
Average Case Analysis of Dynamic Graph Algorithms

David Alberts� Monika Rauch Henzingery

Abstract

We present a model for edge updates with restricted randomness in dynamic graph algorithms

and a general technique for analyzing the expected running time of an update operation. This

model is able to capture the average case in many applications, since (1) it allows restrictions on

the set of edges which can be used for insertions and (2) the type (insertion or deletion) of each

update operation is arbitrary, i.e., not random. We use our technique to analyze existing and

new dynamic algorithms for the following problems: maximum cardinality matching, minimum

spanning forest, connectivity, 2-edge connectivity, k-edge connectivity, k-vertex connectivity,

and bipartiteness. Given a random graph G with m0 edges and n vertices and a sequence

of l update operations such that the graph contains mi edges after operation i, the expected

time for performing the updates for any l is O(l logn+
P

l

i=1
n=
p
m

i
) in the case of minimum

spanning forests, connectivity, 2-edge connectivity, and bipartiteness. The expected time per

update operation is O(n) in the case of maximum matching. We also give improved bounds

for k-edge and k-vertex connectivity. Additionally we give an insertions-only algorithm for

maximum cardinality matching with worst-case O(n) amortized time per insertion.

1 Introduction

In many applications a solution to a problem has to be maintained while the problem instance

changes incrementally. Dynamic algorithms incrementally update the solution by maintaining an

additional data structure. Their goal is to be more e�cient than recomputing the solution with a

static algorithm after every change.

Given an undirected graph G = (V;E), a (fully) dynamic data structure allows the following

three operations:

� Insert(u; v): Insert an edge between the node u and the node v.

� Delete(e): Delete the edge e.

� Query: Output the current solution. (Depending on the the particular problem a query might

be parametrized.)

�Freie Universit�at Berlin, supported by the Deutsche Forschungsgemeinschaft, grant We 1265/2-1 (Graduiertenkol-

leg \Algorithmische Diskrete Mathematik"), and grant We 1265/5-1 (Leibniz-Preis). Email: alberts@inf.fu-berlin.de.

This research was done in part while visiting Max-Planck Institute for Computer Science, Im Stadtwald, 66123

Saarbr�ucken, Germany, and Cornell University. Author's current address is: Martin-Luther-Universit�at Halle-

Wittenberg, Institut f�ur Informatik, Kurt-Mothes-Str. 1, 06099 Halle, Germany.
ySystems Research Center, Digital Equipment Corporation, 130 Lytton Ave, Palo Alto, CA 94301. Email:

mhr@src.dec.com. This research was done in part while visiting at the International Computer Science Institute,

1947 Center St., Suite 600, Berkeley, CA 94704 and at the Max-Planck Institute for Computer Science, Im Stadt-

wald, 66123 Saarbr�ucken, Germany.

1

2 David Alberts, Monika Rauch Henzinger

Two nodes u and v are k-edge (k-vertex) connected for �xed k if there are k edge-disjoint (k

vertex-disjoint) paths between u and v. A query in the case of connectivity (2-edge connectivity)

has 2 parameters u and v and returns \yes" if u and v are connected (2-edge connected). In the case

of k-edge (k-vertex) connectivity a query returns \yes" if the graph is k-edge (k-vertex) connected.

A matching is a subset of the edge set such that no two edges are incident to the same vertex.

A maximum matching is a matching of maximum possible cardinality. In the case of maximum

matching a query outputs a current maximum matching. Alternatively, a query could also be: \Is

the edge e in the current graph in the current maximum matching?"

Recently, a lot of work has been done on dynamic algorithms for various connectivity proper-

ties [10, 11, 12, 13, 18, 27, 28, 29]. The current best deterministic bound for maintaining connected

or 2-edge connected components of a graph is O(
p
n) [10]. The best randomized algorithm achieves

O(log2 n), resp. O(log3 n) per update [17]. It is an open problem if the connected or 2-edge con-

nected components of a graph can be maintained deterministically faster than O(
p
n). A second

interesting question is if a maximum matching can be maintained in time o(m) per update. Note

that a dynamic algorithm which executes one phase of the static algorithm described by Tarjan

in [33] for each update operation achieves an update time O(m). This was used for example

in [2]. This is the only known improvement over recomputation from scratch which takes time

O(
p
nm) [24, 35].

We achieve better (average case) bounds for both problems in the following model of restricted

randomness (rr-model): Given a random graph G with n vertices and m edges, an adversary can

determine whether the type of the next operation is an insertion or a deletion. If the type is an

insertion, an edge chosen uniformly from all \allowed" edges not in G is inserted. If the type is a

deletion, an edge chosen uniformly from all edges in G is deleted. Thus, only the parameter of the

next operation is chosen at random, but not the type of the next operation.

The rr-model is especially suited to capture the average case in many applications, since (1) it

allows restrictions on the set of edges which can be used for insertions and (2) the type (insertion

or deletion) of each update operation is arbitrary, i.e., not random.

1.1 Related Work

Karp [20] gave a deletions-only connectivity algorithm. If the initial graph is random and random

edges are deleted, the total expected time for a sequence of deletions is O(n2 log n).

In [29] a di�erent random input model for dynamic graph algorithms is presented, called fair

stochastic graph process (fsgp). It assumes that the type of the next operation as well as its

parameter are chosen uniformly at random. Since the rr-model does not make any assumptions

about the distribution of the types of update operations, it is more general than a fsgp, which

assumes that insertions (deletions) occur with probability 1=2. The algorithm, presented in [29]

takes expected time O(lk log3 n) maintaining the k-vertex connected components (k constant) for

a sequence of l � n2 log n update operations. This bound is better than our bound in the case of

connectivity if the sequence of update operations is long enough and the graphs are not dense, but

since the model is weaker, the results are incomparable.

The rr-model is a variation of a model for random update sequences used before in computational

geometry (see, e.g., [6, 8, 25, 30]). Eppstein [8] considers the dynamic (geometric) maximum

spanning tree problem and related problems for points in the plane. Exploiting their geometry, he

gives data structures with polylogarithmic expected update times for these problems.

Average Case Analysis of Dynamic Graph Algorithms 3

1.2 New Results

� Assuming that the weight of an edge is arbitrary, but �xed, we show that a modi�ed version

of Frederickson's topology tree data structure [12] for dynamic minimum spanning forests has

an average case update time of O(logn + n=
p
m) plus amortized constant time. The data

structure needs linear space and linear expected preprocessing time using [21]. The best worst

case update time for this problem is O(
p
n) [10].

� Dynamic connectivity, 2-edge connectivity, and bipartiteness (\Is the current graph bipar-

tite?") are closely related to the dynamic minimum spanning forest problem. They can be

updated within the same bounds for space and time. In the worst case the best determinis-

tic bound is O(
p
n) [10] and the best randomized algorithms take polylogarithmic time per

update [19].

� We show that a conceptually simple dynamic algorithm for maximum cardinality matching

has an average update time of O(n) with respect to the rr-model. The algorithm is based on

the static maximum matching algorithm described in [33]. The space needed is linear and the

preprocessing time is O(
p
nm) using [24]. Additionally we give an insertions-only algorithm

for maximum cardinality matching with O(n) amortized time per insertion.

In the case of k-edge and k-vertex connectivity we slightly improve the known bounds:

� Eppstein et al. [11] describe an algorithm for dynamic k-edge connectivity with worst case

update time O(k2n log(n=k)) using a minimum edge cut algorithm by Gabow [15]. We show

that (with a slight modi�cation) its average case update time is O(min(1; kn=m)k2n log(n=k))

plus O(k) amortized time. This gives time O(min(1; n=m)n logn) plus amortized constant

time for constant k. The data structure is able to answer a query whether the current

graph is k-edge connected in constant time. The data structure needs O(m+ kn) space and

preprocessing time.

� We create a dynamic k-vertex connectivity algorithm, using the algorithm by Nagamochi

and Ibaraki for �nding sparse k-vertex certi�cates [26] and the O(k3n1:5 + k2n2) minimum

vertex cut algorithm by Galil [16]. A query takes constant time. The average update time is

O(min(1; kn=m)(k3n1:5+k2n2)), which is O(min(n2; n3=m)) for constant k. The preprocessing

time and the space requirement is linear.

Note that our algorithms are deterministic and not randomized (except for preprocessing in the

case of minimum spanning trees, but by increasing the running time by a factor of log(log� n) the

algorithm can be made deterministic). The average case performance of all algorithms matches the

best known worst case bounds in the case of sparse graphs, but it is signi�cantly better if there

are more edges. In the case of dense graphs these improvements are exponential for some of the

problems.

After presenting the rr-model in Section 2 we give a general technique for analyzing the ex-

pected running time of an update operation using backwards analysis [31] in Section 3. As far

as we know, this is the �rst application of backwards analysis to dynamic graph problems. In

Section 4, 5, 6, 7, 8, 9

4 David Alberts, Monika Rauch Henzinger

we apply this technique to analyze the expected running time of dynamic algorithms for min-

imum spanning forest, connectivity, bipartiteness, 2-edge connectivity, maximum matching, and

k-edge and k-vertex connectivity, respectively. A preliminary version of this paper appeared in [1].

2 A Model for Random Update Sequences

To model the average case it is common practice to consider the expected performance with respect

to a \random" input. So we have to de�ne a probability distribution on possible updates. An update

consists of two parts, its type, i.e., either insert or delete, and its parameter, i.e., the speci�c edge to

be inserted or deleted. If the type and the parameter of an operation are given by an adversary, we

are in a worst case setting. For the average case analysis at least the edge to be inserted or deleted

should be given with some probability distribution. Now two cases are possible: either the type of

the update operation is random or not. Reif, Spirakis, and Yung [29] studied a model in which the

probability of an insertion (deletion) is 1=2. In contrast, we do not make any assumptions on the

distribution of types of update operations. Thus, our analysis also applies if an adversary provides

the (worst case) types of update operations.

We adopt a generic model for random update sequences from computational geometry (see,

e.g., [6, 8, 25, 30]). The dynamically changing object is a set E which is a random subset of a �xed

set �E, the universe. An update is arbitrarily either a deletion of an element of E which has to be

chosen uniformly at random from the elements which are currently in the set E, or an insertion of

an element chosen uniformly at random from the set �E nE. Since the type of an update operation

is not random, the cardinality of E is also not random. Applied to the dynamic graph algorithms

setting we get the following model which we call the model of restricted randomness or rr-model.

We have a �xed set of vertices V of cardinality n. �E is a subset of
�V
2

�
called the set of allowed edges

and we call G = (V;E) the current graph. If we start with a random subset of �E of cardinality m0

(for any m0) and apply a sequence of updates as described above we get a current graph with a

certain number m of edges depending on the type of updates. This graph is with equal probability

any of the possible m-edge subgraphs of �G = (V; �E). If �E is equal to
�V
2

�
, then G is a random graph

in the well-known Gn;m model [3].

