
A Hardware
Architecture for
Implementing
Protection Rings
Michael D. SchroederandJerome11. Saltzer
MassachusettsInstitute of Technology*

Protection of computations and information is an
important aspectof a computer utility. In a system
which usessegmentationasa memory addressing
scheme,protection can be achievedin part by
associatingconcentric rings of decreasingaccess
privilege with a computation. This paper describes
hardware processormechanismsfor implementing
theserings of protection. The mechanismsallow
cross-ringcalls and subsequentreturns to occur
without trapping to the supervisor.Automatic
hardware validation of referencesacrossring
boundariesis alsoperformed. Thus, a call by a user
procedure to a protectedsubsystem(including the
the supervisor) is identical to a call to a companion
user procedure. The mechanismsof passingand
referencingarguments are the samein both casesas
well.
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Introduction

The topic of this paper is the control of accessto
stored information in a computer utility. The paper
describesa set of processoraccesscontrol mechanisms
that weredevisedaspart of the seconditeration of the
hardwarebasefor the Multics system. Thesemecha-
nismsprovidea hardwareimplementationof protection
rings which limit the accessprivilegesof an executing
program.

Multics is a generalpurpose, multiple user, inter-
active computer systemdeveloped at Project MAC of
MIT in a joint effort with the CambridgeInformation
SystemsLaboratoryof Honeywell InformationSystems
Inc. and,until 1969, the Bell TelephoneLaboratories.It
wasbuilt andis beingrun asanexperimentin designing,
implementing, operating, and evaluating a prototype
computer utility. (Reference[14] contains a bibliog-
raphy of publicationson Multics.)

Multics is currently implementedon a Honeywell
645 computersystem.The645 representsa first attempt
to definea suitablehardwarebaseforacomputerutility.
While containingspecial logic to support a segmented
virtual memory,the 645 processor[10] providesonly a
limited set of accesscontrol mechanisms,forcing soft-
ware interventionto implementprotectionrings. In the
courseof Multics developmenta seconditeration of the
design of the hardwarebasehasbeenundertaken.The
resulting new hardwaresystemis being built as a re-ET
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placement for the 645 using the technology of the
Honeywell6000seriescomputersystems.Thenewproc-
essorincludesan improvedset of accesscontrol mecha-
nisms, describedhere, which implement rings almost
completelyin hardware.Thesemechanismsweredevel-
opedfrom a schemedescribedin [16]. Althoughspecifi-
cally designedfor Multics, the mechanismsare appli-
cableto anycomputersystemwhich usessegmentation
as a memoryaddressingscheme.

This paperbeginsby establishingthe generalneed
to control accessto storedinformation in a computer
utility andby presentingseveralcriteria for comparing
different sets of accesscontrol mechanisms.Relevant
aspectsof the organizationof segmentedmemoriesare
thensketched,andtheprocessormechanismsfor imple-
mentingprotectionrings are described.The papercon-
cludes by illustrating how rings can be used and by
evaluatingtheimpactof a hardwaresystemdesign.

AccessControl in a Computer Utility

Protectionof computationsand information is an
important aspectof a computerutility. The multiple
usersof a computerutility havedifferent goalsandare
responsibleto differentauthorities.Sucha diversegroup
will usethesamesystemonly if it is possiblefor themto
achieveindependencefrom one another.On the other
hand,a greatpotential benefitof a computerutility is
its ability to allow usersto easily communicate,coop-
erate,and build upon oneanother’swork. The role of
protectionin a computerutility is to control userinter-
action—guaranteeingtotal user separationwhen de-
sired, allowing unrestricted user cooperation when
desired,andproviding as manyintermediatedegreesof
control as will be useful.

While thereare many manifestationsof protection
in acomputerutility, mostmay berelatedto controlling
accessto storedinformation. Becausestoredinforma-
tion representsboth data and executableprocedure,
control of accessto storedinformationservesto regulate
information processingas well.

Fourcriteriacanbe appliedto a setof accesscontrol
mechanismstojudgeitsusefulnessin acomputerutility:
functional capability, economy, simplicity, and pro-
gramminggenerality.Thefirst meansthatasetof access
control mechanismsshould be able to meet an inter-
estingset ofuserprotectionneedsin a naturalway. The
ability to meetinteresting protectionneedsmust be a
quality of the basicmechanisms,while the ability to do
so in anaturalway is a quality of their userinterface.
An obviousgoal in designingnew protection mecha-
nismsis to maximizefunctionalcapability.

The secondcriterion, economy,meansthat the cost
of specifyingand enforcinga particular kind of access
constraintwith a set of mechanismsshould be so low
that it is not an importantconsiderationin determining
thetypeof accesscontrolto beusedin a particularappli-
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cation. In addition,cost should be proportionalto the
functional capability actually used. The existenceof
accesscontrol mechanismswith sophisticatedcapabil-
ities shouldcost no extrato thosewith unsophisticated
needs.Costincludesthesubsystemcomplexity anduser
inconveniencethat result from useof the accesscontrol
mechanisms,as well as any associatedextra storage
spaceandexecutiontime.

Simplicity is thethird criterion. While it is truethat
simplicity oftenleadsto economy,somethingmoreis at
stake.For a set of accesscontrol mechanismsto be ac-
ceptedtheremust be confidencethat no way exists to
circumventit. The bestway to achieveconfidenceis to
keepthe mechanismsso simplethat they may be com-
pletely understood. With respect to access control
mechanisms,lack of simplicity often implies lack of
security.

The fourth criterion, programminggenerality, is
often neglected.It meansthat individual procedures
maybecombinedeasilyinto largerunitswithout under-
standingor altering their internal organizations.Pro-
gramming generalityallows sharingto be effectivein
encouragingusersto build upon one another’s work.
An implication of programminggeneralityof relevance
to accesscontrol mechanismsis that it shouldbe pos-
sible to changethe protection environmentof proce-
dures and collections of procedureswithout altering
their internalstructure.

It clearly is difficult to designaccesscontrolmecha-
nismswhich satisfy all four of thesecriteria simultane-
ously. Increasesin functional capability come at the
expenseof economy,simplicity, andprogramminggen-
erality. Thechallengein designingaset of accesscontrol
mechanismsis to maximizefunctionalcapabilitywithin
the constraintsof the other three criteria. In the fol-
lowing sectionsa set of hardwareaccesscontrol mecha-
nismsthatwasdevisedin thecourseof Multics develop-
ment is described.Thesemechanismsappearto provide
a significant improvementin the simultaneoussatisfac-
tion of the four criteria as comparedwith the mecha-
nismsin the initial Multics implementation.

SegmentedVirtual Memory Environment

The processoraccesscontrol mechanismsdescribed
here regulatethe ability of an executingprogram to
referenceinformation in a segmentedvirtual memory.
As a basisfor understandingtheseaccesscontrolmecha-
nismsthis sectionbriefly reviewsthe structureof a typ-
ical segmentedvirtual memory. (See[1—3]for detailed
descriptionsof severalsegmentedvirtual memories.)

