

Correctness

Lemma2. Let G = (V;E) be a multigraph with N � E, let F1; : : : ; Fm be a

6

DA-msfd of G nN , and let G0 = (V;E0) be a multigraph with E0 = N [[q�kFq
for an integer k. If a cut in G0 has size s � k, it has size s in G as well.

Proof: By property (1) of a DA-msfd, the multigraph G0 can be con-

structed fromG by removing edges whose endpoints are k-edge connected

in [q�kFq, and, thus, in G0. Thus, for a cut of size at most k, its size is

not decreased during the construction of G0. This implies that if a cut

has size s � k in G0, it has size s in G as well.

Lemma3. The algorithm returns a (2 + �)-approximation of � for 0 < � � 4.

Proof: We show by induction that k=(2 + �) � � � k. Initially k is a

(2 + �)-approximation and, thus, k=(2 + �) � � � k. Assume inductively

that the claim holds and consider the next insertion. Note that insertions

only increase �. We distinguish two cases:

(1) If m0 < (k + 1)n0=2 after the insertion, then Lemma 1 shows that

� � k in G0 also after the insertion. Thus, there exists a cut in G0 of size

at most k, which implies by Lemma 2 that there exists a cut in G with

size at most k. By induction k=(2 + �) � � holds.

(2) If m0 = (k+1)n0=2 after the insertion, then the algorithm repeat-

edly contracts G0 and multiplies k by (1 + �) until it �nds the smallest k

such that the contractions stop with n0 > 1 and m0 � kn0=(2+ �=2). This

implies that there exists a node in G0 with degree at most 2(k=(2+�=2)) <

k. By Lemma 2 it follows that � < k in G. If k is unchanged, it follows

by induction that k=(2 + �) � �. Otherwise, k is the smallest value for

which the contractions terminate with n0 > 1. Thus, contracting Fp0 for

p0 = dk=((2 + �0)(1 + �0))e contracted G0 to a single node. This implies

that all nodes in G0 are connected in Fp0 and are p
0-edge connected in G0,

by property (1) of a DA-msfd. Since G0 � G, all nodes in G are p0-edge

connected. Thus � � p0 = dk=((2 + �0)(1 + �0))e � k=(2+ 4�0) = k=(2 + �)

for �0 � 1.

Running Time Analysis

Lemma4. A call to Contract(G0; k; p) takes time O(m0 + kn0=�), where n0 is

the number of nodes and m0 is the number of edges in G0.

Proof: The �rst iteration takes time O(m0). Afterwards G0 has O(kn0)

edges, since all edges in Fq for q � p are discarded during the removal of

self-loops.. Every further iteration reduces the number of edges from at

least kn00=(2 + �0=2) to at most dk=(2 + �0)en00, where n00 is the number

of nodes at the beginning of the iteration. This shows that the iteration

reduces the number of edges by a factor of at least (2 + �0=2)=(2 + �0) =

1�
(�). Each iteration takes time linear in the number of edges. Thus,

the cost of all further iterations gives a geometric series which sums to

O(kn0=�).

7

Let k0 be the initial value of k returned by the static algorithm and let

ki = k0(1 + �0)i. We denote by Phase i all steps that are executed while k = ki.

Let ui be the number of insertions during Phase i.

Lemma5. Phase i takes time O(kin+ ui=�
2 + ui�1).

Proof: Let p = dki=(2 + �0)e. There are at most ki(n � 1) + ui�1 edges

in N [[q�kiFq. Computing a DA-msfd, contracting all edges of Fp, and

the �rst call to Contract takes time O(kin+ui�1). Let n
0 be the number

of nodes after the �rst call to Contract. The resulting graph has O(kin
0)

edges, since all edges in Fq for q � p, are discarded during the removal of

self-loops.

Now Step 2 and procedure Contract are executed in turns (possibly 0

times) until a contraction reduces the number of nodes to 1. We analyze

the time of an execution of Step 2 followed by a call to Contract.

Let n00 be the number of nodes in the graph at the beginning of Step

2. Then the graph has O(kin
00) edges at the beginning of Step 2. Let d

be the number of insertions during the execution of Step 2. The time

for processing them is O(d). The resulting graph has O(kin
00 + d) edges.

Thus, the following call to Contract takes time O(kin
00=�+d). This shows

that the time spent for the execution of Step 2 and the following call to

Contract is O(kin
00=�+ d).

Next we give a lower bound on d. Before Step 2 the graph contained

at most kin
00=(2 + �0=2) edges, afterwards at least (ki + 1)n00=2. Thus,

d � (ki+1)n00=2� kin
00=(2+ �0=2) =
(kin

00�). Hence, the time spent for

the d insertions and following call to Contract is O(d=�2). Since the sum

of the number of insertions over all executions of Step 2 in Phase i is ui,

the total time for Phase i is O(kin + ui�1 + ui=�
2).

Theorem6. Given a multigraph with n nodes and m0 edges the total time for

inserting m1 edges and maintaining a (2+�)-approximation of the minimum cut

is

((m0 + �n)=�+m1=�
2);

where � is the size of the minimum cut in the �nal graph and 0 < � � 4.

Proof: The running time for all operations is the time for Step 1 plus the

time spent in all phases. Step 1 takes time O(m0=�). The time spent in

all phases is O(
P

i kin+ui=�
2+ui�1): Since

P
i�q ki = O(�=�) and since

all ui sum to m1, the total time is O(m0=�+
P

i(kin=�+ui=�
2+ui�1)) =

O((m0 + �n)=�+m1�
2).

4.2 An Incremental Exact Algorithm

In this section we present a deterministic incremental algorithm that maintains

�. The algorithm in this section applies to any multigraphG = (V;E). The basic

idea for testing e�ciently if the current solution is still correct is to compute

8

and store all minimum edge cuts when � assumes a new value. If an insertion

increments the size of one of these cuts, it is no longer minimum. Thus, the

current solution is correct as long as there still exists a minimum cut whose size

has not been increased.