Note that there are two ways to control the graphs in the rr-model to suit the needs of a

particular application: (1) We can prescribe �E and thus e.g. force the graph to be bipartite, and

(2) the adversary can give us an arbitrary sequence of updates, e.g. highly regular update patterns,

like l insertions, l deletions, l insertions, and so on.

3 Average Case Analysis

In this section we present an abstract setting for the average case analysis of dynamic data structures

with respect to the rr-model. We use a technique called backwards analysis, which already lead

to a variety of elegant proofs for randomized incremental geometric algorithms, see [31] and its

references.

If all updates are performed in approximately the same time bound, there is no need for an

average case analysis. We are interested in dynamic data structures where we employ two update

algorithms: a slow algorithm that works in any case and a fast algorithm that works only when

the update operation ful�lls certain conditions (that depend on the current graph). Of course, the

Average Case Analysis of Dynamic Graph Algorithms 5

update algorithm applies the fast algorithm whenever possible. To achieve a good expected time

performance we show that the conditions for the fast algorithm are met by an update operation

with a relatively high probability, i.e. that the probability for the slow algorithm is relatively low.

We explain the ideas for bounding the probability for the slow algorithm using the dynamic

minimum spanning tree problem as an example:

Deletions: If a deletion does not remove an edge of the minimum spanning tree, the minimum

spanning tree does not change and the update can be handled quickly (as we show in Section 4.2).

Thus, if a deletion does not remove a minimum spanning tree edge, it ful�lls the conditions for

the fast algorithm. The probability that a randomly chosen edge of G is an edge of the minimum

spanning tree is (n � 1)=m. Thus, the probability that we have to use the slow algorithm is

(n� 1)=m.

Insertions: If the minimum spanning tree is still correct after the insertion of an edge e, then

the conditions of the fast algorithm are ful�lled. If an insertion modi�es the minimum spanning

tree, the newly inserted edge e either (i) connects two disconnected pieces of G or (ii) the cost of

e is less than the cost of an edge on the tree path connecting the endpoints of e. In both cases e

belongs to each minimum spanning tree of G [e. Thus, the probability that we have to use the

slow algorithm is the probability that a randomly chosen edge not in G ful�lls (i) or (ii). Using the

fact that E is a random subgraph of �E and that e belongs to the minimum spanning tree of G[e,
we argue below that the probability of this case is identical to the probability that a randomly

chosen edge of G [e belongs to the minimum spanning tree of G [e. The latter probability is

(n� 1)=(m+ 1). Thus, the probability that we have to use the slow algorithm is (n� 1)=(m+ 1).

Let S denote a minimum spanning tree of the current graph. Note that we use only two facts

to bound the probability of the slow algorithm:

� if a deletion does not delete an edge of S, then S is a valid minimum spanning tree in the

new graph;

� if, after an insertion, S is no longer a valid minimum spanning tree for the new current graph,

then every minimum spanning tree of the new current graph contains the new edge.

Thus, our strategy for bounding the probability of the slow algorithm is as follows: We choose

for each graph G a set of subgraphs that we call suitable (de�ned below). The suitable subgraphs of

G correspond to the minimum spanning trees of G in the above example. The algorithm maintains

a suitable subgraph S of the current graph such that the following two conditions are ful�lled:

A: if a deletion does not delete an edge of S, then S is suitable in the new graph;

B: if, after an insertion, S is no longer suitable for the new current graph, then every suitable

subgraph of the new current graph contains the new edge.

The fast algorithm is used when the update does not lead to a change in S. If conditions A and

B are ful�lled and the size of all suitable subgraphs is limited by some integer function s(n), then

we bound the probability of the slow algorithm by s(n)=m, resp. s(n)=(m + 1) using the same

arguments as for minimum spanning trees.

Let Suit be a function that maps every graph G on n vertices to a subset of the set of subgraphs

of G. A set S is suitable for G if S 2 Suit(G). Conditions A and B put the following conditions on

Suit, where e is an edge not in G:

6 David Alberts, Monika Rauch Henzinger

A': All sets in Suit(G[feg) that do not contain e belong to Suit(G).

B': If there exists a set S 2 Suit(G) and S 62 Suit(G [feg), then every set in Suit(G [feg)
contains e.

The latter is equivalent to saying:

If Suit(G[feg) contains a set without e then Suit(G) � Suit(G[feg).

Combining the two conditions �nally leads to the following condition on Suit:

C: Let e be an edge with e 62 G. If Suit(G[feg) contains a set without e then fS;S 2 Suit(G[
feg) and e 62 Sg � Suit(G) � Suit(G[feg).

We want to analyze a dynamic algorithm which maintains a suitable subgraph along with other

information. For a current graph and a current suitable subgraph S we de�ne an update to be

a good case if S is also suitable for the new current graph. If S is no longer suitable we de�ne

the update to be a bad case. The dynamic algorithm performs an update by testing whether it

is a good or a bad case and then performing the fast update algorithm in the good case and the

slow update algorithm otherwise. Instead of repeating the average case analysis for each dynamic

graph problem in this paper, we give one average case analysis that applies to any dynamic graph

problem for which we can �nd a function Suit ful�lling Condition C.

We now want to derive a bound on the expected running time of one update according to the

rr-model. We do not consider the time for testing here. Let D be the dynamic data structure.

Let g(n;m) (b(n;m)) be the running time of the fast (slow) update algorithm. We assume that

m � s(n). Otherwise we get a bound of b(n;m). First we analyze a deletion. Let Tdel(n;m) be

the expected running time for deleting an edge in a random m-element subset of �E. Let E be an

arbitrary m-element subset of �E and let �m = j �Ej. Fix one suitable subgraph S for E. Let Tdel(E; e)

be the worst case running time for updating D when e 2 E is deleted. Since the bad case occurs

only if e 2 S, we get

Tdel(n;m) =
1

�
�m
m

�
m

X

E� �E
jEj=m

X

e2E

Tdel(E; e) �
1

�
�m
m

�
m

X

E� �E
jEj=m

s(n)b(n;m) + (m� s(n))g(n;m)

= O(
s(n)

m
b(n;m) + g(n;m)):

Next, we consider the insertion of an edge. Let Tins(n;m) be the expected time needed to insert a

random edge if the current random graph has n vertices and m edges. In analogy to Tdel(E; e) let

Tins(E; e) be the time needed to update D if e 2 �E nE is inserted into E. Then we have

Tins(n;m) =
1

�
�m
m

�
(�m�m)

X

E� �E
jEj=m

X

e2 �EnE

Tins(E; e);

since every pair (E; e) is equally likely according to the rr-model. Now backwards analysis appears

on the scene. We formulate the cost in terms of the edge set E0 which results by inserting e into

E. Choosing m elements from �E and afterwards an additional one from the remaining set is the

Average Case Analysis of Dynamic Graph Algorithms 7

same as choosing m+1 elements from �E �rst and then selecting one of the chosen elements. Thus,

we get

Tins(n;m) =
1

�
�m

m+1

�
(m+ 1)

X

E0
�
�E

jE0
j=m+1

X

e2E0

Tins(E
0 � e; e):

Now, we look at the inner sum. Let G0 = (V;E0) and let S0 be a suitable subgraph for G0. If the

insertion of e was a bad case, then e has to be contained in S0. Since jS0j � s(n), this happens at

most s(n) times. So, we get

Tins(n;m) � 1
�

�m
m+1

�
(m+ 1)

X

E0
� �E

jE0
j=m+1

s(n)b(n;m)+(m+1�s(n))g(n;m) = O(
s(n)

m
b(n;m)+g(n;m)):

This implies the following theorem.

Theorem 3.1 Let �G be a graph on n vertices; let P be a dynamic graph problem such that a

function Suit ful�lling condition C exists; let D be a dynamic data structure for P with

� a query time of q(n;m),

� a bad case update time of b(n;m),

� a good case update time of g(n;m), and

� a bound of t(n;m) for testing whether an update is a good case.

Then there is a dynamic graph algorithm for P with an expected update time with respect to the

rr-model of O(t(n;m) + g(n;m) + min(1; s(n)=m)b(n;m)). Its worst case query time is q(n;m).

Note that the gap between average case and worst case performance is the largest if the graph

is dense.

Using the same line of proof, we could also handle asymmetric update times for insertions and

deletions, e.g., the slow insertion time is not the same as the slow deletion time. We did not include

this for the sake of clarity, and since it was not needed for our applications.

4 Minimum Spanning Forests

Frederickson [12] introduced the topology tree data structure to maintain a minimum spanning

forest dynamically. In this section we slightly modify the topology tree data structure to give a

dynamic minimum spanning forest algorithm with good average and the same worst-case perfor-

mance as the algorithm in [12]. This data structure is also the key data structure for the dynamic

graph algorithms described in Sections 5, 6, and 7.

To apply our technique of Section 3 we choose Suit(G) to consist of all minimum spanning

trees of G. Additionally, we modify the topology trees such that updates involving non-tree edges

take time O(logn) plus amortized constant time for rebuilding parts of the data structure (good

case), while the time for updates involving tree edges stays O(
p
m) (bad case), which is the bound

of [12]. By Theorem 3.1 this results in an average case update time with respect to the rr-model

8 David Alberts, Monika Rauch Henzinger

of O(n=
p
m+ logn) expected time plus O(1) amortized time if we consider an arbitrary but �xed

weight for every edge in �G.

To guarantee that non-tree edge updates are fast we make three modi�cations in the topology

tree data structure: (1) We add a condition to the de�nition of a restricted partition of order k.

This is necessary to guarantee that
(
p
m) updates are executed before part of the data structure

is rebuilt. (2) We add priority queues to the data structure to avoid that the minimum of O(
p
m)

edge costs is recomputed >from scratch after each update. (3) We remove some parts of the data

structure at which no new information is stored. While the second modi�cation leads immediately

to an improvement, we show in Section 4.4 that the �rst modi�cation leads to the desired amortized

O(1) rebuild time per update. The third modi�cation is necessary to speed up updates in the good

case.

Note that the running time of [12] can be reduced to O(
p
n) using improved sparsi�cation [10,

11]. Sparsi�cation is a technique which was designed to reduce the number of edges that a dynamic

graph algorithm has to deal with from m to O(n). This is accomplished by splitting the edge set

into groups of size at most 2n and maintaining a spanning tree for each group. It follows that about

half of the edges belong to the spanning tree of a group and, thus, are expensive to update. This

implies that the probablity for a bad-case update is about 1=2. Hence, combining sparsi�cation

with our approach does not improve the running time.