A machinelanguageprogramfor a segmentedenvi-
ronment doesnot referencememory by absolutead-
dress.Rather, its memoryconsistsof independentseg-
mentsidentified by number.Eachsegmentis a separate
array of words. A two-part address(s, w) identifies
word w of the segmentnumbereds.
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The collectionof segmentsin the virtual memoryis
definedby a descriptorsegmentcontainingan arrayof
segmentdescriptorwords (sDw’s). EachSDW can de-
scribeasinglesegmentin thevirtual memory.The num-
berof a segmentisjust the index of the corresponding
SDW in the descriptorsegment.Among other things,an
SDW containsthe absoluteaddressof the beginning of
the correspondingsegmentin memory. The absolute
addressof the beginningof the descriptorsegmentis
containedin the descriptorbaseregister(DBR) of aproc-
essor.Eachprocessorcontainslogic for automatically
translatingtwo-part addressesinto the corresponding
absoluteaddresses.Addresstranslation,done with an
indexedretrieval of the appropriateSDW from the de-
scriptorsegment,occurseachtime aword in the virtual
memoryis referenced,i.e. eachtime an instruction,in-
directword, or instructionoperandreferenceis madeby
anexecutingprogram.

Storage for segmentsis usually allocated with a
pagingschemein scatteredfixed-lengthblocks. If used,
pagingis also takeninto accountby theaddresstransla-
tion logic, but is totally transparentto an executing
machine languageprogram. Paging, if appropriately
implemented,neednot affect accesscontrol; it will be
ignoredin the remainderof this paper.

Changingthe absoluteaddressin theDBR of a proc-
essorwill causethe addresstranslationlogic to interpret
two-partaddressesrelativeto a different descriptorseg-
ment.This facility canbe usedto provideeachuserof
the systemwith a separatevirtual memory. A single
segmentmaybe part of severalvirtual memoriesat the
sametime, allowingstraightforwardsharingof segments
amongusers.

Controlling Accessin a SegmentedVirtual Memory

To providea frameworkfor discussion,threespecific
assumptionstrue of Multics are introduced. First, a
processwith a new virtual memoryis createdfor each
userwhenhelogs in to the system,andthe nameof the
useris associatedwith the process.The processis the
activeagentof the user,andis his only meansof refer-
encing and manipulating information stored on-line.
Second,on-line storageis organizedas a collection of
segmentsof information.A processcanreferenceaseg-
ment of on-linestorageonly if thesegmentis first added
to the virtual memory of the process.Third, the users
thatare permittedto accesseachsegmentare namedby
an accesscontrol list associatedwith eachsegment.As
will be seen,any systemproviding accesscontrol of the
type underdiscussionwill probablyhaveanalogousas-
sumptions.Theapplicationof the restof the discussion
to other systemswith segmentedvirtual memoriesis
straightforward.

Adding a segmentto a virtual memory,anoperation
performedby supervisorprograms,providesthe initial
opportunityfor controllingaccessto informationstored
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on-line.The nameof the userassociatedwith a process
mustmatchsomeentryontheaccesscontrol list of a seg-
ment beforethe supervisorwill addthatsegmentto the
thevirtual memoryof the process.

Once a segmentis includedin the virtual memory,
however,finercontrol on accessisrequired.(If a process
could, say, write in any segmentto which it hadaccess,
little sharingof information amonguserswould occur.)
If this finer control is to be effective againstarbitrary
machinelanguage programsconstructedby users, it
mustbe implementedas hardwareaccessvalidation on
each reference.The structureof the virtual memory
makesit naturalto recordthesefiner constraintsin the
SDW associatedwith eachsegment.Sincethe processor
mustexaminetheSDW for a segmenteachtime thatseg-
ment is referencedby two-partaddressanyway,thereis
little effort addedto validatetheintendedaccessagainst
constraintsrecordedthere.With this structureit is also
possibleto changethe allowed accessto a segmentby
changingthefiner constraintsrecordedin theSDW, and
to expect the changeto be immediately effective, al-
thoughthe needfor suchdynamicchangesis rare.

Flags which enablea segmentto be read,written,
and executedarenaturalconstraintsto recordin each
SDW. The valuefor eachflag comesfrom theaccesscon-
trol list entrywhich matchedthenameof theuserasso-
ciatedwith the process.An attempt by a processto
changethecontentsof a wordof asegment,forexample,
would beallowedby theprocessoronly if the write flag
were on in the SDW for the segment.This mechanism
providesindividualcontrol on theability of eachuser’s
processto read,write, and executethe words in each
segmentstored on-line. It also makesa segmentthe
smallestunit of informationthat canbe separatelypro-
tected.

With theaccesscontrolmechanismsdescribedsofar,
all programsexecutedaspart of someprocesshavethe
sameinformation accessingcapabilities.However,there
seemsto be anintrinsic needin manycomputationsfor
the accesscapabilitiesof a processto vary as the exe-
cution point passesthroughthe various programsthat
direct the computation.The most obviousexamplesof
thisneedareexplicit invocationsof supervisorprograms
duringthe courseof acomputation.Theexecutionpoint
may passfrom a userprogramto a supervisorprogram
to initiate an input/outputoperationor changethe ac-
cesscontrol list of a segment,andthenpassbackto the
userprogram.Presumablytheexecutingsupervisorpro-
gramcanaccessinformation in someway that theuser
programcannot.In a systemthatallowsandencourages
sharing of information amongusers, other examples
appear.For instance,userA may wish to allow userB
to accessa sensitivedata segment,but only through
a specialprogram,providedby A, that auditsreferences
to the segment.During the courseof a computationin
a processof userB, accessto thesensitivedatasegment
shouldbe allowed only whenthe executionpoint is in
the specialprogramprovidedby A.
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The word “domain” is frequently associatedwith a
set of accesscapabilities.The examplesabovepoint to
an intrinsic needfor multiple domainsto be associated
with a processandfor the domain in which the process
is executingto occasionallychangeas the execution
point passesfrom oneprogramto another.A descriptor
segmentwith read,write, andexecuteflagsin the SDW’s

defines a single domain. Additional mechanismsare
required to allow multiple domainsto be associated
with asingleprocess.

A very general set of accesscontrol mechanisms
would placeno restriction on the number of domains
which could be associatedwith a process,and would
forceno restrictiverelationshipsto existamongthe sets
of accesscapabilitiesincludedin thedomains.Unfortu-
nately,devisingsucha setof accesscontrol mechanisms
that also meetsthe criteria of economy,simplicity, and
programminggeneralityis a difficult researchproblem.
(See[5, 7, 8,12,13,17] for severalapproachesthathave
beenexplored.)In Multics thestrategywasadoptedof
limiting thenumberof domainswhichmaybeassociated
with a process,andof forcing certain relationshipsto
exist amongthe sets of accesscapabilitiesincluded in
the domains.The result is protectionrings.

The characterizationof rings as a restrictedimple-
mentationof domainsis the result of hindsight.When
developed,ringswereviewedasanaturalgeneralization
of the supervisor/usermodesthat provided protection
in many computers. This path of developmentwas
chosenbecauseit solvedthe mostpressingproblemsof
access control involved in the prototype computer
utility and,dueto the inherentsimplicity of the idea, it
wasa paththat theMultics designersfelt confidentthey
could successfullycomplete.Eventodayrings appearto
provide an effectivetrade-off amongthe criteria men-
tioned above.

flags must be extendedto indicate which rings include
each accesscapability. Becauseof the nested subset
propertyof rings, the capability,say,to write a particu-
lar segment,if availableto aprocessat all, is includedin
all rings numberedlessthan or equalto somevaluew.
The range of rings over which this write permission
appliesis calledthewrite bracketof the segmentfor the
process.Readand executebracketsfor eachsegment
can be establishedin the sameway. A processis per-
mittedto read,write, or executea segmentin its virtual
memory only if the ring of executionof the processis
within theproper bracket.

