
The Topaz System:
Distributed Multiprocessor Personal Computing

Paul McJones and Andy Hisgen
Digital Equipment Corporation

Systems Research Center
130 Lytton Avenue

Palo Alto, CA 94301

September 28, 1987

1 Introduction

The Topaz distributed operating system, which runs on the
Firefly multiprocessor, was built at Digital’s Systems Research
Center (SRC) in order to support current computing needs and
to provide a basis for research into distributed personal com-
puting. In this paper, we give a brief overview of Topaz, and
then make some observations based on our use of the system
and our plans for the future. These observations fall into two
areas: our experience with multiprocessing in a workstation,
and our views on distribution and autonomy.

2 Topaz overview

Topaz runs on the Firefly multiprocessor [8]. The Firefly cur-
rently couples five MicroVAX II processors to 16 megabytes
of RAM via coherent caches. One of the processors has a Q-
bus interface, to which are attached controllers for Ethernet,
disks, displays, etc.

The Topaz architecture can be viewed as a hybrid of Berke-
ley’s 4.2BSD UNIX1 [3] and Xerox’s Cedar [7]. Topaz bor-
rows the 4.2BSD file system and large-grain process struc-
ture, populates these processes (address spaces) with Cedar-
like threads of control, and interconnects them with Cedar-
like remote procedure call (RPC). (A second implementation
of Topaz is layered on UNIX; we use it to run various Topaz
servers on large VAX computers.)

One success of Topaz has been its support both for programs
using the standard 4.2BSD kernel-call interface and for mul-
tithreaded programs using a new Topaz operating system in-
terface. These two kinds of programs can run on the same
machine, share files, send each other signals, and start pro-
cesses of either kind. As a result, we’ve been able to incorpo-
rate many standard UNIX programs (e.g., shells, text editors,
and language processors) into our environment, while still be-

1UNIX is a trademark of AT&T Bell Laboratories

ing able to explore the benefits of threads (multiple program
counters executing in an address space) and RPC. More de-
tails about the Topaz operating system, including the reference
manual for the file system and process manager, are available
in [4].

Topaz itself, and most of the application programs designed
at SRC, are written in Modula-2+ [5], which extends Modula-
2 [9] with concurrency [1], exception handling, and garbage
collection. Topaz RPC is similar to the system described by
Birrell and Nelson [2]; it is used not only between machines,
but also, with a special transport, between address spaces on
the same machine.

3 Multiprocessing

A distinguishing feature of Topaz is its support for concurrent
programming within a single application program. Topaz pro-
vides the abstraction of threads, which are scheduled concur-
rently on the Firefly, so programmers can use them to decrease
turn-around time by executing independent subcomputations
in parallel. Threads are also quite useful in structuring pro-
grams that must deal with asynchrony.

While we are pleased with our use of multiprocessing, it
has certainly not been a panacea. First of all, five 1-MIPS
processors rarely equal one 5-MIPS processor. One of our
applications (a utility for copying file trees, somewhat like
rdist(1) ) speeds up by a factor of about 4.7, our parallel
implementation ofmake(1) speeds up compilation by a fac-
tor of 2 or 3, and our file system and window manager use
multiple processors for read-ahead, write-behind, and pipelin-
ing. But a single-threaded program runs at the same speed
as on a MicroVAX II (or, if it is compute-bound, perhaps 6%
faster because extra CPUs are available to run daemons and
interrupt routines).

While the benefits of multiprocessing are not always spec-
tacular, we found the costs to be reasonable. The extra VLSI
CPUs and caches constitute a modest part of the overall cost of

1



a Firefly (including RAM, controllers, peripherals, power, and
packaging). Porting the standard UNIX implementation to run
on a symmetrical multiprocessor would have been tricky, but
we had the advantage of starting from scratch and being able
to use the full power of Modula-2+ (including threads) within
the operating system.

To summarize, we advocate that operating systems provide
the thread abstraction as a basis for dealing with asynchrony.
We also advocate selecting the fastest CPU available, and us-
ing multiprocessing mainly when it is worth designing concur-
rent algorithms to speed up a specific application (on a work-
station) or to get more throughput (on a multi-user system).

4 Distribution and Autonomy

Currently, each Firefly has its own disks and local file system.
References to remote path names are embedded within sym-
bolic links of the local file system. Accesses to remote files
support the usual UNIX semantics, with nocaching of remote
files. We currently simulate a “global” (i.e., laboratory-wide)
name space by following a set of conventions, and running
update utilities we have written. This has worked reasonably
well, but a distributed file system presenting a uniform name
space to a set of machines, such as the ITC [6] and Sprite sys-
tems, is clearly a good idea and is something we plan to im-
plement.

We believe that the structure of such a global name space
needs to permit individual users and groups of users to have
control over their view of the name space. For example, in
a software development environment, a programmer or group
of programmers may need to view a name space that includes
their own experimental versions of a file or of a collection of
related files. Similarly, an organization may want to make
its own decisions about when to incorporate new releases of
software. (IBM Almaden’s Quicksilver design has support for
customized naming, on a user-specific basis.)

References

[1] A. D. Birrell, J. V. Guttag, J. J. Horning, and R. Levin.
Synchronization primitives for a multiprocessor: A formal
specification. InProceedings of the Eleventh Symposium
on Operating System Principles, New York, 1987. ACM.
To appear.

[2] Andrew D. Birrell and Bruce Jay Nelson. Implementing
remote procedure calls.ACM Transactions on Computer
Systems, 2(1):39–59, February 1984.

[3] William N. Joy, Eric Cooper, Robert Fabry, Samuel J. Lef-
fler, Marshall Kirk McKusick, and D. Mosher. 4.2BSD
system manual. InUNIX Programmers Manual, 4.2
Berkeley Software Distribution, volume 2C. Computer

Systems Research Group, University of California at
Berkeley, 1983.

[4] Paul R. McJones and Garret F. Swart. Evolving the UNIX
system interface to support multithreaded programs. Re-
port 21, Digital Equipment Corporation, Systems Re-
search Center, September 1987.

[5] Paul Rovner. Extending Modula-2 to build large, inte-
grated systems.IEEE Software, 3(6):46–57, 1986.

[6] M. Satyanarayanan, John H. Howard, David A. Nichols,
Robert N. Sidebotham, Alfred Z. Spector, and Michael J.
West. The ITC distributed file system: Principles and de-
sign. InProceedings of the Tenth ACM Symposium on Op-
erating System Principles, pages 35–50, New York, De-
cember 1985. ACM.

[7] D. C. Swinehart, P. Z. Zellweger, and R. B. Hagmann. The
structure of Cedar. InProceedings of the ACM SIGPLAN
85 Symposium on Language Issues in Programming Envi-
ronments, pages 230–244, New York, June 1985. ACM.

[8] Charles P. Thacker and Lawrence C. Stewart. Firefly: a
multiprocessor workstation. InProceedings of the Second
International Conference on Architectural Suport for Pro-
gramming Languages and Operating Systems. ACM and
IEEE Computer Society, October 1987.

[9] Klaus Wirth.Programming in Modula-2. Springer-Verlag,
third edition, 1985.

2


