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Abstract

We introduce the spi calculus, an extension of the pi calculus de-

signed for the description and analysis of cryptographic protocols. We

show how to use the spi calculus, particularly for studying authen-

tication protocols. The pi calculus (without extension) su�ces for

some abstract protocols; the spi calculus enables us to consider cryp-

tographic issues in more detail. We represent protocols as processes in

the spi calculus and state their security properties in terms of coarse-

grained notions of protocol equivalence.
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1 Security and the Pi Calculus

The spi calculus is an extension of the pi calculus [MPW92] with crypto-

graphic primitives. It is designed for the description and analysis of secu-

rity protocols, such as those for authentication and for electronic commerce.

These protocols rely on cryptography and on communication channels with

properties like authenticity and privacy. Accordingly, cryptographic opera-

tions and communication through channels are the main ingredients of the

spi calculus.

We use the pi calculus (without extension) for describing protocols at an

abstract level. The pi calculus primitives for channels are simple but pow-
erful. Channels can be created and passed, for example from authentication
servers to clients. The scoping rules of the pi calculus guarantee that the en-

vironment of a protocol (the attacker) cannot access a channel that it is not
explicitly given; scoping is thus the basis of security. In sum, the pi calculus
appears as a fairly convenient calculus of protocols for secure communication.

However, the pi calculus does not express the cryptographic operations
that are commonly used for implementing channels in distributed systems:

it does not include any constructs for encryption and decryption, and these
do not seem easy to represent. Since the use of cryptography is notoriously
error-prone, we prefer not to abstract it away. We de�ne the spi calculus
in order to permit an explicit representation of the use of cryptography in
protocols.

There are by now many other notations for describing security protocols.
Some, which have long been used in the authentication literature, have a
fairly clear connection to the intended implementations of those protocols
(see, e.g., [NS78, Lie93]). Their main shortcoming is that they do not provide
a precise and solid basis for reasoning about protocols. Other notations
(e.g., [BAN89]) are more formal, but their relation to implementations may

be more tenuous or subtle. The spi calculus is a middle ground: it is directly

executable and it has a precise semantics.
Because the semantics of the spi calculus is not only precise but intelligi-

ble, the spi calculus provides a setting for analysing protocols. Speci�cally,
we can express security guarantees as equivalences between spi calculus pro-

cesses. For example, we can say that a protocol keeps secret a piece of data

X by stating that the protocol with X is equivalent to the protocol with X 0,
for any X 0. Here, equivalence means equivalence in the eyes of an arbitrary

environment. The environment can interact with the protocol, perhaps at-
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tempting to create confusion between di�erent messages or sessions. This

de�nition of equivalence yields the desired properties for our security appli-

cations. (Interestingly, we cannot take the standard bisimilarity relation as

our notion of equivalence.) Moreover, equivalence is not too hard to prove;

we demonstrate this by carrying out the analysis of a few small protocols.

Although the de�nition of equivalence makes reference to the environ-

ment, we do not need to give a model of the environment explicitly. This

is one of the main advantages of our approach. Writing such a model can

be tedious and can lead to new arbitrariness and error. In particular, it is

always di�cult to express that the environment can invent random numbers
but is not lucky enough to guess the random secrets on which a protocol
depends. We resolve this con
ict by letting the environment be an arbitrary
spi calculus process.

Our approach has some similarities with other recent approaches for

reasoning about protocols. Like work based on temporal logics or pro-
cess algebras (e.g., [GM95, Low96, Sch96]), our method builds on a stan-
dard concurrency formalism; this has obvious advantages but it also implies
that our method is less intuitive than some based on ad hoc formalisms
(e.g., [BAN89]). As in some modal logics (e.g., [ABLP93, LABW92]), we em-

phasise reasoning about channels and their utterances. As in state-transition
models (e.g., [DY81, MCF87, Mil95a, Kem89, Mea92]), we are interested in
characterising the knowledge of an environment. The unique features of our
approach are its reliance on the powerful scoping constructs of the pi calculus;
the radical de�nition of the environment as an arbitrary spi calculus process;

and the representation of security properties, both integrity and secrecy, as
equivalences.

Our model of protocols is simpler, but poorer, than some models de-

veloped for informal mathematical arguments (e.g., [BR95]) because the spi
calculus does not include any notion of probability or complexity. It would

be interesting to bridge the gap between the spi calculus and those models,
perhaps by giving a probabilistic interpretation for our results.

Contents of this Paper

Section 2 introduces the pi calculus and our method of specifying authenticity

and secrecy properties as equations. Section 3 extends the pi calculus with
primitives for shared-key cryptography. Sections 4 and 5 de�ne the formal

semantics of the spi calculus and associated proof techniques, respectively.
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Section 6 uses these techniques in proofs of some of the properties stated ear-

lier. Section 7 discusses how to add primitives for public-key cryptography to

the pi calculus, and Section 8 o�ers some conclusions. The Appendices con-

tain some proofs and several sketches of partial encodings of the spi calculus

in the pi calculus.

Note

It has been said that Perl is a language that looks the same in clear and

encrypted. The pi calculus, and a fortiori the spi calculus, are not too far
behind Perl in this respect. If you get lost in the formal passages of the
paper, the cleartext nearby may help|hopefully the informal explanations
convey the gist of what is being accomplished.

2 Protocols using Restricted Channels

In this section we review the de�nition of the pi calculus informally. (We
give a more formal presentation in Section 4.) We then introduce a new

application of the pi calculus, namely its use for the study of security.

2.1 Basics

The pi calculus is a small but extremely expressive programming language.

It is an important result of the search for a calculus that could serve as a
foundation for concurrent computation, in the same way in which the lambda
calculus is a foundation for sequential computation.

Pi calculus programs are systems of independent, parallel processes that

synchronise via message-passing handshakes on named channels. The chan-

nels a process knows about determine the communication possibilities of the
process. Channels may be restricted, so that only certain processes may com-

municate on them. In this respect the pi calculus is similar to earlier process
calculi such as CSP [Hoa85] and CCS [Mil89].

What sets the pi calculus apart from earlier calculi is that the scope of a
restriction|the program text in which a channel may be used|may change

during computation. When a process sends a restricted channel as a message
to a process outside the scope of the restriction, the scope is said to extrude,

that is, it enlarges to embrace the process receiving the channel. Processes in
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the pi calculus are mobile in the sense that their communication possibilities

may change over time; they may learn the names of new channels via scope

extrusion. Thus, a channel is a transferable capability for communication.

A central technical idea of this paper is to use the restriction operator

and scope extrusion from the pi calculus as a formal model of the possession

and communication of secrets, such as cryptographic keys. These features of

the pi calculus are essential in our descriptions of security protocols.

2.2 Outline of the Pi Calculus

There are in fact several versions of the pi calculus. Here we review the
syntax and semantics of a particular version of the pi calculus; our choices
should be relatively uncontroversial. The di�erences with other versions are
mostly orthogonal to our concerns.

We assume an in�nite set of names, to be used for communication chan-
nels, and an in�nite set of variables. We let m, n, p, q, and r range over
names, and let x, y, and z range over variables.

The set of terms is de�ned by the grammar:

L;M;N ::= terms
n name
(M;N) pair
0 zero

suc(M) successor
x variable

In the standard pi calculus, names are the only terms. For convenience we

have added constructs for pairing and numbers, (M;N), 0, and suc(M), and
have also distinguished variables from names. (This distinction simpli�es the

treatment of some equivalences.)

The set of processes is de�ned by the grammar:

P;Q;R ::= processes
M hNi:P output
M(x):P input

P j Q composition

(�n)P restriction
!P replication

[M is N ] P match
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0 nil

let (x; y) =M in P pair splitting

case M of 0 : P suc(x) : Q integer case

In (�n)P , the name n is bound in P . In M(x):P , the variable x is bound

in P . In let (x; y) = M in P , the variables x and y are bound in P . In

case M of 0 : P suc(x) : Q, the variable x is bound in the second branch, Q.

We write P [M=x] for the outcome of replacing each free occurrence of x in

process P with the termM , and identify processes up to renaming of bound

variables and names. We adopt the abbreviation M hNi for MhNi:0.

Intuitively, the constructs of the pi calculus have the following meanings:

� The basic computational step and synchronisation mechanism in the
pi calculus is interaction, in which a term N is communicated from an
output process to an input process via a named channel, m.

{ An output process mhNi:P is ready to output on channel m. If

an interaction occurs, term N is communicated on m and then
process P runs.

{ An input process m(x):P is ready to input from channel m. If an

interaction occurs in which N is communicated onm, then process
P [N=x] runs.

(The general forms MhNi:P and M(x):P of output and input allow
for the channel to be an arbitrary term M . The only useful cases are
for M to be a name, or a variable that gets instantiated to a name.)

� A composition P j Q behaves as processes P and Q running in parallel.
Each may interact with the other on channels known to both, or with
the outside world, independently of the other.

� A restriction (�n)P is a process that makes a new, private name n,

which may occur in P , and then behaves as P .

� A replication !P behaves as an in�nite number of copies of P running
in parallel.

� A match [M is N ] P behaves as P provided that terms M and N are

the same; otherwise it is stuck, that is, it does nothing.

� The nil process 0 does nothing.
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Since we added pairs and integers, we have two new process forms:

� A pair splitting process let (x; y) =M in P behaves as P [N=x][L=y] if

termM is the pair (N;L), and otherwise it is stuck.

� An integer case process case M of 0 : P suc(x) : Q behaves as P if

termM is 0, as Q[N=x] if M is suc(N), and otherwise is stuck.

We write P ' Q to mean that the behaviours of the processes P and

Q are indistinguishable. In other words, the processes P and Q may have

di�erent internal structure, but a third process R cannot distinguish running
in parallel with P from running in parallel with Q. As far as R can tell, P
and Q have the same properties (more precisely, the same safety properties).
We de�ne the relation ' in Section 4.2 as a form of testing equivalence. For

now, it su�ces to understand ' informally.

2.3 Examples using Restricted Channels

Next we show how to express some abstract security protocols in the pi

calculus. In security protocols, it is common to �nd channels on which only a
given set of principals is allowed to send data or listen. The set of principals
may expand in the course of a protocol run, for example as the result of
channel establishment. Remarkably, it is easy to model this property of
channels in the pi calculus, via the restriction operation; the expansion of

the set of principals that can access a channel corresponds to scope extrusion.
We do not provide a systematic translation from another language for

describing protocols into the pi calculus, but rather show some examples of
protocols written directly in the pi calculus, along with informal descriptions

of the kind commonly found in the security literature. We do introduce a

fairly systematic approach for stating properties of protocols as pi calculus

equivalences.