A partial hardwareimplementationof rings places
numbersindicatingthetop of eachbracketof asegment
in the SDW of the segment,along with the read,write,
andexecuteflags. If a flag is on, then the numberspec-
ifies theextent of the correspondingbracket.Turning a
flag offindicatesthat thecorrespondingaccesscapability
is not includedin anyring of theprocess.Forexample,
a datasegmentmight haveits executeflag turnedoffor
a pure proceduresegment might have its write flag
turnedoff. A registeris addedto theprocessorto record
the currentring of executionof the process.The proc-
essorcanthen validateeachreferenceto a segmentby
making the obviouscomparisonswhenthe SDW for the
segmentis examinedfor addresstranslation.

Figure 1 illustratesthe flagsandbracketsthat might
be associatedwith a writable data segmentfor some
process.(In Multics, eightwaschosenastheappropriate
numberof rings. Eightrings areshownin the examples,
although more or fewer rings might be appropriatein
anothersystem.)

Fig. 1. Exampleaccessindicatorsfor a writabledatasegment.

0 2 3 4 5 6 7 ring
I I

write bracket read flag on
‘—--———----——-----------—------------~ write flag on

read bracket execute flag off

Protection Rings

Associatedwith eachprocessare a fixed numberof
domainscalledprotectionrings.Theser ringsare named
by the integers0 throughr — 1. The accesscapabilities
includedin ringm areconstrainedto beasubsetof those
in ring n wheneverm > n. Put anotherway, the setsof
accesscapabilitiesrepresentedby thevariousrings of a
processform a collectionof nestedsubsets,with ring 0
thelargestsetandring r — 1 thesmallestsetin thecollec-
tion. Thus, a processhas the greatestaccessprivilege
whenexecutingin ring 0, and theleast accessprivilege
whenexecutingin ring r — 1. Thetotal orderingof the
sets of accesscapabilitiesdefined by the consecutively
numberedrings of a processis thepropertywhich allows
a straightforwardimplementationof rings in hardware.

As describedearlier, the permissionflags for each
segmentin thevirtual memoryof aprocesssimply indi-
catethat the segmentcan or cannotberead,written, or
executedby the process.With the additionof rings, the
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The associationof multiple domainsof protection
with a processgeneratestheneedfor a new kind of ac-
cesscapability—thecapabilityto changethe domainof
executionof a process.Since changingthe domain of
executionhasthe potential to makeadditional access
capabilitiesavailableto a process,it is anoperationthat
mustbe carefully controlled. An understandingof the
sortof control requiredcan be gainedby reviewingthe
purposeof domains.A domainprovidesthe meansto
protectprocedureanddatasegmentsfrom otherproce-
duresthat are part of the samecomputation.Using
domains,it shouldbe possibleto make certain access
capabilitiesavailableto aprocessonly whenparticular
programsare being executed.Restricting the start of
executionin a particular domain to certain program
locations,calledgates,pi ovidesthis ability, for it gives
theprogramsectionsthat begin at thoselocationscom-
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pletecontrol overtheusemadeof theaccesscapabilities
includedin the domain.Thus,changingthe domainof
executionmust be restrictedto occur only as the result
of a transferof controlto oneof thesegatelocationsof
anotherdomain.

With a completely general implementationof do-
mains, eachdomain could provide protectionagainst
the proceduresexecutingin all otherdomainsof apro-
cess. The correspondingpropertyof rings is that the
protectionprovided by a given ring of a processis ef-
fectiveagainstproceduresexecutingin highernumbered
rings. Switchingthe ring of executionto a lowernumber
makesadditional accesscapabilitiesavailable to a pro-
cess,while switchingthe ring to a highernumberreduces
the available accesscapabilities. Thus, the downward
ring switchingcapabilitymustbe coupledto a transfer
of controlto a gateinto thelower numberedring. Gates
are specified by associatinga (possiblyempty) list of
gatelocationswith eachsegmentin thevirtual memory
of a process.If the executionpoint of the processis
transferredto a segmentwhile the ring of executionis
abovethe top of the executebracket for the segment,
then the transfermustbe directed to one of the gate
locationsin thesegment.If thetransferis to a gate,then
the ring of executionof the processwill switchdown to
the top of the executebracketof the segmentas the
transferoccurs.If the transferis notdirected to oneof
thegatelocations,then thetransferis not allowed.

To providecontrolof this downwardring switching
capabilitywhich is consistentwith the subsetproperty
of rings, a gateextensionto the executebracketof a
segmentis defined.The gateextensionspecifiesthe con-
secutivelynumberedringsabovetheexecutebracketof
the segmentthat include the “transfer to a gate and
changering” capability for the segment.The gate list
andthe gateextensionto the executebracketcanboth
be specifiedwith additional fields in each SDW.

In contrastto downwardring changes,switchingthe
ring of executionto a higher-numberedring can only
decreasethe available accesscapabilitiesof a process.
Thus,anupwardring switchis anunrestrictedoperation
thatcanbe performedby anyexecutingprocedure.(The
instruction to be executedimmediately following an
upwardring switch must comefrom a segmentthat is
executablein the new, higher-numberedring.) For
programmingconvenience,theupwardring switchmay
be coupledto aspecialtransferinstruction.

The abstractdescription of rings is now one step
from completion.Thelaststepcomesfrom the observa-
tionthat for eachproceduresegmentin thevirtual mem-
ory of eachprocessthereis a lowest-numberedring in
which that procedureis intendedto execute. In order
to provide the means for preventingthe accidental
transferto andexecutionof a procedurein a ring lower
than intended,the requirementthat executebrackets
havea lower limit at ring 0 is relaxedand insteadan
arbitrary lower limit is allowed. For many procedure
segmentsthe executebracketwill include exactly one
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ring—the ring inwhich theprocedureis intendedto exe-
cute. Proceduresegmentswith wider executebrackets
normally will contain commonlyused library subrou-
tinesthatare certifiedasacceptablefor executionin any
of severalrings.

The arbitrary lower limit on theexecutebracketof a
segmentcan be implementedby using the field of an
SDW whichspecifiesthetopof thewrite bracketto spec.
ify thebottomof theexecutebracketaswell. Thedouble
use of this field doesnot appearto removeany inter-
esting functional capability. In fact, it eliminates an
unwanteddegree of freedom in accessspecification,
therebyremovingthe potential to makecertaintypesof
errors,suchas allowing bothwriting andexecutionof a
segmentin morethanonering of a process.

Figure 2 showsexampleaccessindicatorsfor a pure
proceduresegmentcontaininggates,andillustrateshow

Fig. 2. Exampleaccessindicatorsfor a pureproceduresegment
whichcontainsgates.

0 1 2 3 4 5 6 7 ring
I I I I I I I I

read bracket
execute gate
bracket exteesian

read flag on
write bracket it write flag off
write flag on execute ttag on

gate fist 0,1,2

theexecuteandwrite bracketsspecifiedin anSDW must
be related.

The gatelist and the numbersspecifying the read,
write, andexecutebracketsand gateextensionin each
SDW all comefrom the accesscontrol list entry which
permittedthe processto includethe correspondingseg-
ment in its virtual memory, as did the valuesfor the
read,write, andexecuteflags.

