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Abstract

We have implemented an image combining architecture
that allows distributed rendering of a partitioned data set
at interactive rates. The architecture achieves real-time
frame rates and low latency through pipelining and the use
of a high bandwidth network technology to transfer the im-
age data. It is flexible because it uses programmable FPGA
devices to implement the combining logic. The implemen-
tation cost is kept low by using only commodity compo-
nents for the network and graphics, and FPGA logic. The
result is a cost-effective interactive visualization system
that can be used with a variety of applications running on
distributed computing systems such as cluster of worksta-
tions and personal computers.

We first motivate the development of a distributed ren-
dering system and we introduce some of the concepts re-
lated to the 3D-visualization domain.

We then describe our implementation of this system us-
ing the PCI Pamette FPGA-based board. We emphasize the
advantages of using a programmable board for the proto-
type development and also for a potential commercial ver-
sion.

1 Introduction

A variety of applications in engineering, science, and
information processing, are computed in a timely fashion
only through the use of high performance computing sys-
tems comprising multiple processors. Often these applica-
tions partition data sets among processors in such a way
that each processor has access to and responsibility for a
specific data subset.

In a conventional hardware-accelerated graphics archi-

tecture, data must be fed sequentially to a centralized ren-
dering pipeline. In the applications we are interested in,
the data subsets must therefore be recombined each time
they are to be fed to a visualization engine, which creates a
bottleneck. In practical terms this makes interactive visual-
ization of large scale distributed applications unaffordable
and prohibitively slow.

A graphics architecture that combines the images pro-
duced from individual data subsets would eliminate this
bottleneck because it would require of each node only an
image of the data subset for which it is responsible. Since
this task is assumed to occur at interactive rates, such an ar-
chitecture makes it possible to combine interactive simula-
tion with visualization. An advantage of this image-based
approach is that it can work with a variety of visualiza-
tion techniques, including ray tracing, volume visualiza-
tion, and traditional and nontraditional hardware accelera-
tors [1, 2, 3]. Such a graphics architecture combines the
high performance of farms of rendering machines and the
interactivity allowed by the speed, the scalability and the
low latency of the combining network.

2 Sepia architecture

2.1 Smart clusters

Typically in clusters, network adapters are used directly
by software and are critical components that must be opti-
mized both in the software run-time library and in the hard-
ware itself for software accesses.

It is possible to embed in the network adapter either a
processor [4] or programmable logic that can be used to op-
timize data transfers for an application, or that can process
data by itself. We will call clusters using this technology
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Figure 1: Compositing in a sort-last architecture.

smart clusters. They have many advantages over conven-
tional clusters:

• CPU load is reduced, allowing the CPU to devote
more time to other tasks (3D rendering in our case).

• Complex data flows are possible with small overhead.

• Control latency is negligible, as the hardware is di-
rectly connected to the network adapter and can react
instantaneously.

• The data can flow freely and in pseudo-real-time with-
out having to wait for software.

Our image combining architecture uses such technology
in its compositing hardware, which consists of a pro-
grammable board directly controlling a standard network
adapter.

The PCI Pamette reconfigurable board is well-suited to
the task of implementing a smart cluster adapter. Its re-
configurability can be used to adapt the control hardware
to the task of the client application. Its standards-based ex-
pansion capabilities (CMC/PMC connector) can be used to
attach off-the-shelf or custom network adapters. It can be
used as a bridge to the network adapter, but also as a direct
master, managing data transfers and possibly processing
some data.

ServerNet [5] is a network adapter technology devel-
oped by Compaq’s Tandem division. The ServerNet ASICs
have powerful and versatile communication modes that can

handle any size of packets with extremely low process-
ing and transmission latencies. They allow the controlling
hardware to send data at very high speed and also provide
low-latency, low-overhead, small packets transmission ca-
pabilities, which is essential for flow control. Off-the-shelf
network solutions make the smart cluster inexpensive, fast
and reliable as it leverages widely used and debugged tech-
nologies.

