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Abstract

This paper describes a visualization architecture for scalable com-
puter systems. The architecture is currently being prototyped for
use in Beowulf-class clustered systems. A set of OpenGL frame
buffers are driven in parallel by a set of CPUs. The visualization
architecture merges the contents of these frame buffers by user-
programmable associative and commutative combining operations.
The system hardware is built from off-the-shelf components includ-
ing OpenGL accelerators, Field Programmable Gate Arrays (FP-
GAs), and gigabit network interfaces and switches. A second-
generation prototype supports 60 Hz operation at 1024� 1024
pixel resolution with interactive latency up to 1000 nodes.
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styles—Gate arrays; C.2.5 [Computer-communication networks]:
Local and wide-area networks—High-speed; D.1.3 [Program-
ming techniques]: Concurrent programming—Parallel program-
ming; I.3.1 [Computer graphics]: Hardware architecture—Parallel
processing; I.3.2 [Computer graphics]: Graphics systems—
Distributed/network graphics
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1 Introduction

Interactive visualization is invaluable to many users of large scale
computer systems. The human nervous system absorbs informa-
tion quickly when it is presented in the form of colored, shaded,
and moving imagery. Such imagery requires high frame rates, and
this requirement is difficult to meet for large data sets, or data sets
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that are distributed across multiple computers. Unfortunately these
characteristics are typical of “grand challenge” problems and many
other important computations. Regardless of whether the goal is
to visualize a simulation as it is computed, or to analyze data in a
post-processing step, the amount of data can overwhelm the largest
conventional rendering systems [13, 17].

One approach to supporting these challenging requirements is
to combine the capabilities of a set of relatively modest render-
ing systems. Our visualization architecture takes this approach and
works by combining the outputs of many rendering systems run-
ning in parallel. This approach is scalable because the requirements
for computation and data movement are determined by image size
rather than by data size [1, 4, 8, 12, 16].

2 Image Combining: Theory

Call S = fA;B; : : : Zg a set of images, each image ann�tuple
of pixelsA = (a1; a2; : : : ; an), and each pixel a tuple of compo-
nentsai = (rai ; gai ; bai ; zai ; �ai ; stencilai). The goal of our
visualization architecture is to compute a pixel-by-pixel merge

A�B � C � � � � (1)

for various binary operators�. For example, ifD = A � B then
D = f(d1; : : : ; dn) : di = ai � big. We’ll call these binary op-
eratorscombining operatorsand their functional descriptionscom-
bining functions. An example of a combining function is theZ-
comparisonfunction,

Z(a; b) � Z((ra; ga; ba; za); (rb; gb; bb; zb)) (2)

= (ra; ga; ba; za) if za < zb

= (rb; gb; bb; zb) if za > zb

= undefined ifza = zb:

In OpenGL the undefined condition may be defined in various
ways to yield a semi-commutative combining function1. Responsi-
bility for resolving the semi-commutativity is left to the application
programmer. Commutativity implies that operands may be inter-
changed so thatZ(a; b) = Z(b; a). This property persists under
function composition so that

Z(a; Z(b; c)) = Z(Z(c; b); a): (3)

1A function issemi-commutativeif it is commutative on all but a finite
subset of its domain.
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Figure 1: System architecture (left) and Pixel Merge Engine (right). Workstations function as rendering engines or as display systems. Each
Pixel Merge Engine (PME) connects a local frame buffer to a pair of data streams on the Pixel Bus through a user-programmable pixel
combining operator.

A popular combining function for volume visualization applica-
tions is (pre-alpha multiplied)Over [15]. The value ofa Overb is
the result of blending a (semi-transparent) foreground pixela over
a background pixelb. It is defined

O(a; b) � O((ra; ga; ba; �a); (rb; gb; bb; �b))

= (�ara + (1� �a)�brb;

�aga + (1� �a)�bgb;

�aba + (1� �a)�bbb;

�a + (1� �a)�b) : (4)

O is associative [2] which implies

O(a;O(b; c)) = O(O(a; b); c): (5)

3 Image Combining: Practice

Consider a simple visualization problem in computational fluid dy-
namics. The goal is to visualize the pressure field of a developing
steady-state solution. A simple volume visualization technique is
used to view the pressure field in three dimensions.

The pseudo-code of figure 2 might illustrate the inner loop of
such a computation. The program performs a multigrid iteration
to solve the fluid mechanics equations [9]. EverynIterations
the loop callscomputeImage to render an image of the local data
into the local frame buffer. This continues until the residual solution
error falls below a threshold of acceptability.

