LA

T n

o

f*T

Performance of the GE-645 Associative llemory
While lMultics is in Operation

by liichael D. Schroeder *

ABSURACT

The Multiplexed Information and Computing Service (llultics)
of Iroject IAC at M.I.T. runs on a General ElectFic 645 comnuter
system. Wwhe processors of this hardware svstem contain loagic for
both paging and segmentation of addressable memorv, They
directly accent two-rart addresses of the form (scament number,
word number) which they translate into absolute menory addresses
through a series of indexed table lookups. To speed this address
translation each processor contains a small, fast associative
memory which remembers the most recently uscd address translation
table entries. ‘his paper reports the results of rerformance
measurements on this associative memorv. The measurements were
nade by attaching an electronic counter directly to a processor
witile lMultics was in operation, and were taken for several
associative memory sizes. The measurements show that for the
observed load 16 associative reqgisters are enough.

* lMassachusetts Institute of Technology, I'roject MAC, Cambridge,

Hassacihusetts. Work reported herein was suprorted 1in part Dby
Project HAC, an M.I.T. research program sponsored by the Advanced
Research Project Agencv, Department of LDefense, under Office of
laval Research Contract llonr-4102(01).

(227)

i1

Introduction

The lultiplexed Information and Comruting Service (fultics)

of Project I!MC at 11.I.T. [1] incormorates both paging and
segmentation. The information stored in the svstem is organized
as a collection of segments. !erory for seqments is allocated in
fixed-sized blocks which are wvaged in a nulti-level menory
system. Seqmentation allows controlled sharina of information

and rovides considerable hel to a nrogram 1in organizin
! . a

storage, even at the level where the nrogram is unressed in
nachine language. Paging simplifies the rproblem of physical
storage allocation in a time-shared computer svstem, (Tor a

general discussion of paging and scgmentation sce [2].)

The use of paging and segmentation by Iultics is made
possible and practical by the hardware on which !Multics operates,
the General Llectric 645 computer svstem. The 645 central
processing units [3] are designed to allow paging and
segnentation of addressable menory (core memorv in this case).
The algorithm implemented bv the addressina logic of these
processors applies a segmented, mnaaced structure to the core
menory. This addressinag logic accents two-dimensional (scament
nurber, word number) addresses which it translates to the
corresponding absolute core addresses, The translation algorithm
involves a series of indexed 1lookups in address translation
tables in core.

Lach processor contains a small, fast associative mnemory
which remembers the address translation table entries most

recently used in address translation. The associative memory

(228)

exploits he rremise that most programs exhibit sufficient
locality of reference to cause consecutive reuse of a small set
of address translation table entries. Under these conditions the
associative mernory allows most two-dimensional addresses to be
translated to absolute form without reference to the tables in
core.

Tiiis paper reports the results of a series of exreriments
performed on the associative nerory of a GE-645 processor to
verify the locality of reference premise. An electronic counter

wvas attached to the 1logic of a processor while !Multics was in

opceration and a normal user load was present. The counter
rccorded the occurrence of various events associated with
processor and associative memory operation. The measurenents

allow various performance parameters of the associative memnory to
e calculated, and the validity of the locality of reference
prerniise to be determined. The same set of measurements werec
taken for associative menory sizes of 16, 8, and 4 reaisters, and
with the associative memory turned off,

The paper is nresented in four rarts. Tirst the segmented,
paged structurec applied to core memorv 1is described and the
address translation algorithm used by a rrocessor is srecified.
Liext tie role of the associative memory in address translation is
prescnted. The third section describes the measurement
experiments and presents the results obtained. In the last

section the significance of these results is discussecd.

Address translation

“he addressing logic of the GE-645 rrocessors functions at

twvo levels and solves two distinct problems. At the first level

S

is seqgnentation. machine language vproaram for a GL-645

[
-

processcor executes in a £wo—dimensional address snace. The
address sprace 1s a collection of indeprendent segments identified
by number, Lach segment is an arbitrarv lenath array of 36-bit
words, An address of the form (s,w) identifiecs the wth word of
the. seqnent numbered s.