Call and Return

As arguedabove,achangein the domainof execu-
tion of a processcan occur only when the executing
proceduretransferscontrol to a gateof anotherdomain.
In thecontextof mostprogramminglanguages,aninter-
proceduretransferrepresentsa subroutinecall, a return
following a call, or a nonlocal goto. Linguistically, all
threeoperationsproducea changein the environment
of the executionpoint; this changeaffectsthebinding of
variable namesto virtual storagelocations. The call
operationhas the additional function of transmitting
argumentsand recording a return point. Performing
these functions generally requires the cooperationof
both the procedureinitiating the operationand the
procedurereceiving control. If a call, return, or goto
changesthe domain of executionbecauseit happensto
be directedto a gatelocation of anotherdomain, then
the situation becomesmore complicated, for neither
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procedurecandependupon the otherto cooperate.An
important simplification introducedby restricting do-
mainsto a ring structureis thata proceduremayassume
thecooperationof proceduresin lower-numberedrings.

When proceduresare sharedamongdifferent pro-
cessesand different domains, the addressingenviron-
ment is usually definedvia processorregisters,for the
proceduresmust be pure and it is not convenientto
embedaddresseswithin them.Partof the function of the
call, return,and goto operationsis to properly update
this environmentpointer. In Multics, pure procedures
are usedwith a perprocessstack, and a stack pointer
registerprovides the requiredenvironmentdefinition.
The stackof a processis implementedwith a separate
segmentfor eachring beingused.Thestacksegmentfor
proceduresexecutingin ring n hasreadandwrite brack-
etsthat endat ringn. Thus, stackareasfor theseproce-
duresarenotaccessibleto proceduresexecutingin any
ring m > n. In thefollowing discussionthestackpointer
register is used as a typical exampleof the required
environmentpointer.

The mostcommonwaysof changingthe ring of exe-
cutionof aprocessare a call to a gateof a lower-num-
beredring andthe subsequentupwardreturn.A down-
ward call representsthe invocation of a user-provided
protectedsubsystemor a supervisorprocedure.Because
theHoneywell645 wasdesignedaroundtheusualsuper-
visor/userprotectionmethod,theversionof Multics for
this machineimplementsrings by trappingto a super-
visor procedurewhen downwardcalls and upwardre-
turnsare performed.Thehardwaremechanismsdetailed
in the next sectioneliminate the needto trap in these
cases.Using these improved hardwareaccesscontrol
mechanisms,downwardcalls andupwardreturnsoccur
without the interventionof a supervisorprocedureand
are performedby the sameobject codesequencesthat
perform all calls andreturns.

It is thenestedsubsetpropertyof rings thatmakesa
straightforwardhardwareimplementationof downward
callsandupwardreturnspossible.Becauseof this prop-
erty, the called procedureautomaticallyhas all access
capabilitiesrequired to referenceany argumentsthat
the calling procedurecan legitimately specify and to
returnto thecalling procedurein the ring from which it
called.However,threeproblemsremain.First,thecalled
proceduremusthavea way of finding a new stackarea
without dependingupon information provided by the
calling procedure.Second, the called proceduremust
havea wayof validatingreferencesto arguments,sothat
it cannotbetrickedinto readingor writing an argument
that the caller could notalso reador write. Finally, the
calledproceduremusthavea wayof knowingfor certain
the ring in which the calling procedurewas executing,
so that the called procedurecannotbe tricked into re-
turningcontrolto a ring notashighasthatof thecalling
procedure.

The key to solvingthe first problem,finding a new
stack area,is a rule relating the segmentnumberof the
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stacksegmentfor a ring to the ring number.Using this
rule, the processorautomaticallycalculatesthe segment
numberof the properstacksegmentfor thecalledproce-
dure’sring of execution.By convention,a fixed wordof
eachstack segmentcan point to the beginning of the
next availablestackarea.Thus,the stacksegmentnum-
beralonecanprovide the calledprocedurewith enough
information from which to construct its own stack
pointer. Becausethe processorprovidesthe stackseg-
ment number,no procedureexecutingin a higher-num-
beredring, e.g.thecalling procedure,canaffectthevalue
of the stack pointer for thecalled procedure.

The secondproblem,validatingargumentreferences,
is solvedby providing processormechanismswhich al-
low a procedureto assumethe more restrictedaccess
capabilitiesof any higher-numberedring for particular
operandreferences.Using thesemechanisms,the called
procedurecan validate accesswhen referencingargu-
mentsasthoughexecutionwereoccurringin the (higher-
numbered) ring of the calling procedure. Thus, the
called procedure,even thoughit is executingin a ring
with moreaccesscapabilitiesthanthe ring of thecalling
procedure,can preventitself from reading or writing
anyargumentthat thecalling procedurecould not also
reador write.

The final problem,knowing the ring of thecaller, is
solvedby havingthe processorleavein a programacces-
sible registerthenumberof the ring in which execution
was occurringbeforethe downwardcall wasmade.The
subsequentreturnis madeto that ring. Thusthecalling
procedurehasno opportunityto lower the numberof
the ring to which the return is made.

The next two sectionsdescribein more detail how
downwardcalls, argumentreferencingand validation,
andupwardreturnsareimplemented.Beforeproceeding
to that description,however,thereare two otherpossi-
bilities to consider:a call andreturnthat do notchange
thering of execution,andan upwardcall andthesubse-
quentdownwardreturn.Thefirst presentsno protection
problem,as both the calling andthe calledprocedures
haveavailable the sameset of accesscapabilities.The
hardwaremechanismsfor downwardcalls andupward
returnsalso work when no changeof ring is needed.

The lastpossibility is more difficult to handle.An
upwardcall occurswhen a procedureexecutingin ring
n calls an entry point in anotherproceduresegment
whoseexecutebracketbottomis m > n. Whenthe call
occurs,the ring of executionwill changeto m. The sub-
sequentreturnis downward,resettingthering of execu-
tion to n. Thesecasesexhibit two unpleasantcharacter-
istics of a generalcross-domaincall andreturnthatwere
not presentin the othercases.

The first is that the calling proceduremay specify
argumentsthat cannotbe referencedfrom thering of the
calledprocedure.(For a downwardcall, thenestedsub-
set property of rings guaranteedthat this could not
happen.)There are at least threepossiblesolutionsto
thisproblem.Oneis to requirethat thecalling procedure
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Fig. 3. Schematic description of relevant storageformats and
processorregisters.
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specifyonly argumentsthatare accessiblein thehigher-
numberedring of the called procedure.This solution
compromisesprogramminggenerality by forcing the
calling procedureto takespecialprecautionsin the case
of an upwardcall. Another possiblesolution is to dy-
namicallyincludein the ring of thecalledprocedurethe
capabilitiesto referencethe arguments.Becausea seg-
ment isthe smallestunit of information for whichaccess
can be individually controlled, this forces segments
whichcontainargumentsto contain no other informa-
tion thatshouldbe protecteddifferently, againcompro-
misingprogramminggenerality,unlesssegmentsare in-
expensiveenoughthat, asa matterof course,everydata
item is placedin its own segment.It may also be expen-
sive to dynamicallyinclude and removethe argument
referencingcapabilitiesfrom the called ring. The third
possiblesolution is copying argumentsinto segments
that areaccessiblein the called ring, and thencopying
them backto their original locationson return. This so-
lution restrictsthepossibilityof sharingargumentswith
parallel processes.None of the three solutions lends
itself to a straightforwardhardwareimplementation.