To store all minimum edge cuts we use the cactus tree representation [2]. A

cactus tree of a multigraph G = (V;E) is a graph Gc = (Vc; Ec) with a weight

function w de�ned as follows: There is a mapping � : V ! Vc such that

(1) every node in V maps to exactly one node in Vc and thus every node in

Vc corresponds to a (possibly empty) subset of V ,

(2) �(u) = �(v) i� u and v are at least �(G) + 1- edge connected,

(3) each minimum cut in Gc corresponds to a minimum cut in G, each min-

imum cut in G corresponds to at least one minimum cut in Gc.

(4) If � is odd, every edge of Ec has weight � and Gc is a tree. If � is even,

two simple cycles of Gc have at most one common node, every edge that does

not belong to a cycle has weight �, and every edge that belongs to a cycle has

weight �=2.

As observed by Dinitz and Westbrook [4], given a cactus-tree the data struc-

ture of [12, 17] can maintain the cactus tree for a �xed value of � such that the

total time for u insertions is O(u + n). Determining if there exists a minimum

cut whose size has not been increased takes constant time.

To quickly compute the cactus tree representation of a multigraph we use

an algorithm by Gabow [10]. The algorithm computes �rst a subgraph of G,

called a complete �-intersection or I(�), with at most �n edges, and uses the

complete �-intersection to compute the cactus tree. The algorithm needs time

O(m0+�2n log(n2=(m0+1))) to compute I(�) and the cactus tree in the initial

graph. Additionally given I(�) and a sequence of insertions that increase the

minimum cut size by 1, the new I(�) and the new cactus tree can be computed

in time O(m0 log(n2=m0)), where m0 is the current number of edges.

This leads to the following algorithm.

An Incremental Minimum Edge Cut Algorithm

1. Compute the size � of the minimum cut, a DA-msfd F1; : : : ; Fm of order m,

I(�), and a cactus-tree of [i��Fi.
2. N = ;.
while there is � 1 minimum cut of size � do

if the next operation is a query then return �

else update the cactus tree according to the insertion of the new edge

and add the edge to N .

endwhile

3. � = � + 1.

Compute a DA-msfd F1; : : : ; Fm of order m of [i��+1Fi [N and call the

forests F1; : : : ; Fm.

Let G0 = (V;E0) be a graph with E0 = I(� � 1) [[i��+1Fi.
Compute I(�) and a cactus tree of G0.

Goto 2.

9

Correctness

Lemma7. Let G = (V;E) be a multigraph with minimum cut � and N � E,

let F1; : : : ; Fm be a DA-msfd of G, and let G0 = (V;E0) be a graph with E0 =

N [[i��+1Fi. Then, a cut is a minimum cut in G0 i� it is a minimum cut in

G.

Proof: Follows from Lemma 2.

Running Time Analysis

Theorem8. Let G be a multigraph with n nodes, m0 edges, and minimum cut

size �0. The total time for inserting m1 edges and maintaining a minimum edge

cut of G is

O(m0 +m1 + �2n log(n=(�0 + 1)));

where �0, resp. � is the size of the minimum cut in the initial, resp. �nal graph.

The size of the minimum cut can be output in constant time, a query if two given

nodes are separated by a minimum cut can be answered in amortized constant

time.

Proof: Computing I(�0) and the cactus tree in Step 1 takes O(m0 +

�20n log(n=(�0 + 1))).

Let �0; : : : ; �f be the values that � assumes in Step 2 during the

execution of the algorithm in increasing order. We de�ne Phase i to be

all step executed while � = �i. Let ui be the number of insertions in

Phase i.

In Phase i, we compute a new msfd and build a new cactus tree in

Step 3, and maintain the cactus tree in Step 2. The total time for Step

2 is O((n + ui)). The total time for DA in Step 3 is O(ui�1 + �in). The

graph G0 has O(�in) edges. Thus, it takes time O(�in log(n=(�0+1))) to

compute I(�i) and the new cactus tree.

The total time spent in Phase i is O((n + ui) + �in log(n=�i + 1))).

Thus, the total work in all phases is O(m0 +m1 + �2n log(n=(�0 + 1))).

A Fully Dynamic Algorithm

Updating I(�) after an edge deletion requires the recomputation of one sub-

graph (to be precise, one spanning tree) of the complete � intersection and takes

time O(m log(n=�)) [9]. To obtain an insertions and deletions algorithm, we ex-

ecute Step 3 (except for incrementing �) after each deletion.

Theorem9. Let G be a multigraph with n nodes that is initially without edges.

The exact size � of a minimum edge cut can be maintained in amortized time

O(�n log(n=(�+ 1))) per deletion, where � is the size of the minimum cut after

the deletion, and O(�max logn) per insertion, where �max is the maximum value

that � assumes during the sequence of operations.

10

Proof: Consider a sequence of u edge insertions and d edge deletions.

We de�ne Phase 0 to consist of Step 1 and the �rst execution of Step

2. We de�ne Phase i for i > 0 to consist of the ith execution of Step

3 and the following execution of Step 2 (if it exists). A phase can end

because of two reasons: (a) The last insertion increases the minimum cut

by 1. (b) The last operation was a deletion. Let ui be the number of

insertions during phase i, and let � be the current size of the minimum

cut. As was shown in the proof of Theorem 8, the time spent in a phase

is O(ui + ui�1 + �n log(n=(� + 1)))).

Each insertion is charged O(1) to pay for its cost in the current and

in the next phase. Thus, the amortized cost per phase is O(�n log(n=(�+

1))).

Each deletion decreases � by at most 1. Consider an arbitrary deletion.

Let �0 be the size of the minimum cut after the deletion. We charge two

phases to the deletion: (1) the current phase, (2) the phase closest to the

current phase, where the minimum cut size was �0. The amortized cost

of the two phases and, thus, of the deletion, is O(�0n log(n=(�0))).

Now consider all remaining phases, i.e. all phases whose costs have

not been charged to deletions. Let us call them P1; : : :Pg. Consider the

phase Pi. Assume the minimum cut size of Pi is �
0. The minimum cut

in Pj with j > i is larger than �0, since otherwise there would have

been a deletion decreasing the minimum cut size to �0 and paying for Pi.