2.3.1 A �rst example

Our �rst example is extremely basic. In this example, there are two principals
A and B that share a channel, cAB; only A and B can send data or listen

on this channel. The protocol is simply that A uses cAB for sending a single

message M to B.
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In informal notation, we may write this protocol as follows:

Message 1 A! B : M on cAB

A �rst pi calculus description of this protocol is:

A(M)
�

= cABhMi

B
�

= cAB(x):0

Inst(M)
�

= (�cAB)(A(M) j B)

The processes A(M) and B describe the two principals, and Inst(M) de-

scribes (one instance of) the whole protocol. The channel cAB is restricted;
intuitively, this achieves the e�ect that only A and B have access to cAB.

In these de�nitions, A(M) and Inst(M) are processes parameterised by
M . More formally, we say that A and Inst are abstractions, and treat the
M 's on the left of

�

= as bound parameters. Roughly, abstractions are func-
tions that map terms to processes. (Section 5.1 contains a precise de�nition

of abstractions.) Abstractions can of course be instantiated (applied); for
example, the instantiation A(0) yields cABh0i. The standard rules of sub-
stitution govern application, forbidding parameter captures; for example,
expanding Inst(cAB) would require a renaming of the bound occurrence of
cAB in the de�nition of Inst .

The �rst pi calculus description of the protocol may seem a little futile
because, according to it, B does nothing with its input. A more useful and
general description says that B runs a process F with its input. We revise
our de�nitions as follows:

A(M)
�

= cABhMi

B
�

= cAB(x):F (x)

Inst(M)
�

= (�cAB)(A(M) j B)

Informally, F (x) is simply the result of applying F to x. More formally, F
is an abstraction, and F (x) is an instantiation of the abstraction. We adopt

the convention that the bound parameters of the protocol (in this case, M ,

cAB, and x) cannot occur free in F .
This protocol has two important properties:

� Authenticity (or integrity): B always applies F to the messageM that

A sends; an attacker cannot cause B to apply F to some other message.
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� Secrecy: The message M cannot be read in transit from A to B: if F

does not revealM , then the whole protocol does not reveal M .

The secrecy property can be stated in terms of equivalences: if F (M) '

F (M 0), for any M , M 0, then Inst(M) ' Inst(M 0). This means that if F (M)

is indistinguishable from F (M 0), then the protocol with message M is indis-

tinguishable from the protocol with message M 0.

There are many sensible ways of formalising the authenticity property.

In particular, it may be possible to use notions of re�nement or a suitable

program logic. However, we choose to write authenticity as an equivalence,

for economy. This equivalence compares the protocol with another protocol.
Our intent is that the latter protocol serves as a speci�cation. In this case,

the speci�cation is:

A(M)
�

= cABhMi

Bspec(M)
�

= cAB(x):F (M)

Inst spec(M)
�

= (�cAB)(A(M) j Bspec(M))

The principal A is as usual, but the principal B is replaced with a variant
Bspec(M); this variant receives an input from A and then acts like B when

B receives M . We may say that Bspec(M) is a \magical" version of B that
knows the messageM sent by A, and similarly Inst spec is a \magical" version
of Inst .

Although the speci�cation and the protocol are similar in structure, the
speci�cation is more evidently \correct" than the protocol. Therefore, we

take the following equivalence as our authenticity property: Inst(M) '
Inst spec(M), for any M .

In summary, we have:

Authenticity: Inst(M) ' Inst spec(M), for any M .

Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any M , M 0.

Each of these equivalences means that two processes being equated are in-
distinguishable, even when an active attacker is their environment. Neither

of these equivalences would hold without the restriction of channel cAB. We
prove these equivalences in Section 6, which contains proofs for all our ex-

amples.
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Figure 1: Structure of the Wide Mouthed Frog Protocol

2.3.2 An example with channel establishment

A more interesting variant of our �rst example is obtained by adding a chan-
nel establishment phase. In this phase, before communication of data, the

principals A and B obtain a new channel with the help of a server S.
There are many di�erent ways of establishing a channel, even at the

abstract level at which we work here. The one we describe is inspired by the
Wide Mouthed Frog protocol [BAN89], which has the basic structure shown
in Figure 1.

We consider an abstract and simpli�ed version of the Wide Mouthed Frog
protocol. Our version is abstract in that we deal with channels instead of
keys; it is simpli�ed in that channel establishment and data communication
happen only once (so there is no need for timestamps). In the next section
we show how to treat keys and how to allow many instances of the protocol,

with an arbitrary number of messages.

Informally, our version is:

Message 1 A! S : cAB on cAS
Message 2 S ! B : cAB on cSB
Message 3 A! B : M on cAB

Here cAS is a channel that A and S share initially, cSB is a channel that S

and B share initially, and cAB is a channel that A creates for communication
with B. After passing the channel cAB to B through S, A sends a message

M on cAB. Note that S does not use the channel, but only transmits it.
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In the pi calculus, we formulate this protocol as follows:

A(M)
�

= (�cAB)cAShcABi:cABhMi

S
�

= cAS(x):cSBhxi

B
�

= cSB(x):x(y):F (y)

Inst(M)
�

= (�cAS)(�cSB)(A(M) j S j B)

Here we write F (y) to represent what B does with the message y that it

receives, as in the previous example. The restrictions on the channels cAS ,

cSB, and cAB re
ect the expected privacy guarantees for these channels. The
most salient new feature of this speci�cation is the use of scope extrusion: A
generates a fresh channel cAB, and then sends it out of scope to B via S. We

could not have written this description in formalisms such as CCS or CSP;
the use of the pi calculus is important.

For discussing authenticity, we introduce the following speci�cation:

A(M)
�

= (�cAB)cAShcABi:cABhMi

S
�

= cAS(x):cSBhxi

Bspec(M)
�

= cSB(x):x(y):F (M)

Inst spec(M)
�

= (�cAS)(�cSB)(A(M) j S j Bspec(M))

According to this speci�cation, the messageM is communicated \magically":
the process F is applied to the message M that A sends independently of
whatever happens during the rest of the protocol run.

We obtain the following authenticity and secrecy properties:

Authenticity: Inst(M) ' Inst spec(M), for any M .

Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any M , M 0.

Again, these properties hold because of the scoping rules of the pi calculus.

2.3.3 Discussion

We believe that the two examples just given are rather encouraging. They
indicate that the pi calculus is a natural language for describing some security

protocols. In particular, the restriction operator and scope extrusion allow

convenient representations for the possession and communication of channels.
We do not wish to suggest that the pi calculus enables us to describe all

security protocols, even at an abstract level. For example, some protocols
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rely on asymmetric channels (channels of the kind implemented with public-

key cryptography [DH76, RSA78]). It may be possible to represent such

asymmetric channels in the pi calculus but extending the pi calculus may be

simpler and more e�ective. In all cases, however, the pi calculus notion of

scoping should be useful.

3 Protocols using Cryptography

Just as there are several versions of the pi calculus, there are several versions

of the spi calculus. These di�er in particular in what cryptographic constructs
they include.

In this section we introduce a relatively simple spi calculus, namely the
pi calculus extended with primitives for shared-key cryptography. We then

write several protocols that use shared-key cryptography in this calculus.
As in Section 2, the presentation is rather informal. Later sections con-

tain further formal de�nitions. Throughout the paper, we often refer to the
calculus presented in this section as \the" spi calculus; but we de�ne other
versions of the spi calculus in Section 7.

3.1 The Spi Calculus with Shared-Key Cryptography

The syntax of the spi calculus is an extension of that of the pi calculus.
In order to represent encrypted messages, we add a clause to the syntax of

terms:

L;M;N ::= terms
: : : as in Section 2.2

fMgN shared-key encryption

In order to represent decryption, we add a clause to the syntax of processes:

P;Q ::= processes

: : : as in Section 2.2

case L of fxgN in P shared-key decryption

The variable x is bound in P .
Intuitively, the meaning of the new constructs is as follows:
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� The term fMgN represents the ciphertext obtained by encrypting the

term M under the key N using a shared-key cryptosystem such as

DES [DES77].

� The process case L of fxgN in P attempts to decrypt the term L with

the key N . If L is a ciphertext of the form fMgN , then the process

behaves as P [M=x]. Otherwise the process is stuck.

Implicit in this de�nition are some standard but signi�cant assumptions

about cryptography:

� The only way to decrypt an encrypted packet is to know the corre-

sponding key.

� An encrypted packet does not reveal the key that was used to encrypt
it.

� There is su�cient redundancy in messages so that the decryption algo-
rithm can detect whether a ciphertext was encrypted with the expected

key.

It is not assumed that all messages contain information that allows each
principal to recognise its own messages (cf. [BAN89]).

The semantics of the spi calculus can be formalised in much the same
way as the semantics of the pi calculus. We carry out this formalisation in

Section 4. The most interesting issues in this formalisation concern the notion
of equivalence. Again, we write P ' Q to mean that the behaviours of the
processes P and Q are indistinguishable. The notion of indistinguishability
is complicated by the presence of cryptography.

As an example of these complications, consider the following process:

P (M)
�

= (�K)chfMgKi

This process simply sends M under a new key K on a public channel c;
the key K is not transmitted. Intuitively, we would like to be able to say

that P (M) and P (M 0) are indistinguishable, for any M and M 0, because an
observer cannot discover K and hence cannot tell whether M or M 0 is sent

under K. On the other hand, P (M) and P (M 0) are clearly di�erent, since

they transmit di�erent messages on c. A �ne-grained equivalence|such as
the standard strong bisimilarity|would distinguish P (M) and P (M 0). Our
equivalence is coarse-grained enough not to make this unwanted distinction.
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3.2 Examples using Shared-Key Cryptography

The spi calculus enables more detailed descriptions of security protocols than

the pi calculus. While the pi calculus enables the representation of channels,

the spi calculus also enables the representation of the channel implemen-

tations in terms of cryptography. In this section we show a few example

cryptographic protocols.

As in the pi calculus, scoping is the basis of security in the spi calculus. In

particular, restriction can be used to model the creation of fresh, unguessable

cryptographic keys. Restriction can also be used to model the creation of

fresh nonces of the sort used in challenge-response exchanges.
Security properties can still be expressed as equivalences, although the

notion of equivalence is more delicate, as we have discussed.

3.2.1 A �rst cryptographic example

Our �rst example is a cryptographic version of the example of Section 2.3.1.
We consider two principals A and B that share a key KAB; in addition, we

assume there is a public channel cAB that A and B can use for communica-
tion, but which is in no way secure. The protocol is simply that A sends a
message M under KAB to B, on cAB.

