
Explicit Communication Revisited:

Two New Attacks on Authentication Protocols

Mart��n Abadi

Systems Research Center

Digital Equipment Corporation

ma@pa.dec.com

March 9, 1997

Abstract

SSH and AKA are recent, practical protocols for secure connections

over an otherwise unprotected network. This paper shows that, despite

the use of public-key cryptography, SSH and AKA do not provide

authentication as intended. The aws of SSH and AKA can be viewed

as the result of their disregarding a basic principle for the design of

sound authentication protocols: the principle that messages should be

explicit.

1 Introduction

SSH and AKA are two recent, practical protocols for secure connections over

an otherwise unprotected network [Yl�o96a, SSH96]; for example, they enable

users to log into remote hosts. Both of the protocols rely on public-key

cryptography for authentication (speci�cally, on RSA [RSA78]). In addition

to authentication, each of the protocols has other signi�cant goals, such as

con�dentiality.

This paper presents attacks on both of the protocols: it shows that SSH

allows clients to be impersonated, while AKA allows servers to be imper-

sonated. These attacks concern the SSH protocol as speci�ed in the June

1996 Internet draft [Yl�o96b], and the AKA protocol presented in the paper

that introduces AKA [SSH96]. SSH is widely used; the version deployed is

fortunately not that of the Internet draft.

1



The common weakness of SSH and AKA is the lack of explicitness in

messages. Speci�cally, the signed statements of the protocols do not include

some information that may be presumed obvious from context. The absence

of this information opens the door to the attacks.

These attacks should not be very surprising|in particular, Needham

and the author have described a few similar ones [AN96]. Beyond doc-

umenting the attacks on SSH and AKA, the purpose of this paper is to

provide additional evidence in favor of the following basic principle:

Every message should say what it means: the interpretation of

the message should depend only on its content. It should be pos-

sible to write down a straightforward English sentence describ-

ing the content|though if there is a suitable formalism available

that is good too.

This paper is a short sequel to the paper where the basic principle is intro-

duced [AN96]. Additional principles for public-key protocols appear in the

work of Anderson and Needham [AN95].

Notation This paper assumes some familiarity with cryptography, and

in particular with the elementary properties of public-key cryptosystems

and of one-way hash functions; this background material is covered by

Schneier [Sch96], for example. The notation used is the same for both pro-

tocols (but di�ers from the notation of Yl�onen and Sa�ord et al. [Yl�o96a,

Yl�o96b, SSH96]). The uniformity of notation is intended to highlight the

similarities and di�erences between the protocols.

� A represents the client, B the server, and C the attacker. In messages,

A stands for A's name.

� KA is A's public key and K�1

A
is A's private key.

� KBh and KBs are two public keys for B, and K
�1

Bh
and K�1

Bs
the corre-

sponding private keys. In SSH terminology, KBh is a long-term host

key, and KBs is a shorter-term server key. In AKA, KBs is in fact a

one-time key.

� fXgK represents X encrypted underK; anyone who knows fXgK and

the inverse of K can obtain X. For shared-key cryptosystems, such

as DES [DES77], each key is its own inverse. For the RSA public-

key cryptosystem, the public key and the private key in a key pair are

2



inverses of one another. In particular, if K is a private key, then fXgK
is the result of signing X with K.

Sometimes fXgK includes checkable redundancy that protects the in-

tegrity of X, but we do not display this redundancy in our notation.

� H is a one-way hash function and � is the exclusive-or operation.

� NA and NB are random nonces created by A and B, respectively. In

AKA, but not in SSH, these are intended to be secret.

It is assumed that, given A and KA, the server B can verify that KA is the

public key for A and that A is a legitimate client. The protocol descriptions

below (and those of [Yl�o96b, SSH96]) do not explicitly represent the certi�-

cates that may convey this information. Similarly, it is assumed that the

client A can verify thatKBh is the host public key for the intended principal;

but A has no information about KBs beyond that obtained by running the

protocols.

2 SSH

The SSH protocol has several options. Here we discuss only the case in which

the client is authenticated using public-key cryptography. In this case, the

protocol is:

Message 1 A! B : NA
Message 2 B ! A : NB
Message 3 B ! A : KBh; KBs

Message 4 A! B : ffH(previous msgs:); KgKBsgKBh
Message 5 A! B : fA; KA; fH(A;NA; NB)gK�1

A

gK0

The goal of these messages is to establish K as a session key for subsequent

communication between A and B. In Messages 1 and 2, A and B exchange

nonces. In Message 3, B provides its public keys. In Message 4, A sends K

to B. This message is encrypted under B's public keys for con�dentiality.

It also includes a hash of the previous messages, as a tie to the protocol run.

In Message 5, A provides its name and public key, and signs its name and

the nonces. This message is protected by shared-key encryption with a key

K 0 derived from K, NA, and NB.

A basic weakness in this protocol is that A's signed statement

fH(A;NA; NB)gK�1

A

3



does not contain enough information explicitly. The statement is intended

to imply that K, NA, and NB can be used as the basis for a session between

A and B; however, there is no trace of B or K in the statement. This

weakness permits an attack.

In the attack, a server C with public keys KCh and KCs is able to

impersonate A in a session with B. The attack is possible whenever A

starts a session with C. When this happens, C immediately starts a session

with B, making sure that the nonces are the same in both sessions; so C is

able to use A's signed statement in the session with B.