Thus, the amortized cost of all phases Pi is O(
P

1��0��max
�0n log(n=(�0+

1))) = O(�2maxn log(n=(�max + 1))). We amortize these costs over all

insertions as in the insertions-only case. Thus, the amortized cost of

an insertion is O(�2maxn log(n=(�max + 1))=m1). If the initial graph is

empty, then �maxn = O(m1), which gives an amortized insertion time of

O(�max log(n=(�max + 1))).

4.3 A Randomized (1 + �)-Approximation for the Minimum Cut

In this section we present an incremental Monte Carlo algorithm that maintains

a (1 + �)-approximation of the minimum cut.

Karger [15] pointed out that dynamically approximating connectivity can be

reduced to dynamically maintaining exact connectivity in O(logn)-connected

graph using randomized sparsi�cation. We use this idea to maintain a (1 + �)-

approximation of the minimum cut as follows: Let G(p) be a subgraph of G that

is constructed by sampling each edge of G with probability p and adding it to

G(p) if sampling was successful. We build G(p) incrementally by sampling each

edge with probability p when it is inserted. The following lemma shows that

the resulting incremental algorithm maintains a (1 + �)-approximation of the

minimum cut with high probability.

Lemma10. [15] Let G be any graph with minimum cut � and let p = 2(d +

2)(lnn)=(�2�) for any � � 1.

11

1. With probability 1�O(1=nd) the size of the minimum cut in G(p) is �((logn)=�2).

2. With probability 1�O(1=nd), (1� �)�(G(p))=p � � � (1 + �)�(G(p))=p.

Set �0 = �=4 and set p = 2(d + 2)(lnn)=(�02�). Lemma 10 shows that (1 �
�0)�(G(p))=p is a (1 + �0)=(1� �0) � 1 + 4�0 = 1 + � approximation for � � 2.

If p is chosen to have 3 times the value in Lemma 10, then the probabilities

in the lemma are increased and G(p) correctly approximates �(G) until �(G)

has increased by a factor of 3. Then the incremental exact algorithm has to

be restarted. We test incrementally if �(G) has increased by a factor of 3 by

maintaining a 3-approximation of �(G). This leads to the following algorithm:

An Incremental (1 + �)-Approximation Algorithm

1. Compute a 3-approximation k of the size of the minimum cut in G.

while k � 8(d+ 4) lnn do

Maintain the exact minimum cut of G incrementally.

Initialize the incremental 3-approximation algorithm.

�0 = �=4, p = 8(d+ 4)(lnn)=(k�02).

Construct G(p) by sampling every edge with probability p. Start an

incremental exact data structure for G(p).

2. N = ;.
while �(G(p)) is not increased do

if the next operation is a query then

return �(G(p))=p

else add the new edge e to N and sample it. If sampling is successful,

insert e into the incremental exact data structure of G(p).

endwhile

3. Add all edges of N to the incremental 3-approximation algorithm to

determine a new 3-approximation k0.

if k0 > 3k then k = k0, p = 8(d+ 4)(lnn)=(k�02).

Construct G(p) by sampling every edge with probability p.

Start an incremental exact data structure for G(p).

Goto 2.

The probability that the algorithm does not maintain a (1 + �)-approximation

is bounded by the sum of the probabilities that at any step the algorithm does

not compute a (1+�)-approximation, which is O(1=nd+2). Since there are O(n2)

insertions, the probability of failure is O(1=nd). The same holds for the size of

the minimum cut in G(p).

Theorem11. Let G be a graph with n nodes and m0 initial edges. For any � � 1

and any 1 � d � log�=�2, the given algorithm maintains a (1+�)-approximation

of the minimum edge cut of G with probability 1 � O(1=nd). The expected time

for inserting m1 edges is

O((m0 +m1) log
2 n(log�)=�2)

where � is the size of the minimum cut in the �nal graph. Each query can be

answered in time O(logn).

12

Proof: Since k � � it follows that p = 8(d + 4) lnn=(�2k) � 8(d +

4) lnn=(�2�). Since increasing p increases the probability that Lemma 10

holds, it follows that with probability 1 �O(1=nd) the incremental algo-

rithm returns a (1 + �)-approximation of the minimum cut in G.

Next we analyze the running time. The algorithm executes a 3-approximation

algorithm on G whose total time is O(m0 +m1). To analyze the remain-

ing steps note that the total time for the incremental exact algorithm is

O(m0+m1�(n; n)+�
2n log(n=(�0+1))) = O(�(m0+m1) log(n=(�0+1)).

We �rst analyze Step 1. As long as � = O(d logn) the cost of the

incremental exact algorithm is O((m0 +m1)d log
2 n). Since the expected

size of the minimum cut in G(p) is O(logn=�2), the expected time for

initializing the 3-approximation and the incremental exact algorithm for

G(p) is O((m0 +m1) log
2 n(d+ 1=�2)). Thus, the total expected time for

Step 1 is O((m0 +m1) log
2 n(d+ 1=�2)).

Next we analyze Step 2 and Step 3. Let k1; : : :kf be the values that k

assumes during the execution of the algorithm. Phase i of the algorithm

consists of all steps executed while k = ki (except for the 3-approximation

algorithm). In each phase the algorithm executes an incremental ex-

act minimum cut algorithm on G(p). The total expected time for the

incremental exact algorithm is O(�(G(p))(m0 + m1) log(n=(�0 + 1)) =

O((m0 +m1) log
2 n=�2), since �(G(p)) = O(logn=�2) with high probabil-

ity.

Let � be the size of the minimum cut in the �nal graph. Note that

there are O(log�) phases, since k increases by a factor of 3 in every phase

and kf � 3�. Thus, the total expected time for all phases is O((m0 +

m1) log
2 n(log�)=�2). Adding the cost for Step 1 and the 3-approximation,

the total time is O((m0 +m1) log
2 n(log�)=�2)

5 A 2-Approximation of the Minimum Vertex Cut

Algorithm

5.1 A Static Algorithm

We give an algorithm that in time O(n2min(
p
n; �)) approximates the vertex

connectivity � of a graph (not a multigraph) as follows: If � � b�=2b, then
the algorithm outputs �, otherwise, it outputs b�=2b. Our algorithm uses ideas

from [18].