In order to run this code on a scalable computer system
it is necessary to parallelize the routinesmultigridSolver
and evaluateResidual . The calls to theViz:: mem-
ber functions integrate the visualization hardware into the ap-
plication. Viz::loadCombiningFunctionconfigures programmable
logic that executes a user-programmable combining function.
Viz::setCombiningOrderis used to dynamically route pixel packets
for correct associativity. AndViz::combineImagesstarts the image
combining process.

Viz::loadCombiningFunction (“Over.fnc”);
double residual = HUGE VAL;
while (residual > threshold)
f

for (int i=0;i<nIterations;++i)
multigridSolver ();

evaluateResidual (&residual);
computeImage ();

Viz::setCombiningOrder ();
Viz::combineImages ();

g

Figure 2: Pseudo-code for the inner loop of a simulation with con-
current visualization. This pseudo-code is appropriate for simula-
tion on an individual workstation, or on scalable computer systems.
Italicized textrepresents calls to the visualization system applica-
tion programming interface (API).

4 Hardware Realization

Figure 1 illustrates the system architecture. The architecture is re-
alized by a set of workstations that function as rendering engines
and display systems. Each workstation contains (possibly multiple)
graphics accelerators and Pixel Merge Engines (PMEs) connected
to a high-speed packet routing Pixel Bus. The PME primary card
is a full-length 64 bit PCI card that contains programmable logic
(FPGAs) and off-the-shelf ASICs. The only custom hardware in
the PME is the unassembled printed circuit boards.

A PME may include daughter-cards or sister-cards to support
various I/O requirements. The PME computes the pixel-by-pixel
merge (1) of a pair of images. One image is normally from a local
frame buffer and the second image from the Pixel Bus. In normal
operation a result image is output to the Pixel Bus which routes it
on to another PME in the merge sequence. The images are pro-
cessed as pixel streams and are pipelined at the granularity of in-
dividual network packets. Credit-based flow control ensures that
buffers do not overflow and allows distributed synchronization at
the start of each frame. Data compression is used to increase the
effective network bandwidth (and thus the pixel fill rate). We have
experimented with a simple first-order entropy encoding that con-
sistently produces better than 50% compression on a set of 37 test
images.



Figure 3: Images of the MGF office model under direct lighting with (left) OpenGL spotlights and (right) a Monte Carlo solution of (6).

Figure 4: First generation PME prototype with PCI Pamette and
Colorado-1 daughtercard. The cards are joined at the PMC con-
nector and face each other in a single PCI slot. Cables attach the
daughtercard to the Pixel Bus.

All of the components required to implement this visualization
architecture are available off-the-shelf with the exception of the
Pixel Bus and the Pixel Merge Engine. We have chosen to imple-
ment the Pixel Bus using ServerNet-II, a low-cost gigabit network
technology developed by Compaq. A single ASIC (the “Colorado-
2”) provides a 66 MHz 64 bit PCI interface to a pair of bi-
directional 1.25 gigabit-per-second data channels and can sustain
340 megabytes-per-second of data traffic through the PCI inter-
face. The channels are routed through 12-port non-blocking cross-
bar switches. The switches implement hardware channel bonding
which allows them to be cascaded into scalable fat-tree topologies.
These topologies guarantee constant bandwidth to all endpoints in
the network irrespective of the pattern of communication and are
switch-efficient at large scales [7].

The PME supports a high-speed in-band control protocol that al-
lows one PME to modify the control state of other PMEs through
the Pixel Bus. This capability is important for multi-pass algorithms
in which the system has to be reconfigured quickly while rendering
a single frame. It makes it possible to change the source or destina-
tion of PME image operands, modify the frame buffer configuration
or pixel formats, copy frame buffer contents between graphics ac-
celerators, and perform other tasks related to data transfer patterns
and PME operating modes.
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Figure 5: Layout of first generation PME prototype firmware on
PCI Pamette.

4.1 First Generation Prototypes

We have built a series of three prototype clusters (in Palo Alto, Cu-
pertino, and Paris) using Intel and Alpha CPU workstations running
Windows NT. We have experimented with several inexpensive and
moderate cost PCI-attached graphics accelerators and have built
clusters with boards based on the 3DLabs Permedia-2 and Evans
& Sutherland RealImage 2100 chipsets.

In this generation of prototypes the PME primary card is a
Compaq PCI Pamette which is a flexible FPGA prototyping plat-
form used in a variety of system design exercises [10, 11]. Fig-
ure 4 shows the Pixel Merge Engine for one node. The large
card is the Pamette and the smaller card contains the Colorado
ASIC. The ASIC is a predecessor generation (“Colorado-1”) that
sustains 40 megabytes-per-second data transfers. The two cards
are mated through a PCI Mezzanine Connector (PMC) and se-
cured with standoff attachments. The Pamette contains five Xilinx
XC4044XL packages, one of which usually supports a host PCI
interface. The firmware for that interface was reused for the PCI in-
terface to the network ASIC. Figure 5 shows how the PME firmware
was partitioned on the Pamette.