Informally, we write this protocol as follows:

Message 1 A! B : fMgKAB
on cAB

In the spi calculus, we write:

A(M)
�

= cABhfMgKAB
i

B
�

= cAB(x):case x of fygKAB
in F (y)

Inst(M)
�

= (�KAB)(A(M) j B)

According to this de�nition, A sends fMgKAB
on cAB while B listens for a

message on cAB. Given such a message, B attempts to decrypt it using KAB;
if this decryption succeeds, B applies F to the result. The assumption that A

and B share KAB gives rise to the restriction on KAB, which is syntactically
legal and meaningful although KAB is not used as a channel. On the other

hand, cAB is not restricted, since it is a public channel. Other principals may

send messages on cAB, so B may attempt to decrypt a message not encrypted
under KAB; in that case, the protocol will get stuck. We are not concerned
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about this possibility, but it would be easy enough to avoid it by writing a

slightly more elaborate program for B.

We use the following speci�cation:

A(M)
�

= cABhfMgKAB
i

Bspec(M)
�

= cAB(x):case x of fygKAB
in F (M)

Inst spec(M)
�

= (�KAB)(A(M) j Bspec(M))

and we obtain the properties:

Authenticity: Inst(M) ' Inst spec(M), for any M .

Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any M , M 0.

Intuitively, authenticity holds even if the key KAB is somehow compro-
mised after its use. Many factors can contribute to key compromise, for

example incompetence on the part of protocol participants, and malice and
brute force on the part of attackers. We cannot model all these factors, but
we can model deliberate key publication, which is in a sense the most ex-
treme of them. It su�ces to make a small change in the de�nitions of B and
Bspec , so that they send KAB on a public channel after receiving fMgKAB

.

This change preserves the authenticity equation, but clearly not the secrecy
equation.

There is an apparent correspondence between the protocol of this sec-
tion and that of Section 2.3.1, which does not use cryptography. Informally,
we may say that this is a cryptographic implementation of the protocol of
Section 2.3.1. More precisely, we conjecture that this protocol is an imple-

mentation of the parallel composition of the protocol of Section 2.3.1 with

(�n)(cABhni). (Our notion of implementation is a testing preorder; see Sec-
tion 4.) The role of (�n)(cABhni) is to send a \decoy message" on cAB. This
decoy is needed because an environment can detect whether cAB is used or

not, and hence (in absence of the decoy) can distinguish the protocol of this

section from that of Section 2.3.1.
We do not study implementation relations in this paper. However, we

do believe that such relations are important and that they deserve more at-
tention in the �eld of security. We view this example of an implementation

relation as an intriguing novelty; it suggests the possibility of hierarchical de-

velopment of cryptographic protocols from non-cryptographic speci�cations.
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Figure 2: Sketch of the Wide Mouthed Frog

3.2.2 An example with key establishment

In cryptographic protocols, the establishment of new channels often means
the exchange of new keys. There are many methods (most of them 
awed)
for key exchange. The following example is the cryptographic version of that

of Section 2.3.2, and uses a simpli�ed form of the Wide Mouthed Frog key
exchange. The example is represented in Figure 2.

In the Wide Mouthed Frog protocol, the principals A and B share keys
KAS and KSB respectively with a server S. When A and B want to com-
municate securely, A creates a new key KAB , sends it to the server under

KAS , and the server forwards it to B under KSB. All communication being
protected by encryption, it can happen through public channels, which we
write cAS, cSB, and cAB. Informally, a simpli�ed version of this protocol is:

Message 1 A! S : fKABgKAS
on cAS

Message 2 S ! B : fKABgKSB
on cSB

Message 3 A! B : fMgKAB
on cAB

In the spi calculus, we can express this message sequence as follows:

A(M)
�

= (�KAB)(cAShfKABgKAS
i:cABhfMgKAB

i)

S
�

= cAS(x):case x of fygKAS
in cSBhfygKSB

i

B
�

= cSB(x):case x of fygKSB
in

cAB(z):case z of fwgy in F (w)

Inst(M)
�

= (�KAS)(�KSB)(A(M) j S j B)
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where F (w) is a process representing the rest of the behaviour of B upon re-

ceiving a message w. Notice the essential use of scope extrusion: A generates

the key KAB and sends it out of scope to B via S.

In the usual pattern, we introduce a speci�cation for discussing authen-

ticity:

A(M)
�

= (�KAB)(cAShfKABgKAS
i:cABhfMgKAB

i)

S
�

= cAS(x):case x of fygKAS
in cSBhfygKSB

i

Bspec(M)
�

= cSB(x):case x of fygKSB
in

cAB(z):case z of fwgy in F (M)

Inst spec(M)
�

= (�KAS )(�KSB)(A(M) j S j Bspec(M))

One may be concerned about the apparent complexity of this speci�ca-
tion. On the other hand, despite its complexity, the speci�cation is still more

evidently \correct" than the protocol. In particular, it is still evident that
Bspec(M) applies F to the dataM fromA, rather than to some other message
chosen as the result of error or attack.

We obtain the usual properties of authenticity and secrecy:

Authenticity: Inst(M) ' Inst spec(M), for any M .

Secrecy: Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any M , M 0.

3.2.3 A complete authentication example (with a 
aw)

In the examples discussed so far, channel establishment and data commu-
nication happen only once. As we demonstrate now, it is a simple matter

of programming to remove this restriction and to represent more sophisti-

cated examples with many sessions between many principals. However, as
the intricacy of our examples increases, so does the opportunity for error.
This should not be construed as a limitation of our approach, but rather

as the sign of an intrinsic di�culty: many of the mistakes in authentication

protocols arise from confusion between sessions.
We consider a system with a server S and n other principals. We use

the terms suc(0), suc(suc(0)), . . . , which we abbreviate to 1, 2, . . . , as the
names of these other principals. We assume that each principal has an input

channel; these input channels are public and have the names c1, c2, . . . , cn
and cS . We also assume that the server shares a pair of keys with each other
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principal, one key for each direction: principal i uses key KiS to send to S

and key KSi to receive from S, for 1 � i � n.

We extend our standard example to this system of n+ 1 principals, with

the following message sequence:

Message 1 A! S : A; fB;KABgKAS
on cS

Message 2 S ! B : fA;KABgKSB
on cB

Message 3 A! B : A; fMgKAB
on cB

Here A and B range over the n principals. The names A and B appear in

messages in order to avoid ambiguity; when these names appear in clear,

they function as hints that help the recipient choose the appropriate key for
decryption of the rest of the message. The intent is that the protocol can be

used by any pair of principals, arbitrarily often; concurrent runs are allowed.
As it stands, the protocol is seriously 
awed; a correct protocol appears

below, in Section 3.2.4. (The 
aws and their �xes should be clear to readers
knowledgeable in security.) We continue to discuss the protocol in order to
explain our method for representing it in the spi calculus.

In our spi calculus representation, we use several convenient abbrevia-
tions. Firstly, we rely on pair splitting on input and on decryption:

c(x1; x2):P
�

= c(y):let (x1; x2) = y in P

case L of fx1; x2gN in P
�

= case L of fygN in let (x1; x2) = y in P

where variable y is fresh. Secondly, we need the standard notation for the
composition of a �nite set of processes. Given a �nite family of processes
P1; : : : ; Pk, we let

Q
i21::k Pi be their k-way composition P1 j � � � j Pk. Finally,

we omit the inner brackets from an encrypted pair of the form f(N;N 0)gN 00,
and simply write fN;N 0gN 00, as is common in informal descriptions.

Informally, an instance of the protocol is determined by a choice of parties
(who is A and who is B) and by the message sent after key establishment.

More formally, an instance I is a triple (i; j;M) such that i and j are prin-

cipals and M is a message. We say that i is the source address and j the
destination address of the instance. Moreover, we assume that there is an

abstraction F representing the behaviour of any principal after receipt of
Message 3 of the protocol. For an instance (i; j;M) that runs as intended,

the argument to F is the triple (i; j;M).

Given an instance (i; j;M), the following process corresponds to the role

of A:

Send (i; j;M)
�

= (�K)(cSh(i; fj;KgKiS
)i j cjh(i; fMgK)i)
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The sending process creates a key K and sends it to the server, along with

the names i and j of the principals of the instance. The sending process also

sends M under K, along with its name i. We have put the two messages

in parallel, somewhat arbitrarily; but putting them in sequence would have

much the same e�ect.

The following process corresponds to the role of B for principal j:

Recv(j)
�

= cj(ycipher ):case ycipher of fxA; xkeygKSj
in

cj(zA; zcipher ):[xA is zA]

case zcipher of fzplaingxkey in F (xA; j; zplain)

The receiving process waits for a message ycipher from the server, extracts a
key xkey from this message, then waits for a message zcipher under this key,
and �nally applies F to the name xA of the presumed sender, to its own

name j, and to the contents zplain of the message. The variables xA and zA
are both intended as the name of the sending process, so they are expected
to match.

The server S is the same for all instances:

S
�

= cS(xA; xcipher ):Q
i21::n[xA is i] case xcipher of fxB; xkeygKiS

inQ
j21::n[xB is j] cjhfxA; xkeygKSj

i

The variable xA is intended as the name of the sending process, xB as the
name of the receiving process, xkey as the new key, and xcipher as the encrypted

part of the �rst message of the protocol. In the code for the server, we
program an n-way branch on the name xA by using a parallel composition
of processes indexed by i 2 1::n. We also program an n-way branch on the
name xB, similarly. (This casual use of multiple threads is characteristic of

the pi calculus; in practice the branch could be implemented more e�ciently,

but here we are interested only in the behaviour of the server, not in its
e�cient implementation.)

Finally we de�ne a whole system, parameterised on a list of instances of
the protocol:

Sys(I1; : : : ; Im)
�

= (� ~KiS)(� ~KSj)
(Send (I1) j � � � j Send (Im) j

!S j

!Recv(1) j � � � j !Recv(n))
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where (� ~KiS)(� ~KSj) stands for (�K1S) : : : (�KnS)(�KS1) : : : (�KSn). The ex-

pression Sys(I1; : : : ; Im) represents a system withm instances of the protocol.

The server is replicated; in addition, the replication of the receiving processes

means that each principal is willing to play the role of receiver in any number

of runs of the protocol in parallel. Thus, any two runs of the protocol can

be simultaneous, even if they involve the same principals.

As before, we write a speci�cation by modifying the protocol. For this

speci�cation, we revise both the sending process and the receiving process,

but not the server:

Send spec(i; j;M)
�

= (�p)(Send (i; j; p) j p(x):F (i; j;M))

Recv spec(j)
�

= cj(ycipher ):case ycipher of fxA; xkeygKSj
in

cj(zA; zcipher ):[xA is zA]

case zcipher of fzplaingxkey in zplainh�i

Sysspec(I1; : : : ; Im)
�

= (� ~KiS)(� ~KSj)
(Send spec(I1) j � � � j Send spec(Im) j
!S j
!Recv spec(1) j � � � j !Recv spec(n))

In this speci�cation, the sending process for instance (i; j;M) is as in the
implementation, except that it sends a fresh channel name p instead of M ,

and runs F (i; j;M) when it receives any message on p. The receiving process
in the speci�cation is identical to that in the implementation, except that
F (yA; j; zplain) is replaced with zplainh�i, where the symbol � represents a
�xed but arbitrary message. The variable zplain will be bound to the fresh
name p for the corresponding instance of the protocol. Thus, the receiving

process will signal on p, triggering the execution of the appropriate process
F (i; j;M).