The latest ServerNet Colorado ASICs use a PCI inter-
face and are therefore easy to interface to an FPGA with a
PCI core.

Our compositing hardware is a smart cluster adapter
programmed for a specific application, which not only
manages the network flow, but also performs some com-
putation on the data. It uses the powerful combination of
the programmability and extensibility of the PCI Pamette
with the speed and low-latency of ServerNet.

2.2 System components

Sepia (ServerNet Enhanced Parallel Image Accelera-
tor) takes advantage of the combined low prices of modern
workstations, 3D-accelerator boards and high-performance
network adapters, and of the smart cluster technology to
provide a scalable and inexpensive alternative to current
high-end visualization systems.

A Sepia cluster consists of:

• Rendering nodes composed of a standard workstation,
with typically an OpenGL 3D accelerator and a Sepia
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Figure 2: Data flow in a Sepia rendering node.

compositing board (which consists of a merge engine
and a network adapter).

• Display nodes composed of a frame buffer (usually at-
tached to a workstation) and a Sepia network adapter.

• The network infrastructure, usually composed of a set
of switches to which the nodes are connected or at
least of point-to-point connections between the nodes.

When a 3D image is to be computed, the task is spread
on all the rendering nodes, each of them computing a sub-
set of the problem. In its intended use, Sepia dispatches
the 3D objects on the various rendering nodes and then
gets the merge engines to perform standard OpenGL op-
erations like depth comparison or alpha-blending between
the partial frames computed by the local 3D accelerators,
as shown in figure 1. According to a taxonomy introduced
by Molnar et al [6] this is a “sort-last-full” architecture:
full images, defined by sets of pixels with color, depth and
α (transparency) buffers, are combined after completion of
all rendering operations.

Another approach that is possible to implement in
Sepia, called sort-middle, tiles the screen in zones and each
rendering node renders all the 3D objects, but only on the
sub-part of the screen that was attributed to it; then the
merge engines put the tiles together to reconstruct the full

screen to be sent to the display nodes [7]. The combining
function uses the position of the pixel to compute which
tile it is in and therefore which pixel color to choose. This
tiling approach can also be used for parallel ray tracing.

Sepia is versatile enough to be used for any 3D or 2D
work. The local graphics adapter is used as a frame buffer
by the CPU and the Sepia merge engine is programmed
to perform any task that is useful to the 2D or 3D merg-
ing. However, it is not a goal to off-load any rendering task
from the 3D accelerator. To keep the price of Sepia low
despite the medium volume of production, it is important
to be careful with cost efficiency of the various pieces of
the system. In the case of 3D rendering, the 3D accelerator
will always be more cost-efficient than the FPGA for the
functions supported by the hardware.

2.3 3D compositing

The standard datapath within each rendering node is
shown in figure 2. Using its local or network data, the
processor prepares 3D data and sends OpenGL commands
(1)(2). Then the 3D accelerator executes the OpenGL com-
mands and renders the 3D objects in the graphics memory
(3). It is at this point that the Sepia compositing hardware
is used. Usually, the color data is read from the video
memory by a RAMDAC and sent to the screen. Instead,



in Sepia, the color (RGB), transparency (α) and depth (Z)
data is sent to the merge engine (4). The Sepia merge en-
gine receives data in a scan-line fashion simultaneously
from the local video memory (4) and from the upstream
node through the Sepia network adapter (5). Using a user-
configurable function, the Sepia merge engine combines
local and upstream pixels and sends the resulting merged
pixels to the downstream node through the network adapter
(6).

A typical image combining operation performed in the
merge engine is theZ-comparison. Z is the depth infor-
mation associated with each pixel. It is used by the 3D
accelerator to deal with hidden pixels. In the compositing
network, this depth information can be reused to make the
choice between the pixels of the two incoming flows. For
example, the choice function could be:

fz(a, b) = a if z(a) ≤ z(b)
b if z(b) < z(a)

Another popular combining operation is calledα-
blending. It consists in using theα transparency factor
of the pixels to blend the colors of the pixels of the two
source images to obtain a transparency effect. This typi-
cally involves scaling of the pixels color components by a
factor related to the transparency components of the source
pixels and merging of the scaled colors of the pixels.

