
Supporting Cooperative and Personal Surfing
with a Desktop Assistant

Hannes Marais and Krishna Bharat
Digital Equipment Corporation

 Systems Research Center
130 Lytton Avenue, Palo Alto, CA 94301

Tel: 1-415-853{2157, 2137}
E-mail: {marais, bharat}@pa.dec.com

ABSTRACT
We motivate the use of desktop assistants in the context of
web surfing and show how such a tool may be used to
support activities in both cooperative and personal surfing.
By cooperative surfing we mean surfing by a community of
users who choose to cooperatively and asynchronously
build up knowledge structures relevant to their group.
Specifically, we describe the design of an assistant called
Vistabar, which lives on the Windows desktop and operates
on the currently active web browser. Vistabar instances
working for individual users support the authoring of
annotations and shared bookmark hierarchies, and work
with profiles of community interests to make findings
highly available. Thus, they support a form of community
memory. Vistabar also serves as a form of personal
memory by indexing pages the user sees to assist in recall.
We present rationale for the assistant’s design, describe
roles it could play to support surfing (including those
mentioned above), and suggest efficient implementation
strategies where appropriate.

KEYWORDS: Desktop assistant, browserware, WWW,
browser, annotation, asynchronous collaboration,
community knowledge, bookmarks, indexing, barcodes.

1. INTRODUCTION
 Surfing the web has become an all too common activity.
While the web is rich in information, the pieces we seek are
often sparsely distributed and hard to find. Hence, the
substantial research effort in searching for resources on the
web, visualizing search results, and homing in on the data
that is actually relevant (e.g., [1, 2, 3]). The process of
seeking out useful information on the web may be viewed
from an ecological perspective. This metaphor has been
used previously in the context of information foraging

theory [3]. We invoke it to illustrate the need for
asynchronous collaboration in search activities. Organisms
(e.g., ants) tend to tackle challenging tasks, such as finding
sustenance, by building for the future (amortization of work
over time) and by dividing the labor (amortization over the
group). The latter usually involves searching individually
and leaving identification marks and trails to sources that
others may follow. Similarly, in the context of information
access, a user community with related interests and a
willingness to cooperate (e.g., within a company or special
interest group) could build community knowledge
repositories, allowing the group to make efficient use of the
information discovered. Besides providing exposure to
individual findings, this process makes areas of interest
within the group explicit, which is a form of information in
itself. Of course, assimilation is only effective if the data
that is found is any good. An integral part of surfing is
finding useful documents and sensemaking.

 In this paper we describe a desktop assistant called
Vistabar that supports the kind of cooperative surfing
described above. It is a continuously executing task on the
desktop, and integrates smoothly with existing web
browsers and browsing practices. It monitors user activity
and provides services to find, understand and recall
documents, and operations to assimilate them into a shared
knowledge store. It is long lived and maintains state across
browsing sessions. It is not tied to a specific browser and
will latch onto whichever browser is currently active.

 We prefer to call Vistabar an ‘assistant’ rather than an
‘agent’ to avoid raising expectations. While agent-like in
many respects, the tool does not have an agenda of its own;
nor does it model the user’s beliefs. Hence we prefer the
term the less proactive term ‘assistant.’

 Assistants such as Vistabar are strategically positioned
between the user and the browser and are capable of
interacting with both. This gives them a large amount of
leverage, allowing them to be applied a variety of tasks,
some of which may be application specific. One of the

goals of this paper is to motivate assistants that work with
users within their surfing context. We term such “browser
aware” applications browserware and expect to see an
increasing number of them in the future.

 To better understand the potential of browserware, let us
look at what such assistants are capable of doing.

 Firstly, they can control the browser independently,
allowing them to replace the user as the driving force in the
browsing process. This permits the use of the web as a
presentation medium (as in [4]).

 Also, as information is channeled into the browser the user
assistant can help:

 • Remember pages that were seen, to facilitate recall and
build an interest profile.

 • Automate common tasks such as logging onto a service.
 • Transform the document (by augmenting or

simplification).
 • Share state with other users and services.
 • Analyze and help understand the content.
 • Relate to other entities within and outside the web.

 If the document is active and contains an applet, the
browserware component could be made application specific
and can do much more. The component could serve the
applet by maintaining persistent state, thus serving as the
long-term memory of the applet, and by providing external
control over the browser. A discussion of how such content
might operate and the resulting security implications is a
future research topic and beyond the scope of this paper.