A crucial property of this speci�cation is that the only occurrences of F
are bundled into the description of the sending process. There, F is applied

to the desired parameters, (i; j;M). Hence it is obvious that an instance

(i; j;M) will cause the execution of F (i0; j0;M 0) only if i0 is i, j0 is j, and M 0

is M . Therefore, despite its complexity, the speci�cation is more obviously
\correct" than the implementation.

Much as in previous examples, we would like the protocol to have the

following authenticity property:

Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im); for any instances I1, . . . , Im.
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Unfortunately, the protocol is vulnerable to a replay attack that invalidates

the authenticity equation. Consider the system Sys(I; I 0) where I = (i; j;M)

and I 0 = (i; j;M 0). An attacker can replay messages of one instance and get

them mistaken for messages of the other instance, causing M to be passed

twice to F . Thus, Sys(I; I 0) can be made to execute two copies of F (i; j;M).

In contrast, no matter what an attacker does, Sys spec(I; I
0) will run each of

F (i; j;M) and F (i; j;M 0) at most once. The authenticity equation therefore

does not hold. We disprove it more formally in Section 6.4.

We leave the discussion of secrecy for the next example.

3.2.4 A complete authentication example (repaired)

Now we improve the protocol of the previous section by adding nonce hand-
shakes as protection against replay attacks. The Wide Mouthed Frog pro-
tocol uses timestamps instead of handshakes. The treatment of timestamps
in the spi calculus is possible, but it requires additional elements, including

at least a rudimentary account of clock synchronisation. Protocols that use
handshakes are fundamentally more self-contained than protocols that use
timestamps; therefore, handshakes make for clearer examples.

Informally, our new protocol is:

Message 1 A! S : A on cS
Message 2 S ! A : NS on cA
Message 3 A! S : A; fA;A;B;KAB; NSgKAS

on cS
Message 4 S ! B : � on cB
Message 5 B ! S : NB on cS
Message 6 S ! B : fS;A;B;KAB; NBgKSB

on cB
Message 7 A! B : A; fMgKAB

on cB

Messages 1 and 2 are the request for a challenge and the challenge, respec-

tively. The challenge is NS, a nonce created by S; the nonce must not have

been used before for this purpose. Obviously the nonce is not secret, but it
must be unpredictable (for otherwise an attacker could simulate a challenge

and later replay the response [AN96]). In Message 3, A says that A and B

can communicate under KAB, sometime after receipt of NS. All the com-

ponents A, B, KAB, NS appear explicitly in the message, for safety [AN96],

but A could perhaps be elided. The presence of NS in Message 3 proves the
freshness of the message. In Message 4, � represents a �xed but arbitrary

message; S uses � to signal that it is ready for a nonce challenge NB from
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B. In Message 6, S says that A says that A and B can communicate under

KAB, sometime after receipt of NB. The �rst �eld of the encrypted portions

of Messages 3 and 6 (A or S) is included in order to distinguish these mes-

sages; it serves as a \direction bit". Finally, Message 7 is the transmission of

data under KAB.

The messages of this protocol have many components. For the spi cal-

culus representation it is therefore convenient to generalise our syntax of

pairs and pair splitting to arbitrary tuples. We use the following standard

abbreviations, given inductively for any k � 2:

(N1; : : : ; Nk; Nk+1)
�

= ((N1; : : : ; Nk); Nk+1)

let (x1; : : : ; xk; xk+1) = N in P
�

= let (y; xk+1) = N in

let (x1; : : : ; xk) = y in P

where variable y is fresh.
In the spi calculus, we represent the nonces of this protocol as newly

created names. We obtain the following spi calculus expressions:

Send (i; j;M)
�

= cShii j
ci(xnonce):

(�K)(cSh(i; fi; i; j;K; xnoncegKiS
)i j cjh(i; fMgK)i)

S
�

= cS(xA):
Q
i21::n[xA is i] (�NS)(cihNSi j

cS(x
0
A; xcipher ):[x

0
A is i]

case xcipher of fyA; zA; xB; xkey ; xnoncegKiS
inQ

j21::n[yA is i] [zA is i] [xB is j] [xnonce is NS ]
(cjh�i j cS(ynonce ):cjhfS; i; j; xkey ; ynoncegKSj

i))

Recv(j)
�

= cj(w):(�NB)(cShNBi j

cj(ycipher ):
case ycipher of fxS; xA; xB; xkey ; ynoncegKSj

inQ
i21::n[xS is S] [xA is i] [xB is j] [ynonce is NB]

cj(zA; zcipher ):[zA is xA]

case zcipher of fzplaingxkey in F (i; j; zplain))

Sys(I1; : : : ; Im)
�

= (� ~KiS)(� ~KSj)

(Send (I1) j � � � j Send (Im) j
!S j

!Recv(1) j � � � j !Recv(n))

The names NS and NB represent the nonces. The variable subscripts are

hints that indicate what the corresponding variables should represent; for
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example, xA, x
0
A, yA, and zA are all expected to be the name of the sending

process, and xnonce and ynonce are expected to be the nonces generated by S

and B, respectively.

The de�nition of Sysspec is exactly analogous to that of the previous sec-

tion, so we omit it.

We now obtain the authenticity property:

Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im); for any instances I1, . . . , Im.

This property holds because of the use of nonces. In particular, the at-

tack described in Section 3.2.3 can no longer distinguish Sys(I1; : : : ; Im) from
Sysspec(I1; : : : ; Im).

As a secrecy property, we would like to express that there is no way for
an external observer to tell apart two executions of the system with identical
participants but di�erent messages. The secrecy property should therefore
assert that the protocol does not reveal any information about the contents
of exchanged messages if none is revealed after the key exchange.

In order to express that no information is revealed after the key exchange,

we introduce the following de�nition. We say that a pair of instances (i; j;M)
and (i0; j0;M 0) is indistinguishable if the two instances have the same source
and destination addresses (i = i0 and j = j0) and if F (i; j;M) ' F (i; j;M 0).

Our de�nition of secrecy is that, if each pair (I1; J1), . . . , (Im; Jm) is
indistinguishable, then Sys(I1; : : : ; Im) ' Sys(J1; : : : ; Jm). This means that

an observer cannot distinguish two systems parameterised by two sets of
indistinguishable instances. This property holds for our protocol.

In summary, we have:

Authenticity: Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im),

for any instances I1, . . . , Im.

Secrecy: Sys(I1; : : : ; Im) ' Sys(J1; : : : ; Jm),

if each pair (I1; J1), . . . , (Im; Jm) is indistinguishable.

We could ask for a further property of anonymity, namely that the source
and the destination addresses of instances be protected from eavesdroppers.

However, anonymity holds neither for our protocol nor for most current,
practical protocols. It would be easy enough to specify anonymity, should it

be relevant.
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3.2.5 Discussion

After these examples, it should be obvious that writing a protocol in the spi

calculus is a little harder than writing it in the informal notations common

in the literature. On the other hand, the spi calculus versions are more

detailed. They make clear not only what messages are sent but how the

messages are generated and how they are checked. These aspects of the spi

calculus descriptions add complexity, but they enable �ner analysis. (Recall,

for example, that one of the mistakes in the CCITT X.509 protocol was to

omit a timestamp check [BAN89].)

It should also be obvious that writing a protocol in the spi calculus is
essentially analogous to writing it in any programming language with suitable
communication and encryption libraries. The main advantage of the spi
calculus is its formal precision.

Finally, as noted in the introduction, the spi calculus has both similarities
and di�erences with other formalisms for the analysis of security protocols.
The examples given in this section exhibit some of those similarities and
di�erences. We cannot say that the spi calculus will be as good a tool for
�nding 
aws as some of the logics of authentication. On the other hand,

the spi calculus seems to rest on �rmer ground, so it yields more convincing
proofs of correctness.

4 Formal Semantics of the Spi Calculus

In this section we start the formal treatment of the spi calculus. In Section 4.1
we introduce the reaction relation; P ! Q means there is a reaction amongst
the subprocesses of P such that the whole can take a step to process Q.

Reaction is the basic notion of computation in both the pi calculus and the

spi calculus. In Section 4.2 we give a precise de�nition of the equivalence

relation ', which we have used for expressing security properties.

Syntactic Conventions

The grammar of the spi calculus is as given in Sections 2.2 and 3.1. It has
two syntactic categories, of terms, ranged over by L, M , N , and processes,

ranged over by P , Q, R. The metavariables m, n, p, q, and r range over an
in�nite set of names. The metavariables x, y, and z range over a disjoint,

in�nite set of variables.
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We write fn(M) and fn(P ) for the sets of names free in term M and

process P respectively. Similarly, we write fv(M) and fv(P ) for the sets of

variables free in M and P respectively. We say that a term or process is

closed to mean that it has no free variables. (To be able to communicate

externally, a process must have free names.) The set Proc = fP j fv(P ) = ;g

is the set of closed processes.

4.1 The Reaction Relation

The reaction relation is a concise account of computation in the pi calculus

introduced by Milner [Mil92], inspired by the Chemical Abstract Machine
of Berry and Boudol [BB90]. One thinks of a process as consisting of a
chemical solution of molecules waiting to react. A reaction step arises from
the interaction of the adjacent molecules mhNi:P and m(x):Q, as follows:

(React Inter) mhNi:P j m(x):Q ! P j Q[N=x]

Just as one might stir a chemical solution to allow non-adjacent molecules
to react, we de�ne a relation, structural equivalence, that allows processes to
be rearranged so that (React Inter) is applicable. We �rst de�ne the reduction
relation > on closed processes:

(Red Repl) !P > P j !P
(Red Match) [M is M ] P > P

(Red Let) let (x; y) = (M;N) in P > P [M=x][N=y]
(Red Zero) case 0 of 0 : P suc(x) : Q > P

(Red Suc) case suc(M) of 0 : P suc(x) : Q > Q[M=x]

(Red Decrypt) case fMgN of fxgN in P > P [M=x]

(The reduction relation is not found in previous accounts of the pi calculus;
we introduce it here because it is useful also in the de�nition of commitment,

given in Section 5.1.) We let structural equivalence, �, be the least relation

on closed processes that satis�es the following equations and rules:

(Struct Nil) P j 0 � P

(Struct Comm) P j Q � Q j P

(Struct Assoc) P j (Q j R) � (P j Q) j R

(Struct Switch) (�m)(�n)P � (�n)(�m)P
(Struct Drop) (�n)0 � 0

(Struct Extrusion) (�n)(P j Q) � P j (�n)Q if n =2 fn(P )
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(Struct Red)

P > Q

P � Q

(Struct Re
)

P � P

(Struct Symm)

P � Q

Q � P

(Struct Trans)

P � Q Q � R

P � R

(Struct Par)

P � P 0

P j Q � P 0 j Q

(Struct Res)

P � P 0

(�m)P � (�m)P 0

Now we can complete the formal description of the reaction relation. We

let the reaction relation, !, be the least relation on closed processes that

satis�es (React Inter) and the following rules:

(React Struct)

P � P 0 P 0 ! Q0 Q0 � Q

P ! Q

(React Par)

P ! P 0

P j Q! P 0 j Q

(React Res)

P ! P 0

(�n)P ! (�n)P 0

This de�nition of the reaction relation corresponds to the informal description
of process behaviour given in Sections 2.2 and 3.1.