2.4 Network characteristics

Besides the network infrastructure, a Sepia cluster con-
sists of rendering nodes (n) and merge engines (n-1). Each
rendering node has one output. Each merge engine has two
inputs and one output. Even though it is possible to build
and use a cluster with network-attached merge engines, it
is more attractive to put a merge engine in each node. This
way, one of the inputs of the merge engine is connected
directly to the 3D-accelerator frame buffer. With an inte-
grated merge engine, nodes need only one input and one
output to the network. This lets us use a full-duplex link
efficiently.

The logical topology that optimizes the network utiliza-
tion is the chain: each node only has one input and one
output data stream. Other topologies are possible. A ring
can be implemented very easily by closing the two ends of
a chain; it is a useful topology for applications where the
data has to be recirculated in the rendering network. It is
also possible to implement a tree but it is more costly in
terms of network bandwidth, which is a scarce resource,
and its only advantage is a lower latency, which Sepia al-
ready keeps very low even in a long chain of machines.
Even though the data is flowing in a chain logically, it can

be useful to connect all the network inputs and outputs to a
switch. This way we can reorder arbitrarily the nodes in the
chain. This can be important for merging operations that
require a specific order that has to be changed at run-time
(as the viewpoint changes for instance).

In Sepia, flow control is completely explicit. Within
each node, the data flows with enables and FIFOs are used
intensively to regulate the traffic. On the network side, a
credit-based scheme is used: each time a new slot is free in
a receive FIFO, a message is sent to the upstream node to
indicate that a new packet of data can be sent. The Server-
Net adapter can provide end-to-end flow control. However,
the Sepia network also supports a low-bandwidth control
traffic, which must reach its destination even if the data
traffic is stalled. Using credit-based flow control, the data
traffic is never stalled at the network level.

Sepia is pipelined as aggressively as possible. Ideally,
the 3D-accelerator in the rendering nodes have double-
buffered color and depth buffers, and the display node has
a triple-buffered display. In this case, we obtain pipelining
similar to the one shown in figure 3. On each node, render-
ing can start (with a double-buffer swap) as soon as both
the previous rendering and merging are finished. Merg-
ing can also start at the same time. However, it will be
constrained by the flow-control on the two inputs and one
output (the stalls introduced by the flow control are repre-
sented in figure 3 by the cross-hashed areas). Thanks to
the node-to-node flow-control, no broadcast is needed to
stop or start the data flow. This way, even on a system with
a high node count (128 or more), stalls stay local and the
data flow resumes with a latency of one node. This way,
the Sepia infrastructure is fully scalable.

2.5 Performance, bandwidth and latency

The ideal performance goal for a compositing network
like Sepia would be to run at HDTV resolution (2.4Mpel)
at 60 Hz. For standard 8 byte pixels (3 bytes for RGB the
color information, 1 byte forα the transparency factor, and
3 to 4 bytes for Z, the depth information), this leads to a
network bandwidth requirement of 1152 MB/s each way
(incoming and outgoing).

In 1999, it is not realistic to expect this kind of data rate
from inexpensive network components. There are however
many ways to bridge the gap between what is available and
what we would like.

Firstly, to get interactive rates, it is not necessary to pro-
duce new images at monitor refresh rates. Cinema and
television successfully use frame rates of 24-30 Hz. Video
games are considered to have a fluid animation when they
have frame rates in excess of 20 Hz. We can therefore set
a more realistic frame rate goal of 20-30 Hz.
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Figure 3: Pipelining in Sepia.