The secondunpleasantcharacteristicis that a gate
must be provided for the downward return. (For an
upwardreturnthenestedsubsetpropertyof ringsmade
a return gate unnecessary.)The return gate must be
createdat the time of the upwardcall andbe destroyed
when the subsequentreturn occurs. If recursivecalls

into a ring are allowed, then this gatemust behaveas
thoughit werestoredin a push-downstack,so thatonly
the gateat the top of the stackcan be used.The gates
specifiedin SDWts seempoorly suitedto this sort of dy-
namic behavior.Processormechanismsto provide dy-
namic, stackedreturngatesare notobviousat this time.

Becauseof thesetwo problems,the hardwarede-
scribedin the next sectiondoesnot implementupward
calls and downwardreturnswithout softwareinterven-
tion. Although the same object code sequencesthat
perform all calls andreturnsareusedin thesecasesas
well, the hardwarerespondsto eachattemptedupward
call or downwardreturnby generatingatrapto asuper-
visor procedurewhich performsthe necessaryenviron-
ment adjustments.

Themannerin which thestackpointerregistervalue
of thecalling procedureis savedwhena call occursand
restoredwhenthesubsequentreturnoccurshasnot yet
beendiscussed.For a same-ringor downwardcall, it is
reasonableto trustthecalledprocedureto savethevalue
left in the stackpointer registerby thecalling procedure
andthenrestoreit beforethesubsequentreturn,sincein
thesecasesthe called procedurehasaccesscapabilities
which allow it to causethecalling procedureto malfunc-
tion in otherways anyway.For an upwardcall andthe
subsequentdownwardreturn, the sameconventioncan
beusedwithout violating theprotectionprovidedby the
lower ring if the intervening software verifies the re-
storedstackpointer registervaluewhenperformingthe
downwardreturn.

Hardware Implementation of Rings

In thissectiontheideaspresentedin theprevioussec-
tions are gatheredinto a description of a design for
processorhardwareto implementrings. Thedescription
touchesupononly thoseaspectsof the processororga-
nization that are relevant to accesscontrol. The seg-
mentedaddressinghardwaredescribedearlierservesas
the foundationof the ring implementationmechanisms.

Figure 3 presentsa schematicdescriptionof storage
formatsandprocessorregistersthat are relevantto the
discussionwhich follows. The DBR and 5DWt5 haveal-
readybeenmentioned.The three3-bit ring numbersin
an SDW (sDw.Rl,SDW.R2, andSDW.R3) delimit theread,
write, and executebracketsandthe gateextension.The
write bracket is rings 0 through SDW.R1, the execute
bracket5DW.Rl through5DW.R2, andthe gateextension
sDw.R2+1 through sDw.R3. Ratherthan providing a
fourth numberto specifythe top of the read bracket,
sDw.R2is reusedfor this purpose.Thusthereadbracket
is rings 0 through SDW.R2. Forcing thetop of the read
andexecutebracketsto coincidein thismannerdoesnot
seemto precludeany importantcases,and savesone
ring number in the SDW. Supervisor code for con-
structing SDW’s must guaranteethat SDW.Rl < SDW.R2
< sDw.R3 is true. Thesingle-bitread,write, andexecute
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flags (sDw.R, SDW.W, andsDw.E) also appear.Finally,
the list of gate locationsof a segmentis compressedto
a singlefixed-length field (sDw.GA’rE) by requiring all
gate locations to be gatheredtogether, beginning at
location 0 of a segment.SDW.GATEcontainsthenumber
of gatelocationspresent.

The instruction pointer register (IPR) specifiesthe
current ring of executionand the two-part addressof
the next instructionto be executed.The generalformat
of an instructionword in memory(INsI) is also shown
for later reference.

The programaccessiblepointer registers(PRO, PRl,
..) eachcontaina two-partaddressanda ring number.

Becausesegmentnumbersare not generallyknown at
the time a proceduresegmentis compiled, machine
instructions specify two-part operand addressesby
giving an offset (in INST.OFFSET) relative to one of the
PR’s (specifiedby INST.PRNUM) or IPR. The ring number
in a pointer register(PRn.RING) is usedto specifyavali-
dation level for the address,and is part of the mecha-
nism that allows an executingprocedureto assumethe
accesscapabilitiesof a higher-numberedring for refer-
encingarguments.One of the PR’S i5 intendedto serve
asthe stackpointer registermentionedearlier.

Indirectaddressingmaybe specifiedin aninstruction
by settingtheindirect flag (INsT.I). Indirect words (IND)
contain the sameinformation as PR’s, and may also
indicatefurther indirectionwith an indirect flag (INDI).

The final item in Figure 3 is the temporarypointer
register(TPR). The TPR is an internalprocessorregister
that is not programaccessible.It is usedto form the
two-part addressof each virtual memory reference
made.The ring number (TPR.RING) providesthe value
with respectto whichpermissionto referencethevirtual
memorylocation is validated.

Therearetwo aspectsto theimplementationof rings
in hardware.Thefirst is accesscheckinglogic, integrated
with the segmentedaddressinghardware,that validates
eachvirtual memory reference.The secondis special
instructionsfor changingthering of execution.Thebest
way to describethe first aspectis to tracethe processor
instruction cycle, paying particular attention to the
placeswhereoperationsrelatedto accessvalidation oc-
cur. The secondaspectwill be discussedwhenthe de-
scriptionof theinstructioncycle reachesthepointwhere
the instructionis actuallyperformed.

The first phaseof the instructioncycle,retrievingthe
next instructionto beexecuted,is describedin Figure 4.
At thepointduring addresstranslationthat the SDW for
the segmentcontainingthe instructionbecomesavail-
able, the ring of execution(now TPR.RING) is matched
againstthe executebracketdefinedin the SDW andthe
executeflag is checked.If the segmentmay be executed
from the currentring of executionthe instruction fetch
is completed.Theaccessviolationsandotherconditions
requiring softwareintervention shownin this and fol-
lowing figures generatetraps,derailing the instruction
cycle.A trapsaction is describedlater in this section.
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Fig. 4. Retrievalof next instructionto be executed.
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The next phaseof the instructioncycle, calculating
in TPR the effectiveaddressof theinstruction’soperand,
is describedin Figure 5. This phaseoccursonly if the
instruction has an operandin memory. The effective
addressis the final two-part addressof the operand
(after all addressmodifications and indirectionshave
taken place) togetherwith an effective ring number
which is used to validate the actual referenceto the
operand.

The formation of a two-part addressin TPR.SEGNO
and TPR.WORDNO is very straightforwardand is de-
scribedby Figure 5. Thecalculationof thering number
portion of the effectiveaddressin TPR.RINGandthe ac-
cess validation performed before retrieving indirect
words,also shownin Figure 5, needfurther comment.