Message 1 A! C : NA
Message 1' C ! B : NA
Message 2 B ! C : NB
Message 2' C ! A : NB
Message 3 B ! C : KBh; KBs

Message 3' C ! A : KCh; KCs

Message 4 A! C : ffH(previous msgs:); KgKCsgKCh
Message 4' C ! B : ffH(previous msgs:0); KgKBsgKBh
Message 5 A! C : fA; KA; fH(A;NA; NB)gK�1

A

gK0

Message 5' C ! B : fA; KA; fH(A;NA; NB)gK�1

A

gK0

At this point, B believes that it has started a session with A using K, while

in fact C has K as well; A cannot notice any immediate errors.

The attack is thwarted if A signs additional �elds, including some identi-

�er for B (name, certi�cate, public keys) and some identi�er for the session

key (such as a hash of the key). Such additions have recently been made in

response to the attack.

3 AKA

Like SSH, AKA has several variants, but all of them have similar messages.

We discuss a typical one (the third one of [SSH96, p.181]):

Message 1 A! B : KA

Message 2 B ! A : KBh; KBs

Message 3 A! B : fNA; AgKBs
Message 4 B ! A : fNBgKA
Message 5 B ! A : ffNAgK�1

Bh

gKA

Message 6 A! B : fH(NB)gKBs

4



The goal of these messages is to establish NA � NB as a session key for

subsequent communication between A and B. In Messages 1 and 2, A and

B exchange public keys. In Messages 3 and 4, A and B exchange the nonces

NA and NB ; these are their contributions to the session key. In Message 5,

B signs NA. Finally, in Message 6, A sends an encrypted hash of NB . One

may reason that only A and B know the resulting session key, because of

the use of public-key encryption; in particular, in Messages 3, 4, and 5, the

secrecy of the nonces is protected.

In this protocol, it is B who signs, rather than A. But, mutatis mutandi,

AKA has the same aw as SSH, because B's signed statement does not

contain enough information. Speci�cally, the statement proves possession of

NA, but does not mention NB or the names of the principals. This weakness

allows C to impersonate B in a session with A.

An attack is possible whenever A and B initiate a session, provided C

can intercept and replace some messages. C need not even be a legitimate

principal in the system.

Message 1 A! B : KA

Message 2 B ! : : : : KBh; KBs

Message 2' C ! A : KBh; KCs

Message 3 A! : : : : fNA; AgKCs
Message 3' C ! B : fNA; AgKBs
Message 4 B ! : : : : fNBgKA
Message 4' C ! A : fNCgKA
Message 5 B ! A : ffNAgK�1

Bh

gKA

Message 6 A! : : : : fH(NC)gKCs

C should intercept Message 2, and replace the server key KBs with one

of its own, KCs. This change allows C to read A's nonce NA, sent in

Message 3; after receiving Message 3, C should produce a similar Message

3' for B (under KBs). C should intercept Message 4 as well, and create a

replacement message with a nonce it knows, NC ; but C does not need to

read NB . Messages 5 and 6 are not a�ected, except for the fact that C may

want to intercept Message 6. At the end of this exchange, C cannot continue

the session with B; on the other hand, A believes that NA�NC is a session

key for communication with B, when in fact C has NA �NC .

This attack can be prevented in the usual manner: B should sign more

information. As in SSH, such additions have recently been made.

5



4 Conclusion

The attacks on SSH and AKA exploit a frequent weakness: the absence of

su�cient information in signed statements. Hopefully, these attacks will re-

mind the designers of future protocols that it is generally prudent to include

all relevant �elds in signed statements, and that it is probably better to err

on the side of including too much rather than too little.

As an extreme example, certain signed statements in the SSL v3.0 proto-

col include hashes of all previous messages [FKK96]. These hashes impede

attacks analogous to those described in this paper, found by the author on

drafts of SSL v3.0 and of an earlier version of SSL. The SSL approach seems

rather e�ective. Although the SSL approach can be applied to many other

protocols without much thought, it is always preferable to think carefully

about the meaning of signed statements.

Acknowledgements

Robert Morris suggested looking at SSH, and checked the attack on SSH

described here. David Wagner has found other attacks on AKA; the attack

described here was discovered while reading his explanation of AKA.

References

[AN95] Ross Anderson and Roger Needham. Robustness principles for

public key protocols. In Proceedings of Crypto '95, 1995.

[AN96] Mart��n Abadi and Roger Needham. Prudent engineering prac-

tice for cryptographic protocols. IEEE Transactions on Software

Engineering, 22(1):6{15, January 1996.

[DES77] Data encryption standard. Fed. Inform. Processing Standards

Pub. 46, National Bureau of Standards, Washington DC, January

1977.

[FKK96] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL

protocol: Version 3.0. Available at http://home.netscape.com/

eng/ssl3/ssl-toc.html, March 1996.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communications

of the ACM, 21(2):120{126, February 1978.

6



[Sch96] B. Schneier. Applied Cryptography: Protocols, Algorithms, and

Source Code in C. John Wiley & Sons, Inc., second edition, 1996.

[SSH96] David Sa�ord, Douglas Schales, and David Hess. Texas A&M

University anarchistic key authorization (AKA). In Proceedings of

the Sixth USENIX Security Symposium, pages 179{185, July 1996.

[Yl�o96a] Tatu Yl�onen. SSH|Secure login connections over the Internet.

In Proceedings of the Sixth USENIX Security Symposium, pages

37{42, July 1996.

[Yl�o96b] Tatu Yl�onen. SSH transport layer protocol. Internet draft,

at ftp://ds.internic.net/internet-drafts/draft-ietf-tls

-ssh-00.txt, June 13, 1996.

7