Secondly, we can add on-the-fly compression so that we
can reduce the network bandwidth required. Given the high
data rates, it is impossible to implement a complex com-
pression algorithm. A simple compression algorithm has
been designed for Sepia, using first or second-order differ-
ences and a simple entropy coding. From our experiments,
this algorithm leads to compression ratios in excess of 1.5.

Thirdly, not all compositing algorithms use RGBαZ.
Our sort-last version typically uses only RGBZ with a 24-
bit Z, so the pixels are transmitted in 6 bytes per pixel form.
Sort-middle algorithms use only color information: RGB,
so the pixel size is only 3 bytes in that case.

Finally, if the bandwidth provided by the network is still
too low, it is possible to cut the screen into different parts
(in a sort-middle fashion) and render the different portions
on different pipelines, with either one screen per pipeline at
the end or a special combining frame buffer. This solution
is a step backward for sort-last algorithms as it involves
duplicating data sets and rendering, but it might be the only
solution to get the required frame rate.

In summary, for a frame size of 2.4 Mpel, a frame rate of
30 Hz, 6 bytes per pixel and a compression ratio of 1.5, we
would need a network bandwidth of 288 MB/s (in each di-
rection with switching capabilities), which is close to what
is available today. For smaller frame sizes than HDTV, like
1280×1024, we would need a network bandwidth of 155
MB/s full duplex, which will be available this year.

The data flow architecture of Sepia is designed to min-
imize the full system latency. This is especially critical
on large clusters where the data flows through 100 or 200
nodes. The Sepia adapters use only node-to-node flow con-

trol and the link length and packet size are small enough
to ensure a maximum latency of 50µs per node, so that
the total cluster latency due to the network is well below a
frame time. We see in figure 3 that, compared to a standard
rendering machine, Sepia has the extra phase of merging,
which has a duration comparable to that of the rendering
phase. So, even on large Sepia clusters, the total system
latency is small.

3 Sepia (Phase 1) implementation on PCI
Pamette V1

3.1 General Architecture

At this time (April 1999), Sepia has been implemented
as a prototype using mostly off-the-shelf boards and sys-
tems. A Phase 1 Sepia node is composed of:

• A Compaq workstation (IA32 or Alpha based, run-
ning Microsoft Windows NT).

• A mid-range 3D accelerator such as the Compaq Pow-
erStorm 300.

• A Compaq PCI Pamette (marketed as “PCI Devel-
opment Platform”) V1R2 using 4 user-programmable
Xilinx XC4044XL-1 FPGAs [8].

• A custom Compaq ServerNet PMC daughter-card (for
PCI Pamette) using the Colorado 1 PCI-to-ServerNet
ASIC [5].



The ServerNet daughter-card is the only custom element in
a Phase 1 Sepia node. Besides the Colorado 1 ASIC, it in-
cludes some SRAM and two physical link circuits for the
two channels, connected to two full-duplex parallel con-
nectors. One connects to the upstream node and the other
connects to the downstream node. The daughter-card is
plugged into the PMC (PCI Mezzanine Card) slot on the
PCI Pamette and is used by the Sepia circuit downloaded
in the Pamette FPGAs as a private network interface. The
Pamette is plugged on the same PCI bus as the 3D acceler-
ator. It extracts pixel data out of it by doing direct board-
to-board DMA.

The complete diagram of the mapping of the Sepia
merge engine and network adapter on PCI Pamette is
shown in figure 4 and described in the next sections. This
diagram applies to the rendering nodes only.

3.2 Interface to the local 3D accelerator

There are three ways to get data from the 3D accelerator
frame buffer memory:

• Use the 3D accelerator’s DMA engine to send the
data directly to the Pamette by doing board-to-board
DMA.

• Use the 3D accelerator’s DMA engine to send the re-
quired data to main memory, then DMA the data from
main memory into the Pamette.

• Use the Pamette DMA engine to get data directly from
the 3D accelerator by doing board-to-board DMA.