 We have two main contributions in this paper: (a) we
motivate browserware and provide a general-purpose
architecture for it, (b) we apply this technique to our
specific problem, namely to make it easy to find,
understand and assimilate information on the web in a
cooperative way.

 The rest of the paper is laid out as follows: Section 2
describes the rationale for the specific design we chose for
Vistabar. Sections 3 and 4 describe how the assistant
supports the two activities of locating information that is
relevant and building a shared knowledge structure out of
it. Section 5 presents some implementation details and
Section 6 discusses related work, which is followed by a
section on conclusions and future work.

2. DESIGN
We begin by considering some of the features that would be
needed in a browserware tool. It should be persistent across
sessions and be readily accessible on the desktop (should
have a UI of its own). The tool should be in a position to
monitor user activity (detect pages being viewed etc.) and
control the browser when appropriate. It is desirable that
the assistant be both logically and physically attached to the
browser, even using it as a display modality (homogenous

integration of UI).

Next, we look at some of the options available to build
browserware and see how well they support the above
features.

2.1 Design Options
The options, in decreasing order of involvement of the
browser, are: custom browser, plug-in, applet, parasite and
proxy. Their respective strengths and weaknesses are
summarized in Table 1.

Table 1. Various Design Options

Custom
Browser

Plug-in Applet Parasite Proxy

Control over
Browser

Good Fair Poor Fair None

Monitoring Good Poor Poor Good Limited
Persistent
Presence

Within one
Browser

Poor None Good Good

Own UI Not
Applicable

Fair Fair Good Good

UI integration Not
Applicable

Good Good Fair Poor

Extensibility Good Not
Applicable

Not
Applic.

Good Good

A custom browser would give the maximum possible
access to control and monitoring. Persistence is restricted
to the browser in question, since browsing with other
browsers will go unnoticed. Extensibility is typically
limited to the authors of the browser. Building a custom
browser is a luxury that few software authors can afford.
Browsers have become too complicated and too much of a
moving target to justify re-implementation.

Plug-ins (or software components) are another option. We
have seen this kind of extensibility other domains – e.g.,
graphic design tools and interactive development
environments (IDEs). Both are extensible with third party
components (e.g., Adobe Photoshop plug-ins [5] and Visual
Basic controls [6]). Web browsers already support certain
types of extensions (e.g., Netscape plug-ins [7]). Applets
may be viewed as display oriented plug-ins with restricted
access to the browser. Both of these tend to be launched
over the network and are meant to operate within the
context of a given page. Carrying state across pages is the
responsibility of the web-server, which makes it site-
specific at best. Due to their ephemeral nature plug-ins and
applets are not in a position to support long-lived activities
that may extend over a surfing session or multiple sessions.
It is worth noting that due to the existence of multiple
browsers, with various incompatibilities and tradeoffs, it is
desirable that desktop assistants be associated with the user
rather than a specific browser. Plug-ins and applets are tied
to individual pages and do not present a clean way to
maintain a permanent presence on the desktop.

Proxies and parasites are the remaining options.

A parasite is an application that attaches itself to another
executing application and is able to monitor and control it
through a published API. Familiar examples of parasites are
debuggers. Knowing where the windows of the host are
located, a parasite can wrap its own UI around it for better
integration.

Proxies are more passive. They act by interposing in the
communication between the browser and the web-server
and are in a position to transform the data as it comes
through or fetch it from alternate sources. Proxies provide
more direct control over content and can be very effective
for filtering and augmenting tasks. However, due to the
presence of internal caches they cannot guarantee to
successfully monitor what the user is looking at. Nor can
they drive the browser’s display. Also, we would like to

physically situate part of the browserware UI within the
browser by adding a control bar. A proxy can do this by
augmenting the HTML that comes in. However, this
presents some problems in practice. Adding content to a
page that may in part be computed on the fly by an
embedded script (in say, Javascript) is error-prone. Also,
scrolling would cause the control bar to vanish. A
workaround would be to place the control bar in a separate
frame. This adds an artificial level of indirection that tends
to interfere with navigation and bookmarking.

Although proxies seemed simpler and portable, they lacked
some of the features we needed and imposed a constant
overhead on browser operation which could be avoided.
Hence, we chose to go with a parasitic architecture.