4.1 Data Structure

We �rst review parts of the data structure in [12, 13], and make some changes needed to speed

up the good case. We always keep the graph connected by dummy edges of weight 1. To build

a topology tree we map G to a graph G0 of maximum degree 3 by replacing a vertex x of G of

degree d > 3 by a cycle of d new vertices x1; : : : ; xd in G0. The edges connecting xi and xi+1 get

a weight of �1, which implies that they always stay in the minimum spanning forest of G0. The

edge connecting xd and x1 gets a weight of 0. Edges between the xi nodes are called dashed edges.

Every edge (x; y) is replaced by an edge (xi; yj), where i and j are the appropriate indices of the

edge in the adjacency lists for x and y. Note that there are O(m) nodes in G0 and that the edges

of a minimum spanning forest of G are a \subset" of those for G0. We denote by T 0 the minimum

spanning tree of G0. We describe next how the topology tree data structure achieve a O(
p
m) time

per update operation. The topology tree data structure decomposes the vertex set of G0 into sets,

called clusters. The update algorithm spends time proportional to the size of O(1) clusters plus the

number of clusters. Initially the nodes are decomposed in a roughly balanced way such that each

cluster contains at most 2k nodes and there are O(m=k) clusters, for some parameter k. Choosing

k =
p
m gives an O(k +m=k) = O(

p
m) time update algorithm.

Adding edges can increase the number of nodes in a cluster (since the cycle representing a node

of G can increase), deleting nodes can decrease the number of nodes in a cluster. By splitting and

merging clusters the above roughly balanced decomposition is maintained and, thus, every update

operation takes time O(
p
m).

We explain next the basic idea to reduce the time for updates in the good case to O(logn) plus

O(1) amortized time. Clusters are created and deleted in three ways: (A) If all nodes in a cluster

have been deleted, the cluster is deleted. (B) If a cluster is merged with another cluster, the two old

clusters are deleted and a new cluster is created. (C) If a cluster is split, the cluster is deleted and

two new clusters are created. A cluster is created (deleted) by an update operation if it is created

Average Case Analysis of Dynamic Graph Algorithms 9

(deleted) while processing the update.

Creating and deleting a cluster in Case (B) and (C) takes time O(k). Each update creates

and deletes at most a constant number of clusters and incurs, thus, an O(k) rebuilding cost. To

achieve O(k +m=k) update time in the bad case and O(logn) update time plus O(1) amortized

rebalancing time in the good case, we charge each bad-case update O(k) rebuilding costs and we

charge each good-case update O(1) amortized rebuilding costs as follows: If the current update is

a bad case, it is charged its O(k) rebuilding cost. If the current update is a good case, but one

of the cluster that it deletes was created by a bad-case update, the rebuilding cost of the current

update is charged to this bad-case update. If the current update is a good case and none of the

clusters that it deletes was created by a bad-case update, we guarantee that
(k) rebuilds have

\contributed" to the cluster(s) deleted by the current update and amortize the rebuilding costs of

the current update over them. This adds an amortized O(1) rebuilding cost to every update. (All

initial clusters are considered to be created by a bad-case update, since the cost of deleting them

can be charged to the linear preprocessing time.)

For this amortization scheme to work we call some clusters essential and we maintain the

following invariant:

(I) Every cluster created by a good-case update consists of at most 5k=3 nodes and, if it is essen-

tial, by at least k=2 nodes.

As shown below, a cluster is deleted by a good-case update only if its size is either less than k=3

or more than 2k. Since each update increases or decreases the size of a cluster by at most 6 nodes,

it follows that in either case at least k=18 (namely k=2� k=3 or 2k� 5k=3) updates have modi�ed

the size of the deleted cluster since the creation of the cluster. Amortizing the rebuilding costs of

the good-case update over these updates adds an amortized O(1) rebuilding cost to every update,

since each update a�ects the size of only a constant number of clusters.

We give next the exact de�nitions. A cluster is a set of vertices that induces a subgraph of T 0

that is connected. An edge is incident to a cluster if exactly one of its endpoints is in the cluster.

The tree degree of a cluster is the number of tree edges incident to the cluster. We call a cluster

essential if it has tree degree 1 or if it has tree degree 2 and is not incident to a tree degree 3 cluster.

A dynamic (l; u)-partition with respect to T 0 is a partition of the vertices so that

(1) each cluster with tree degree 3 has cardinality 1,

(2) each set in the partition is a cluster with tree degree � 3 and cardinality � u,

(3) each essential cluster has cardinality at least l.

Our de�nition is a modi�cation of the de�nition of a restricted partition of order k in [13]: Condition

(3) is modi�ed, since our amortized plan outline above would not apply: in the de�nition of [13] it

is possible that two clusters C1 and C2 are merged and only O(1) updates have occurred since the

creation of C1 and C2. Thus, the �(k) rebuilding costs to delete C1 and C2 cannot be amortized

over
(k) updates that occurred after the creation of C1 and C2.

Our algorithm maintains a dynamic (k=3; 2k) partition subject to invariant I .

We say cluster C2 is a tree neighbor of cluster C1 if there exists a tree edge with one endpoint

in C1 and one endpoint in C2. To initialize the partition we �rst use the procedure given in [13],

which �nds in linear time a partition of the vertices so that

10 David Alberts, Monika Rauch Henzinger

(1) each cluster with tree degree 3 has cardinality 1,

(2) each set in the partition is a cluster with tree degree � 3 and cardinality � k,

(3') each essential cluster has a tree neighbor such that the combined cardinality of the two clusters

is larger than k.

To ful�ll (3), we join every essential cluster of size less than k=3 with its tree neighbor of Condition

(3') to create a cluster of size at least k and at most 4k=3.

Given a dynamic (k=3; 2k) partition, a topology tree is a binary tree of depth O(logn) whose

leaves correspond to the clusters in the partition. An internal node C of a topology tree TT

corresponds to a cluster of larger size that is formed by unifying the clusters corresponding to the

leaves in the subtree of C in TT . The level of a leaf is 0, the level of an internal node is 1 plus the

level of its children, which are all at the same level.

A 2-dimensional topology tree is a tree of depth O(logn) whose leaves are pairs of clusters C�D.

Each leaf C � D is labeled with the minimum edge cost of an edge between C and D or �1 if

no such edge exists. Each internal node has degree at most four and is labeled with the minimum

label of its children. See [12] for a detailed de�nition.

The dynamic connectivity data structure of [12] consists of

� a topology tree TT ,

� a 2-dimensional topology tree 2TT , and

� a dynamic tree data structure storing the minimum spanning tree T 0 of G0.

We modify the data structure as follows: (A) We omit some of the nodes of 2TT with label �1
together with their whole subtree. (This does not create problems in the query or update algorithm

of [12] since these subtrees do not store the cost of an edge, i.e. do not contain any useful information

for the algorithms.) (B) At each leaf C �D of 2TT we keep a priority queue of all non-tree edges

with one endpoint in C and one endpoint in D.

4.2 Updates

To update the data structure we make use of the following wellknown lemma to split a cluster of

size x into two clusters of size at most 2=3x:

Lemma 4.1 ([22]) Every n-vertex tree with degree at most 3 can be split into two subtrees, each

with at most 2=3n vertices, by removing one edge.

An update operation (a) tests if the good case or the bad case occurs and (b) executes the

corresponding algorithm.

(a) The dynamic tree data structure that maintains T 0 is used (as in [12]) to decide which case

occurs.

(b) The algorithm consists of three steps:

(b1) Updating the mapping from G to G0, i.e. maintaining G0 as a degree-3 graph. This includes

adding or removing the inserted or deleted edge and additional nodes and edges. Since it is

not explicitely stated in [12], we give the details in Section 4.3. It takes constant time per

update.

Average Case Analysis of Dynamic Graph Algorithms 11

(b2) Updating the dynamic restricted partition and the structure of TT and 2TT . In the bad

case we restore Conditions (1) and (2) as in [13], which modi�es O(1) clusters. Each of the

resulting (at most constant) essential clusters of size less than k=3 is merged with neighboring

clusters until its size is at least k=3 or it is no longer essential. If a resulting cluster contains

more than 2k nodes, it is split into two clusters of size at least 2k=3 and at most 4k=3 using

Lemma 4.1.

Each step takes O(k) time, which gives a total time of O(k) for the bad case. Updating

TT and the structure of 2TT whenever the dynamic restricted partition changes is identical

to [12] and takes time O(k) per update.

The procedure for the good case is described in Section 4.4 and takes time O(logn) plus

constant amortized time.

(b3) Updating the labels of 2TT and the dynamic tree. For a bad-case update the algorithm consists

of the algorithm in [12] plus the obvious updates of the priority queues.

In the good case, let (x; y) be the edge that is updated, let C be the cluster containing x and

let D be the cluster containing y. The cost of (x; y) is added or removed from the heap of

C�D. If min(C;D) changes, this change is propagated up the tree 2TT , updating the labels

of the ancestors of 2TT . Since 2TT has depth O(logn), this takes time O(logn).

Summing the time for steps (a)- (b3) gives a total time of O(k) for the bad case and O(logn) plus

O(1) amortized time for the good case.

4.3 Updating the Mapping from G to G0 in the Good Case

We describe only the insertion of an edge (x; y) { a deletion is the inverse operation. We �rst

update the node(s) representing x and the node(s) representing y and then we add the appropriate

edge.

Let d be the degree of x before the insertion. We call x0 the node representing x that will be

incident to the new edge. To update the node(s) representing x the algorithm consider three cases:

d < 3: Set x0 = x, since the node representing x is unchanged,

d = 3: Replace the node representing x by four nodes that are put into the same cluster as x and

set x0 = x3. (In the case of a deletion x1 and x2 belong to the same cluster C in the good

case. We replace x1 to x4 by a new node x which is put into C. This does not change the

tree degree of any cluster.)

d > 3: Add a new node xd+1 between xd and x1 in the cycle representing x in G0 and add the node

xd+1 to the cluster of xd. Set x
0 = xd+1. (In the case of a deletion the node xi that is incident

to (x; y) is removed and xi�1 and xi+1 are connected. This does not change the tree degree

of the cluster containing xi, since either xi�1 or xi+1 must belong to the cluster of xi in the

good case.)

The node y is processed in the same way. Finally a new edge (x0; y0) is added to G0.

Note that updating the mapping takes constant time and in the good case leaves the tree degree

of all clusters unchanged.

12 David Alberts, Monika Rauch Henzinger

4.4 Updating the Dynamic Partition and the Structure of TT and 2TT in the

Good Case

The insertion or deletion of a node in G0 might invalidate the partition by violating some of the

conditions of the dynamic restricted partition. We restore Conditions (1), (2), and (3) in this order

such that �xing Condition (i) for i = 2 or 3 does not disturb the previously restored conditions.