Even and Tarjan [8] give an algorithm to compute the minimum vertex cut

�(a; b) between the nodes a and b in time c(min(m
p
n;m�)) for some constant

c, which we call the pair algorithm (PA(a,b)). The exact minimum vertex cut

algorithm [11] makes O(�2+n) calls to PA. Let �2 be b�=2c. The basic approach
of our algorithm is to reduce the number of calls to PA to dn=�2e using the

following two observations:

1. The last �2 nodes in the mcs-order computed by DA are pairwise �2-connected.

13

2. Let L = fv1; : : : ; v�2g be a set of �2 pairwise �2-connected nodes and let a be

a node not in L. Let G0 be the graph constructed from G by adding a node

b and connecting it to every node in L. Then a is �2-connected in G to each

vj i� a is �2-connected in G0 to b.

We use these two observations as follows. We add a node a to G, repeatedly

select a set L of �2 pairwise �2-connected nodes (using DA), and test if all of

them are �2-connected to a (using one call to PA). We guarantee that (1) all

but the last call to DA selects �2 not-yet selected nodes, and (2) the last call

to DA returns a set of �2 nodes containing all not-yet selected nodes. Thus, the

algorithms calls PA only dn=�2e times.

To guarantee (1) and (2) we actually ful�ll the stronger condition that all

already-selected nodes are before all unselected nodes in mcs-order in all calls to

DA. To achieve this we execute the ith call of DA on a suitably de�ned graph

Gi, for i = 1; 2; : : : ; dn=�2e. Let Li be the �2 nodes selected by the ith call to

DA (i.e., the last �2 nodes visited by the ith call to DA) and let Si be the set of

selected nodes after the ith call to DA. The graph Gi is constructed from G by

adding two nodes a and b and adding edges so that

1. all nodes of Si�1 are connected by an edge to a, and

2. all nodes of Si�1 and edges between them form a complete graph.

We show below that in the mcs-order created by PA on Gi started on a, all

nodes in Si�1 appear before all other nodes.

Here are the details of the algorithms.

A 2-Approximation Algorithm for the Minimum Vertex Cut

Compute a DA-msfd F1; : : :Fm of G and set G0 = [i��Fi.
Determine L0 using DA on G0, set S0 = L0.

k = b�=2c.
for i = 1 to dn=b�=2ce

Create graph G00
i = (V [fa; big; E00

i), where E
00
i = fFj; 1 � j � �g[

[f(x; a); x 2 Si�1g[f(y; bi); y 2 Lig.
if i < dn=b�=2ce then

determine Li simulating DA on Gi. Let Si =
S
j�iLj :

endfor

steps = 0;

while steps < c(� + 1)nmin(k;
p
n) do

for i = 1 to dn=b�=2ce in lockstep

Execute one step of PA(a; bi) on G00
i .

if PA(a; bi) terminates and �(a; bi) < k then k = �(a; bi).

steps = steps + 1.

endfor

endwhile

Correctness

14

We �rst show that the �2 nodes selected by the execution of DA on Gi ful�ll

(1) and (2) for i = 0; 1; : : :dn=�2e � 1.

Lemma12. If DA is executed on Gi and its startnode is a, then in the mcs-

order created by DA, all nodes of Si�1 lie before all nodes not belonging to Si�1.

Proof: The mcs-order produced by DA is the order in which DA visits

the nodes. Thus, if DA is started on a, the �rst node in mcs-order is a. To

repeatedly determine the next node, DA ful�lls the following invariant:

The next visited node is an unvisited node with maximum num-value,

where num(x) is the number of visited neighbors of x.

We show the lemma by induction on j, the number of already visited

nodes. Since a is only connected to nodes of Si�1, the second visited node

is a node of Si�1 and, thus, the claim holds for j = 2. Assume next DA

has to determine the j-th node to visit with 2 < j � jSi�1j + 1. By

induction, all visited nodes belong to Si�1[fag. Thus, for each unvisited

node x of Si�1, num(x) = j � 1, and for each unvisited node y 62 Si�1,

num(y) < j � 1, since these nodes are not incident to a. It follows that

DA chooses a node of Si�1, and, thus, all nodes in Si�1 are visited before

all nodes not in Si�1.

Next we proof that observation 1 holds.

Lemma13. The last b�=2c nodes in mcs-order are connected in Fb�=2c.

Proof: See Appendix A.

Lemma14. All nodes that are connected in Fi are i-connected.

Proof: See Appendix A.

For e�ciency, we do not actually execute DA on the graph (V [fag; E [
f(a; x); x 2 Si�1g, but instead \simulate" this execution: For i > 0, instead

of executing DA on Gi, we call DA on G00
i starting at a, force DA to �rst visit all

nodes in Si n fag, and afterwards allow DA to select nodes as usual. This takes

time O(�n) and it can be easily shown that it generates the same msfd-order as

DA on Gi.

So far, we have shown an e�cient way of repeatedly �nding nodes that are

�2-connected, but we only can guarantee that the nodes in Li are �2-connected

in Gi, not in G. Thus, instead of running PA on G, we are forced to execute

PA on Gi, i.e., we compute �(a; b) in Gi instead of G. However, the next lemma

shows that this is not a problem: the minimum over all the �(Gi; a; v)-values

equals �(G) if �(G) � �2, and it equals �2 otherwise.

We use � (G; a) to denote the set of neighbors of a in G.

Lemma15. If �(G) � �2, then

min
i>0

min
v2Li

�(Gi; a; v) = �(G):

15

If �(G) > �2, then
min
i>0

min
v2Li

�(Gi; a; v) = �2:

Proof: By property (1) of a DA-msfd, �(G) = �(G0). To prove the lemma

we use the following claim whose proof is given in the Appendix B.

Claim 16 For any integers i > 1 and p, let Li = fv1; : : : ; vpg be a set of

pairwise p-connected nodes in Gi�1.

1. Let G1 be the graph created from G0 by creating a new node a and

connecting the nodes of L0 [fag by a complete graph.