We have measured the latency and frame rate of this prototype
in order to extrapolate to large systems. The end-to-end latency is
bounded conservatively by the sum of the latency through the PMEs
and network, and the latency to merge a full frame on a single PME.



At 1024� 1024 pixel resolution this full latency is less than1=30
second and is within the requirements for interactivity.

The latency through a PME varied from 6 to 13.5 microseconds
per network packet, which extrapolates to no more than 13.5 mil-
liseconds in a 1000 node system. The network adds 300 nanosec-
onds of latency per switch, and each path has a worst-case length of
five switches or 1.5 microseconds (1.5 milliseconds at 1000 nodes).
The PME produces one new pixel per clock cycle (66 megapixels-
per-second in the second generation prototypes). At 1024� 1024
pixel resolution the merge requires 15.9 milliseconds through a
PME. The sum of these worst-case extrapolations is 30.9 millisec-
onds on 1000 nodes.

The flexibility of the Pamette has allowed us to experiment with
various data transfer strategies and triggering mechanisms. We
found the ultimate limiter of performance to be the achievable data
transfer rate from the frame buffer. Although some chipsets include
built-in DMA engines these are typically in use by the graphics
driver. As a result the Pamette initiates the transactions as the DMA
master. The best result we sustained was 34 megabytes-per-second
with the RealImage 2100 chipset.

The data rates achieved in these experiments are not sufficient for
our target fill rates of 30 or 60 Hz at 1024� 1024 pixel resolution.
These targets require 170 to 340 megabytes-per-second combined
with data compression (see figure 1). In the second generation pro-
totypes we intend to explore solutions to this bandwidth problem in
the form of PCI-X and 66 MHz PCI host interfaces, and proprietary
digital interfaces that are available on some graphics accelerators.

4.1.1 Images of Direct Lighting

We have experimented with speeding up a diffuse direct lighting
calculation. Table 1 shows some initial results that include speedup
of 6.78 on 8 computers. Figures 3, 6 and 7 show the office and con-
ference models from the Materials and Geometry Format data base
[3]. Realistic lighting for diffuse environments can be calculated by
integrating the direct irradiance (6) over a set of planar lightsi at
every visible surface pointx,

�i(x) =

Z
A

L
�
x0; !0

� cos � cos �
kx0 � xk22

dA: (6)

This can be approximated by the OpenGL lighting equation for
spotlights [14].� is the difference between the angle of light emis-
sion and the surface normal vector at the pointx0 on the light. This
corresponds to an OpenGL spotlight with exponent of 1 and cutoff
of 90 degrees.� is the angle difference between the surface nor-
mal vector atx and the vector fromx to x0. This corresponds to
the arccosine of the OpenGL diffuse termL�n. The strength of the
OpenGL diffuse light component is multiplied by the light surface
area in order to incorporate thedA term. Quadratic attenuation (kq
in OpenGL) accounts for the distance termkx0 � xk22. kq must be
rescaled appropriately if the model has been rescaled.

The light intensities and material reflection coefficients were nor-
malized to the range 0.0 to 1.0. Despite this precaution the colors
in the resulting images are disappointing when compared to a set of
reference images [5]. The differences are model-dependent (com-
pare figures 3 and 6). We are in the early stages of understanding
these and other issues related to image artifacts.

4.1.2 Scalability of Round Robin Distribution

Speedup requires effective load balancing. We experimented with
the simplest of workload distribution methods, round robin partition
of geometric primitives. An illustration from this experiment on
four nodes appears at the start of this paper. We simplified the con-
ference model slightly by reducing the set of 24 overhead lights to
an appropriately rescaled set of 8 lights. Table 1 shows the elapsed

n Image A Image B Image C Image D Mean
T 1 4347 4366 5647 2319 4170

2 2184 2269 2884 1203 2135
4 1159 1175 1484 656 1119
8 613 650 791 375 607

S 1 1 1 1 1 1
2 1.99 1.92 1.96 1.93 1.95
4 3.75 3.71 3.80 3.53 3.70
8 7.10 6.72 7.14 6.18 6.78

� 1 0 0 0 0 0
2 0.005 0.039 0.022 0.038 0.024
4 0.067 0.077 0.051 0.132 0.073
8 0.127 0.191 0.120 0.294 0.165

Table 1: TimeT in milliseconds (worst-case amongn comput-
ers); speedupS = T (1)=T (n); and workload imbalance� =
nT (n)=T (1) � 1 for conference room images A through D on up
to 8 computers. See figures 6 and 7.