Condition (1): Every tree-degree 3 cluster C with more than one node consists of at most four

nodes, one with tree-degree 3 and three with tree-degree 2. To restore Condition (1), C is split:

The tree-degree 3 node forms a new tree-degree 3 cluster. The remaining nodes are added to tree

neighbors of C with tree-degree 1 or 2, if this is possible. Otherwise, they are grouped into up to

two clusters of constant size. See Figure 1.

Figure 1: Restoring Condition (1). Bold edges represent tree edges, dotted ellipses represent

clusters.

Condition (2): If the cardinality jCj of a cluster C is larger than 2k, the cluster is split using

Lemma 4.1.

Condition (3): An essential cluster of size less than k=3 is called a violated cluster. A good up-

date can create at most two violated clusters, namely during an edge deletion. Restoring Condition

(1) and (2) does not create a violated cluster. Thus, in the good case the violated clusters have

size at least k=3� 6 and merging each violated cluster with a tree neighbor will result either in a

cluster of size at least k=2 (if merged with another essential or violated cluster) or in a non-essential

cluster (if merged with a non-essential cluster). If the cardinality of a new cluster is larger than

5k=3, this cluster is split using Lemma 4.1.

The structure of TT and 2TT : We update TT as in [12]. If Condition (2) or (3) had to be

restored (i.e. the update spent already O(k) time), we update 2TT as in [12]. If only Condition

(1) had to be restored (i.e. the update spent only O(1) time so far), the update added at most 6

constant size clusters. For each such cluster C and each neighbor C0 of C we add a leaf C�C0 and

its appropriate O(logn) ancestors to 2TT . Note that we add a total of O(logn) nodes instead of

Average Case Analysis of Dynamic Graph Algorithms 13

a leaf C �D for every other cluster D and all the ancestors of these leaves. However, the omitted

nodes of 2TT would be labeled with �1 and form subtrees of 2TT . Thus, the resulting tree 2TT

agrees with our modi�ed de�nition of 2TT .

Lemma 4.2 The updating algorithm maintains invariant I.

Proof. We have to show that every cluster created in the good case has size at most 5k=3 and, if it is

essential, at least k=2. The good-case update algorithm creates clusters when restoring Conditions

(1) - (3). We check below that the invariant is maintained in every step.

When restoring Condition (1), no essential clusters are created and each created cluster has

constant size. When Condition (2) is restored, the cardinality jCj of the deleted cluster C is larger

than 2k and at most 2k + 6. Thus, the resulting clusters have size at most 4=3k + 4 and at least

2k=3 + 1. When Condition (3) is restored, each new essential cluster has size at least k=2 and at

most 2k + k=3 � 1. If it is larger than 5k=3 it is split, resulting in two clusters of size at most

2=3(2k + k=3� 1) < 5k=3 and at least 1=3(5k=3) = 5k=9 > k=2. Thus, in each of the three cases

invariant I is maintained. 2

Next we analyse the running time of updating the dynamic partition and the structure of TT

and 2TT in the good case. If only Condition (1) is restored, it takes O(1) time to restore Condition

(1), and time O(logn) to update the structure of TT and 2TT .

If either Condition (2) or Condition (3) are restored, it takes time O(k) to restore the conditions

and update TT and 2TT . In both cases if (one of) the deleted cluster(s) were created by a bad-

case update, the O(k) rebuilding cost are charged to this bad-case update. Only if (all) the deleted

cluster(s) where created by a good-case update, the O(k) rebuilding cost are amortized over previous

updates: If Condition (2) is restored, the deleted cluster(s) consisted of at most 5k=3 nodes at

creation (by Invariant I) and contains now more than 2k nodes. If Condition (3) is restored, the

deleted essential cluster(s) consisted of at least k=2 nodes at creation (by Invariant I) and contains

now less than k=3 nodes. As described before, each update operation increases or decreases the

size of a constant number of cluster by at most 6 nodes. Thus, in either case at least k=18 update

operations must have increased, resp. decreased the size of the deleted cluster(s). Amortizing the

O(k) rebuilding cost over these updates gives an amortized constant rebuilding cost per update.

4.5 Final Result

Choosing k = O(
p
m) gives a data structure that ful�lls the following lemma, using the linear

expected time algorithm for minimum spanning trees [21] during preprocessing.

Lemma 4.3 There exists a data structure that maintains a minimum spanning forest of a graph

with any real-valued cost-function on the edges. The data structure can be updated in time O(
p
m)

if a tree edge is inserted or deleted and in time O(logn) plus O(1) amortized time if a non-tree edge

is inserted or deleted. The data structure needs linear space and linear expected preprocessing time.

If the weight for every edge in �G is arbitrary but �xed we can apply Theorem 3.1 to analyze the

expected time per operation, ignoring the cost of rebuilds. Since we showed before that the total

time spent for rebuilds during l updates is O(l), this implies the following result.

Theorem 4.4 There exists a data structure for maintaining a minimum spanning forest such that

for any l the expected time for a sequence of l updates starting with a random subgraph of �G of size

m0 for any m0 is O(l logn+
Pl

i=1 n=
p
mi), where mi is the number of edges in G after operation i.

14 David Alberts, Monika Rauch Henzinger

5 Connectivity

To maintain connectivity dynamically the algorithm by Frederickson in [12] assigns cost 1 to edges in

the current graphs and connects di�erent connected component by cost 2 (dummy) edges. Queries

can be answered in worst case logarithmic time using the dynamic tree data structure represent-

ing T 0. However, Frederickson describes an additional data structure which allows constant time

connectivity queries. Its update time is dominated by the update time of the dynamic minimum

spanning forest data structure. Using the same approach with the minimum spanning forest data

structure presented in the previous section gives the following result.

Theorem 5.1 There exists a data structure that answers connectivity queries in constant time and

that can be updated in total expected time O(l logn +
Pl

i=1 n=
p
mi) during a sequence of l update

operations starting with a random subgraph of �G of size m0 for any m0, where mi is the number of

edges in G after operation i.

6 Bipartiteness

In this section we analyze the average case performance of an algorithm for dynamic bipartiteness

due to Eppstein et al. [10, 11]. As in Section 5, we give each edge cost 1 and connect di�erent

connected components by dummy edges of cost 2. The basic idea is to maintain a spanning tree

T of the graph G and additionally to maintain the parities of the cycles which are induced by the

non-tree edges. The graph is bipartite if and only if no non-tree edge induces an odd cycle.

As in Section 4, we choose Suit(G) to consist of all minimum spanning trees of G. The minimum

spanning tree T of G is maintained by creating a degree-3 graph G0 and maintaining the minimum

spanning tree T 0 of G0 using a topology tree TT and a 2-dimensional topology tree 2TT .

6.1 Data Structure

For a non-tree edge e let �e denote its induced cycle. Let d(u; v) be the distance of the vertices

u and v in T , i.e., dashed edges (introduced to satisfy the degree constraints) are not counted. A

boundary vertex of a cluster is an endpoint of a tree edge connecting the cluster with a di�erent

cluster at the same level of the topology tree. The data structure in [11] consists of

1. the MST T 0,

2. a topology tree TT where we store at each node C the distances between every pair of

boundary vertices of C,

3. the corresponding 2-dimensional topology tree 2TT . The nodes of 2TT are augmented with

the following labels:

Associated with each node of 2TT are up to two edges which represent the two parity classes.

These are called the selected edges. For each selected edge we maintain the distances of its

endpoints to the boundary vertices of the corresponding clusters.

We extend this data structure as follows to speed up updates in the good case.

1. We keep a dynamic tree data structure [32] of T 0 (for determining distances between nodes

in T) giving dashed edges length 0 and non-dashed edges length 1.

Average Case Analysis of Dynamic Graph Algorithms 15

2. At each leaf C � D of 2TT we keep two lists, each one containing the non-tree edges of G

between C and D of the same parity.

6.2 Updates

An update operation (a) tests if the good case or the bad case occurs and (b) executes the corre-

sponding algorithm.

(a) The dynamic tree data structure that maintains the minimum spanning tree T 0 is used (as

in [12]) to decide which case occurs.

(b) The algorithm consists of three steps:

(b1) Updating the mapping from G to G0, i.e. maintaining G0 as a degree-3 graph. See Section 4.3.

It takes constant time per update.

(b2) Updating the dynamic restricted partition and the structure of TT and 2TT . The procedure

for the bad case is described in Section 4.2 and takes time O(
p
m), the procedure for the

good case is described in Section 4.4 and takes time O(logn) plus constant amortized time.

(b3) Updating the labels of 2TT and the dynamic tree. In [11] it is shown that the worst-case

update time for this data structure is O(
p
m). Our extensions only increase the running time

by a constant factor. Thus, the update time in the bad case is O(
p
m).

We show in Section 6.3 that updates in labels of 2TT and the dynamic tree takes time O(logn)

plus constant amortized time in the good case.

Summing the time for steps (a)- (b3) gives a total time of O(k) for the bad case and O(logn) plus

O(1) amortized time for the good case.

6.3 Updating the Labels of 2TT and the Dynamic Tree in the Good Case

We describe how to update in the good case the labels of 2TT and the dynamic tree data structure.

The labels of 2TT : If Condition (2) or (3) are restored when updating the dynamic partition

(see Section 4.4), then the labels are updated in time O(
p
m), as in the bad case. Otherwise at

most O(1) clusters of size O(1) are created. The data structure for them and their ancestors in

TT and 2TT can be built in time O(logn). We show next how to update the data structure of the

remaining clusters in time O(logn). Amortizing the cost if Condition (2) or (3) are restored as in

Section 4.4 gives a running time of O(logn) plus O(1) amortized time.

First assume that e is inserted. Let u 2 C and v 2 D. We have to compute the parity class of e

in order to insert it into the right list at the leaf node C�D in 2TT . If C = D we use the dynamic

tree data structure to determine the parity of e and of the selected edges of C � C. If C 6= D

we determine the distance of u (v) to a boundary vertex of C (D) by determining the number of

non-dashed edges on the path in T between them. This can be computed in time O(logn) using

the dynamic tree data structure for T . Then we compare the parity of e with the parities of the

selected edges stored at C � D (if they exist) in constant time using the distance information in

the data structure and the following lemma shown in [11].

Lemma 6.1 Let C and D be any two clusters at the same level of the topology tree, and let f1 and

f2 be any two non-tree edges between C and D. Let wC be a boundary vertex of C, and let wD be

16 David Alberts, Monika Rauch Henzinger

a boundary vertex of D. Let j1 and j2 be respectively the endpoints of f1 and f2 in C and let r1
and r2 be respectively the endpoints of f1 and f2 in D. The two cycles �f1 and �f2 have the same

parity if and only if the quantity d(j1; wC) + d(j2; wC) + d(r1; wD) + d(r2; wD) is even.