(a) If �(G0) � p, then minu62� (G1;a) �(G1; a; u) = �(G0).

(b) If �(G0) > p, then �(G1; a; u) = p for every node u 62 � (G1; a).

2. For any i > 1, let Gi be the graph constructed from Gi�1 by con-

necting all nodes in Si�1 [fag by a complete graph, and let �min =

minv2Li �(Gi�1; a; v). If Li contains a node v such that v 62 � (Gi�1; a),

then

min
u62� (Gi�1;a)

�(Gi�1; a; u)) = min(�min; min
u62� (Gi;a)

�(Gi; a; u)):

By induction on part 2 of the claim it follows that

min
u62� (G1;a)

�(G1; a; u)) = min(min
v2L1

�(G1; a; v); min
u62� (G2;a)

�(G2; a; u))

= min
i>0

min
v2Li

�(Gi; a; v):

From part 1 of the claim it follows that

min
u62� (G1;a)

�(G1; a; u) = �2 if �(G) > �2;

and
min

u62� (G1;a)
= �(G0); otherwise.

Of course, we want to compute �(Gi; a; v) using observation 2. Let G0
i be

created from Gi by adding a new node b and adding edges from each node in

Li to b. We show next a generalization of observation 2, using repeatedly the

following fact.

Fact 17 Let X, C, and Y be a partition of V such that E \ X � Y = ;. Let
a 2 X, u 2 Y such that jCj = �(a; u) and let L = X [C. Then adding edges

between nodes in L does not modify �(a; u).

Note that the fact also holds if L is a subset of X [C.

Lemma18. For any integer p, let L = fv1; : : : ; vpg be a set of nodes that are

pairwise p-connected in G and let a be a node of G. Let G0 be the graph cre-

ated from G by adding a vertex b and edges (b; vj) for every j. Let �min be

minv2L �(G; a; v).

16

(A) If �min � p then �(G0; a; b) = �min.

(B) If �min > p, then �(G0; a; b) = p.

Proof: We show the following two claims:

(1) �(G0; a; b) � �min

(2) �(G0; a; b) � min(p; �min).

(A) If �min � p, it follows from (1) and (2) that �(G0; a; b) = �min.

(B) If �min > p, it follows from (2) that �(G0; a; b) � p. Since the degree

of b is p, �(G0; a; b) = p.

(1) Let c := �(G0; a; b). Assume there exists an v 2 L such that

�(G; a; v) < c. Then there exists a partition X, C, and Y of V in G

such that there is no edge between a node of X and a node of Y , jCj < c,

and a 2 X and v 2 Y . Since the degree of b is p, p � c. Since all nodes

in L are p-connected, they are all contained in C [Y . Now consider this

partition in G0. Since b is only incident to nodes in L, adding b to Y shows

that C is also a vertex cut in G0 separating a and b. Thus, �(G0; a; b) < c,

which leads to a contradiction.

(2) Let c := min(p; �min). Assume that �(G0; a; b) < c. Then there

exists a partition X, C, and Y of V in G0 such that there is no edge

between a node of X and a node of Y , jCj < c, and a 2 X and b 2 Y .

Since all nodes in L are p-connected, they are all contained in C [Y and

since jCj < c � jLj, there exists a node vj 2 Y . Thus, c > �(G0; a; vj) �
�(G; a; vj), which leads to a contradiction.

The graphs G0
i might have many edges that do not belong to G. Since the

running time of PA depends on the edges of the graph on which it is executed,

we execute PA instead on a family of graphs G00
i such that

{ G00
i has O(m) edges, and

{ �(G0
i; a; b) = �(G00

i ; a; b).

Let G00
i be the graph created from G0

i by removing all edges between nodes of

Si�1 that do not belong to G0.

Lemma19. For all i, �(G0
i; a; b) = �(G00

i ; a; b).

Proof: Consider the partition X, C, and Y of V [fa; bg in G00
i such that

a 2 X, b 2 Y , and jCj = �(G00
i ; a; b). Since all nodes incident to a lie in

X [C and all edges in G0
i nG00

i are incident to two of them, it follows by

Fact 17 that �(G0
i; a; b) = �(G00

i ; a; b).

Thus, executing PA on G00
i computes �(G0

i; a; b) and takes timeO(mmin(
p
n; �)).

Lemma20. At termination of the algorithm if �(G) � �2 then k = �(G), if

�(G) > �2, then k = �2.

17

Proof: For �(G0) � �2, combining Lemmata 15, 18, and 19 gives

�(G) = min
i>0

min
v2Li

�(Gi; a; v) = min
i>0

�(G0
i; a; b) = min

i>0
�(G00

i ; a; b):

Using Lemmata 18 and 19 for �(G0) > �2, shows that for all i,

�2 = �(G0
i; a; b) = �(G00

i ; a; b):

Thus, mini>0 �(G
00
i ; a; b) = �2.

We are left with showing that at termination k = mini>0 �(G
00
i ; a; b).

Obviously, k � mini>0 �(G
00
i ; a; b). Assume by contradiction that k >

mini>0 �(G
00
i ; a; b) and let j be an index such that mini>0 �(G

00
i ; a; b) =

�(G00
j ; a; b). Each PA algorithm is executed for at least c(�+2)nmin(k;

p
n)

steps. Thus, PA on G00
j , which takes only c(� + 2)nmin(�(G00

j ; a; b);
p
n)

steps must have terminated when the while-loop terminates. Hence, k �
�(G00

j ; a; b) = mini>0 �(G
00
i ; a; b), a contradiction.

Running Time Analysis

Theorem21. A 2-approximation of the minimum vertex cut can be computed

in time O(n2min(�;
p
n)), where � is the size of the minimum vertex cut.

Proof: The time spent before the while-loop is O(m+(n=�)�n) = O(n2).

The while loop takes at most (� + 2)nmin(�;
p
n) steps, each takes n=�2

time. time O((n=�)(� + 2)nmin(�;
p
n)) = O(n2min(�;

p
n)).