Figure 1. Vistabar attached to Netscape. The user is adding a comment to the UIST’97 home page.

2.2 A Parasitic Model for Browserware
Here we describe the organization of a surfing assistant as a
parasite. This design was used in the implementation of
Vistabar, a browser parasite on Windows which works with
both Netscape (versions 3.x, 4.x) and Internet Explorer
(versions 3.x). Figure 1 shows Vistabar running as a
browser parasite. The Windows specific details of the
implementation are presented in Section 5.

In this model the assistant is constantly running and is
accessible on the desktop. In our case this took the form of
an icon on the Windows tray. It can be started and
terminated without affecting browsers in any way. Vistabar
tracks the currently active window on the desktop and
wraps its user interface around it if it happens to be a
browser it recognizes. This takes the form of a task-bar,
which is either appended at the bottom (see Figure 1) or sits
on the window’s border (this is the only option when
maximised). In addition to its own dialogs, the tool often
creates task-specific HTML and directs the browser to
display it.

Logically, the assistant consists of three parts: Vistabar (the
front-end), LocalKnowledge, which is the user-specific
memory of the assistant, and CommonKnowledge, which
may be regarded as community memory. Vistabar makes
use of the local disk to store its own persistent state. Shared
persistent state resides on a server shared by members of
the community. There are other servers associated with
specific services which Vistabar needs to know about. The
tool’s configuration decides layout preferences and the
servers to use.

3. FINDING INFORMATION ON THE WEB
In this section of the paper we are concerned with
supporting the lone surfer’s activities. We sketch five
situations a web surfer seeking information might

encounter, and the support a surfing assistant might render
in each case. We do not claim the list of situations is
exhaustive, and better solutions may exist. Our intention is
to give the reader a feeling for the role a surfing assistant
might play.

3.1 Supporting Recall
Web surfers often find themselves in situations where they
recall having seen something on the web but cannot
remember where the information was found. They might
forget to bookmark an important page, or spend much time
trying to retrace their steps to a page seen earlier in the
session. Bookmarking everything that may potentially be
useful leads to an unmanageable list of bookmarks. Also, it
does not account for hindsight.

Our solution is to continuously index the full text of all
viewed pages. Continuous indexing is feasible even on a
modestly equipped PC. An avid surfer who encounters a
100 new documents per day (not counting duplicates),
would encounter about 260 MB of raw text each year
(figures based on AltaVista crawl statistics). After
detagging and indexing this would reduce to a third of its
size – less than 90MB. Given the steady growth in personal
computer hard-disk size, this is fast becoming a reasonable
investment for a year’s ‘total recall.’ A full-text index is
quite powerful because it can help recover a sketch of the
document even if the actual page is missing.

The Vistabar continuous indexer uses the NI2 library, the
basis of the AltaVista search engine [8]. The pages the
surfer reads are indexed transparently by a background
process. At any time the user can perform a query on the
index using the NI2 query language. This language
resembles AltaVista’s “Advanced Query” syntax, and
supports operators like AND, OR, and NEAR, with
keywords and phrases. Figure 2 shows the Vistabar query
form, the results of a query, and a browser page launched
from the query results.

Controlling the amount indexed. The default mode involves
indexing all visited pages and tends to collect a large
number of irrelevant pages in the index. Besides increasing
the index’s size, this tends to list pages that the user never
actually read and does not recall.

We have a couple of modes to help cope with this:
• Explicit Mode: where the user needs to click on the

‘Remember’ button to index a page.
• Temporal Mode: where the page gets indexed if it was

in view for a stipulated time (say 10 seconds).

In addition, there is an option to specify patterns that will
prevent a URL from being indexing, e.g., result pages from
search engines and pages from sites that change their
content regularly.

Figure 2. Searches on personal history can be
highly effective

Building the index. Although NI2 is capable of
continuously updating the index as new pages are seen, we
prefer to batch updates over a set of documents. Vistabar
maintains a pending cache of visited URLs. As soon as the
number of cache entries exceed a user-defined threshold, or
after a period of 10 minutes of inactivity, the pending pages
are indexed and the cache is flushed. Indexing involves
fetching the pages from the browser’s internal cache, or
directly from the Internet if not present. We delegate the
responsibility of fetching to the browser, and hence
passwords and cookies are handled automatically. The
HTML is parsed and words are extracted. To save
additional disk space, common words are removed.