After determining the parity class of e we insert e in the appropriate list. This takes constant time.

If the selected edges of C �D change, we percolate this change up in 2TT . Since we can update

each level in constant time using Lemma 6.1 the whole procedure takes time O(logn).

If e is to be deleted, we delete it from the list L at C � D in which it is contained. If e was

a selected edge we replace it by the next edge in L if there exists one. This takes constant time.

Updating the ancestors of C �D takes time O(logn) as in the case of insertions.

The dynamic tree: In the good case updating the mapping from G to G0 changes a constant

number of edges of T 0. Each modi�cation takes time O(logn).

6.4 The Final Result

The analysis for minimum spanning trees carries over, so we get the following theorem.

Theorem 6.2 There exists a data structure that answers bipartiteness queries in constant time

and that can be updated in total expected time O(l logn +
Pl

i=1 n=
p
mi) during a sequence of l

update operations starting with a random subgraph of �G of size m0 for any m0, where mi is the

number of edges in G after operation i.

7 2-Edge Connectivity

Frederickson gives a data structure, called ambivalent data structure, that answers 2-edge connec-

tivity queries in time O(logn) [13]. It can be updated in time O(
p
m).

The basic idea is to maintain a spanning tree T of the graph G and coverage information for

each tree edge. A tree edge e is covered if there exists a non-tree edge (x; y) such that e lies on the

tree path between x and y. As shown in [13], two nodes u and v are 2-edge connected i� all edges

in the tree path between u and v are covered. Thus, to answer 2-edge connectivity queries the

ambivalent data structure maintains coverage information in various forms such that it can quickly

�nd uncovered edges on any path in T .

We modify the ambivalent data structure and its update algorithm in order to speed up the

good case.

7.1 Data Structure

We �rst describe the data structure of [13] and then give our modi�cations. As in Section 4, the

algorithm gives each edge G cost 1 and connects G by dummy edges of cost 2. We choose Suit(G)

to consist of all minimum spanning trees of G. The algorithm creates a degree-3 graph G0 and

maintains a minimum spanning tree T 0 of G0 in a topology TT and a 2-dimensional topology 2TT .

The algorithm partitions the edges of T 0 into chains, called complete paths for which it keeps

coverage information. Subpaths of complete paths are called partial paths. They are used to

compute coverage information for edges on complete paths e�ciently and to answer coverage queries

about parts of complete paths.

Average Case Analysis of Dynamic Graph Algorithms 17

Each cluster in the partition, i.e., each leaf of TT has an associated partial path, but no complete

path, and each internal node of TT has either an associated partial or an associated complete path.

The path associated with a cluster C is a subpath of the spanning tree T 0, formed by edges of C.

See [13] for the de�nition of complete and partial paths,

For a node u 2 C, let proj(u) be the node on the partial path of C that is closest to u in T 0

and let dist(u; e) be the number of edges on the partial path of C between proj(u) and the tree

edge e incident to C.

For each tree edge e incident to C we denote

� by maxcover(C;D; e) the maximum of dist(u; e) over all nodes u 2 C that are connected by

a non-tree edge to a node in D,

� by maxcover node(C;D; e) a node u such that dist(u; e) = maxcover(C;D; e), and

� bymaxcover edge(C;D; e) a non-tree edge between C andD that is incident tomaxcover node(C;D; e).

The ambivalent data structure consists of

1. a MST T 0,

2. the partial and complete paths represented in binary trees,

3. a topology tree TT for T 0, extended with the following labels:

(A) At each leaf C of TT the algorithm stores the following labels:

(a) It stores a value disttobr for each node u 2 C: In a graph that only contains T and the

non-tree edges incident to C, disttobr contains the number of edges (in T) from u to

the closest bridge on the path from u to (but excluding) the partial path of C if such a

bridge exists and 1 otherwise.

(b) It also keeps a least common ancestor data structure in T 0 for nodes of C rooted at an

arbitrary boundary vertex of C.

(B) For each node C of TT the data structure keeps

(a) a pointer to the partial or complete path of C,

(b) the length of the partial path of C (if it exists),

(c) a value toptobr, which is the number of edges (in T 0) from a �xed endpoint of the

complete path associated with C to the closest bridge on the complete path (if it exists),

and

(d) additional values that do not change in the good case and that can be created in time

linear in the size of C.

4. the corresponding 2-dimensional topology tree 2TT . The nodes of 2TT are labeled with the

following values.

(A) At each leaf C � D with C 6= D it keeps for each tree edge e incident to C the value

maxcover(C;D; e).

18 David Alberts, Monika Rauch Henzinger

(B) At each internal node of 2TT it keeps a constant number of maxcover-values. These

values are computed in constant time from the maxcover-values of its children. In this way,

for each pair (c;D) of nodes on the same level of TT and for each tree edge incident to e, a

maxcover(C;D; e)-value is computed.

We modify the data structure as follows:

1. Extended dynamic path data structure: Inserting or deleting non-tree edges can change the

coverage information at
(
p
m) leaves of the binary trees representing partial and complete

paths. To avoid this cost, we maintain all partial and complete paths in a new data structure,

called extended dynamic path data structure. We present the interface of the data structure

next and give its implementation in Section 7.5.

The extended dynamic path data structure extends the dynamic path data structure of [32].

It represents a set of paths such that two paths are either vertex-disjoint or one path is

contained in the other one. 1 Note that each edge on one of the paths is represented just

once, since a path P1 contained in a path P2 shares parts of the data structure of P2. There

is a unique cover value associated to each edge e0, counting the number of edges which cover

e0.

The data structure supports the following operations:

� Initialize(P;E0) : Build a data structure for a partial path P with a set of covering

edges E0.

� Cover(P; e) : Increase the cover value of each edge e0 in P which is covered by e.

� Uncover(P; e) : Decrease the cover value of each edge e0 in P which was covered by e.

� Link(P1; P2; e) : Link the data structures for P1 and P2 by the edge e. This is allowed

if neither P1 nor P2 are subpaths of another path in the data structure.

� Unlink(P) : Undo the Link operation that created P . This is allowed if P is currently

not linked with another path.

� RightUncovered(P) : Return the rightmost uncovered edge on P if it exists.

� LeftUncovered(P) : Return the leftmost uncovered edge on P if it exists.

� Add(P; x; y) : Replace the edge (x; y) of P by the edges (x; z) and (z; y), where z is a

new node that does not appear on any path. The cost of both new edges is equal to the

cost of (x; y).

� Remove(P; z) : Remove the two edges (x; z) and (z; y) of P and add the new edge (x; y).

The operation demands that the cost of the two removed edges is identical. The cost of

the new edge is the cost of a removed edge.

A sequence of Link and Unlink operations results in a \linkage tree". Let d be the depth

of this tree. Below we describe an implementation of this data structure that takes constant

time for Link and Unlink; O(d+ log n) time for RightUncovered, LeftUncovered, Cover,

Uncover, Add, and Remove; and O(jP j+ jE0j) time for Initialize(P;E0). Since d is O(logn)

1The de�nition of complete paths in [13] does not make them vertex-disjoint: The head of a complete path can be

contained in another complete path. To make them vertex-disjoint we simply create a second copy of these shared

nodes in the extended path data structure.

Average Case Analysis of Dynamic Graph Algorithms 19

in our application RightUncovered, LeftUncovered, Cover, Uncover, Add, and Remove

take time O(logn).

We use this data structure to maintain the complete and partial paths together with their

coverage information. An edge e on a partial or complete path P is covered in the extended

dynamic path data structure i� it is covered in the binary tree representation of [13]. Ex-

pressed more formally, the cover value of e is larger than 0 in the extended dynamic path data

structure i� the somecov value of an ancestor of e is set to 1 in the binary tree representation

of P .

2. Labeled dynamic tree: This data structure is used for three di�erent reasons: (i) It replaces

the disttobr values of 2.A.a. (ii) It replaces the least common ancest data structure of 2.A.b.

(iii) It computes a dist(u; e) value in time O(logn) instead of O(
p
m).

(i) We do not store the disttobr values, since one good-case update might change
(
p
m)

disttobr values. Instead we store the spanning tree of T 0 in a dynamic tree data structure [32]

and keep for each tree edge e in C a cover-counter: If e is not on the partial path of C, its

cover-counter counts the number of non-tree edges incident to C that cover e. If e is on the

partial path of C, its cover-counter is always 1. Determining the disttobr value of a node u

corresponds to a findmin-query in the dynamic tree data structure to determine the bridge

nearest to u and to determine the length of the path from u to this bridge.2

A constant number of disttobr values change during an update operation. The new values

can be computed in time O(logn) in the modi�ed data structure, as supposed to O(
p
m)

in the original data structure. The disttobr values are used during a 2-edge connectivity

query. However, each query only needs to know the value of a constant number of disttobr

values, which takes time O(logn) using our data structure. Thus, our data structure does

not increase the query time of O(logn).

(ii) We do not store the least common ancestor data structure in T 0, since even good-case

updates might change a constant number of edges of T 0 (see Section 4.3). Instead we use the

above dynamic tree data structure to answer least common ancestor queries in time O(logn).

As described for disttobr values, this does not increase the query time, since only a constant

number of least common ancestor queries are asked during a 2-edge connectivity query. It

also reduces the time to update the least common ancestor information to O(logn).

(iii) Given a new non-tree edge (u; v) with u in the level-0 cluster C and v 62 C, a slight

variant of this data structure can also be used to compute proj(u) and to compute dist(u; e)

for each tree edge e incident to C. It takes time O(logn). We leave the details to the reader.

3. Max-heaps: We do not keep maxcover values, but instead the corresponding maxcover edge

at each node of 2TT . While the data structure in [13] used maxcover values to cover paths,

our algorithm uses maxcoer edges instead.

Storing the edge instead of the value has the following advantage: Even during good case

updates, edges can be added to or removed from a partial or complete path when updating

the mapping >from G to G0 and the dynamic partition. Thus, the maxcover value becomes

outdated, while the maxcover edge and the relative order of the non-tree edges incident to a

cluster in the \maxcover-order" does not becomes outdated.

2The latter can be done with an straightforward extension of the dynamic tree data structure in time O(log n).

20 David Alberts, Monika Rauch Henzinger

Note that for an internal node with partial path of 2TT its maxcover edges can be com-

puted in time O(1) from the maxcover edges of its children. (i) To quickly determine the

maxcover edge at a leaf of 2TT we keep max-heaps at leaves of 2TT . We also keep them (ii)

at internal nodes of TT with complete paths to speed up updating their coverage information.