5.2 An incremental (2 + �)-approximation of the minimum vertex

cut

Using the generic incremental algorithm, we construct an incremental (2 + �)-

approximation algorithm. We compute a 2-approximation k of � in the initial

graph. Let b1; : : : bdn=�2e be all the nodes b created by the static 2-approximation

algorithm. Note that PA computes a maximum (a; bj) ow in a directed graph.

To test if the current solution is still correct, we maintain (1) the minimum

degree � in G, (2) �(a; bj), (3) the residual graphs of all maximum (a; bj)-ows,

and (4) a breadth-�rst search tree in each residual graph rooted at a. For each

bj we incremently maintain the maximum ow from a to bj by augmenting the

breadth-�rst search tree. Thus, for any j the total time spent for incrementing

the maximum ow from a to bj by 1 is O(m+ n) (see also [13]).

The algorithm recomputes every new solution from scratch. We denote by �

the minimumdegree in the current graph, and by �0 the minimumdegree in the

graph during the last recomputation. To test e�ciently the correctness of the

current solution, we check if k < �0=2 or � � �2(1 + �), where k = minj �(a; bj).

If k < �0=2, then by Lemma 20, k = �. Since the degree of every node bj is

�xed to be �0=2, k is always � �0=2 and � �. However, if � � d(1 + �=2), then

k � � � � � �0(1 + �=2) = (2 + �)k. Thus, in either case, k is a (2 + �)-

approximation of �. If these conditions are no longer ful�lled, we recompute. As

we show below, this happens O((log�)=�) times.

18

An Incremental (2 + �)-Approximation Algorithm

1. Set �0 and � to the minimum degree in G.

Compute a DA-msfd F1; : : :Fm of G and replace G by [i��Fi.
Compute a 2-approximation k of G using the static algorithm, storing all

the maximum ows from a to bj and their residual graphs.

For each such residual graph keep a breadth-�rst search tree rooted at a.

2. while � � �0(1 + �=2) or k < �0=2 do

if the next operation is a query then return k

else for each j with �(a; bj) = k do

try to augment every maximum ow �(a; bj) by adding

the new edge to its residual graph.

Maintain k as the minimum of all �(a; bj).

endwhile

Goto 1.

Theorem22. Let G be a graph with n nodes and m0 initial edges. The total time

for maintaining a (2+ �)-approximation of the minimum vertex cut � during m1

insertions is

O(m0 +m1n+ �n2=�):

Each query can be answered in constant time.

Proof: Let �0i be the value that �0 assumes before the i + 1st execution

of Step 1. We de�ne Phase i to consist of all the steps executed while

�0 = �0i and let ui be the number of insertions during Phase i. We show

�rst that the total time spent in Phase i for maintaining �(a; bj) for any j

is O(�0i(�
0
in+ui)). It takes time O(�0in+ ui) to increment �(a; bj) by one.

Since �(a; bj) � �0i=2, we spend O(�0i(�
0
in + ui)) time for every 1 � j �

dn=�0ie. Thus, the total time spent for all j in Phase i is O(n(�0in+ uin)).

We denote the number of phases by f . We �rst bound the cost of Phases

1 to f � 1. Since �0 increases by a factor of at least (1 + �=2) per phase,P
i<f �

0
i = O(�0f�1=�). Since k = �0f�1=2 and k � �, it follows that

�0f�1=2 � �, i.e. �0f�1 = O(�). Thus, the total cost of Phases 1 to f � 1 is

O(�n2=�+m1n).

Since at the end of Phase f , �(a; bj) = �, it follows that, for each

j, �(a; bj) is incremented at most � times. Thus, the work for each j is

O(�(�0fn+ uf)). The total work for all j is, thus, O(�n2 +m1n).

This implies that the total time for the algorithm is O(m0 + m1n +

�n2=�).

Note: The same technique can be used to maintain the (exact) minimum edge

cut �(s; t) or the minimum vertex cut �(s; t) between two given nodes s and t

of G in amortized time O(�(s; t)), resp. O(�(s; t)) per insertion if the algorithm

starts with an empty graph.

19

6 Appendix A

Let G be a graph without multiple edges. We want to prove Lemma 13 and 14.

We �rst present DA and show two properties of DA. Using a further lemma

of [20], we then prove Lemma 13. The proof of Lemma 14 follows.

Lemma 14 and Lemma 23 has been shown independently in [7].

In DA, whenever a node is added to a forest Fi, the edge is also given an

direction.

The Decomposition Algorithm [20]

1. E1 = E2 = : : : = Em = ;, every node and every edge in G is unscanned.

2. for all v 2 V do r(v) = 0.

3. while there exists an unscanned node do

4. Let x be an unscanned node with maximum r(x).

5. for each unscanned edge fx; yg incident to x do

6. Er(y)+1 = Er(y)+1 [fx! yg.
7. if r(x) = r(y) then r(x) = r(x) + 1.

8. r(y) = r(y) + 1.

We say that a node that is chosen in Line 4 is selected. We need to show the

following property:

Lemma23. Let u be a vertex of V , let T be a rooted tree of Fi (for any i) that

contains u, and let x be the root of T . Then all nodes selected after x and before

u lie in T .

Proof: Let x1; : : : ; xj; : : : ; xl = u be the nodes that have been selected

after x in this order. When x is selected, it has maximum r-value, and

r(x) < i. Thus, r(z) < i for all nodes z when x is selected.

We show the claimby induction on j. We assume inductively that fx1; : : :xj�1g
belongs to T and want to show that xj belongs to T . Consider the time

when xj is selected for 1 � j � l. Let v the node closest to u on the path

P from x to u in T that belongs already to T when xj is selected. Since

x 2 P belongs to T before xj is selected, v is well-de�ned. Obviously v

has not yet been selected, since otherwise it would not be the node closest

to u on P that belongs already to T . Also r(v) � i, since v belong to T .

Thus, r(xj) � r(v) � i at the time when xj is selected.

Since r(xj) < i when x was selected, r(xj) must have been incre-

mented to i after x was selected and before xj was selected. This can

happen only if an edge (z; xj) was put into Ei. This implies that z was

selected after x and before xj, i.e. z 2 fx1; : : :xj�1g. By induction z be-

longs to T , and, thus, xj belongs to T .