For pages that warrant indexing, we check if the page has
changed since it was last indexed, using a 64 bit digest or
fingerprint calculated over the text. Fingerprints are
associated with each indexed document. If a fingerprint
repeats the document is not indexed. Otherwise, we remove
the old document from the index, if present, before adding
the newer version. Deletion is done in a mark and sweep
fashion. The index is updated in batches. A background
task periodically purges marked documents, adds new
documents and does index reorganization. In the future, we
would like to associate a time-to-live window with the
index entries to avoid recalling very old documents. The
downside of batched indexing is that very recent documents
are not visible, but this is not a problem as long as the user
is conscious of it.

3.2 Finding Related Information
Often, finding an interesting page is the starting point of a
more extensive search process. The user might search
further locally or look in places where related pages might
occur. Usually the latter involves querying a search engine
or looking within the appropriate category in a hierarchical

classification service such as Yahoo or Excite [9,10].

Vistabar helps find related pages using both types of
services.

Finding similar pages. The ‘Similar’ button causes Vistabar
to invoke AltaVista with a query constructed from an
analysis of the words in the document. Our simple scheme
involves using the five most frequent words in the text of
the document, excluding a list of stop words that occur with
high frequency in English. This works remarkably at times
and poorly just as often. A better scheme would take into
account the expected frequency of words on the web. We
intended this to be a lightweight operation with a quick
response time.

Finding relevant categories. The ‘Classify’ button tries to
lead the user to the most appropriate category for the
document in question. We used Yahoo for this purpose.
Our classification algorithm is general-purpose and works
on any classification hierarchy including our own, as we
see in Section 4. The classifier identifies and ranks the top
five categories at each of the top three levels in the Yahoo
hierarchy, selecting 15 out of roughly 1300 candidates (see
Figure 3). This allows the user to start exploring at various
levels in the tree. When a document has multiple topics the
user is presented with alternate viewpoints, which can be
quite beneficial.

The classifier uses a database, which was constructed in a
preprocessing phase. We built profiles at each level in the
Yahoo hierarchy going all the way down to the leaves.
Category profiles were merged cumulatively from the
leaves of the tree to the root. This allows matching to
happen hierarchically. As is typical in information retrieval,
we weight words by their frequency in the document
relative to the whole corpus and do vector-space matching.

Instead of naively matching a web page against all
categories in our database, we exploit the hierarchical
nature of the classification tree to prune the number of
comparisons. The profile matching process then involves
following a path from the root of the tree to the required
depth. When a specific category is identified as relevant,
the search extends over its sub-categories. Since the
discrimination ability of profiles diminishes upon grouping,
a set of promising paths is followed rather than a single
path. The database supports classification to any depth
although we presently use 3 in the interests of response
time.

Our implementation requires a substantial amount of data to
keep track of all of the Yahoo categories and their
associated word lists. Consequently we placed the
classification service on a separate server which is shared
by all Vistabar clients. Vistabar calculates a profile for the
viewed document, which is then shipped to the
classification server for analysis.

Figure 3. Results from classifying the page in Figure 2

3.3 Supporting Focus in Context
It is not uncommon that a surfer finds a long web page that
has not been formatted for hypertext display. These pages
often come from legacy papers or reports converted to
HTML without splitting the document into more
manageable chunks connected with hyperlinks. Vistabar
supports reading these pages by converting them into an
outline format viewable in a standard web browser through
a process we call “zipping.”

A zipped web page contains the same information as the
original web page except that the reader is provided with a
way to expand and collapse nested sections of the
document in a manner similar to an outline editor. The
sections are delimited by headings identified by H1, H2,
…, H6 tags in the HTML. The depth of the section is
determined by the start heading, which also decides its
nesting. Zipping a page involves adding icons called
zippers to each heading. A zipper indicates the state of a
section (expanded or collapsed) and can be clicked to
collapse or expand that section.

On finding a web page suitable for zipping, the surfer can
use the ‘Outline’ button on the Vistabar to zip it up. The
view presented by resulting page shows only the top
headings in the page. At this stage the user can selectively
open up interesting headings and watch the resulting
modifications happen immediately on the browser’s
display. Uninteresting sections can be folded away in a
similar way. Figure 4 shows a sequence of snapshots
illustrating navigating inside a large document with zippers.