“ihie collection of segments in the address space 1is defined
vy a descriptor segment, The descriptor segment contains an
array of scagment descriptor words (SDWs), each of wiich describes
a single segment in the address space. Tbe nunber of a seament
is just the index of the corresponding €Y7 in the descrintor
segment. Among other things, an €bW contains tlie absolute
address of the beainning of the corresronding seament in core.
The absolute address of the beainninag of the descrintor seament
is contained in the descriptor base register (DBT) of a
Processor.

Addréss tranclation in this (simplified) environnent is
straightforward. To determine the absolute core address
corresponding to the two-dimensional address (s,w) a two sten
calculation is made. First, the scgment number s is added to the
address in the DBR to calculate the absolute address of the €W
correspronding teo the segment. Then, the word number w is added
to the address contained in this SLW to calculate the absolute

address corresponding to the address srace location (s,w). The

addressing logic of the processors performs this calculation ecach
time a two-dimensional address is used.

At the secpnd level of function is paging. Paging
complicates the simplified address translation alaorithm just
sketched. Storage for segments in core, includina the descrintor
segment, is not a contiqguous array of locations as the simplified
algorithm implies. Rather, storage for segments is allocated in
scattered 1024-word blocks. A page table, also in core, lists in
an array of page table words (PTWs) the blocks of core occunied
Ly thie consecutive pages of a particular segment. This paging of
segments is transparent at the machine language level, but 1is
taken into account by the address translation algorithm in
converting a two-dimensional address to absolute form. The
absolute address in the DBR of a processor 1is actually the
address of the beqginning of the page table for the descriptor
seqnent., The absolute addresses in SDWs are the beginnina
locations for the page tables of the segments in the address
space.,

The address translation algorithm used by the GE-645
processors, then, takes into account both segmentation and
paging. Figure 1 illustrates this algorithn. The stens in
translating the address (s,w) are shown. The absolute addresses
in the LBR, the PTWs, and the SuLWs are represented by arrows. It
is assumed that all information is in core, as only this primary
level of memory is directly accessible to the processors. DPage
tables and mages not in core would be indicated by fault flags in

the appropriate SbWs and PTWs, respectively. The addressina

(231)

DBR ,

page table for descriptor segment

\
N - T

[s/1024] *
o1 4

R page of descriptor segment

I - T

s mod 1024

SDW B i

page table for segment "s"

T T
[w/1024]
PTW » .l_ page of segment "s"
//f~—~__,;;““"”/’//‘ w mod 1024

word (s,w) of _L
address space

Figure 1: Translation of address (s,w) by GE-645 processor

* [...] indicates "integer part of"

(232)

logic of the processors "traps" when such a fault flag is
encountered during addressrtranslation.

liote that simply changing the value 1in the DBR of a
processor will cause the address translation algorithm to
interpret two-dimensional addresses relative to a different set
of address translation tables. In fact, this property is used by
Ilultics to provide a separate two-dimensional address space for
each on-going computation. (These address spaces mnay overlap.)
An on-going computation together with its address space is called
a process. The address space of a typical Ifultics process
contains about 200 seqgments. (For a more complete description
of segmentation and paging in lMultics, and the addressing logic

of the GL-645 processor, see [4]).

Role of associative memory

The address translation algorithm described above implies
that reference to a word 1in the address smace of a process.
reaquires three core references for address translation in
addition to the requested address space reference. In order to
reduce this ratio of four absolute core references per address
space reference, each GE-(45 processor contains a 16 reqister
associative nenory. This fast memory retains the 16 nost
recently used SbLWs and/or PIWs, (PTWs for tihe descriptor segment
are an exception, and are never placed in the associative
nemory.) Under conditions of consecutive reuse of a smnall set
of PiIWs and SDWs, the associative memory can eliminate some of

the core references for PTWs and SbWs that would otherwise

(233)

occur,

Bach time the addressing logic of a rrocessor is activated
to translate a (segment number, word number) address, it
interrogaﬁes the associative memory before referencing any SLWs
or PTWs in core. 7The search key is the seqment number and word
number from the address being translated. Three results of this
interrogation are possible:

1. P1W found
2. SDW found
3. no match

In case 1 the associative menory contained the PTW for the
particular page of the segment being referenced. lo further
address translation references are needed. Adding the word
number modulo 1024 to the absolute address contained in the found
PTW vields the absolute address corresnondina to the address
snace location being referenced.