Lemma24. Each node is a root in at most one of the forests F1; : : : ; Fm.

Proof: Consider the node x. Let r(x) have value i, when x is selected.

Then r(z) � i for all nodes z. The node x becomes a root of a tree

20

whenever r(x) is increased. This happens whenever there exists an un-

scanned edge fx; zg and r(x) = r(z). After scanning the �rst such edge,

r(x) is incremented to i+1, but for each unscanned edge fx; yg, r(y) � i.

Thus, r(x) cannot be incremented again, i.e. x cannot become the root

of another tree.

In [20] the following properties of DA are proven:

Lemma25. 1. For a graph G = (V;E), let F1; : : : ; Fm be a DA-msfd of G and

let G0 = (V;E0) with E0 = [i��Fi. Then the last node x in mcs-order has

exactly one incoming edge from each forest F1; : : : ; F�.

2. If two nodes are connected in Fi, they are connected in Fj with j < i.

Lemma 13.When DA is started on a graph G, the last b�=2b nodes in mcs-order

are connected in Fb�=2b.

Proof: The last node x in mcs-order belongs by Lemma 25 to a tree of

every forest Fi with 1 � i � � and is not a root in any of these trees.

Let ri be the root in the forest Fi. By Lemma 24 all these roots are

di�erent nodes. Let ri be the root out of frb�=2b; : : : r�g that is selected

�rst. By Lemma 23 all (at least b�=2b) nodes scanned after ri belong to

the same tree of Fi. Since i � b�=2b, they belong to the same tree of Fb�=2b
by Lemma 25. Thus, the last b�=2b nodes in mcs-order are connected in

Fb�=2b.

Lemma 14. All nodes that are connected in Fi are i-connected.

Proof: Let u and v be two nodes that are connected in Fi. Let S =

fs1; s2; : : : ; sjg be a minimum vertex cut separating u and v in G, let X

be the node set of the connected component of u in G n S, and let Y be

V n (S [X).

Assume by contradiction that j < i and let sj be the last node of S

that is scanned by DA. We show below that at termination there is no

path between u and v in Fl with l > j. Since i > j, this contradicts the

fact that u and v are connected in Fi.

We are left with showing that at termination there is no path between

u and v in Fl with l > j. It su�ces to show that at termination no vertex

in S has both an incoming edge from X in Fl and an outgoing edge to Y

in Fl.

All edges leaving nodes of S belong to a forest immediatelly after sj
was scanned. Thus, if a node of S has no outgoing edge into Y in Fl
immediatelly after sj was scanned, this will also hold at termination. If a

node s of S has an outgoing edge into Y in Fl immediatelly after sj was

scanned, then

1. by Lemma 3.2 of [20], s does not have an incoming edge from X in

Fl immediatelly after sj was scanned, and

21

2. by Lemma 2.2 of [20], then r(s) was at least l when s was scanned,

and thus is at least l immediatelly after sj was scanned.

It follows that any edge from a node ofX to s that is added to a forest after

sj was scanned is added to a forest Fk with k > l. Thus, at termination

s does not have an incoming edge from X in Fl.

7 Appendix B

Claim 16. For any integers i > 1 and p, let Li = fv1; : : : ; vpg be a set of pairwise

p-connected nodes in Gi�1.

1. Let G1 be the graph created from G0 by creating a new node a and connecting

the nodes of L0 [fag by a complete graph.

(a) If �(G0) � p, then minu62� (G1;a) �(G1; a; u) = �(G0).

(b) If �(G0) > p, then �(G1; a; u) = p for every node u 62 � (G1; a).

2. For any i > 1, let Gi be the graph constructed from Gi�1 by connecting all

nodes in Si�1[fag by a complete graph, and let �min = minv2Li �(Gi�1; a; v).

If Li contains a node v such that v 62 � (Gi�1; a), then

min
u62� (Gi�1;a)

�(Gi�1; a; u)) = min(�min; min
u62� (Gi;a)

�(Gi; a; u)):

Proof: We �rst show Part 1 in three steps:

(1) If �(G0) � p, then minu62� (G1;a) �(G1; a; u) � �(G0).

(2) If �(G0) � p, then minu62� (G1;a) �(G1; a; u) � �(G0).

(3) If �(G0) > p, then �(G1; a; u) = p for every node u 62 � (G1; a).

Then we show Part 2 in three steps:

(4) For any i > 1, minu62� (Gi�1;a) �(Gi�1; a; u) �min(�min;minu62� (Gi;a) �(Gi; a; u)).

(5) For any i > 1, minu62� (Gi�1;a) �(Gi�1; a; u) �minu62� (Gi;a) �(Gi; a; u).

(6) For any i > 1, minu62� (Gi�1;a) �(Gi�1; a; u) � �min.

Since x � min(�min; y), x � y, and x � �min impliesx = min(�min; y),

the claim follows.

(1) Assume there exists a u 62 � (G1; a) such that �(G1; a; u) < �(G0) �
p. Since there are less than p nodes in the cut C separating a and u in

G1, there exists a vj 2 L0 such that vj and u are separated by C. Since

�(G0; vj; u) � �(G1; vj; u), it follows that �(G0; vj; u) < �(G0) which is a

contradiction.

(2) Assume �(G0) < minu62� (G1;a) �(G1; a; u) =: c. Then there exists a

partition X, C, and Y in G0 such that there is no edge between a node of

X and a node of Y and jCj < c. Since the degree of a is p, p � c. Since the

nodes in L0 are p-connected, the nodes of L0 are either contained in X[C
or in Y [C. Consider this partition in G1. Note that no edges between

X and Y have been added to created G1. Since a is only connected to

nodes in L0, a is either contained in X or in Y and, thus, there exists a

node u 62 � (G1; a) such that �(G1; a; u) � jCj < c, a contradiction.

22

(3) Note that �(G1; a; u) � p, since the degree of a is p. Assume there

exists a u 62 � (G1; a) such that �(G1; a; u) < p. The same argument as

in (1) shows that there exists a vj such that �(G0; vj; u) < p < �(G0),

which is a contradiction. Thus, �(G1; a; u) = p.