As an example, we can use the de�nition of the reaction relation to show
the behaviour of the protocol of Section 3.2.2:

Inst(M) � (�KAS )(�KSB)(A(M) j S j B)

! (�KAS )(�KSB)(�KAB)

(cABhfMgKAB
i j cSBhfKABgKSB

i j B)

! (�KAS )(�KSB)(�KAB)

(cABhfMgKAB
i j cAB(z):case z of fwgKAB

in F (w))

! (�KAS )(�KSB)(�KAB)F (M)

� F (M)

The last step in this calculation is justi�ed by our general convention that

none of the bound parameters of the protocol (including, in this case, KAS ,

KSB, and KAB) occurs free in F .
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4.2 Testing Equivalence

In order to de�ne equivalence, we �rst de�ne a predicate that describes the

channels on which a process can communicate. We let a barb, �, be an input

or output channel, that is, either a namem (representing input) or a co-name

m (representing output). For a closed process P , we de�ne the predicate P

exhibits barb �, written P # �, by the two axioms:

(Barb In) m(x):P # m (Barb Out) mhMi:P # m

and the three rules:

(Barb Par)

P # �

P j Q # �

(Barb Res)

P # � � =2 fm;mg

(�m)P # �

(Barb Struct)

P � Q Q # �

P # �

Intuitively, P # � holds just if P is a closed process that may input or output

immediately on barb �. The convergence predicate P + � holds if P is a
closed process that exhibits � after some reactions:

(Conv Barb)

P # �

P + �

(Conv React)

P ! Q Q + �

P + �

We let a test consist of any closed process R and any barb �. A closed

process P passes the test if and only if (P j R) + �. The notion of testing
gives rise to a testing preorder v and to a testing equivalence ' on the set
Proc of closed processes:

P v Q
�

= for any test (R;�), if (P j R) + � then (Q j R) + �

P ' Q
�

= P v Q and Q v P

The idea of testing equivalence comes from the work of De Nicola and
Hennessy [DH84]. In that work, tests are processes that contain the dis-

tinguished name ! (instead of being parameterised by a barb �). This is
only a super�cial di�erence, and we can show that our relation ' is a ver-

sion of De Nicola and Hennessy's may-testing equivalence. As De Nicola
and Hennessy have explained, may-testing corresponds to partial correctness

(or safety), while must-testing corresponds to total correctness. Like much
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of the security literature, our work focuses on safety properties, hence our

de�nitions.

One of the advantages of testing equivalence as the basis of our speci-

�cations of authenticity and secrecy is its simple de�nition in terms of the

convergence predicate. A test neatly formalises the idea of a generic experi-

ment or observation another process (such as an attacker) might perform on a

process, so testing equivalence concisely captures the concept of equivalence

in an arbitrary environment.

According to our de�nitions, two closed processes P and Q are testing

equivalent if their respective parallel compositions with a third process R
\behave similarly". It follows that P and Q can be used interchangeably in
any context (not just in parallel with R). More precisely, testing equivalence
is a congruence; that is, ' is an equivalence relation with the property that
if P ' Q then C[P ] ' C[Q] for any closed context C. (A closed context C is

a closed process with a single hole; C[P ] and C[Q] are the outcomes of �lling
the hole with P and Q, respectively.)

Proposition 1

(1) Structural equivalence implies testing equivalence.

(2) Testing equivalence is re
exive, transitive, and symmetric.

(3) Testing equivalence is a congruence on closed processes.

This proposition is essential for equational reasoning with testing equivalence.

Its proof is in Appendix D, where we show that testing equivalence remains
a congruence when extended to open processes.

Testing equivalence is sensitive to the choice of language. Two processes

that are testing equivalent in our calculus may not be testing equivalent after
new constructs are added to the calculus. As Boreale and De Nicola have

shown [BN95], testing equivalence becomes �ner-grained in the presence of a
mismatch construct ([M is not N ] P ). Our calculus does not include a mis-

match construct because we have not found a need for it in writing protocols;
however, such a construct is sensible and perhaps yields a better de�nition

of testing equivalence. The same is true for other \negative" constructs that
check whether a term is not a name, not a number, not a pair, or not en-

crypted under a given key. We believe that the results of this paper remain

valid for a range of reasonable extensions of our calculus, but we leave the
study of such extensions for future work.
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5 Semantic Notions Useful in Proofs

This section develops proof techniques for the spi calculus, based on earlier

work on the pi calculus. Section 5.1 de�nes the commitment relation, pro-

viding in particular a characterisation of the reaction relation. Section 5.2

reviews the notions of strong bisimulation, barbed equivalence, and barbed

congruence [MS92]. Finally, Section 5.3 introduces the underpinning rela-

tion and shows its use for proofs of secrecy.

In order to prove a testing equivalence directly, we need to consider ar-

bitrary tests and arbitrary sequences of reactions. The use of structural

equivalence to de�ne reaction is elegant, but makes proofs a little awkward.
One of the purposes of this section is to obtain a direct inductive characterisa-
tion of reaction without appeal to structural equivalence, and a co-inductive

method for proving testing equivalence.

5.1 The Commitment Relation

The original semantics of the pi calculus (given in [MPW92]) is not based on

the notion of reaction, but rather on a labelled transition system. Here we
de�ne a labelled-transition semantics for the spi calculus, imitating Milner's
recent lecture notes [Mil95b]. Despite di�erences in style, this semantics is
essentially equivalent to the one of Section 4, so it can be used in proofs
about that semantics.

We need some new syntactic forms. An abstraction is an expression of
the form (x)P , where x is a bound variable and P is a process. A concretion

is an expression of the form (�m1; : : : ;mk)hMiP , where M is a term, P is a
process, k � 0, and the names m1, . . . , mk are bound inM and P . We often
write concretions as (� ~m)hMiP , where ~m = m1; : : : ;mk, or simply (�)hMiP

if k = 0. Finally, an agent is an abstraction, a process, or a concretion. We
use the metavariables A and B to stand for arbitrary agents.

We extend the restriction and composition operators to arbitrary agents,
as follows. For an abstraction, (x)P , we set:

(�m)(x)P
�

= (x)(�m)P

R j (x)P
�

= (x)(R j P )

assuming that x 62 fv (R). For a concretion, (�~n)hMiQ, we set:

(�m)(�~n)hMiQ
�

=

(
(�m;~n)hMiQ if m 2 fn(M)

(�~n)hMi(�m)Q otherwise
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R j (�~n)hMiQ
�

= (�~n)hMi(R j Q)

assuming that m 62 f~ng and that f~ng \ fn(R) = ;. We de�ne the dual

composition A j R symmetrically. If F is the abstraction (x)P and C is the

concretion (�~n)hMiQ, and f~ng\ fn(P ) = ;, we de�ne the interactions F@C

and C@F to be the closed processes given by:

F@C
�

= (�~n)(P [M=x] j Q)

C@F
�

= (�~n)(Q j P [M=x])

When F is the abstraction (x)P , we may write F (M) for its instantiation to
M , that is, for P [M=x]. With this notation, we have F@C = (�~n)(F (M) j Q)

and C@F = (�~n)(Q j F (M)).
An action is a namem, a co-name m, or the distinguished silent action � .

That is, an action is either a barb or � . The commitment relation is written
P

�
�! A, where P is a closed process, � is an action, and A is a closed agent.

We de�ne this relation inductively, by the following rules:

(Comm In)

m(x):P
m
�! (x)P

(Comm Out)

mhMi:P
m
�! (�)hMiP

(Comm Inter 1)

P
m
�! F Q

m
�! C

P j Q
�
�! F@C

(Comm Inter 2)

P
m
�! C Q

m
�! F

P j Q
�
�! C@F

(Comm Par 1)

P
�
�! A

P j Q
�
�! A j Q

(Comm Par 2)

Q
�
�! A

P j Q
�
�! P j A

(Comm Res)

P
�
�! A � =2 fm;mg

(�m)P
�
�! (�m)A

(Comm Red)

P > Q Q
�
�! A

P
�
�! A

Intuitively, (Comm In) says that an abstraction is the residue of an input

commitment; (Comm Out) says that a concretion is the residue of an output
commitment; and (Comm Inter 1) and (Comm Inter 2) say that the com-

bination of an abstraction and a concretion gives an interaction. Thus, the
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commitment relation has a straightforward structural de�nition; that is its

main appeal.

Whenever P
�
�! A, the action � is � , a name, or a co-name just if the

agent A is a process, an abstraction, or a concretion, respectively. Therefore,

the commitment relation indexed by � ,
�
�!, is a binary relation on closed

processes. We write
�
�!

�

for the re
exive and transitive closure of
�
�!.

Moreover, we write P
�
�!� Q when there exists a process R such that

P
�
�! R and R � Q.

The following propositions connect the commitment relation with some

of the formal notions of Section 4: exhibiting a barb, reaction, and testing.

Proposition 2 P # � if and only if there exists an agent A such that P
�
�!A.

Proposition 3 P ! Q if and only if P
�
�!� Q.

Proposition 4 P passes a test (R;�) if and only if there exist an agent A

and a process Q such that P j R
�
�!

�
Q and Q

�
�!A.

The proofs of these propositions are in Appendix B.

5.2 Some Auxiliary Equivalences

In this section we describe several equivalences on processes that approximate
testing equivalence. In particular, in Section 5.2.3, we de�ne barbed congru-

ence, which is a stronger relation than testing equivalence but is sometimes
easier to prove directly.