The effective ring portion of the effective address
providesa procedurewith the meansof voluntarily as-
suming the accesscapabilities of a higher-numbered
ring whenmaking aninstructionoperandreference.The
effectiveringnumberalso recordsthehighest-numbered
ring from which a procedure(in the sameprocess)pos-
sibly couldhaveinfluencedtheeffectiveaddresscalcula-
tion. Thefirst opportunityfor thevalue of TPR.RING to
changeduring effectiveaddresscalculationoccursif the
instructioncontainsan addressthat is an offsetrelative
to somepan. In this caseTPR.RING is updatedwith the
largerofitscurrentvalues(still the currentringof execu-
tion) andthe ring numberin the specifiedpointer regis-
ter (PRn.RING).Thus,if PRn.RINGcontainsa valuethat is
greaterthan thecurrentring of execution,validation of
the operandreferencewill be as thoughexecutionwere
occurringin this higher-numberedring.
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Fig. 5. Formation in TPR of effective addressof instruction
operand.
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Fig. 6. Accessvalidation for instructionswhich reador write their
operands.

The remainingopportunitiesto changethevalueof
TPR.RING occur in conjunction with the processingof
indirect words involved in the effective addresscalcula-
tion. Eachtime anindirect word is retrieved,TPR.RING
is updatedwith the largerof its currentvalues,the ring
numberin theindirect word (INDRING), andthetop of
thewrite bracketfor the segmentcontainingtheindirect
word (sDw.Rl). The ring number in the indirect word
hasthe samepurposeas the ring numberin a pointer
register—forcingvalidation of the operand reference
relativeto somehigher-numberedring. Includingin the
calculationthe top of the write bracketof the segment
containingthe indirectword, however,hasanotherpur-
pose.Thetop ofthewrite bracketrepresentsthehighest-
numberedring from which a procedurein the same
processcouldhavealteredtheindirectword andthereby
influencedtheresult of the effectiveaddresscalculation.
Taking into accountSDW.RI when updatingTPR.RING
guaranteesthat the operandreferencewill be validated
with respectto thehighest-numberedring which could
haveinfluencedthe effectiveaddress.

Thecapabilityto readanindirectword duringeffec-
tive addressformation must be validated before the
indirect word is retrieved.Validation is with respectto
the value in TPR.RINGat the time the indirect word is
encountered.At the conclusionof the effectiveaddress
calculationdescribedin Figure5, TPRcontainstheeffec-
tive addressof the instructionoperand,including the
effectivering numberwith respectto whichthereference
to the operandwill be validated.

The nextphaseof theinstructioncycle is to perform
the instruction. For the purposeof accessvalidation,
the possible instructions may be broken into three
groups,accordingto the type of referencemadeto the
operand.Figure 6 shows the accessvalidation for the
straightforwardcasesof instructionswhich read their
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operandsand instructionswhich write their operands.
The third group, instructionswhich do not reference
their operands,is illustratedin Figure 7. Oneset in this
group is the “Effective Addressto PointerRegister”-
type(EAP-type) instructionswhich loadtheRING, SEGNO,
andWORDNO fields of ~ withthe correspondingfields
of TPR. The operandis not referenced,so no accessval-
idation is required.Instructionsof this type are impor-
tant, as will be seenlater, for they are the only way to
load PR’S.

Theremaininginstructionsillustratedin Figure7 are
transfer instructions. To provide some protection
againstchangingthe ring of executionby accident,all
transferinstructionsexcepttwo, CALL andRETURN, are
constrainedfrom doing so. Since a transferinstruction
doesnotreferenceits operand,butjust loadstheaddress
of its operandinto the instructioncounter,no access
validationis really required.However,an advancecheck
on whetherreloadingIPR from TPR will result in an ac-
cessviolation when the next instruction is retrievedis
very useful from the standpointof debugging,for it
catchesthe accessviolation while it is still possibleto
identify the instructionwhich madethe illegal transfer.
Figure 7 describesthe advancecheck for transferin-
structionsotherthanCALL andRETURN.

The two instructionsthat remain to be considered
are theinstructionswhichcanchangethering of execu-
tion: CALL andRETURN. Theyareintendedto beusedto
implementthe same-namedlinguistic operations.1CALL
will automatically switch the ring of execution to a
lower numberandRETURN to a highernumberif the oc-
casion requires it. These instructions also function
properly for calls and returns within the samering.
Whenusedto performan upwardcall or a downward
return, theinstructionscausetrapswhich allow software
intervention.

Figure 8 describestheaccessvalidationandperform-
ance of the CALL instruction. Several points require
further explanation.The first concernsgates.FromFig-
ure 8 it is apparentthat a CALL must be directedat a
gatelocation even whenthe called procedurewill exe-
cutein the samering as the calling procedure.The ra-
tionale for this use of the gatelist of a segmentis that
it can provide protection against accidental calls to
locationsthat are not entry points, evenwhenthe call
comesfrom within the samering. Thus,’SDW.GATE for a
proceduresegmentusually specifiesthe numberof ex-
ternallydefinedentry points in the proceduresegment.
Thesebecomegatesfor higher-numberedrings in the
sensedescribedin the previoussectionsonly if the top
of the gateextensionof the segmentis abovethetop of
the executebracket, i.e. only if sDw.R3 > sDw.R2for
thesegment.The pricepaidfor thiserrordetectionabil-
ity is that if any externallydefinedentry point in a pro-
ceduresegmentis a gate for a higher-numberedring,

0 RETURN may alsobeusedto implementthe nonlocalgoto
operation.
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Fig. 7. Access validation for instructionswhich do not reference
their operands.
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Fig. 9. Access validation and performance of the RETURN
instruction.
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thenall are. On intersegmenttransfersof control within
the samering, the gate restrictioncan be bypassedby
usinganormal transferinstructionratherthan a CALL.
The only exceptionto having the CALL instruction re-
spectthe gatelist of the operandsegmentoccursif the
operandis in the samesegmentas the instruction. Al-
lowing a CALL instruction to ignore the gatelist of the
segmentcontainingthe instructionpermits it to be used
to implementcallsto internalprocedures.

The accessvalidation for the CALL instruction is
maderelative to the ring numbercomputedas part of
the effective address.Since, as a result of PR-relative
addressingand indirection, the effective ring value
(TPR.RING) can be higher than the current ring of
execution (1PR.RING), what would appearto be a call

within the samering or to a lower ring with respectto
TPR.RING can in fact be an upward call with respect
to IPR.RING. Because in normal circumstancesthis
situation representsan error, the decision is madeto
generatean accessviolation when it occurs,even if the
currentring of executionis within the executebracket
of the called proceduresegment.

CALL generatesin PRO a pointer to word 0 of the
stacksegmentfor thenew ring of execution.(The PR to
useasthis stackbasepointerischosenarbitrarily.) The
stack segmentselectionrule illustrated in Figure 8 is
that the segmentnumber of the appropriatestackseg-
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ment is the sameas the new ring number.2 The final
transferof control is achievedby reloading IPR.RING,
IPR.SEGNO, and IPR.WORDNO from the corresponding
fieldsof TPR.