There are several ways to implement zipping; an overview
of implementation alternatives and tradeoffs is found in
[11]. Vistabar uses a novel approach that rewrites a web
page as a script that executes inside the browser to render

different views of the page. We use JavaScript [12], which
is supported by the two most popular web browsers. The
basic idea is as follows. As the JavaScript version of the
page executes, it “prints” a particular view of the web page
using a vector that maintains the state of each heading. A
new view is generated by modifying the state vector and re-
executing the script (achieved by reloading the page). We
keep track of the state vector between successive views
using a local cookie [13].

3.4 Finding Referring Pages
An interesting way to find out what people think about a
web page or web site is to exploit the hyperlink structure of
the web to find pages that refer to the page in question. In
this way you often find either useful collections of links to
similar topics or web page critiques. As the incoming links
to a page are not explicitly known, we have to enlist the
help of a search engine such as AltaVista that support link
queries. The result of a link query lists all pages that refer
to a specific page.

Vistabar provides a macro-like function that submits the
currently viewed URL in a link query to the AltaVista
search engine, allowing the surfer to surf backwards. We
can imagine a useful set of macros to automate other
tedious operations. Another useful function might be to fill
out a form that asks for personal details.

3.5 Real World Associations
How does one make the connection between a real world
object and corresponding content on the web? If a URL is
the identification of a resource in cyberspace, then perhaps
a barcode is the universal locator of an object in the real
world. Many artifacts like books, CDs, groceries, and
shipping bills now have barcodes. In addition there is an
established industry associated with the allocation, printing,

Figure 4. Zipping example - overview (left) and expanded view (right)

and scanning of barcodes.

Our idea was to link objects in the real world with their
counterparts in cyberspace by linking barcodes to URLs.
This would allow us to look-up electronic “annotations” of
a specific object in a web database, which would maintain
pairs of barcode numbers and associated URLs. We call our
realization of this idea, WebMark.

Our implementation consists of a public, web-based
database of (barcode, URL) pairs, a low-cost hand-held
barcode scanner, approximately the size of a credit card
(Figure 5), and a downloading station interfaced to
Vistabar. After collecting a number of barcodes, the surfer
inserts the scanner into the download station, which then
prompts the Vistabar to connect to the database to retrieve
the annotations of the scanned objects.

We can imagine several uses for WebMark. Manufacturers
could make product literature readily available using
barcode associations. Anyone could extend the database
with additional annotations – not just those who create the
artifact. This would allow for user feedback to be tied to
objects, allowing opinions and anecdotal data to be shared
within a community.

Imagine finding on the web what other people think about a
book you read, or finding an online copy of the VCR
manual you threw away and now regret. While such
requests could be answered by a text indexing service, the
advantage of searching for a barcode rather than the name
of the product is that barcodes tend to extremely specific
and can be valuable when textual descriptions are difficult
to produce. They usually refer to precise versions of the
artifact, which is useful, say, when ordering replacement
parts for a certain model. Also, they can be attached to
objects that are difficult to describe or do not have any
written markings on them (such as decorative pieces).

There have been other approaches to address this type of
application, for example the real-world augmentation work
done at Hitachi [14]. The strength of our approach is its

easy implementation, based on off-the-shelf components,
and the ability to leverage the large, global investment in
barcodes. We imagine people collecting object references
using either portable, key-chain sized scanning devices with
memory for barcode storage, or small PDA-like devices
with a scanner built in.

4. ORGANIZING INFORMATION IN A COMMUNITY
In this section we turn our attention to groups of surfers
cooperating with each other to build a locally relevant
shared database of information on the web. Vistabar helps
users catalog articles and add comments to the knowledge
store, and keeps users informed of others’ opinions as they
browse the web.

4.1 The need for “Common Knowledge”
It has been observed that one of the shortcomings of the
many search services on the web is that they are too
democratic [15]. Essentially everything is being indexed or
collected, irrespective of value. Even when human selection
is involved (as in Yahoo), the person in question may not
be adequately knowledgeable in the area you are interested
in, or there may be no category corresponding to your
interests. This is the reason why scholarly publications are
valuable: low quality information is filtered away by
qualified reviewers and editors who are entrusted the
responsibility of making decisions on our behalf.
Unfortunately there are no practices to do the same thing on
the web.