The first solution is tempting, especially since the 3D ac-
celerator’s memory system is typically optimized to yield
maximum performance in master mode (i.e. when its own
DMA engine is used). However, it is not straightforward
from the software side to program the 3D accelerator’s
DMA engine to target another PCI device rather than main
memory. This solution also involves tricky flow-control
problems between the two boards (given that the Pamette
does not have enough storage for a full frame).

The second solution is a good tradeoff for simplicity, as
it uses standard datapaths from the 3D accelerator to main
memory and from memory to the Pamette.

The third solution is the best of all. It is easy to program
the Pamette to DMA from another PCI device rather than
memory (it is actually easier as there is no scatter/gather
translation to do) and the data is transferred directly, so it
is simpler and potentially faster. This is the solution that is
implemented in Sepia Phase 1.

This solution has the limitation that it can not be used
on an AGP 3D accelerator (PCI-to-AGP DMA reads are

not implemented in Intel AGPSets), but this is not crucial
in a prototype system.

To measure the performance of this datapath and tune
the DMA engine, thepciperf tool was used [9]. This ex-
ample application from the PCI Pamette software kit [8]
can be used to exercise and trace any kind of transac-
tions involving PCI traffic (including master-mode transac-
tions using Pamette’s programmable DMA engine). From
the traces collected from an Evans&Sutherland RealIm-
age 2100 based board such as the Compaq PowerStorm
300, the maximum direct transfer rates obtainable using
Pamette’s DMA engine are 34 MB/s reading the frame
buffer and 57 MB/s writing to it. On other boards, we get
performance as low as 8 MB/s for reads.

As shown in figure 4, the left-most FPGAs of the
Pamette, both connected to the PCI Interface FPGA, use
their local SRAM to store the incoming data. They are used
alternatively in a scan line based double-buffer scheme.
Knowing the bandwidth and maximum burst size that will
be received, it is possible to implement the datapath with
minimum buffering and flow-control.

Thanks to preliminary testing using existing tools to
perform experiments on hardware configured in that same
manner as the proposed system, it was easy to make early
design decisions.

3.3 Interface to the network adapter

The interface to the Compaq ServerNet network adapter
is potentially the most challenging part of the whole de-
sign. Firstly, a custom PCI interface is needed to commu-
nicate with the Colorado 1 (PCI-to-ServerNet) ASIC. Sec-
ondly, the Colorado 1 circuit itself is quite complex to ini-
tialize. Finally, after the first two elements are understood
and implemented, the data transmission and flow control
management circuits remain difficult to design. Fortu-
nately, due to the programmable nature of the FPGAs, the
different parts of the network adapter interface could be
partially designed and debugged separately, then merged
to be finished and optimized as a whole.

The first version of the PCI interface was a straight-
forward port of the existing Pamette PCI Interface. PCI
Pamette V1 was designed to facilitate reuse of the board’s
host PCI circuit in communicating with standard PCI de-
vices plugged in the PMC connector. The pinout of the
top-right FPGA to the PMC connector is identical to the
pinout of the PCI Interface chip to the host PCI connector.
Consequently, the first version of the PCI interface to the
ServerNet card was working in a matter of days and the
Colorado 1 initialization (performed from software) could
be written and debugged quite early in the development
process. The final PCI interface design is a specialized ver-
sion of the standard Pamette PCI Interface (with which it
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Figure 4: Sepia Phase 1 on PCI Pamette V1.

shares a common source pool) that has more open inter-
nal features and more aggressive pipelining. Overall, the
design of the special PCI interface was quick and painless.

The Colorado 1 ASIC provides many ways to trans-
fer data and is quite versatile in its addressing modes and
translation tables. The initialization code was written and
debugged early in the design process, and simple transfers
between nodes were performed shortly thereafter.