The RETURN instruction is describedby Figure 9.
The accessvalidation is the sameas for other transfer
instructions.The ring to which the return is madeis
specified by the effective ring portion of the effective
addressgeneratedby theRETURN instruction.In thecase
that the return is upward, the ring numberfields in all
pointer registersare replacedwith the larger of their
currentvalues andthe new ring of execution.This re-
placement,togetherwith the factthat PR’S can only be
loadedwith EAP-type instructions,guaranteesthatpan.-
RING can nevercontaina valuethat is lessthan IPR. RING,
a fact whichprovesveryusefulwhen passingarguments
on adownwardcall andwhichmakesit easyto perform
an upwardreturn to the properring. (Seethe next sec-

tion for details.)
Two items remainto be consideredto completethe

descriptionof theprocessorhardwarefor implementing
rings.Oneis theactionof a trap.Trapsaregeneratedby
a variety of conditions in Figures 4—9, as well as by
missingsegmentsandpages,I/O completions,etc. When
the processordetectssuch a condition, it changesthe
ring of executionto zero andtransferscontrolto a fixed
location in the supervisor.A specialinstructionallows
the stateof the processorat the time of the trap to be
restored later if appropriate,resuming the disrupted
instruction.

The other item concernsprivileged instructions.
Certaininstructions,if executableby all procedureseg-
ments,could invalidate the protectionprovidedby the
ring mechanisms.Among theseare the instructionsto
loadthe DBR, start I 0, andrestorethe processorstate
after a trap. Such instructionsare designatedas privi-
legedandwill be executedby theprocessoronly in ring
0. This conventionrestrictstheir useto supervisorpro-
cedures.

Call and Return Revisited

The intendeduse of the hardwaremechanismsjust
describedis illustrated by consideringagain two key
aspectsof the linguistic meaningof the operationscall
andreturn.

Two subtlefeaturesmaybeincludedat this point by usinga
more sophisticatedstack segmentselectionrule. If the CALL in-
structiondoesnot changethe ring of execution,then the segment
numberfor the stackbasepointer is takendirectly from the stack
pointerregister allowing thecontinueduseof a nonstandardstack
segmentfor proceduresexecutingin thesamering. If theCALL in-
structiondoeschangethering of executionthenthenewstackseg-
ment numberis calculatedby addingthe new ring numberto an
additionalDBR field thatspecifiestheeight consecutivelynumbered
segmentsthatarethe standardstacksegmentsof the process.The
useof theadditional DBR field allowsmoreflexibility in stackseg-
ment assignment,facilitating the preservationof stackhistory fol-
lowing anerror andtheimplementationof forkedstacks.
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The first aspectto be reconsideredis the way argu-
mentsarepassedandreferenced.A proceduremakinga
call constructsanarrayof indirectwordscontainingthe
addressesof the various argumentsto be passedwith
the call. To inform the calledprocedureof the location
of thisargumentlist, the calling procedureloadsa spe-
cific PR designatedby softwareconvention(call it PRa)
with the addressof the beginning of the argumentlist.
An instructionof thecalledprocedurecanreferencethe
nth argumentas its operandby using an indirect ad-
dress.The location of the indirect word is specified in
the instructionas PRa offset by ii. If this operandrefer-
enceconstitutesan upwardcross-ringargumentrefer-
encethen the propervalidation is automatic,for PRa.-
RING, as set by the calling procedure,must contain a
numberthat is greaterthan or equal to the numberof
the ring in which the calling procedurewas executing
when the call wasmade.Thus, validation of all argu-
ment referencesby the called procedurewill be with
respectto an effectivering that is at leastas high asthe
ring of the caller.

Thering numberin PRa, then,allows thecalledpro-
cedureto automaticallyassumethefeweraccesscapabil-
ities of the calling procedurein the caseof anupward
cross-ringargumentreferencevia PRa andtheargument
list. Not all argumentreferences,however,will be made
in this way. For example,if an argumentis an array,
thenthe correspondingargumentlist indirect wordwill
addressthefirst element.Thecalledproceduremayfind
it convenientto load some free PR, say PRl, with the
actual two-partaddressof the beginning of that array
argumentsothat arrayindexing canbe more easilyac-
complished.If PRl is loadedwith anEAP-typeinstruction
whoseoperandaddressis specifiedvia PRaandthe argu-
ment list, then the proper effective ring number will
automaticallybeput in PRl RING, andsubsequentrefer-
ences to the argumentvia PRl will also be validated
with respectto aneffectivering that is at leastas highas
the ring of thecaller. If PRl is then storedasan indirect
word, this effectivering is put into theRING field of the
indirect word. In fact, as long as the called procedure
doesnot make an explicit effort to lower the effective
ring associatedwith an argument address, e.g. by
zeroingthe RING field of an indirect word, then all ma-
nipulationsof the argumentaddressare safe, and all
argumentreferenceswill be validatedwith respectto an
effective ring that is at leastas high as the ring of the
caller.3

Thesecondaspectto be reconsideredwith respectto

This propertyallowsthecorrectargumentvalidation to occur
naturallywhen anargumentis passedalongachain of downward
calls.TheRING field of anargumentlist indirect wordwill specify
the ring which originally provided the argument.If this valueis
higher than the value of PRa.RINGr then the indirect word ring
numberwill becometheeffectiveringfor validationof referencesto
thecorrespondingargument.
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call andreturnis theway in whicha returnto theproper
ring is accomplished.As describedearlier,the hardware
guaranteesthat theRING fieldsin all PR’S alwayscontain
valuesgreaterthan or equalto the current ring of exe-
cution. Thus, after a call all PR’S exceptPRO, which is
alteredby the CALL instruction, initially contain ther5ing

of the caller (or some higher number) in their RING
fields. It follows that any schemefor returning which
dependsupononeofthesevaluesis secure.For example,
the conventiondescribedearlier for restoringthe stack
pointerregistervalueof thecaller beforea returnmakes
it naturalto addressthe operandof the RETURN instruc-
tion via this restoredPR. (For this schemeto work, the
return point must havebeensavedby the caller at a
standardposition in its stack areabefore the call oc-
curred.) The RETURN instructionis thusguaranteedto
generateaneffectivering numberno lowerthanthering
of thecalling procedureandthereforewill returncontrol
to the ring of the caller or some higher-numberedring.

Use of Rings

Someinsightinto the functionalcapabilitiesof rings
can be gainedby consideringbriefly the way the basic
mechanismsdescribedin theprevioussectionsare used
in Multics.

The ring protectionschemeallows a layered super-
visor to be included in the virtual memory of each
process. In Multics, the lowest-level supervisorpro-
cedures, such as those implementing the primitive
operationsof accesscontrol,I 0, memorymultiplexing,
and processor multiplexing, execute in ring 0. The
remainingsupervisorproceduresexecutein ring 1. Ex-
amples of ring 1 supervisor proceduresare those
performing accounting,input output streammanage-
ment, and file systemsearchdirection. (Deciding how
manylayersto useandwhichproceduresshouldexecute
in each layer is an interesting engineering design
problem.)Supervisordatasegmentshavereadandwrite
bracketsthatendat ring 0 or ring 1, dependingon which
layerof the supervisorneedsto accesseach.

Implicit invocation of certain ring 0 supervisor
proceduresoccursas a resultof a trap. Explicit invoca-
tion of selectedring 0 andring 1 supervisorprocedures
by proceduresexecutingin rings 2—5 of a processis by
standardsubroutinecalls to gates.Proceduresexecuting
in rings 6 and7 are not givenaccessto supervisorgates.