In research institutions, such as our own Systems Research
Center (SRC), there are people with varied but often
overlapping interests. These are people whose opinions and
recommendations we attach a lot of importance to. E-mail
and news postings are the traditional channels for such
communication. We felt that an explicit mechanism to
share findings on the web would be useful, and devised a

Figure 6. The SRC classification tree

Figure 5. Scanning barcodes with WebMark

system called CommonKnowledge, housed in Vistabar.

CommonKnowledge unifies the notions of bookmarking
and annotations within the same framework. A bookmark
assigns a category to a document; an annotation adds a
comment. Both may be viewed as attributes of the
document.

An annotation is usually tied to a specific portion on the
document. We have noticed that people often do not use it
in this manner, especially if the document was not locally
authored. References to section numbers or headings often
prove adequate. Hence, we chose a simpler approach: in
CommonKnowledge comments may be associated with a
document or a site but not with a part of a document. In the
case of a site-annotation the comment is visible on all pages
at the site. This informs surfers of “local landmarks.”

The categories employed in CommonKnowledge are chosen
by the users themselves. The category hierarchy forms a
tree, although an item may be bookmarked under multiple
categories. Figure 6 shows part of the current SRC
hierarchy. A certain category tree was created to start the
process, and got extended as needed.

When the user is unable to identify a category or is in a
hurry, the ‘Auto Bookmark’ feature is invaluable. It
matches the document against the profiles of the categories
currently in the system and places it tentatively in one or
more categories that might be appropriate. The tentatively
bookmarked entries are confirmed later by other users. This
creates an interesting division of labor: a user identifies the
document as interesting, Vistabar chooses categories, and
other users validate the categorization.

4.2 CommonKnowledge Functions.
CommonKnowledge supports several ways of accessing the
shared bookmark structure. It consists of a central
repository of “comments” that are associated with web
pages and web sites. A comment might be as simple as an
indication that a specific page is interesting, or a lengthy
discussion about the contents of the page. A comment has
many parts as is explained below. Note that comments
differ from other services like e-mail and news in that they
have a precise format that allows us to view and organize
them in several different ways

The Vistabar and web browser taken together form the UI
for the CommonKnowledge database. In combination, they
implement (see Figure 1):

• An ‘Add Comment’ form that allows the user to
quickly attach a comment to a page. The dialog allows
them to select from a set of predefined categories or
devise a new one. New categories are formed by
textually defining a new path through the tree using ‘:’
separators.

• A ‘Comments’ button to access the comments attached
to a page and site. Comments cause the button to light
up in red. We have an efficient scheme to detect
comments, described in section 4.3.

• An ‘Auto Bookmark’ button to assign pages to
categories on the fly, as described earlier.

• A CommonKnowledge browsing facility for exploring
categories, generating summaries of categories, and
accessing comments according to their time of
insertion into the system. The browsing user interface
is not a part of the Vistabar UI but uses the web
browser instead (see Figure 6).

Comments. A comment consists of:

• The URL and title of the commented page.

• A short subject line related to the comment or the web
page itself.

• An optional long discussion consisting of plain text.

• An identification of the category the page belongs to,

• An icon indicating a nature of the comment (e.g.,
humorous, informative, critical). Users cycle through a
small sequence of icons and choose one. When a
category assignment is considered tentative it is
marked with a question mark.

• Miscellaneous fields such as author, date, etc.

After the surfer completes the details of a new annotation,
all fields except the long comment are submitted over
HTTP to the CommonKnowledge server. The long
comment is uploaded with FTP to a web server that the user
normally uses. The advantage of using local web servers for
long comments is that the system scales well. It can
accommodate a large organization where users tend to use
different servers for their personal pages but wish to use a
single CommonKnowledge server.

For automatic bookmarking we use the same scheme
employed for classifying pages under Yahoo categories.
The CommonKnowledge server maintains profiles for
various categories. New bookmark entries are processed in
batches and category profiles are incrementally updated.
When a bookmark is being assigned and a good match is
not available, the page is added to an ‘Unresolved’
category. This indicates that it will need to be explicitly
bookmarked by someone in the community.

4.3 Detecting Comments Efficiently with Bloom Filters
A naive implementation of the comment indicator would
repeatedly poll the CommonKnowledge server to check if
the visited page has comments attached. This technique
scales poorly and has the drawback that all browsing

activity is reported to a remote server, raising privacy
concerns. We chose an approach that does not require a
database lookup at all.