In case 2 the associative memory did not contain the needed
PTW, but did contain the SDW for the seqment being referenced.
Addrecss translation may be completed with one PIW reference to
core,

In case 3 nothing of assistance was 1in the associative
memory. All three address translation references to core rnust be
made.

The SDWs and PTWs in the associative memory are ordered by
recentness of use, Lach time an €SDW or a PTW from the
associative memory is used it goes to the head of the use aueue.

Thenever an SDW or a PTW is referenced in core because it was not

(234)

in the associative memory, it is wnlaced in the associative
Menory. It replaces the item at the tail of the use aueue and
then goes to the head of the queue. Thus, the remrnlacement
algorithm wused 1in the associative merory 1is strictly "least
recently used".

The processor hardware performs the search of the
associative memory in 200 to 600 nanoseconds (depending on the
result of the search). By comparison, a core reference for an
address translation table entry (an SDW or a PTW) requires 1.2
microscconds. The associative memory search is slow by 1971
standards because of the discrete component logic used.

The information in the associative memory of a nrocessor is
a copyv of information that ié also 1in core. The associative
memory thus generates a "multinle copy" nroblem, and some wav 1is
required to keep the potential multiple conies of SDWs and PTVs
identical. For this purpose there 1is a special "clear
associative menorv" feature on the preocessors. It is invoked bv
program whenever an SDW or a PIW in core is changed. If a
multi-orocessor configuration is in use, the associative memory
of each processor must be cleared. This feature is also invoked
when the absolute address in the DBR of a processor is changed to
cause the processor to execute 1in a different address space.
Then such an address space change occurs the associative memory
will contain SDWs and PTWs for the previous address space which

could cause errors if left.

(235)

Performance measurements

By attaching an electronic counter to a CE-645 processor
while Ihltics was running, the effectiveness of the associative
mémory has been mcasured. A general problem with any large,
complex computer systen is the difficulty of predicting
performance in advance of actual operation. The problem is that
there 1is no convincing way to simulate the demand placed on the
system by an actual user load. This was true of Illultics in
general, and of the associative memory of a 645 nrocessor in
particular. Although a simulation model for the associative
nemory was developed and exercised, its authors concluded that
little confidence could be placed in the results produced. They
reported that:

In general, as the proportion of random references

increases, and as the total number of relevant pages

and seqgments increases, the number of associative

menory cells reauired for "near optimum" performance

also increases. Therefore, the results given ...

should not be assumed to indicate overall auxiliary

nmemory performance. [5]

In other words, there was no convincing way to model the
sequence of address space references that would be generated by
a Multics-like system with an actual user load. Curiosity about
the relation of the number of associative registers to actual
system performance could only be satisfied by experiments on an
actual system. The experiments were to test the judgement
implicit in the nprocessor design that 16 associative reqgisters
are the right number.

The method was to isolate nmnoints in the processor logic

wliere npulses correspronding to events of interest could be

(236)

detected by an electronic counter. The four events chosen were
instruction executions, associative memory searches, "no match"
associative memory search responses, and absolute core references
by the processor. A series of counts for 10 second periods was
nade for each event. Dburing the time the counts were being made
the processor was part of the hardware confiquration running
.
liultics for a normal user load. This configuration included one
processor and 256,000 words of core memory.