Prn n =2 4 8 16 32 64 128
� =0.1 .885 .672 .314 .045 .000 .000 .000

0.25 .986 .926 .718 .307 .025 .000 .000
0.5 .999 .993 .947 .735 .266 .009 .000

Table 2: ProbabilityPrn (8) of achieving balance within� by
round robin distribution of the conference model with� =500 and
� =35.553. Compare to measured� in table 1.

times that were measured using 200 MHz Intel platforms with dif-
ferent numbers of partitions. By following a previous analysis of
ray-tracing distribution [6] it is possible to analyze the scalability
of any pseudo-random partitioning such as this round robin scheme.
This analysis leads to the predictions in table 2.

The central limit theorem states that when a sufficiently large
number of sampleswi are drawn from a sample population the
sums of any sets ofk samples will take on a normal distribution.
If the sample population is uniform then it is possible to quantify
the probability that the sum of any individual set ofk samples is
below a given boundy. In the general case we have

P

"
kX
i=1

wi � y

#
=

1p
2�

Z (y�k�)=�
p
k

�1

�
e�u

2=2du
�

=
1

2
+

1

2
Erf

�
y � k�

�
p
2k

�
: (7)

In this expression� and�2 are the mean and variance of the
sample population. When this is applied to the problem of render-
ing images in OpenGL the sample population is the set of measure-
ments of times to render individual geometric primitives. We parti-
tion the primitives into sets of sizek = m=n wherem is the total
number of primitives in the model andn is the number of comput-
ers. We want to predict the expected imbalance� for increasingn.
Let Tmin represent the ideal run time withn computers in perfect
balance. From the previous definitionsTmin = k� and so

(1 + �)Tmin � k� = �k� = �m�=n:

Use this to obtain a formula for a new quantityPr,
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�
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(8)
Pr represents the probability that an individual computer will

have a workload within a factor� of Tmin. The probability that all
n computers will be balanced to within a factor of� is the product
of n instances ofPr, that is,Prn. This quantity can be computed
for different numbers of computers.

Although it is difficult to measure the time to render an individual
primitive we can infer it from the total time required to render the
model. The model contained 117342 primitives and took an average
of 4170 milliseconds to render. From this we obtain a value of
� = 35:553 microseconds per primitive. We fit equation 8 to the
measured data in table 1 to estimate the value of�. A value of� =
500 gavePrn values slightly above 0.5 of achieving the measured
� and appear to be in good agreement with the data.

Extrapolated predictions up to 128 nodes appear in table 2.
These suggest that round robin distribution for the conference
model has probability less than 0.5 of achieving 25% or better load
balance on 16 nodes. These results suggest that round robin distri-
bution of the conference model is only feasible for small clusters.
These results will improve for larger models.

4.2 Second Generation Prototype

We are presently constructing a second generation prototype system
based on Alpha CPU workstations running Linux. The Alpha sys-
tems have the advantages of increased memory and PCI bandwidth
versus the Intel systems, as well as a more powerful CPU.

The second generation PME will consist of from one to three
cards. A primary card will contain a Colorado-2 network ASIC and
the FPGA packages. It will support 30 Hz operation at 1024� 1024
resolution. A sister card, occupying a second PCI slot, will contain
a second Colorado-2. These two cards connect by a ribbon cable
to support 60 Hz operation. In addition the primary card supports
a modular daughter-card through which it attaches to proprietary
frame buffer interfaces.

5 Discussion

We are in the early stages of experimenting with applications on this
architecture and have been exploring scientific visualization and re-
alistic lighting calculations. In principle this visualization archi-
tecture could be supported on shared or distributed-shared memory
computer systems as well as on Beowulf-class clusters. The way in
which individual CPUs access their data is unimportant to the PME
which is only concerned with access to a frame buffer.

It is very easy to implement an accumulation buffer pipeline in
the PME and this is one way to perform anti-aliasing. This can
also be useful in lighting calculations that involve shadows. An
accumulation buffer implemented in this way has a lower latency
than a traditional accumulation buffer, which cannot read back the
data until the accumulation has completed.

This architecture incorporates emerging technology and we look
forward to better OpenGL support on Alpha Linux and improved
frame buffer interfaces, both of which are currently becoming avail-
able. The availability of FPGAs and inexpensive gigabit networks
have been critical to this project. Our intent with this second gen-
eration is to establish a stable hardware platform that can support
many generations of firmware and changing I/O requirements. We
expect this architecture to evolve as we encounter new and diverse
application requirements.
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Figure 6: The MGF conference model, images A and D, rendered by OpenGL (left) and by a Monte Carlo method (right).

Figure 7: The MGF conference model, images B and C, rendered by OpenGL.