We use a fast set membership test based on a Bloom filter
[16]. A Bloom filter is an array of bits used to represent a
set of elements that do not admit a linear ordering (i.e.,
there is no way to compute a unique index value from a set
element). In our case, the set of URLs with comments
associated with them would form such a set.

Given a Bloom filter m, an element e is inserted into m by
hashing e with k different hash functions Hi, i=1.. k, and

setting the corresponding bits, m[Hi]. Checking if an

element belongs to the set involves hashing the element
again as described above, and checking if all the
corresponding bits are set. This is a conservative test, and it
is possible to obtain false positives. The accuracy depends
on the size of m and k. In the case of a database with 20,000
commented pages and k set to 4, a 32 KB Bloom filter has a
less than 1% probability of a false positive. This low error
rate is acceptable for our application.

The Bloom filter is maintained by the CommonKnowledge
server and periodically downloaded by Vistabar. Vistabar
consults the local copy of the Bloom filter to determine if a
page has a comment or not. This scheme scales well, as it
does not require network access or continuous database
lookup.

5. IMPLEMENTATION
Vistabar runs on Windows 95/NT with recent versions of
Netscape and Internet Explorer. Tight integration of
Vistabar with the web browser is possible by the browsing
APIs (using Dynamic Data Exchange) supported by
Netscape and Microsoft [17,18]. Unfortunately this API is
limited to communication with short string-based messages
and is thus quite limited. The bulk of Vistabar and
CommonKnowledge is built with Delphi 3.0, Perl,
commercial web servers and SQL databases.

6. RELATED WORK
Intel’s Internet Telephone and DocuMagix’s HotPage [23]
are examples of browserware applications, that can attach
themselves to the active web browser.

Lieberman’s Letizia [25] is a user interface agent that
tracks user browsing activity and anticipates future items of
interest by doing concurrent, autonomous exploration of
links from the user’s current position. Letizia’s level of
control over the browser is similar to Vistabar. It uses
AppleEvents and AppleScript to communicate with
Netscape running on the Macintosh OS. Similarly,
WebWatcher [26] is a "tour guide" agent for the World
Wide Web. Once you tell it what kind of information you
seek, it accompanies you from page to page as you browse
the web, highlighting hyperlinks that it believes will be of
interest. Its strategy for giving advice is learned from
feedback from earlier tours.

A popular approach to extend a web browser with
application specific functions is with proxies [27]. The W3
Surf Navigator [19] is a proposal for a surfing assistant that
gathers, indexes, and visualizes viewed documents. WBI
[24] is a proxy-based system for performing personalized
transformations to web pages based on past history. It
performs useful tasks such as adding shortcuts to common
paths and annotating links with network speed information.

There are several systems for annotating web pages. The
ComMentor system [20] is an inlining annotation system
based on a modified web browser that can also be
employed for shared bookmarks. It organizes annotations as
sets that the user can subscribe to. There is no hierarchical
organization for annotation sets. In a similar system [21]
the custom browser is replaced with a proxy. Both systems
poll annotation servers for each page visited.

Clustering approaches have been applied for organizing
bookmarks into categories [22]. Rather than building
category profiles they make use of inter-document
similarity for computing new categories.

InteractiveDESK [14] is a system for linking real-world
objects to electronic documents in a database. They use
video analysis for object recognition. This is resource
intensive, potentially error-prone and cannot make fine
distinction between versions, as one can with barcodes.

7. CONCLUSIONS
We use the term browserware to denote a class of
applications that are situated between the user and web-
browsers and interact with both. They work within the
user’s browsing context to enhance the surfing experience
in various ways. We considered various implementation
schemes and chose a parasitic organization because it
integrates tightly with the browser without requiring
implementation of a custom browser.

Vistabar is a realization of a surfing assistant using our
parasitic model. It supports information gathering and
organization with a suite of useful tools, both in the context
of the individual surfer and within a community that wishes
to leverage the findings of individuals. Novel aspects of
Vistabar include continuous indexing of personal surfing
history, efficient detection of annotations, automatic
classification of web pages, and annotations to real-world
objects.

Our experience with Vistabar has shown us that this design
is rich enough to support a variety of services. In particular
we are excited by the prospect of supporting dynamic, site-
specific behavior in this framework. We are currently
looking at a dynamically extensible architecture for
browserware based on downloadable agents. This would
allow content-providers to associate application-specific
assistants with their web pages and add a new dimension to
publishing on the web.