5.2.1 Strong bisimilarity

We �rst recall the de�nition of strong bisimulation [Mil95b]. IfR is a relation
on closed processes, we de�ne the relation R on closed agents:

P R Q i� P R Q

(x)P R (x)Q i� P [M=x] R Q[M=y] for all closed M

(�~n)hMiP R (� ~m)hMiQ i� ~m is a permutation of ~n and P R Q

A strong simulation is a binary relation S � Proc�Proc such that if P S Q

and P
�
�! A then there exists B with Q

�
�! B and A S B. A relation S is

a strong bisimulation if and only if both S and its converse S�1 are strong
simulations.
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Strong bisimilarity, written �s, is the greatest strong bisimulation, name-

ly the union of all strong bisimulations. Strong bisimilarity is a rather �ne-

grained equivalence for the spi calculus. For instance, it discriminates be-

tween the processes (�K)chfMgKi and (�K)chfM 0gKi, which we would wish

to equate as we explained in Section 3.1. Still, strong bisimilarity is often

useful in justifying particular steps of our proofs.

5.2.2 Barbed equivalence

Intuitively, one way of weakening strong bisimilarity is to ignore what mes-

sages are sent on what channels, and to record only what channels are used.

This informal idea leads to the concepts de�ned here and in Section 5.2.3.
A barbed simulation is a binary relation S � Proc�Proc such that P S Q

implies:

(1) for each barb �, if P # � then Q # �, and

(2) if P ! P 0 then there exists Q0 such that Q! Q0 and P 0 �S� Q0

where P 0 �S� Q0 means that there exist P 00 and Q00 such that P 0 � P 00,
P 00 S Q00, and Q00 � Q0. A barbed bisimulation is a relation S such that both
S and S�1 are barbed simulations.

Barbed equivalence, written
�
�, is the greatest barbed bisimulation. We

prove the following basic facts about barbed equivalence in Appendix D:

Proposition 5

(1) Barbed equivalence is re
exive, transitive, and symmetric.

(2) Structural equivalence implies barbed equivalence.

(3) Strong bisimilarity implies barbed equivalence.

(4) Barbed equivalence is preserved by restriction.

It follows from these facts, in particular, that if P
�
� Q and P ! P 0 then

there exists Q0 such that Q! Q0 and P 0 �
� Q0.

In order to establish a barbed equivalence, it is often convenient to use

Milner's standard technique of \bisimulation up to" [Mil89, MPW92]. A

barbed simulation up to
�
� is a binary relation S � Proc � Proc such that

P S Q implies:
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(1) for each barb �, if P # � then Q # �, and

(2) if P ! P 0 then there exists Q0 such that Q! Q0 and P 0 �
�S

�
� Q0

where P 0 �
�S

�
� Q0 means that there exist P 00 and Q00 such that P 0 �

� P 00,

P 00 S Q00, and Q00 �
� Q0. A barbed bisimulation up to

�
� is a relation S such

that both S and S�1 are barbed simulations up to
�
�.

More generally, a barbed simulation up to
�
� and restriction is a binary

relation S � Proc � Proc such that P S Q implies:

(1) for each barb �, if P # � then Q # �, and

(2) if P ! P 0 then there exists Q0 such that Q! Q0, and there exist P 00,
Q00, and names ~n such that P 0 �

� (�~n)P 00, Q0 �
� (�~n)Q00, and P 00 S Q00.

A barbed bisimulation up to
�
� and restriction is a relation S such that both

S and S�1 are barbed simulations up to
�
� and restriction.

Proposition 6 If S is a barbed bisimulation up to
�
� and restriction, then

S �
�
�. A fortiori, if S is a barbed bisimulation up to

�
�, then S �

�
�.

The proof of this proposition is in Appendix D.
For us, barbed equivalence is still only a stepping stone. One reason for

this is that there are processes that are barbed equivalent but not strongly
bisimilar or testing equivalent, such as mhni:mhni:0 and mhni:0. Moreover,
barbed equivalence is far from being a congruence: it is not even closed
under composition, as can be seen by comparing (mhni:mhni:0) j (m(x):0)
and (mhni:0) j (m(x):0).

5.2.3 Barbed congruence

Barbed congruence, written �, is the relation on Proc obtained by strength-

ening barbed equivalence as follows:

P � Q
�

= 8R 2 Proc(P j R
�
� P j R)

Unlike barbed equivalence, barbed congruence implies testing equiva-

lence. Therefore, whenever one wishes to prove a testing equivalence (e.g., a

secrecy equation), it su�ces to prove a barbed congruence. We establish the
following properties of barbed congruence in Appendix D:
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Proposition 7

(1) Barbed congruence is re
exive, transitive, and symmetric.

(2) Barbed congruence is a congruence on closed processes.

(3) Structural equivalence implies barbed congruence.

(4) Strong bisimilarity implies barbed congruence.

(5) Barbed congruence implies testing equivalence.

The converses of the implications in parts (3), (4), and (5) do not hold, as
we show next.

That barbed congruence does not imply structural equivalence should be
fairly evident. We prove it by �rst establishing a general property of barbed
congruence. Let us say that a closed process P is stuck if and only if there
is no � and A such that P

�
�! A. In other words, P is stuck if and only if

it has no reactions and no barbs.

Proposition 8 If P is stuck then P � 0.

Proof Assuming that P is stuck, we need to show that P j R
�
� 0 j R for

any closed process R. This holds because any barb or reaction of P j R must

be due to R alone. 2

This proposition implies, for example:

case M of fxgK in P �

(
P [N=x] if M = fNgK for some N
0 otherwise

since case M of fxgK in P is stuck unless M is a ciphertext encrypted
with K. Since none of the rules of structural equivalence allows us to derive

case M of fxgK in P � 0, barbed congruence does not imply structural
equivalence.

Secondly, barbed congruence does not imply strong bisimilarity. For in-

stance, the processes (�K)chfMgKi and (�K)chfM 0gKi are not strongly
bisimilar, but they are barbed congruent (as we prove in Section 5.3). Thus

the spi calculus is di�erent from both CCS and the pi calculus, in which
barbed congruence coincides with strong bisimilarity [MS92]. On the other
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hand, the spi calculus is like the higher-order pi calculus where strong bisim-

ilarity is �ner-grained than barbed congruence [San92].

Thirdly, testing equivalence does not imply barbed congruence. Setting

�:P
�

= (�m)(mh�i j m(x):P ) for m =2 fn(P ), x =2 fv (P ), we obtain the

testing equivalence P ' �:P . (We prove this equivalence in Appendix D.)

On the other hand, P � �:P does not hold in general. Moreover, barbed

congruence is more sensitive to the branching structure of processes than

testing equivalence.

5.3 The Underpinning Relation

In order to reason about attackers and their knowledge, we introduce the
underpinning relation. We say that x1:f�gp1; : : : ; xn:f�gpn underpins the
agent A roughly if A is an agent that may contain occurrences of any of the

variables x1, . . . , xn, but no occurrences of any of the names p1, . . . , pn. We
write this:

x1:f�gp1; : : : ; xn:f�gpn ` A

Our intention is that A represents an attacker and that the variables x1, . . . ,
xn represent ciphertexts that the attacker may have intercepted encrypted

under the keys p1, . . . , pn, which the attacker does not have. (Here we take
all keys to be names as this su�ces for our present purposes; but the general
case, where a key is an arbitrary term, could also be interesting.)

Next we give a formal de�nition of the underpinning relation. An envi-

ronment is a �nite list of entries of the form x:f�gn, where x is a variable

and n is a name; all the variables must be distinct (but the names need not
be). We let dom(E) be the set of variables mentioned in the entries in E,
and keys(E) the set of names mentioned in the entries in E. When E is an
environment,M a term, and A an agent, we de�ne:

E ` M i� fv(M) � dom(E) and fn(M) \ keys(E) = ;

E ` A i� fv(A) � dom(E) and fn(A) \ keys(E) = ;

The relation ` is the underpinning relation.
When x:f�gn occurs in an environment, we intend that x stands for a

ciphertext of the form fMgn. An E-closure is a substitution that �xes all the

variables in E to appropriate ciphertexts; more precisely, an E-closure is a

substitution � of closed ciphertexts for variables such that E ` � is derivable
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from the following rules:

(Closure ;)

; ` ;

(Closure Under)

E ` � x =2 dom(E) fv (M) = ;

E; x:f�gn ` �; fMgn=x

where ; represents the empty environment, the empty substitution, and the

empty set, and �; fMgn=x is the extension of � that maps x to fMgn.

To prove secrecy properties, we would like to show that a process under-

pinned by an environment acts uniformly no matter which ciphertexts are

substituted for the variables in the environment. At �rst sight one might

think that if E ` P , E ` �, and E ` �0, then P� � P�0 on the reasoning
that, since P cannot unwrap the ciphertexts in � or �0, it will behave the
same whether closed by one or the other. This would hold were it not for the
presence of matching in the language. For example, E = x:f�gm; y:f�gm,
P = [x is y] ph0i, � = [f0gm=x; f0gm=y], and �0 = [f0gm=x; f1gm=y] meet

the conditions above, but P� may output 0 whereas P�0 is stuck. Thus, P
can act contingently on the ciphertexts even though it cannot decrypt them.
However, if we insist that � and �0 be injective (that is, x = y whenever
x� = y�, and similarly for �0) then we obtain P� � P�0.

These informal arguments lead to the following results.

Lemma 9 Suppose that E ` P and E ` �, and that � is injective.

(1) If P� > Q0 then there is a process Q with E ` Q, fv (Q) � fv (P ),

fn(Q) � fn(P ), and Q0 = Q� such that, whenever E ` �0 and �0 is

injective, P�0 > Q�0.

(2) If P�
�
�! A0 then there is an agent A with E ` A, fv(A) � fv (P ),

fn(A) � fn(P ), and A0 = A� such that, whenever E ` �0 and �0 is

injective, P�0
�
�! A�0.

The proof of this lemma is in Appendix E.

Proposition 10 Suppose that E ` � and E ` �0, and that both � and �0 are

injective. Then S = f(P�; P�0) j E ` Pg is a barbed bisimulation.

Proof Consider any commitment P�
�
�! A0. By Lemma 9, there is an

agent A with E ` A, A0 = A�, and P�0
�
�! A�0. Therefore, any barb of

P� is also exhibited by P�0, and any reaction of P� may be matched up to

S by P�0. Therefore, S is a barbed simulation. Indeed by symmetry it is a
barbed bisimulation. 2
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This last proposition provides an easy way to prove some equivalences,

as we now demonstrate with a small proof of a familiar secrecy property. We

prove that, for any M and M 0:

(�K)chfMgKi � (�K)chfM 0gKi

By (Struct Extrusion) and Proposition 5, it su�ces to prove that:

chfMgKi j R
�
� chfM 0gKi j R

for any R such that K =2 fn(R). But this follows from Proposition 10 with

E = x:f�gK, P = chxi j R, � = [fMgK=x], and �0 = [fM 0gK=x].