(4) Assume there exists a u 62 � (Gi�1; a) such that �(Gi�1; a; u) <

min(�min; minu62� (Gi;a) �(Gi; a; u)) =: c. Then there exists a partitionX,

C, and Y in Gi�1 such that a 2 X, u 2 Y , there is no edge between a

node of X and a node of Y , and jCj = �(Gi�1; a; u) < c � �min. The

latter shows that u 62 Li, which in turn implies that u 62 � (Gi; a). Since

all nodes of Li are �min-connected to a in Gi�1, they lie in X [C. Thus,
no edge connecting X and Y is added to Gi�1 to generate Gi. Hence, by

Fact 17, �(Gi; a; u) = �(Gi�1; a; u) < c which is a contradiction.

(5) Since adding edges only increases � it follows that �(Gi; a; u) �
�(Gi�1; a; u). Additionally � (Gi�1; a) � � (Gi; a). Thus, minu62� (Gi�1 ;a) �(Gi�1; a; u) �
minu62� (Gi;a) �(Gi; a; u).

(6) For every node x 2 � (Gi�1; a) and every node y 62 � (Gi�1; a),

�(Gi�1; a; x) = deg(a) � �(Gi�1; a; y). Thus, minu62� (Gi�1;a) �(Gi�1; a; u) �
minu2Li\� (Gi�1 ;a) �(Gi�1; a; u). Since Li \ (V n � (Gi�1; a; u)) � V n
� (Gi�1; a; u), minu62� (Gi�1;a) �(Gi�1; a; u) � minu2Li;u 62� (Gi�1;a) �(Gi�1; a; u).

Thus, the lemma follows.

Acknowledgements

We want to thank David Karger for useful discussions. We are also thankful to

Srinivasa Arikati, Ye�m Dinitz, Gene Itkis, and Robert Kleinberg for helpful

comments on the paper.

References

1. J. Cheriyan, M. Y. Kao, and R. Thurimella, "Scan-�rst search and sparse

certi�cates|an improved parallel algorithm for k-vertex connectivity", SIAM Jour-

nal on Computing, 22, 1993, 157{174.

2. E. A. Dinic, A. V. Karzanov, and M.V. Lomonosov, "A structure of the system of

all minimal cuts of a graph", in: Studies in Discrete Optimization, A. A. Fridman
ed., \Nauka", Moscow, 1976, 290{306 (in Russian).

3. Ye. Dinitz, Z. Nutov, \A 2-level cactus model for the system of minimum and min-

imum+1 edge-cuts in a graph and its incremental maintenance", to appear in Proc.

27nd Symp. on Theory of Computing, 1995.

4. Ye. Dinitz and J. Westbrook, \Maintaining the Classes 4-Edge-Connectivity of a

Graph On-Line", Technical Report # 871, Dep. of Comp. Sci., Techmion, 1995,

47p.

5. D. Eppstein, Z. Galil, G. F. Italiano, A. Nissenzweig, \Sparsi�cation - A Technique

for Speeding up Dynamic Graph Algorithms" Proc. 33rd Symp. on Foundations of

Computer Science, 1992, 60{69.

6. S. Even, \An algorithm for determining whether the connectivity of a graph is at

least k" SIAM Journal on Computing, 4, 1975, 393{396.

23

7. S. Even, G. Itkis, S. Rajsbaum. \On mixed connectivity certi�cates", Algorithms -

ESA'95, Proc. 3rd European Symp., Springer-Verlag, LNCS 979, 1995, 1{16.

8. S. Even and R. E. Tarjan, \Network ow and testing graph connectivity", SIAM

Journal on Computing, 4, 1975, 507{518.
9. H. N. Gabow, \A matroid approach to �nding edge connectivity and packing ar-

borescences" Proc. 23rd Symp. on Theory of Computing, 1991, 112{122.

10. H. N. Gabow, \Applications of a poset representation to edge connectivity and
graph rigidity" Proc. 32nd Symp. on Foundations of Computer Science, 1991, 812{

821.

11. Z. Galil, \Finding the vertex connectivity of graphs", SIAM Journal on Computing,
1980, 197{199.

12. Z. Galil and G. P. Italiano, \Maintaining the 3-edge-connected components of a

graph on-line", SIAM Journal on Computing, 1993, 11{28.
13. A. Ya. Gordon, \One algorithm for the solution of the minimax assignment prob-

lem", Studies in Discrete Optimization, A. A. Fridman (Ed.), Nauka, Moscow, 1976,

327{333 (in Russian).
14. F. Harary, \Graph Theory", Addison-Wesley, Reading, MA, 1969.

15. D. Karger, \Using randomized sparsi�cation to approximate minimum cuts" Proc.

5th Symp. on Discrete Algorithms, 1994, 424{432.
16. D. Karger, \Random sampling in cut, ow, and network design problems", Proc.

26rd Symp. on Theory of Computing, 1994, 648{657.

17. H. La Poutr�e, \Maintenance of 2- and 3-connected components of graphs, Part
II: 2- and 3-edge-connected components and 2-vertex-connected components",

Tech.Rep. RUU-CS-90-27, Utrecht University, 1990.

18. D. W. Matula, \A linear time 2+� approximation algorithm for edge connectivity"
Proc. 4th Symp. on Discrete Algorithms, 1993, 500{504.

19. K. Menger, \Zur allgemeinen Kurventheorie", Fund. Math. 10, 1927, 96{115.

20. H. Nagamochi and T. Ibaraki, \Linear time algorithms for �nding a sparse k-
connected spanning subgraph of a k-connected graph", Algorithmica 7, 1992, 583{

596.

21. D. D. Sleator, R. E. Tarjan, \A data structure for dynamic trees" J. Comput.

System Sci. 24, 1983, 362{381.

22. J. Westbrook and R. E. Tarjan, \Maintaining bridge-connected and biconnected

components on-line", Algorithmica (7) 5/6, 1992, 433{464.
23. H. Whitney, \Non-separable and planar graphs", Trans. Amer. Math. Soc. 34,

1932, 339{362.

This article was processed using the LATEX macro package with LLNCS style

24