(i) At each leaf C �D with C 6= D of 2TT we keep for each tree edge e incident to C a heap

max(C;D; e) that contains all non-tree edges (u; v) with u 2 C and v 2 D in the order of the

dist(u; e)-values. The maximum element of the heap is the maxcover edge(C;D; e).

(ii) If a node C of TT has a complete path, it has a degree-1 child C1 in TT (see [13]). Let e be

the tree edge incident to C1. For all cluster D 6= C1 on the same level as C1, the heap max(C)

contains all non-tree edges (u; v) with u 2 C1 and v 2 D in the order of the dist(u; e)-values.

The algorithm of [13] recomputes this value, which is a maximum of O(
p
m) numbers, from

scratch after each update. We avoid this by adding the heap.

7.2 Updates

We now describe the modi�ed update algorithm. As in Section 4.2 an update executes Steps (a){

(b3). Steps (a){(b2) are identical to Section 4.2. Step (b3) updates the partial and complete paths,

the labels of TT , the labels of 2TT , and the dynamic tree of T . In the bad case it updates the

labels in the original datastructure as in [13] and it updates the new labels of the modi�ed data

structure in time O(
p
m) in the straightforward way. The partial and complete paths are updated

using the same operations as in [13], but using our new data structure instead of the binary tree

data structure. For each operation, its running time matches the running time of the binary tree

representation.

The algorithm for Step (b3) in the good case is given in Section 7.3. Step (b3) takes time

O(
p
m) for the bad case and O(logn) plus O(1) amortized time for the good case.

Summing the time for Steps (a){(b3) gives a total time of O(
p
m) for the bad case and O(logn)

plus O(1) amortized time for the good case.

7.3 Updating the Partial and Complete Paths, the Labels of TT and 2TT and

the Dynamic Tree of T 0 in the Good Case

If Condition (2) or (3) are restored when updating the dynamic partition, (see Section 4.4), then

the partial and complete paths, the labels of TT and 2TT and the dynamic tree of T are updated

in time O(
p
m), as in the bad case. The costs are amortized as discussed before and contribute a

O(1) amortized cost to each update. Otherwise, there are at most six new clusters, each of constant

size. The data structures for them and their ancestors can be created in time O(logn). We show

that each part of the data structure for the old clusters can be updated in time O(logn).

Let Ci(x) be the level-i cluster containing x. We consider the insertion or deletion of an edge

(u; v). The only labels that have to be updated are the labels of clusters (at various levels) containing

u or v. We achieve O(logn) update time, since there are O(logn) such clusters at which we spend

O(1) time each, and there are O(1) clusters at which we spend O(logn) time.

The partial and complete paths: We denote by PP (C) the partial path of cluster C and by

CP (C) the complete path of cluster C. Let Cu be the least ancestor of C0(u) in TT with associated

complete path. If edges are added to or removed from the partial or complete path of a cluster

C0, then there exists a level-0 cluster C such that the edges are also added to or removed from the

Average Case Analysis of Dynamic Graph Algorithms 21

partial path of C. The algorithm updates the partial path data structure of C also updates the

partial path of C0, by data structure sharing.

When edges added to the partial path, the algorithm �rst executes Unlink operations until the

resulting partial path corresponds to the partial path of the level-0 cluster C. Then it executes

an Add operation. Finally it executes the below steps to add the non-tree edge. When edges are

removed from the partial path, the algorithm �rst executes the below steps to remove the non-tree

edge. Then it executes Unlink operations until the resulting partial path is the partial path of a

level-0 cluster. Since each pair of edges to be removed from the partial path by a Remove operation

have the same cost, they are �nally removed by a Remove operation.

The coverage information of at most two partial or complete paths needs to be updated when

a non-tree edge (u; v) is inserted or deleted. Which paths have to be updated depends on u and v.

We distinguish three cases:

(i) If u and v are contained in the same level-0 cluster C and the update is an insertion, then we

execute Cover(PP (C); (proj(u); proj(v)). If they are in the same level-0 cluster and the update is

a deletion we execute Uncover(PP (C); (proj(u); proj(v)).

(ii) If u and v are not contained in the same level-0 cluster, but Cu = Cw, let i be the highest

level such that Ci(u) 6= Ci(v). We can determine i in time O(logn). The only maxcover edges that

have changed and are used to cover a partial or complete path are maxcover edge(Ci(u); Ci(v); e)

and maxcover edge(Ci(v); Ci(u); e), where e is the tree edge connecting Ci(u) and Ci(v). Let m(u)

(m(v)) denote the former value ofmaxcover edge(Ci(u); Ci(v); e) (maxcover edge(Ci(v); Ci(u); e)),

and let m0(u) and m0(v) be the current edges. We execute �rst Uncover(PP (Ci+1(u)); m(u)) and

Uncover(PP (Ci+1(u)); m(v)), and then Cover(PP (Ci+1(u)); m
0(u)) and Cover(PP (Ci+1(u)); m

0(v)).

(iii) If Cu 6= Cv, then the maximum maxcover edge in max(Cu) is the only maxcover edge

that has changes and is used to cover a partial or complete path (namely the complete path of Cu).

Thus, we uncover CP (Cu) from the old maximum element of max(Cu) and cover it with the new

maximum element of max(Cu). We do the same for same for v.

The labels of TT : (A) We update the labeled dynamic trees of C0(u) and of C0(v) by adding

a constant number of edges with the appropriate cover counter. If proj(u) = proj(v) (and thus

C0(u) = C0(v)) we increase the cover-counter of all tree edges between u and v. Otherwise we

increment the cover-counters of all edges on the tree path between u and proj(u), and between v

and proj(v). Either case takes time O(logn).

(B) We discuss the items in the order of Section 7.1.

(b) If tree edges are added to the partial path of C0(u) or C0(v) then their length-values are

updated. To update their ancestors, the changes are percolated up the tree.

(c) For a cluster C the toptobr(C) value can be computed in timeO(logn) using the data structure

for the complete path of C. Since at most 2 complete paths are a�ected by the update,

updating all toptobr values takes time O(logn).

(d) Instead of the least common ancestor data structure, we update the dynamic trees of C0(u)

and C0(v) as described in (A).

The labels of 2TT : (A) Using the dynamic tree data structure of the spanning tree of C0(u) we

can �nd dist(u; e) to each tree edge e incident to C0(u) in time O(logn). Inserting or deleting (u; v)

from the heap max(C0(u); C0(v); e) determines the new value of maxcover edge(C0(u); C0(v); e) in

22 David Alberts, Monika Rauch Henzinger

time O(logn). Since at most four heaps are a�ected, updating all maxcover edge values at level-0

clusters takes time O(logn).

(B) Each maxcover edge of an internal node of 2TT can be computed in constant time from

the maxcover edges of its children. Since 2TT has depth O(logn), all maxcover edges can be

updated in time O(logn).

Additionally: The only max-heaps of internal nodes that change are the heaps of Cu and Cv. To

update max(Cu) and max(Cv) we delete the old maxcover edge of the corresponding tree degree

1 child and insert the new one if the value has actually changed. This takes time O(logn).

The dynamic tree: In the good case updating the mapping from G to G0 changes a constant

number of edges of T 0. Each modi�cation takes time O(logn).

This shows that the data structure can be updated in time O(logn) plus O(1) amortized time

in the good case.

7.4 Final Result

Using the analysis of Section 3 gives the following theorem.

Theorem 7.1 There exists a dynamic data structure that answers 2-edge connectivity queries in

time O(logn) and that can be updated in total expected time O(l logn +
Pl

i=1 n=
p
mi) during a

sequence of l update operations starting with a random subgraph of �G of size m0, where mi is the

number of edges in G after operation i.

7.5 An Extended Dynamic Path Data Structure

In this section we present the extended dynamic path data structure for the maintenance of the

cover values of the edges of paths. It is based on the dynamic paths data structure which Sleator

and Tarjan used for their dynamic trees [32].

We consider the following problem. We are given a set of paths such that two paths are either

vertex-disjoint or one path is contained in the other one. Each path has a leftmost degree one

vertex (also called the head) and a rightmost degree one vertex (also called the tail). There is a

cover value associated to each edge e0 in one of the paths. It counts the number of edges which

cover e0. The data structure allows the following operations:

� Initialize(P;E0) Build a data structure for a partial path P with a set of covering edges E0.

� Cover(P; e) Increase the cover value of each edge e0 in P which is covered by e.

� Uncover(P; e) Decrease the cover value of each edge e0 in P which was covered by e.

� Link(P1; P2; e) Link the data structures for P1 and P2 by the edge e. This is allowed if neither

P1 nor P2 are subpaths of another path in the data structure.

� Unlink(P) Undo the Link operation that created P . This is allowed if P is currently not

linked with another path.

� RightUncovered(P) Return the rightmost uncovered edge on P if it exists.

� LeftUncovered(P) Return the leftmost uncovered edge on P if it exists.

Average Case Analysis of Dynamic Graph Algorithms 23

� Add(P; x; y) : Replace the edge (x; y) of P by the edges (x; z) and (z; y), where z is a new

node that does not appear on any path. The cost of both new edges is equal to the cost of

(x; y).

� Remove(P; z) : Remove the two edges (x; z) and (z; y) of P and add the new edge (x; y). The

operation demands that the cost of the two removed edges is identical. The cost of the new

edge is the cost of a removed edge.

Multiple edges are allowed, but not self-loops. A sequence of Link and Unlink operations results

in a \linkage tree". Let d be the depth of this tree. In this section we describe an implementa-

tion of the data structure that takes constant time for Link and Unlink; O(d + log jP j) time for
RightUncovered, LeftUncovered, Cover, Uncover, Add, and Remove; and O(jP j+ jE0j) time for
Initialize(P;E0).

In their paper on dynamic trees [32] Sleator and Tarjan introduce a data structure for the

dynamic maintenance of a collection of vertex-disjoint edge weighted paths. Each path p has a

head and a tail. The data structure supports 11 kinds of operations. A subset of them is quoted

below from [32]. The operations path, head, tail, before, and after have the obvious meaning.

pmincost(path p): Return the vertex v closest to tail(p) such that (v; after(v)) has

minimum cost among edges on p.

pupdate(path p, real x): Add x to the cost of every edge on p.

reverse(path p): Reverse the direction of p, making the head the tail and vice versa.

concatenate(path p; q; real x): Combine p and q by adding the edge (tail(p); head(q))

of cost x. Return the combined path.

split(vertex v): Divide path(v) into (up to) three parts by deleting the edges incident

to v. Return a list [p; q; x; y], where p is the subpath consisting of all the vertices

from head(path(v)) to before(v), q is the subpath consisting of all vertices from

after(v) to tail(path(v)), x is the cost of the deleted edge (before(v); v), and y is

the cost of the deleted edge (v; after(v)). If v is originally the head of path(v), p

is null and x is unde�ned; if v is originally the tail of path(v), q is null and y is

unde�ned.