6 Proofs for the Examples

Having de�ned the semantics of the spi calculus and developed some proof
techniques, we revisit the examples of the �rst half of the paper. We prove

some of the authenticity and secrecy properties claimed in those examples.
Our proofs are not quite as easy as those of special-purpose formalisms
(e.g., [BAN89]), but they have a somewhat clearer status. With a few further
techniques and tools, proofs such as ours could well become routine.

6.1 Proofs for the Example of Section 2.3.1

The example of Section 2.3.1 is our simplest one; it relies on restricted chan-
nels. Its main de�nitions are:

Inst(M)
�

= (�cAB)(cABhMi:0 j cAB(x):F (x))

Inst spec(M)
�

= (�cAB)(cABhMi:0 j cAB(x):F (M))

We can prove the authenticity property Inst(M) ' Inst spec(M) by exhibiting

a simple barbed bisimulation.

Proposition 11 For any closed term M , Inst(M) ' Inst spec(M).

Proof The only commitments of Inst(M) and Inst spec(M) are:

Inst(M)
�
�! (�cAB)(0 j F (M))

Inst spec(M)
�
�! (�cAB)(0 j F (M))
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It follows that Inst(M) �s Inst spec(M), that Inst(M) � Inst spec(M) (by

Proposition 7(4)), and �nally that Inst(M) ' Inst spec(M) (by Proposi-

tion 7(5)). 2

Turning to secrecy, we �rst prove a restricted version of the secrecy prop-

erty claimed in Section 2.3.1:

Lemma 12 Inst(M) ' Inst(M 0) if F (x) is ch�i, for any closed terms M

and M 0.

Proof For any N , the only commitment of Inst(N) is:

Inst(N)
�
�! (�cAB)(0 j ch�i)

so clearly Inst(M) �s Inst(M 0). As in the previous proof, Inst (M) '
Inst(M 0) follows. 2

Now a little calculation yields the full secrecy property:

Proposition 13 Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any closed

terms M and M 0.

Proof Let us write Inst(M; (x)ch�i) for Inst(M) in the special case where
F (x) is ch�i (as in Lemma 12); note that in this case Inst(M) and Inst spec(M)

are literally identical.
Assuming that c is a fresh name and y a fresh variable, we write �:F (N)

for (�c)(ch�i j c(y):F (N)). For any closed N , we have:

(�c)(cAB(x):ch�i j c(y):F (N)) �s cAB(x):�:F (N)

because the only commitments of these processes are:

(�c)(cAB(x):ch�i j c(y):F (N))
cAB�! (x)�:F (N)

cAB(x):�:F (N)
cAB�! (x)�:F (N)

Hence we obtain the equation:

Inst spec(N) ' (�c)(Inst(N; (x)ch�i) j c(y):F (N)) (1)
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as follows:

Inst spec(N) = (�cAB)(cABhNi:0 j cAB(x):F (N)))

' (�cAB)(cABhNi:0 j cAB(x):(�:F (N)))

' (�cAB)(cABhNi:0 j (�c)(cAB(x):ch�i j c(y):F (N)))

� (�c)((�cAB)((cABhNi:0 j cAB(x):ch�i) j c(y):F (N))

= (�c)(Inst(N; (x)ch�i) j c(y):F (N))

making use of the \� law" F (N) ' �:F (N) (Proposition 35), and of the facts

that testing equivalence is a congruence (Proposition 1) and that strong
bisimilarity implies testing equivalence (Proposition 7).

Finally, equation (1), Lemma 12, the authenticity property of Proposi-
tion 11, and the assumption F (M) ' F (M 0) justify the following calculation:

Inst(M) ' Inst spec(M)

' (�c)(Inst (M; (x)ch�i) j c(y):F (M))

' (�c)(Inst (M 0; (x)ch�i) j c(y):F (M 0))

' Inst spec(M
0)

' Inst(M 0)

2

6.2 Proofs for the Example of Section 3.2.1

In the example of Section 3.2.1, the main de�nitions are:

A(M)
�

= cABhfMgKAB
i

B
�

= cAB(x):case x of fygKAB
in F (y)

Inst(M)
�

= (�KAB)(A(M) j B)

Bspec(M)
�

= cAB(x):case x of fygKAB
in F (M)

Inst spec(M)
�

= (�KAB)(A(M) j Bspec(M))

For the example of Section 2.3.1, which does not use cryptography, the

proof of authenticity is simply a proof of strong bisimilarity. We cannot

proceed analogously for the example of Section 3.2.1, because in fact Inst(M)
and Inst spec(M) are not strongly bisimilar; instead, we prove that Inst(M)

and Inst spec(M) are barbed congruent.
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Proposition 14 For any closed term M , Inst(M) ' Inst spec(M).

Proof We prove that Inst(M) � Inst spec(M); the claim then follows since

barbed congruence implies testing equivalence according to Proposition 7.

Suppose that R is some arbitrary closed process and M is some arbitrary

closed term. Without loss of generality, we assume that KAB =2 fn(R). Below

we show that:

(cABhfMgKAB
i j B j R)

�
� (cABhfMgKAB

i j Bspec(M) j R) (2)

By Proposition 5(4), it follows that:

(�KAB)(cABhfMgKAB
i j B j R)

�
� (�KAB)(cABhfMgKAB

i j Bspec(M) j R)

Since KAB =2 fn(R), we have:

Inst(M) j R � (�KAB)(cABhfMgKAB
i j B j R)

and similarly:

Inst spec(M) j R � (�KAB)(cABhfMgKAB
i j Bspec(M) j R)

Since barbed equivalence respects structural equivalence (by Proposition 5),

we obtain:
Inst(M) j R

�
� Inst spec(M) j R

By the de�nition of barbed congruence, we conclude:

Inst(M) � Inst spec(M)

It remains to give a proof of equation (2). For this proof, we let � =
[fMgKAB

=x] and introduce the following relation S:

PSQ i� P = B j R1� and Q = Bspec(M) j R1�

for some R1 such that x:f�gKAB
` R1

Intuitively, the process R1� represents both A and an attacker that does not

have KAB . We prove that S [
�
� is a barbed bisimulation. This amounts

to showing if PSQ then P and Q can each match the other's barbs and

reactions.

If PSQ then there exists R1 such that P = B j R1� and Q = Bspec(M) j
R1�, and x:f�gKAB

` R1. Hence the barbs of P are:
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(1) P # cAB (from B),

(2) P # � if R1� # �.

Clearly Q exhibits these barbs too. The reactions of P are:

(1) if R1�
cAB�! (�~n)hNiR0 and P 0 � (�~n)(case N of fygKAB

in F (y) j R0)

then P ! P 0,

(2) if R1�
�
�! R0 and P 0 � B j R0 then P ! P 0.

(One can calculate these reactions via the commitment relation and Propo-
sition 3. Without loss of generality, we assume that the names ~n are fresh.)
In each case, Q can match these reactions of P :

(1) One of the reactions of Q is:

Q! Q0 �

= (�~n)(case N of fygKAB
in F (M) j R0)

Now it su�ces to show that P 0 �
� Q0. By Lemma 9(2), there exists

R0
1 such that x:f�gKAB

` R0
1 and R0

1� = (�~n)hNiR0. Therefore, R0
1

must have the form (�~n)hN0iR0 with N = N0�, R
0 = R0�, and both

x:f�gKAB
` N0 and x:f�gKAB

` R0. Since x:f�gKAB
` N0, either N0�

is fMgKAB
(if N0 is x) or N0� is not a ciphertext encrypted with KAB.

In the former case, we have:

P 0 � (�~n)(case fMgKAB
of fygKAB

in F (y) j R0)

� (�~n)(F (M) j R0)

� (�~n)(case fMgKAB
of fygKAB

in F (M) j R0)

� Q0

In the latter case, decryption gets stuck, and by appeal to Proposi-
tions 5 and 8 we get:

P 0 � (�~n)(case N of fygKAB
in F (y) j R0)

�
� (�~n)(0 j R0)
�
� (�~n)(case N of fygKAB

in F (M) j R0)

� Q0

In both cases, we obtain P 0 �
� Q0 by Proposition 5.
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(2) One of the reactions of Q is:

Q! Q0 �

= Bspec(M) j R0

Now it su�ces to show that P 0 �
�S

�
� Q0. By Lemma 9(2), there exists

R0
1 such that x:f�gKAB

` R0
1 and R0

1� = R0. Therefore, (B j R0)SQ0,

and hence P 0 �S� Q0.

Almost identical reasoning shows that P can match the barbs and reactions

of Q. We conclude that S [
�
� is a barbed bisimulation, so S �

�
�.

In order to derive equation (2), we let R1 = cABhxi j R. We obtain:

cABhfMgKAB
i j B j R � B j R1�

S Bspec(M) j R1�

� cABhfMgKAB
i j Bspec(M) j R

Equation (2) follows since S �
�
� and by Proposition 5. 2

For proving secrecy, we adopt the same general strategy as in Section 6.1.
We �rst prove a restricted version of the secrecy property:

Lemma 15 Inst(M) ' Inst(M 0) if F (x) is ch�i, for any closed terms M

and M 0.

Proof Almost exactly as in the proof of Proposition 14, it su�ces to prove
the equation:

(cABhfMgKAB
i j B j R)

�
� (cABhfM

0gKAB
i j B j R) (3)

for any closed process R such that KAB =2 fn(R), and any closed terms M
and M 0.

For the proof of this equation, we let � = [fMgKAB
=x], �0 = [fM 0gKAB

=x],
and introduce the following relation S:

PSQ i� P = B j R1� and Q = B j R1�
0

for some R1 such that x:f�gKAB
` R1

The relation f(R1�;R1�
0) j x:f�gKAB

` R1g is a barbed bisimulation, ac-

cording to Proposition 10. We prove that S [
�
� is a barbed bisimulation.

This amounts to showing if PSQ then P and Q can each match the other's

barbs and reactions.
If PSQ then there exists R1 such that P = B j R1� and Q = B j R1�,

and x:f�gKAB
` R1. Hence the barbs of P are:
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(1) P # cAB (from B),

(2) P # � if R1� # �.

Clearly Q exhibits these barbs too, since R1� and R1�
0 are in a barbed

bisimulation. The reactions of P are:

(1) if R1�
cAB�! (�~n)hNiR0 and P 0 � (�~n)(case N of fygKAB

in ch�i j R0)

then P ! P 0,

(2) if R1�
�
�! R0 and P 0 � B j R0 then P ! P 0.