Section 2.4 justified our use of credit-based flow-
control. Given the maximum packet size on Colorado 1
(16 32-bit words), and the amount of buffering available
within an XC4044XL (each packet takes less than one of
the 40 columns in the FPGA), it is possible to use suffi-
ciently deep FIFOs on input and output to keep packets
flowing without interruption. On the Private PCI bus, pack-
ets are sent to the Colorado 1 ASIC by writes initiated by
the Pamette and incoming data is sent by writes initiated
by the Colorado 1. Credits are sent and received using the
same mechanism (credits are 32 bits long—the minimum
message length). This traffic almost saturates the PCI when
handling the expected data rate of 30 MB/s inbound and the
same 30 MB/s outbound plus the credit-generated traffic.

3.4 Programmable Merge Engine

Section 2.2 discussed two scenarios each requiring quite
different basic operations from the merge engine. One of

the design decisions in Sepia is to open the merge engine
to advanced users and give them the ability to replace it by
one more appropriate to their application if necessary.

In the Phase 1 system, the merge engine occupies most
of the bottom-right FPGA on Pamette. It receives two 16b
data flows corresponding to the local frame-buffer pixels
and the upstream partial pixels. Corresponding pixels in
the 2 flows arrive at the same time, with an enable signal.
The merge engine must put the data back in RGBαZ for-
mat, perform the merging, and serialize the result in 16b
words to send them to the network interface located in the
FPGA above it.

In addition to the incoming and outgoing data flows, the
FPGA contains a register of definable length, to which the
software can write to pass information to the merge en-
gine. For instance, for a sort-middle application, the host
can send the screen size and the coordinates of the zone
for which the node is responsible. This way, the merge en-
gine can use internal X and Y counters and decide which
pixel to choose depending on the value of the coordinates.
In other scenarios the configurable register may be used to
pass the Z-comparison and alpha-blending modes so that
they can be performed according to the needs of the soft-
ware.

The internal logic needed for the merging can be as
small as a bit comparison for the sort-middle architecture.



However, as a full chip is available, it is possible to imple-
ment much larger merging functions. For instance, to per-
form blending using a standardαsrccsrc + (1−αsrc)cdest

operator, it is necessary to have four to eight 8×8 parallel
multipliers and many multiplexers for the various blending
and depth modes.

The fact that no proprietary FPGA code is located in
this FPGA makes it easy to allow the user to include his
own merging scheme directly in the hardware, with a way
to communicate from software to his custom merge en-
gine. The template source code for the sort-last architec-
ture with Z-comparison and blending is available for the
user to adapt to specific purposes. It can be modified and
recompiled using standard Xilinx tools. Then it can be
passed to the runtime software to be downloaded in the
relevant FPGA.

There is some non-public code in the other FPGAs, like
the PCI Interface. These are provided in bitstream form
only, so that there is no special Intellectual Property issue
related to opening the hardware to advanced users.

3.5 Mapping on PCI Pamette and performance

The choice of Pamette as a platform to implement the
Phase 1 Sepia adapter was guided by very pragmatic goals:
being able to have a running prototype for Sepia as fast as
possible and being able to reuse as much code as possible
for the final version.

The current Phase 1 Sepia is implemented on a Pamette
V1R2 using a XC4010E-2 as its PCI interface and
four XC4044XL-1 as user FPGAs. With no compres-
sion/decompression circuitry and a simple Z comparison
combining function, the whole circuit uses about 3000
CLBs (Configurable Logic Blocks, consisting mostly of
two 4-input LookUp Tables and two flip-flops), not count-
ing the host-side PCI interface, and runs synchronously
with the host PCI clock, usually at 33 MHz. The FPGA
design was written in C++ using the PamDC library.

On a 4-node cluster (3 rendering nodes and 1 display
node), we measured a sustained transfer rate of 28 MB/s
which is close to the maximum bandwidth available from
the 3D accelerator (see section 3.2). The measured latency
per node is less than 15µs, which is much better than the
target 50µs.

4 The future: Sepia (Phase 2)

4.1 General architecture

Sepia Phase 1 yields pixel data rates around 4 Mpel/s,
which is far from adequate for interactive visualization
with large frame sizes. Sepia Phase 2 is targeted at 30

Mpel/s, requiring an order of magnitude faster elements,
capable of supporting 160 to 240 MB/s data rates (with 8
bytes per pixel, depending on the effective compression ra-
tio).