Becauseseparateaccesscontrol lists for eachseg-
ment andseparatedescriptorsegmentsfor eachprocess
providethe meansto control separatelytheuseof each
segmentby eachuser’sprocess,notall gatesinto super-
visor rings needbeavailableto theprocessesof all users,
and not all gatesneed havethe samegateextension
associatedwith them. For example,some gates into
ring 0 areaccessibleto theprocessesofall users,butonly
to proceduresexecutingin ring 1. Suchgatesprovidethe
internal interfacesbetweenthe two layersof the super-
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visor. Somegatesinto ring 1 are accessibleto procedures
executingin rings 2—5in the processesof selectedusers,
butare notaccessibleat all from the processesof other
users.An exampleof thelatter kind is a gatefor regis-
teringnew usersthat is availableonly from theprocesses
of systemadministrators.

As pointedout by Dijkstra [6], a layeredsupervisor
hasseveraladvantages.Constructingthe supervisorin
layersenforcedby ring protectionreinforcesthesead-
vantages.It limits the propagationof errors, thereby
making the supervisoreasierto modify correctly and
increasing the level of confidencethat the supervisor
functionscorrectly.For example,changescanbe made
in ring 1 without having to recertify the correctoper-
ation of the proceduresin ring 0.

By arrangingfor standarduserproceduresto execute
in ring 4, rings 2 and3 becomeavailablefor theprotec-
tion of user-constructed subsystems. Subsystems
executingin rings 2 and 3 of a processcanbe protected
from proceduresexecutingin rings 4—7 in the sameway
that the supervisoris protectedfrom proceduresexe-
cuting in rings 2—7. All commentsmadeabouta super-
visor implementedin rings0 and1 of eachprocessapply
to protectedsubsystemsimplementedin rings 2 and 3.
Different protectedsubsystemsmay be operatedsimul-
taneouslyin rings 2 and 3 of different processesand
several processesmay share the use of the same
protectedsubsystemsimultaneously.Thering protection
schemeallows the operationof user-constructedpro-
tectedsubsystemswithout auditing them for inclusion
in the supervisor. (The software facility that forces
standarduserproceduresto executein ring 4, andyet
allows all usersto freely providering 3 protectedsub-
systems for one another, is not discussed here.)
Examples of protected subsystemsthat might be
providedby varioususersare a proprietarycompileror
a subsystemto provide interpretiveaccessto somesen-
sitivedata baseand safely log eachrequestfor infor-
mation.

With mostuserproceduresexecutingin ring 4, rings
5, 6, and 7 are available for userself-protection.For
example,a usermay debuga programby executingit
in ring 5, whereonly procedureand datasegmentsin-
tendedto bereferencedby the programwould be made
accessible.Theringprotectionmechanismswould detect
many of the addressingerrors that could be madeby
the programand would preventthe untestedprogram
from accidently damaging other segmentsaccessible
from ring 4. In thesameway ring 5 canbeusedfor the
executionof an untrustedprogramborrowedfrom an-
otheruser.

Becausesupervisor gates are not accessiblefrom
rings 6 and7 of any processin Multics, proceduresexe-
cutedin theserings haveno explicit accessto supervisor
functions; they may, however,be given permissionto
call user-providedgatesinto rings 4 or 5. Ring 6 of a
processmight be used,for example,to provide a suit-
ably isolatedenvironmentfor studentprogramsbeing
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evalutedby a gradingprogramexecutingin ring 4.
The complete description of a software access

control facility basedon rings that allows them to be
usedin the mannerjust outlined would requireanother
paper.A fundamentalconstraintenforcedby this soft-
warefacility is thataprogramexecutingin ring n cannot
specify Rl, R2, or R3 valuesof less than n in an access
control list entry of any segment.Althougha given ring
may simultaneouslyprotectdifferent subsystemsin dif-
ferent processes,each ring of eachprocesscan protect
only onesubsystemat a time. A usablesoftwareaccess
control facility must constraineach user’s ability to
dynamicallyset andmodify accesscontrolspecifications
so that this sole occupantpropertycan be verified and
enforcedwhennecessary.

Conclusions

Thehardwaremechanismsderivedanddescribedin
thispaperimplementa methodicalgeneralizationof the
traditional supervisoruser protection schemethat is
compatiblewith a sharedvirtual memorybasedon seg-
mentation.This generalizationsolves three significant
kinds of problems of a general purposesystemto be
usedas a computerutility:

• userscancreatearbitrary,butprotected,subsystems
for useby others;
• the supervisorcan be implementedin layerswhich
are enforced;
• theusercanprotecthimselfwhile debugginghis own
(or borrowed)programs.

The subsetaccesspropertyof rings of protectiondoes
notprovidefor whatmay becalled“mutually suspicious
programs”operatingunderthecontrol of a singleproc-
ess.On the otherhand,it is just that subsetproperty
which imposesan organizationwhich is easyto under-
standand thusallows a systemor subsystemdesigner
to convincehimselfthathisimplementationis complete.
Also, it isjust the subsetpropertywhich is the basisfor
a hardwareimplementationthat is integratedwith seg-
mentationmechanisms,requiringvery small additional
costsin hardwarelogic and processorspeed.

The long-rangeeffect of hardwareprotectionmech-
anismswhich permit calls to protectedsubsystemsthat
use the samemechanismsas calls to other procedures
is boundto be significant.In the interfaceto the super-
visor of most systemsthere are many examplesof
facilitieswhoseinterfacedesignis biasedby theassump-
tion thata call to the supervisoris relatively expensive;
the usual result is to place several closely related
functionstogetherin the supervisor,eventhoughonly
oneof the group really needsprotection.For example,
in the Multics typewriter I/O package,only the func-
tions of copying datain andout of sharedbuffer areas
and of executingthe privileged instruction to initiate
I/O channeloperationneedto be protected.But, since
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thesetwo functions are deeplytangledwith typewriter
operationstrategyandcodeconversion,the typewriter
I/O control packageis currently implementedas a set
of proceduresall locatedin thelowest-numberedring of
the system,thusincreasingthe quantity of codewhich
hasmaximumprivilege.

A similar exampleis found in many file system
designs,wherecomplexfile searchoperationsare carried
outentirelyby protectedsupervisorroutinesratherthan
by unprotectedlibrary packages,primarily becausea
complexfile searchrequiresmany individual file access
operations,eachof which would requiretransferto a
protectedservice routine, which transfer is presumed
costly.

The initial version of Multics used softwareimple-
mented rings of protection. The result was a very
conservativeuseof the rings: originally just two super-
visor rings and one user ring wereemployed,and the
two supervisor rings were temporarily collapsedinto
one(thus exploitingthe programminggeneralityobjec-
tive referredto before)while the softwarering crossing
mechanismswere tuned up. Today, althoughthereare
many obviousapplicationswaiting, the ability to use
morethantwo rings in a computationisjust beginning
to be exploited. The availability with the new Multics
processorof hardwareimplementedrings which make
downwardcalls and upwardreturnsno morecomplex
thancalls andreturnsin the samering shouldsignifi-
cantlyincreasesuchexploitation.
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original idea of generalizing the supervisor/user
relationshipto a multiple ring structurewas suggested
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included threering numbersembeddedin segmentde-
scriptorwords,and a processorring register,but which
still requiredsoftwareinterventionon all ring crossings.
Thougha relatedschemewas implementedin theHitac
5020time-sharingsystem[15],thishardwareschemewas
never implementedin Multics, which today (1971) still

170

usesa version of the softwareimplementationof rings.
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CALL and RETURN instructionsproposedtherehavealso
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The hardware implemented call and return, and
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spiredby similarmechanismswhichhavelongbeenused
on computersystemsof the Burroughs Corporation
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