The same mneasurements were taken for associative memory
sizes of 16, 8, and 4 registers, and with the associative menory
turned off, (Users began to comrlain only in the last case.)
The size of the associative memorv was varied by making temporary
nodifications to the processor logic while the processor was not
in service. The neasurements were made in June, 1970 over the
time of several days. During the measurements the number of
simultancous users of the system varied from 6 to 35. Multics
limits the number of simultaneous users to maintain adequate
response time. This limit has continuously risen during the
developrment of IlMultics. At the time of the measurements the
limit was 35. The user load during the measurements included
approximately equal numbers of system programmers, application
prograrnmers (mainly using PL/1), and students. At least 25
counts were made for each event,

An electronic counter 1is an ideal instrument for such an
experiment, because it does net influence the svstem being
measured. Very elaborate counter-like devices with data

recording carnabilities have been constructed to verform similar

(237)

measurenments on conputer syvstems (for example, see [6]), but for
tiis experiment a simple digital frequency mneter with a seven
digit display was used. For each count the meter was directly
connected to some pin in the logic of the processor.

Figure 2 presents a sumnary of the results obtained by these
experiments. The fiqure 1is largely self-explanatory. The
"range" values are the percentage difference between the average
of all counts for an event, and the maximum and minimum count
remaining after deleting the lowest and hiqghest quarter of the
counts, respectivelv,

The widest variation of results occurred for the three "no
match" events. This variation 1is caused by the short-ternm
fluctuations 1in the computation load which are characteristic of
an interactive system. Under Multics, when the processor is not
busy performing user and system computations it executes in an
"idle loop" waiting for more work. The "idle 1loop" 1is very
snall, and references only a few pages of code and data. Thus,
while in the "idle loop", "no match" responses to associative
nemory searches will occur less frequentlv than otherwise. The

"no match" responses per second will vary with the

nunber of
proportion of time the processor is executing in the "idle loop",
and thus will vary with user activity. The variation in the
number of users during the measurements amrlified this cffect.
Figure 3 presents the data of TFigure 2 graphically. Tt is
obvious from Figure 3 that the size of the associative memory has

a direct effect on the instruction execution rate of the

processor. All of the decrease in this rate that occurs as the

(238)

Measurement Average observed Range
per second rate
Instruction 341,945 +2%
executions -2%
AM search 414,688 +2%
requests -4%
with
16 AM "no match" 5,180 +13%
associative responses -5%
registers
absolute core 419,425 less than 1%
references both ways
Instruction 322,912 +2%
executions -1%
AM search 377,912 +1%
requests -2%
with
8 AM "no match" 11,002 +13%
associative responses -6%
registers
absolute core 418,284 +1%
references -2%
Instruction 286,531 +2%
executions -1%
AM search 337,442 +1%
requests -1%
with
4 AM "no match" 35,710 +5%
associative responses -6%
registers
absolute core 451,895 +1%
references -1%
Instruction 123,198 less than 1%
with no executions both ways
associlative
memory absolute core 541,832 less than 1%

references

both ways

Figure 2 : Summary of results of measurement experiments

(239)

600,000 -1
absolute core references
500,000 -+
400,000 — -
®- associative memory
Events in searches
one second
300,000 -1 \\instruction executions
200,000 A
100,000 -
///“\"no match" responses to
associative memory searches
0 { | —

T T i

0 4 8 16

Number of associative memory registers

Figure 3: Performance with various associative memory sizes

size of the associative memory 1is decreased is caused by the
retrieval from core of more and more SDWs and PTWs. Fiqure 4
illustrates +this point cuite well. The number of address space
references (associative memory searches) rer instruction
execuiion remains relatively constant as the size of the
associative memorv decreases, while the number of absolute core
references per 1instruction execution rises dramatically. That
the number of address snace refercnces vrer instruction execution
remains constant 1is a good <check on the consistency of the

various nmeasurements.