In Sepia Phase 1 we can identify three different bottle-
necks in the datapath that limit bandwidth:

• The data from the frame buffer is read from the graph-
ics ASIC (and not directly from graphics memory),
through an IO bus (PCI) capable of 132 MB/s peak
bandwidth.

• The ServerNet network adapter uses 50 MB/s links
(30 to 40 MB/s of actual payload) and a 32-bit 33
MHz PCI interface. Both sides are too slow.

• The Xilinx XC4000 (E or XL) family devices with the
board level interconnect imposed by PCI Pamette V1
could accommodate higher data rates by clocking at
higher speeds (66 MHz), but implementing such cir-
cuits in these FPGAs is quite challenging. It is also
likely that more internal storage would be needed,
which is not available in this FPGA family. The PCI
Pamette V1 board itself is near its limits, mainly be-
cause of the small pincount of the circuits (208 per
chip including power and ground).

To reach the target data rates in Phase 2, some changes are
envisaged in the Phase 1 architecture:

• If possible, the frame buffer will be read directly
through a specialized port. On a suitable card, it is
possible to get between 200 MB/s to 1.5 GB/s this
way.

• ServerNet-II [5] will use a gigabit physical layer of-
fering 125 MB/s of bandwidth (100 MB/s of actual
payload) full duplex on each link. The Colorado 2
(PCI-to-ServerNet-II) ASIC will have two such links,
totaling close to 200 MB/s of bandwidth in each direc-
tion. It will also use a 64-bit 66 MHz PCI interface,
which matches its data transfer capabilities.

• Use of the new Virtex architecture or high-density
XC4000XV circuits from Xilinx will increase merge
engine bandwidth by providing faster and bigger
parts. In addition, the large quantity of internal RAM
will allow more internal buffering and the faster pads
will allow implementation of a 66 MHz PCI interface,
as is required to fully exploit the Colorado 2 ASIC.

Compared to a Phase 1 rendering node (section 3.1), the
Phase 2 rendering node will be composed of:

• A standard workstation.



• A modified 3D accelerator with a dedicated output
path from the video output of its graphics RAM.

• A new board derived from the PCI Pamette using Xil-
inx Virtex or XC4000XV FPGAs.

• A Colorado 2 PCI-to-ServerNet-II ASIC as the back-
end of the new board (directly on the board or on a
daughter-card).

Individually, the Phase 2 elements are either identical to
the Phase 1 elements or natural technology upgrades. The
latest technology combined with revised element intercon-
nect will provide the ten-fold increase in performance that
we seek, at a commodity price point.

As the elements are still almost identical, there will also
be an easy development path from Phase 1 to Phase 2:
Phase 2 elements replace Phase 1 elements as they become
available, and get debugged and integrated in a stable sys-
tem.

4.2 Interface to the local 3D accelerator

It is still unclear what the interface to the 3D accelera-
tor will be. The board will still be able to fetch data from
main memory or directly from the frame buffer through
the PCI bus (and later PCI-X). However, there is much to
gain in using a direct connection to the graphics memory.
Some graphics card vendors will shortly start providing
this kind of features and Phase 2 Sepia will be compati-
ble with at least one of these new boards until a standard
starts to emerge. If necessary, Phase 2 Sepia could rely
on a custom-made 3D accelerator, that has a built-in direct
bus to its graphics memory. This would however defeat the
goal of using only commodity pieces besides the merge en-
gine.

4.3 Interface to the network adapter

The network adapter is basically an update of the
Phase 1 Sepia network adapter. It uses the Colorado 2
ASIC, which provides more bandwidth and requires a
much faster PCI interface (64-bit 66 MHz).