8. REFERENCES

1. Mukherjea, S., Foley, J.D., and Hudson, S. Visualizing
Complex Hypermedia Networks through Multiple
Hiearchical Views, In proceedings of CHI '95, pp. 331-
337.

2. Baldonado, M.Q.W., and Winograd, T. SenseMaker:
An Information-Exploration Interface Supporting the
Contextual Evaluation of a User's Interest, In
proceedings of CHI '97, Atlanta, GA.

3. Pirolli, P., and Card, C. Information Foraging in
Information Access Environments, In proceedings of
CHI '95, pp. 51-58.

4. Yamaguchi, T., Hosomi,I., and Miyashita, T.
WebStage: An Active Media Enhanced World Wide
Web Browser. In proceedings of CHI '97, Atlanta,
GA.

5. Adobe. Software Development Kit (SDK) for
Photoshop, http://www.adobe.com/supportservice/
devrelations/sdks.html

6. Microsoft. Visual Basic Control Creation Edition.
http://www.microsoft.com/vbasic/controls/

7. Netscape. The LiveConnect/Plug-in Developer's
Guide, http://home.netscape.com/eng
/mozilla/3.0/handbook/plugins/index.html

8. AltaVista Inc. http://www.altavista.digital.com/

9. Yahoo! http://www.yahoo.com/

10. Excite. http://www.excite.com/

11. Marc H. Brown, Hannes Marais, Marc A. Najork,
William E. Weihl. Focus+Context Displays of Web
Pages: Implementation Alternatives. WWW6
conference poster, http://poster.www6conf.org/poster
/745/poster745.html

12. Netscape. JavaScript 1.1 Language Specification.
http://home.netscape.com/eng/javascript/index.html

13. Netscape. Persistent Client State: HTTP Cookies.
http://home.netscape.com/newsref/std/
cookie_spec.html

14. Arai, T., Machii, K., and Kuzunuki, S. Retrieving
Electronic Documents with Real-World Objects on
InteractiveDESK. Proceedings of ACM UIST '95, pp.
37-38.

15. Berghel, Hal. Cyberspace 2000: Dealing with
Information Overload. In Communications of the ACM,
40, 2 (Feb. 1997), 19-24

16. B. H. Bloom. Space/time Tradeoffs in Hash Coding
with Allowable Errors. In Communications of the
ACM, 13, 7 (1970), 422-426.

17. Netscape. Netscape's DDE Implementation.
http://home.netscape.com/newsref/std/ddeapi.html

18. Netscape. OLE Automation in Navigator.
http://home.netscape.com/newsref/std/oleapi.html

19. Gerald F. Ehmayer. W3 Surf Navigator - an Intelligent
Listener Agent. WWW5 Workshop on Artificial
Intelligence-based tools to help W3 users, 1996, Paris,
France.

20. Martin Röscheisen, Christian Mogensen, and Terry
Winograd. Beyond Browsing: Shared Comments,
SOAPs, Trails, and On-line Communities. Third
International World-Wide Web Conference in
Darmstadt, Germany, April 1995.

21. Matthew A. Schickler, Murray S. Mazer, and Charles
Brooks. Pan-Browser Support for Annotations and
Other Meta-Information on the World Wide Web.
Computer Networks and ISDN Systems, 28, 7–11, 1996

22. Yoelle S. Maarek, Israel Z. Ben Shaul. Automatically
Organizing Bookmarks per Contents. Fifth
International World Wide Web Conference, May 6-10,
1996, Paris, France.

23. DocuMagix Inc.
http://www.documagix.com/products/dhotpage.htm

24. Barrett, R., Maglio, P.P., and Kellem, D.C., How to
Personalize the Web. In proceedings of CHI '97,
Atlanta, GA.

25. Lieberman, H. Letizia: An Agent That Assists Web
Browsing. Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’95),
Montreal, August 1995.

26. Robert Armstrong, Dayne Freitag, Thorsten Joachims,
and Tom Mitchell. WebWatcher: A Learning
Apprentice for the World Wide Web. AAAI Spring
Symposium on Information Gathering from
Heterogeneous, Distributed Environments, Stanford,
March 1995.

27. Charles Brooks, Murray S. Mazer, Scott Meeks, and
Jim Miller. Application-Specific Proxy Servers as
HTTP Stream Transducers. Proceedings of WWW4,
Boston MA USA, December 1995.