piscussion of results

“wo conclusions can be drawn from the results of these
neasurenents. 1the first concerns the cost of segmentation and
paging (block allocation) in terms of core references for address
translation. Given that the decision to suprort segmentation and
raging has been nmnade, there are two obvious alternative
implementations, One uses only internal rrocessor reaisters for
address translation information. The other nplaces address
translation information in core. The latter seems to be a less
restrictive imnlementation and to reaquire fewer hardware
registers, but arpears to cause core references for address
translation not required by the former. The measurenent
expceriments show thiat a small associative memory can reduce to a
negligible number the core references for address translation
required with the second implementation. With 16 associative

registers on the GL=-645 an average of aprroximately 5,000 no

(241)

5/1 T
4/1 +
absolute core references/instruction
3/1 T
2/1 T
Ratio
1/1 -+ . .
address space references/instruction
| | |
T T T
0 4 8 16
Number of associative memory registers
Figure 4: Core and address space references per instruction

with various associative memory sizes

match" associative memory search responses were observed each
second. Each of these generates at most three absolute core
references. Thus, out of the approximately 420,000 absolute core
references observed each second only 15,000 are attributable to
address translation, or about 3.5%. Put another way, each
address space reference required only 1.03 core references rather
than the four implied by the address translation algorithm,

It is interesting to note that over half of the address
translation references to core may be associated with the
clearings of the associative nemory discussed earlier.
Independent measurements show that the associative memory is
cleared about 170 times a second. Because up to 16 "no match"
responses are generated by each associative memory clearing, up
to 16*170*3 = 8160 of the "no matches" each second - over half of
them - are attributable to the clearings of the associative
mnemory.

The second conclusion is that 16 associative registers are
enough for a 645 processor running Multics. At 16 registers the
curve of the instruction execution rate with respect to the
number of associative registers in Tigure 3 has become quite
flat. Furthermore, any increment in the number of associative
registers above 16, no matter how large, could do no more than
eliminate some fraction of the 3.5% of all core references
attributable to address translation. Thus, the prospect of
signifiéantly increased performance with more associative
registers seems remote, Apparently 16 1is approximately the

largest number of associative registers that can be effectively

(243)

utilized.

Whether 16 or a smaller number 1is the proper number of
registers to include in the processor depends on the cost of
associative registers. Reduction of the number of associative
registers to 8 resulted in a 6% decrease in the instruction
execution rate. This might be acceptable if associative

registers were very expensive. A cost/performance tradeoff must

be calculated in order to decide between 16 and 8 registers.

Acknowledgements

John Ammons of the General Electric Company's Cambridge
Information Systems Laboratory (now part of Honeywell Information
Systems, Inc) contributed much time and effort to performing the
neasurement experiments. Roger Schell of M.I.T. suggested that
the paper be written. F.J. Corbatd, R.P. Goldberqg, and J.Il.
Saltzer, all from M.I.T., provided helpful suggestions on the

content of the paper.

References

(1] Corbatd, F.J., et al, "A New Remote-Accessed I!Man-llachine
System", AFIPS Conference Proceedings 27 (1965 FJCC), Spartan
Books, Washington, D.C., 1965, pp. 185-247,.

[2] Denning, P.J., "Virtual DMemory", Computing Surveys 2, 3
(September, 1970), pp. 153-189,

[3] GE-645 Processor Reference Manual, Cambridge Information
Systems Laboratory, General Electric Company, August, 1970.

[4] Bensoussan, A., C.T. Clingen, and R.C. Daley, "The Ihltics
Virtual Memoryv", Second ACM Symposium on Operating Systems
Principles (October, 1969), Princeton University, pp. 30-42.

[5] Shemer, J.E., and G.A. Shippey, "Statistical Analysis of
Paged and Segmented Computer Systems", IEEL Transactions on
Llectronic Computers ILC-15, 6 (December, 1966), nn. 855-863.

[6] Schulman, F.D., "Hardware measurement device for IBIt
system/360 time sharing evaluation", Proceedings of 22nd National
Conference of ACM (ACM Publication P-67), Thompson Book Company,
Washington D.C., 1967, pp. 103-109.

(245)