The network in Sepia Phase 2 will be switched, which
will permit run-time reordering of the logical merging
chain without any physical change. It will also enable the
use of the two ServerNet links per board in full-duplex:
thanks to the switch, we can create logical point-to point
links to different nodes on the same physical wires. This
way, the two links will be logically aggregated and the re-
sulting bigger link will be used both to send data down-
stream and to receive data from upstream.

4.4 Programmable merge engine

The Phase 2 Sepia merge engine will be implemented
on a new version of PCI Pamette. The features of the merge
engine are likely to be the same as on the Phase 1 system.
In this version however, the merge engine will probably be
implemented on the same FPGA as the rest of the circuit
(including the host interface and the PCI interface to the
network adapter). This will lead to Intellectual Property is-
sues if the merge engine interface is still opened to external
hardware developments.

4.5 Performance

It is obviously impossible to guess the real performance
of such a complex system as Sepia Phase 2 before it is
actually built and tested. We believe that for this generation
of ServerNet, the network will be the slowest element. We
hope to get more than 160 MB/s in each direction from the
Colorado 2 ASIC, which will get us very close to the goals
set in section 2.5.

At 160 MB/s, we could typically get 30 Mpel/s (de-
pending on the actual compression ratio) for a sort-last al-
gorithm (8 bytes per pixel) or 60 to 70 Mpel/s for a sort-
middle algorithm (3 bytes per pixel). In both cases, we
would achieve interactive frame rates on large image sizes.

5 Conclusion

Sepia falls into the category of applications that we nor-
mally consider as being able to make good use of a ver-
satile reconfigurable board like PCI Pamette: most of the
work consists in handling high data throughputs to and
from both external and internal sources and some compu-
tation is also performed on the data as it flows through the
board.

For Sepia, using a programmable board in the prototyp-
ing phase (“Phase 1”) had many advantages:

• The tools are simple and well known and most build-
ing blocks are already available from other applica-
tions, so the development time and the human effort
required for Sepia Phase 1 was small (1.5 persons for
3 months). The only physical hardware developed
was the custom PMC ServerNet adapter, which was
very easy to build from standard specifications.

• Different parts of the FPGA hardware have been de-
signed and tested separately, then merged easily (in
particular the PCI interface to the daughter-board, see
section 3.3).



• The debugging and runtime infrastructure for the
board is already developed and available on multiple
platforms, so the software necessary to manage the
low-level aspects of a Sepia cluster was developed in
a matter of weeks, by the same team that developed
the hardware.

• The high-level software development started very
early on the first functional system. It can continue
with transparent upgrades of the underlying hardware,
which bring primarily higher performance and occa-
sionally new functionality.

• The Sepia architecture is opened to external hardware
developers who can add their own hardware merge en-
gine and the corresponding cross-platform user-mode
driver software.

We strongly believe that it is also very attractive to use
a programmable board for an eventual product (“Phase 2”
or a derivative):

• Like the prototype, development will be short and will
not require much manpower (highly valued in a re-
search environment).

• Large parts of the prototype code will be reused, both
in hardware and software.

• Given the price range and the volume for this kind of
product, an FPGA-based implementation is a reason-
able alternative to the more standard ASIC develop-
ment.

• In the face of a large number of unknowns (3D accel-
erator performance and control, Colorado 2 interfac-
ing and performance), the FPGA solution is flexible
enough to adapt to all the potential optimizations or
problem solutions.

• If correctly engineered, the merge engine is capable of
supporting other (future) 3D accelerators or network
adapters without knowing their specification a priori.

• The merge engine is still hardware-configurable de-
pending on the application and it will be easy to pro-
vide a merge function adapted to any new interesting
application of Sepia.

In summary, reconfigurable boards like PCI Pamette prove
to be ideal platforms for high-performance data-handling
applications like Sepia, even in product versions. Using
reconfigurable technology, Sepia can be not only the 3D-
compositing network it is designed to be, its hardware can
be used as the basis for many distributed graphics process-
ing tasks and more generally for any application that could
make use of a smart cluster.
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