Every path in the dynamic path data structure is represented by a balanced binary tree whose

leaves represent the vertices of the path, and whose internal nodes represent the edges of the path.

At each internal node of such a tree a constant amount of local (weight) information is stored.

Every path in the extended dynamic path data structure is stored as a path or a subpath of

a dynamic path data structure. The edge weights are the cover values. Whenever an operation

(except Link and Unlink) involves a path P that is a subpath of another path, we reconstruct

P by a suitable sequence of Unlink operations. After performing the operation we execute the

corresponding Link sequence.

� To execute Initialize(P;E0) we compute �rst the cover value for the edges of P by a left-to-

right scan of P with each edge of E0 stored at its endpoints in P . Then we build a dynamic

tree data structure for P using the cover values as edge weights.

24 David Alberts, Monika Rauch Henzinger

� We realize Cover(P; (u; v)) by using split, pupdate, and concatenate as follows. W.l.o.g. as-

sume that u is closer to head(P) than v. If u is not the head of P then we split P at before(u).

If v is not the tail of P then we split the subpath containing u at after(v). We add 1 to all

edge weights in the subpath starting at u by using pupdate and merge P together again using

concatenate. Obviously, Uncover(P; (u; v)) can be realized in the same way, except that we

subtract 1 instead of adding 1.

� To implement the Link(P1; P2; e) operation we do not use the concatenate operation because

we want to execute this operation in constant time. Instead we create a new node for e whose

children are the roots of the data structures for P1 and P2. Afterwards we update the local

information. An Unlink(P) is the reversal of the Link operation.

� A LeftUncovered(P) query can be answered by using pmincost. If we want to answer

a RightUncovered(P) query we �rst execute reverse(P), use pmincost(P), and execute

reverse(P) again.

� We realize Add(P; x; y) by the following sequence of operations. First, we split P at x. This

returns (up to) two paths and weights as described above. Then we concatenate x to the path

ending at its former former predecessor again (if it existed) using the corresponding weight

which was returned by split. We create a new path consisting only of z, and concatenate it

with the paths ending at x and starting at y with the weight of the edge (x; y) which was

returned by split as well.

� The operation Remove(P; z) is realized by a split at z followed by a concatenate operation

for the two paths returned by split with one of the two (identical) weights returned by split.

The running time of Initialize(P;E0) is O(jP j+ jE0j) since the scan can be executed in linear

time and the dynamic tree for a path P with given edge weights can be built in time O(jP j). A
Link or Unlink operation takes constant time since, as shown in [32], the local information can

be updated in constant time. Any of the other operations is enclosed in a sequence at most 2d

Unlink and Link operations. The operation itself consists of a constant number of dynamic path

operations which take time O(log jP j) giving a total of time O(d+log jP j). This shows the claimed
bounds on the running times.

8 Maximum Cardinality Matching

Unlike minimum spanning tree and connectivity, the dynamic maximum matching problem is not

solvable using sparsi�cation [10, 11], because there are no non-trivial certi�cates. However, there are

sparse suitable subgraphs, so this problem reveals an interesting di�erence between the otherwise

similar concepts of certi�cates and suitable subgraphs.

Using just one phase of a static maximum cardinality matching algorithm per update leads to

a dynamic algorithm with O(n +m) worst case update time (see, e.g., [2]). This is still the best

known algorithm. In the following we show that a variant of this simple approach yields a bound

of O(n) expected time for inputs which are random according to the rr-model.

Average Case Analysis of Dynamic Graph Algorithms 25

8.1 Terminology

The cardinality of a maximum matching is the matching number of the graph. In general a maxi-

mum matching is not unique. All of the following de�nitions are with respect to a �xed matching

M . A path P in G is an alternating path with respect to M i� the edges in P alternate between

being in the matching M and not being in M as we walk along P . We will drop the phrase \with

respect to M" whenever there are no ambiguities. A free vertex is a vertex which is not incident

to any matching edge. An alternating forest is a forest in G with the free vertices as roots whose

paths are alternating.

An augmenting path is an alternating path which starts and ends with a free vertex. A matching

can be augmented along an augmenting path P by removing the matching edges on P from the

matching and inserting the non-matching edges on P into the matching. This yields a matching

M 0 which contains one more edge than M .

A graph H is factor-critical if H � v has a perfect matching for every vertex v 2 V (H). This

implies that jV (H)j is odd and H itself has no perfect matching. Let G = (V;E) be a graph

with some matching M . A blossom B in G with respect to M is a factor-critical subgraph of G

which contains k matching edges where jV (B)j = 2k + 1. One vertex is a trivial blossom. The

easiest nontrivial case is just an odd cycle where all vertices but one are matched. Note that the

de�nition of a blossom is not unique in the literature, we de�ne it similar to [23]. A blossom which

is not properly contained in another one is a maximal blossom. A blossom forest with respect to

M is a subgraph F of G containing vertex-disjoint blossoms such that contracting each blossom

in F to a single vertex | which is called shrinking the blossom | leads to an alternating forest.

A maximum blossom forest is a blossom forest with maximal cardinality of its vertex set. In the

following we only deal with maximum blossom forests and drop the word \maximum". Since one

can add an arbitrary number of edges to a blossom and it remains a blossom, blossom forests are

not necessarily sparse, but it is easy to see that there always exist sparse blossom forests.

Now let M be a maximum matching again. If there exists an alternating path with respect to

M from some free vertex to a certain vertex v, then v is reachable. If one of the alternating paths

from a reachable vertex v to some free vertex is of even length3, then v is an even vertex. If v is

reachable, but only using odd alternating paths, then it is an odd vertex. Free vertices are also

even. The sets of even and odd vertices are unique, i.e., they are independent of the particular

choice of a maximum matching [7]. A non-reachable vertex is called out-of-forest vertex.

8.2 Data Structure and Suit(G)

The data structure we maintain consists of a sparse blossom forest, parity informations (even, odd,

or out-of-forest) for the vertices, and a list consisting of the edges in a current maximum matching.

The matching and forest edges are marked. Thus, it is trivial to answer a query. Additionally, we

store at each node in the blossom forest a pointer to the tree that it belongs to. A blossom forest

is a well-known data structure used in static maximum cardinality matching algorithms, see, e.g.,

[7, 23, 33].

Conceptually, the data structure is a sparse subgraph of the current graphG, which has the same

matching number and the same parities as G. Even, odd, and out-of-forest vertices correspond to

the Gallai-Edmonds-Decomposition of a graph. For a de�nition and properties of this decomposition

3The length of a path is the number of edges it contains.

26 David Alberts, Monika Rauch Henzinger

see [23]. Since our algorithm maintains the partition of the vertices into even, odd, and out-of-forest

vertices, it also maintains the Gallai-Edmonds-Decomposition of the graph.

We de�ne the set Suit(G) as follows. An element of Suit(G) is a maximum matching of

the current graph unioned with a blossom forest with respect to this matching. It follows that

s(n) = O(n). We show next that the mapping Suit meets the requirements for Theorem 3.1.

Lemma 8.1 The mapping Suit as de�ned above ful�lls condition C (see page 6).

Proof. It is equivalent to show that conditions A and B hold (see page 5). Let G be the current

graph. Let S be the current suitable subgraph, consisting of the union of the current maximum

matching M , and a blossom forest B with respect to M .

We begin with condition A. Assume that we delete an edge e which does not belong to S. Since

e is not inM , its deletion does not decrease the matching number. ThusM is maximum in G�feg.
Since e is not in B, its deletion has no inuence on the parities of the vertices. Thus B is a blossom

forest with respect to M for G� feg, too. Hence, the union M [B is a member of Suit(G� feg).
In order to show condition B, suppose that we insert an edge e into the current edge set E. Let

E0 = E [feg. We have to update the blossom forest or the matching only, if one of the following

three conditions applies.

(1) The insertion of e increases the matching number. In this case we �nd an augmenting path

when e is inserted, we augment the matching and have to rebuild the blossom forest. If there

is a maximum matching in E0 not containing e, then the deletion of e >from E0 does not

decrease the matching number. This is a contradiction, since the matching number is unique.

So e has to be in every maximum matching in E0.

(2) The insertion of e increases the number of reachable vertices, but it does not change the

matching number. In this case the blossom forest grows. Since the reachable vertices are

unique and they form the vertex set of every blossom forest, we can argue in the same way

as in the previous case that e is in every possible blossom forest for the new graph.

(3) The insertion of e neither changes the matching number nor the number of reachable vertices,

but it changes the parity of some odd vertices to even. In this case there is a new blossom in

the forest. Since the parities of the reachable vertices within the blossom forest are the same

as in the whole graph and they are unique, we can again deduce that e has to be in every

possible blossom forest for the new graph.

In all three cases where S is no longer suitable after the insertion of the new edge e, e has to be

part of any new suitable subgraph. Thus, condition B holds. 2

8.3 Updates

It is easy to detect whether an update implies a change in the suitable subgraph (the bad case) or

not. In case of a deletion, this is done using the labels of the edges. In case of an insertion, we

can check whether one of the three conditions mentioned in Lemma 8.1 applies by using the parity

information and the tree pointers at the vertices. In both cases this can be done in constant time.

Tarjan [33] describes a static algorithm for computing a maximum matching in general graphs.

This algorithm is a variant of Gabow's earlier implementation [14] of Edmond's algorithm [7].

Average Case Analysis of Dynamic Graph Algorithms 27

It proceeds in phases. In each phase it either constructs a sparse blossom forest, or it �nds an

augmenting path with respect to an intermediate matching computed so far and augments this

matching in O(n + m) time. The algorithm computes the reachable vertices, their parities, the

blossoms and informations to retrieve augmenting paths. It grows an alternating forest and shrinks

nontrivial blossoms reachable via an even alternating path when they are detected.

In a bad case we simply recompute the data structure by using one phase of Tarjan's algorithm.

If the change also a�ects the current maximum matching, we have to apply the algorithm twice,

once for augmenting and once for computing a new blossom forest with respect to the new maximum

matching. These bad cases take O(n +m) time. All good cases can be handled in constant time,

since we just update the adjacency structure of the graph. For preprocessing we use the static

O(
p
nm) algorithm of Micali and Vazirani [24, 35] to construct a maximum matching in the initial

random graph and one phase of Tarjan's algorithm to construct a sparse blossom forest with respect

to the initial maximum matching. Using Theorem 3.1 we get the following result.

Theorem 8.2 There exists a data structure for dynamic maximum matching which can be updated

in O(n) expected time with respect to the rr-model. It returns a current maximum matching or

answers the question whether a particular edge is in the current maximum matching in optimal

time.

8.4 Insertions only

We give below an insertions-only maximum cardinality matching algorithm with O(n) amortized

time per insertion of an arbitrary (not random) edge, if the initial edge set is empty.

Each phase of Tarjan's algorithm scans the edges in G in arbitrary order until an augmenting

path is found. Scanning them in the order of insertion leads immediately to a semi-dynamic

algorithm. Whenever an insertion creates an augmenting path, the data structure is rebuilt. A

sequence of insertions between two rebuilds corresponds to one phase of Tarjan's algorithm . All

the work which has to be done in one such phase, i.e., growing the forest, shrinking blossoms,

augmenting the matching at the end of the phase, and rebuilding the blossom forest with respect

to the new maximum matching afterwards, takes time O(n + m). Since there are at most n=2

phases, the total time is O((n+m)n), i.e. the amortized time per insertion is O(n), provided the

algorithm is started with an empty edge set.

9 k-Edge Connectivity and k-Vertex Connectivity

Eppstein et al. [11] give a dynamic algorithm for k-edge connectivity with worst case update time

O(k2n log(n=k)), which we slightly modify in order to speed up the good case. It uses an algorithm

by Gabow [15] for the static problem and the following lemma.

Let G be a graph and T1 = U1 a spanning forest of G. Let Ti be a spanning forest of G n Ui�1

and let Ui be Ui�1 [Ti. Then Uk is called a sparse k-edge connectivity certi�cate for G.

Lemma 9.1 [26, 34] Let G be a graph and let Uk be a sparse k-edge connectivity certi�cate for G.

Then G is k-edge connected if and only if Uk is k-edge connected.

For notational convenience let U0 be the empty graph. For each i we store GnUi�1 in the above

minimum spanning tree data structure to maintain Ti. We choose Suit(G) to the set of all sparse k-

28 David Alberts, Monika Rauch Henzinger

edge connectivity certi�cates of G. If an update operation does not change Uk (good case) we incur

amortized cost O(k log n). In the bad case we incur O(k
p
m+ k2n log(n=k)) = O(k2n log(n=k)).

The size of the suitable subgraph in this case is O(kn), so by Theorem 3.1 we get the following

result.

Theorem 9.2 There exists a data structure that answers the question whether the current graph

is k-edge connected in constant time and that can be updated in O(min(1; kn=m)(k2n log(n=k)))

amortized expected time with respect to the rr-model.

We discuss next how to test dynamically if the graph is k-vertex connected. Lemma 9.1

also holds for k-vertex connectivity provided that Ti is chosen to be a scan-�rst search forest

of G n Ui�1 [4, 26]. To quickly test for the good case we de�ne the smallest sparse k-edge connec-

tivity certi�cate as follows: we number all vertices during a preprocessing phase with a unique label

between 1 and n in an arbitrary, but �xed way. Then, we use the linear-time algorithm of [26]

to �nd Uk. This algorithm sometimes makes arbitrary choices which vertex to select next. We

requiring that if more than one vertices can be selected, the algorithm has to use the one with

the minimum label. The resulting sparse k-edge connectivity certi�cate Sk is called the smallest

sparse k-edge connectivity certi�cate. We choose Suit(G) to be the unique smallest sparse k-edge

connectivity certi�cate Sk of G.

Note that even with this additional requirement the algorithm of [26] runs in time O(m+n logn).

Thus, we can test if the insertion of an edge e is a good case or bad case by running this algorithm

on Sk [e in time O(kn + n logn). If this is the case we can construct a new suitable subgraph

S0k by running this algorithm on G [e in time O(m+ n logn). Testing if a deletion changes Sk is

obvious: If an edge of Sk is deleted, Sk has to be recomputed, otherwise nothing has to be done.

In the good case we are done. In the bad case we additionally might have to check whether the

new suitable subgraph S0k is k-vertex connected. For this purpose we use the (static) O(k3n1:5 +

k2n2) time k-vertex algorithm by Galil [16]. This provides the following result.

Theorem 9.3 There exists a data structure that answers the question whether the current graph

is k-vertex connected in constant time and that can be updated in O(min(1; kn=m)(k3n1:5 + k2n2))

expected update time with respect to the rr-model.

Conclusion

We present a general technique for analyzing dynamic graph algorithms in the average case setting.

Note that this technique can also be used for analyzing the expected time of randomized incremental

algorithms for static graph problems. There we have a worst case input graph and the algorithm

works by maintaining a current solution while inserting the edges one by one in random order.

In fact, backwards analysis �rst was used in computational geometry for exactly this purpose by

Chew [5].

Note that our technique can also be used to analyze the average case performance of randomized

dynamic graph algorithms. (A randomized algorithm is an algorithm that makes use of random

choices for computing the solution to a worst case input.)

For the connectivity problems considered in this paper the running time of an update consists of

two parts: an expected running time of O(n=
p
m+log n) (where m is the number of edges after the

Average Case Analysis of Dynamic Graph Algorithms 29

update) plus an amortized constant time for rebuilds. It is an interesting open question whether

the data structure can be improved by distributing the costs of rebuilds over previous updates in

a way that gives an expected time bound of O(n=
p
m+ logn) per update.

Eppstein [9] suggested that a good average case behavior for some of the above problems can

also be shown for node insertions and deletions.

Acknowledgments

The authors would like to thank Emo Welzl for helpful discussions.

References

[1] D. Alberts and M. Rauch Henzinger. Average case analysis of dynamic graph algorithms. In

Proc. 6th Symp. on Discrete Algorithms, pages 312 { 321, 1995.

[2] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity and symmetries of

geometric objects. Discrete Comp. Geom., 3:237 { 256, 1988.

[3] B. Bollob�as. Random Graphs. Academic Press, London, 1985.

[4] J. Cheriyan, M. Y. Kao, and R. Thurimella. Algorithms for parallel k-vertex connectivity and

sparse certi�cates. SIAM J. Comput., 22:157 { 174, 1993.

[5] L. P. Chew. Building voronoi diagrams for convex polygons in linear expected time. CS Tech

Report TR90-147, Dartmouth College, 1986.

[6] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental construc-

tions. Comp. Geom.: Theory and Appl., 3:185 { 212, 1993.

[7] J. Edmonds. Paths, trees, and owers. Canad. J. Math., 17:449 { 467, 1965.

[8] D. Eppstein. Average case analysis of dynamic geometric optimization. In Proc. 5th Symp. on

Discrete Algorithms, pages 77 { 86, 1994.

[9] D. Eppstein. Personal communication, 1995.

[10] D. Eppstein, Z. Galil, and G. F. Italiano. Improved sparsi�cation. Technical Report 93-20,

Dept. of Inf. and Comp. Sc., Univ. of Calif., Irvine, CA 92717, 1993.

[11] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsi�cation { a technique for

speeding up dynamic graph algorithms. In Proc. 33rd Symp. on Foundations of Computer

Science, pages 60 { 69, 1992.

[12] G. N. Frederickson. Data structures for on-line updating of minimum spanning trees, with

applications. SIAM J. Comput., 14:781 { 798, 1985.

[13] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest

spanning trees. In Proc. 32nd Symp. on Foundations of Computer Science, pages 632 { 641,

1991.

30 David Alberts, Monika Rauch Henzinger

[14] H. N. Gabow. Implementation of algorithms for maximum matching on nonbipartite graphs.

PhD thesis, Dept. of Computer Science, Stanford University, Stanford, CA, 1973.

[15] H. N. Gabow. A matroid approach to �nding edge connectivity and packing arborescences. In

Proc. 23rd Symp. on Theory of Computing, pages 112 { 122, 1991.

[16] Z. Galil. Finding the vertex connectivity of graphs. SIAM J. Comput., 9:197 { 199, 1980.

[17] M. Rauch Henzinger, M. Thorup. Improved sampling with applications to dynamic graph

algorithms. To appear in Proc. ICALP '96, 1996.

[18] M. Rauch Henzinger. Fully dynamic cycle equivalence in graphs. In Proc. 35th Symp. on

Foundations of Computer Science, pages 744 { 755, 1994.

[19] M. Rauch Henzinger and V. King. Randomized dynamic algorithms with polylogarithmic time

per operation. To appear in Proc. 27th Symp. on Theory of Computing, 1995.

[20] R. M. Karp. personal communications.

[21] P. N. Klein and R. E. Tarjan. A linear-time algorithm for minimum spanning tree. In Proc.

26th Symp. on Theory of Computing, pages 9 { 15, 1994.

[22] P. M. Lewis, R. E. Stearns, J. Hartmanis. Memory bounds for recognition of context-free

and context-sensitve languages. In IEEE Conference on Switching Theory and Logical Design,

pages 191{202, 1965.

[23] L. Lov�asz and M. D. Plummer.Matching Theory, volume 29 ofAnnals of Discrete Mathematics.

North-Holland, Amsterdam, 1986.

[24] S. Micali and V. Vazirani. An O(V 1=2E) algorithm for �nding maximum matching in general

graphs. In Proc. 21st Symp. on Foundations of Computer Science, pages 17 { 27, 1980.

[25] K. Mulmuley. Randomized, multidimensional search trees: dynamic sampling. In Proc. 7th

Symp. on Computational Geometry, pages 121 { 131, 1991.

[26] H. Nagamochi and T. Ibaraki. Linear time algorithms for �nding a sparse k-connected spanning

subgraph of a k-connected graph. Algorithmica, 7:583 { 596, 1992.

[27] M. H. Rauch. Fully dynamic biconnectivity in graphs. In Proc. 33rd Symp. on Foundations of

Computer Science, pages 50 { 59, 1992.

[28] M. H. Rauch. Improved data structures for fully dynamic biconnectivity. In Proc. 26th Symp.

on Theory of Computing, pages 686 { 695, 1994.

[29] J. H. Reif, P. G. Spirakis, and M. Yung. Re-randomization and average case analysis of fully

dynamic graph algorithms. Alcom Technical Report TR 93.01.3.

[30] O. Schwarzkopf. Dynamic Maintenance of Convex Polytopes and Related Structures. PhD

thesis, Freie Universit�at Berlin, 1992.

[31] R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor, New

Trends in Discrete and Computational Geometry, pages 37 { 67. Springer Verlag, Berlin, 1993.

Average Case Analysis of Dynamic Graph Algorithms 31

[32] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Sys. Sci.,

26:362 { 391, 1983.

[33] R. E. Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS-NSF Regional

Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics,

Philadelphia, Pennsylvania, 1983.

[34] R. Thurimella. Techniques for the Design of Parallel Graph Algorithms. PhD thesis, University

of Texas, Austin, 1989.

[35] V. V. Vazirani. A theory of alternating paths and blossoms for proving correctness of the

O(
p
V E) general graph maximum matching algorithm. Combinatorica, 14(1):71 { 109, 1994.