(As in the proof of Proposition 14, we assume that the names ~n are fresh.)
In each case, Q can match these reactions of P :

(1) By Lemma 9(2), there exists R0
1 such that x:f�gKAB

` R0
1, R

0
1� =

(�~n)hNiR0, and R1�
0 cAB�! (�~n)hN0�

0iR0�
0. Therefore, R0

1 must have
the form (�~n)hN0iR0 with N = N0�, R

0 = R0�, and both x:f�gKAB
`

N0 and x:f�gKAB
` R0. Since R1�

0 cAB�! (�~n)hN0�
0iR0�

0, we have:

Q! Q0 �

= (�~n)(case N0�
0 of fygKAB

in ch�i j R0�
0)

Now it su�ces to show that P 0 �
� Q0. Since x:f�gKAB

` N0, either
N0� and N0�

0 are fMgKAB
and fM 0gKAB

respectively (if N0 is x) or

N0� and N0�
0 are not ciphertexts encrypted with KAB.

In the former case, we have:

P 0 � (�~n)(case fMgKAB
of fygKAB

in ch�i j R0)

� (�~n)(ch�i j R0)

= (�~n)(ch�i j R0�)
�
� (�~n)(ch�i j R0�

0)

� (�~n)(case fM 0gKAB
of fygKAB

in ch�i j R0�
0)

� Q0

The step (�~n)(ch�i j R0)
�
� (�~n)(ch�i j R0�

0) is justi�ed by Proposi-

tion 10, since x:f�gKAB
` (�~n)(ch�i j R0).
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In the latter case, decryption gets stuck, and by appeal to Proposi-

tions 5 and 8 we get:

P 0 � (�~n)(case N of fygKAB
in ch�i j R0)

�
� (�~n)(0 j R0)

= (�~n)(0 j R0�)
�
� (�~n)(0 j R0�

0)
�
� (�~n)(case N0�

0 of fygKAB
in ch�i j R0�

0)

� Q0

The step (�~n)(0 j R0)
�
� (�~n)(0 j R0�

0) is justi�ed by Proposition 10,

since x:f�gKAB
` (�~n)(0 j R0).

In both cases, we obtain P 0 �
� Q0 by Proposition 5.

(2) By Lemma 9(2), there exists R0
1 such that x:f�gKAB

` R0
1, R

0
1� = R0,

and R1�
0 �
�! R0

1�
0, so:

Q! Q0 �

= B j R0

1�
0

Clearly, (B j R0)SQ0, and hence P 0 �S� Q0.

The proof that P can match the barbs and reactions of Q is symmetric. We
conclude that S [

�
� is a barbed bisimulation, so S �

�
�.

In order to derive equation (3) we let R1 = cABhxi j R. We obtain:

cABhfMgKAB
i j B j R � B j R1�

S B j R1�
0

� cABhfM
0gKAB

i j B j R

Equation (3) follows since S �
�
� and by Proposition 5. 2

The full secrecy property follows.

Proposition 16 Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any closed

terms M and M 0.

Proof The proof is exactly analogous to that of Proposition 13, and relies

on Proposition 14, Lemma 15, and the equation:

Inst spec(N) ' (�c)(Inst(N; (x)ch�i) j c(y):F (N))

2
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6.3 Proofs for the Example of Section 3.2.2

The de�nitions of the example of Section 3.2.2 can be rephrased as follows:

A(M)
�

= (�KAB)(cAShfKABgKAS
i:cABhfMgKAB

i)

S
�

= cAS(x):case x of fygKAS
in cSBhfygKSB

i

B
�

= cSB(x):case x of fygKSB
in B0(y)

B0(y)
�

= cAB(z):case z of fwgy in F (w)

Bspec(M)
�

= cSB(x):case x of fygKSB
in B0

spec(M;y)

B0

spec(M;y)
�

= cAB(z):case z of fwgy in F (M)

Inst(M)
�

= (�KAS )(�KSB)(A(M) j S j B)

Inst spec(M)
�

= (�KAS )(�KSB)(A(M) j S j Bspec(M))

The proof of authenticity uses the same techniques as that of Section 6.2,
but is more complex.

Proposition 17 For any closed term M , Inst(M) ' Inst spec(M).

Proof Since barbed congruence implies testing equivalence according to
Proposition 7, it su�ces to show that the two processes are barbed congruent,
that is, that:

Inst(M) j R
�
� Inst spec(M) j R (4)

for any closed process R. Without loss of generality, we assume that the
names KAS , KSB, and KAB do not occur free in R.

Below we construct a relation S �
�
� that pairs

S j B j cAShfKABgKAS
i:cABhfMgKAB

i j R (5)

and

S j Bspec(M) j cAShfKABgKAS
i:cABhfMgKAB

i j R (6)

Therefore, these processes are barbed equivalent. Since barbed equivalence

is closed under restriction (by Proposition 5(4)), it follows that

(�KAS)(�KSB)(�KAB)(S j B j cAShfKABgKAS
i:cABhfMgKAB

i j R)

and

(�KAS )(�KSB)(�KAB)(S j Bspec(M) j cAShfKABgKAS
i:cABhfMgKAB

i j R)

47



are barbed equivalent. Equation (4) now follows from the facts that these two

processes are structurally equivalent to Inst(M) j R and to Inst spec(M) j R

respectively (since the names KAS , KSB , and KAB do not occur free in R),

and that barbed equivalence respects structural equivalence (by Proposi-

tion 5).

It remains to de�ne the relation S that pairs the processes (5) and (6).

For this purpose, we let environment E and substitution � be as follows:

E
�

= x1:f�gKAS
; x2:f�gKSB

; x3:f�gKAB

�
�

= [fKABgKAS
=x1; fKABgKSB

=x2; fMgKAB
=x3]

and we set:

S
�

= S1 [ S2 [ S3

where:

S1
�

= f(S j B j R1�; S j Bspec(M) j R1�)

j E ` R1 and fv (R1) � fx1; x3gg

S2
�

= f(B j R2�;Bspec(M) j R2�)
j E ` R2g

S3
�

= f(B0(KAB) j R3�;B
0
spec(M;KAB) j R3�)

j E ` R3g

The relation S1 pairs the processes (5) and (6), since we can take R1 to
be cAShx1i:cABhx3i j R. Therefore, the relation S pairs the processes (5)

and (6), as desired.
Intuitively, each relation Si concerns a state (or class of states) reachable

by the participants in the protocol. Each Ri� represents an observer in

possession of some or all of the three messages sent by the participants.
In some cases, some of the participants are viewed as part of the observer

process.

� S1 concerns the initial state and states reachable when the observer
receives the messages fKABgKAS

or fMgKAB
from A.

� S2 concerns the states reachable after S receives a message on cAS .

There is no need to include the residue of S explicitly. In particular,
the residue cSBhfKABgKSB

i may be considered part of the observer
process R2� in S2.
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� S3 concerns the states reachable afterB receives the message fKABgKSB

on cSB. (In the de�nition of S, there is no need to consider the states

reachable after B receives a message on cAB, as at that point the re-

sulting processes are evidently barbed equivalent.)

The condition E ` Ri implies that none of the keysKAS , KSB, or KAB occurs

in Ri. It also implies that fv(Ri) � fx1; x2; x3g. Depending on whether

variable x1, x2, or x3 occurs free in Ri, the observer process Ri� possesses

ciphertext fKABgKAS
, fKABgKSB

, or fMgKAB
respectively.

To complete the proof, it su�ces to establish that S �
�
�. For this pur-

pose, we invoke Proposition 6, and show that S [� is a barbed bisimulation
up to

�
�, where � is the identity relation on closed processes. In light of

Proposition 5(1), we show, for each i 2 1::3, that P Si Q implies: (1) that
any barb exhibited by P is also exhibited by Q, and vice versa, and (2) that
for any reaction P ! P 0 there is Q0 with Q ! Q0 and either P 0 �

�S
�
� Q0

or P 0 �
� Q0, and vice versa. Condition (1) is obviously true, since P Si Q

implies that P and Q have almost identical structure. To show condition (2),

we consider each Si in turn.

� Suppose P S1 Q, that is,

P = S j B j R1�

Q = S j Bspec(M) j R1�

with E ` R1 and fv (R1) � fx1; x3g. There are four ways in which a
reaction P ! P 0 may be derived: (1) S receives the message fKABgKAS

from R1�; (2) S receives some other message from R1�; (3) B receives
some message from R1�; (4) R1� reacts on its own.

In case (1), P 0 is:

cSBhfKABgKSB
i j B j C

where C is a residue of R1� such that R1�
cAS�! (�)hfKABgKAS

iC. By

Lemma 9(2), C is of the form R0
1� with E ` R0

1. Thus, P
0 is:

cSBhfKABgKSB
i j B j R0

1�

For Q0, we take:

cSBhfKABgKSB
i j Bspec(M) j R0

1�
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We obtain Q! Q0 and P 0 �
�S2

�
� Q0 by letting R2 be cSBhx2i j R

0
1.

In case (2), we invoke Lemma 9(2) again, showing that the message

received by S cannot be a ciphertext encrypted under KAS . That

lemma implies that if R1�
cAS�! (�~n)hNiC (where we may assume that

the names ~n are fresh) then there is a process R0
1 and a term N1 with

E ` R0
1, E ` N1, C = R0

1�, and N = N1�. So N cannot be of the form

fN 0gKAS
unless N 0 is KAB. Therefore, S gets stuck, and P 0 is barbed

equivalent to:

B j (�~n)(R0

1�)

by Propositions 8 and 5. For Q0, we take:

Bspec(M) j (�~n)(R0

1�)

We obtain Q ! Q0 and P 0 �
�S2

�
� Q0 by letting R2 be (�~n)R0

1 and
noting that E ` R0

1 implies E ` (�~n)R0
1.

In case (3), we invoke Lemma 9(2) again, showing this time that the
message received by B cannot be a ciphertext encrypted under KSB.

In this case, that lemma says that if R1�
cSB�! (�~n)hNiC (where we

may assume that the names ~n are fresh) then there is a process R0
1 and

a term N1 with E ` R0
1, E ` N1, C = R0

1�, and N = N1�; in addition,
fv (N1) � fv (R1), and hence x2 62 fv (N1). So N cannot be of the form

fN 0gKSB
. Therefore, B gets stuck, and P 0 is barbed equivalent to:

S j (�~n)(R0

1�)

by Propositions 8 and 5. For Q0, we take:

S j (�~n)(R0

1�)

We obtain Q! Q0 and P 0 �
� Q0.

In case (4), P 0 has the form S j B j C where, by Lemma 9(2), C = R0
1�

for some R0
1 such that E ` R0

1 and fv (R0
1) � fv (R1). Thus, P

0 is:

S j B j R0

1�

For Q0, we take:

S j Bspec(M) j R0

1�

We obtain Q! Q0 and P 0 �
�S1

�
� Q0.
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� Suppose P S2 Q, that is,

P = B j R2�

Q = Bspec(M) j R2�

with E ` R2. There are three ways in which a reaction P ! P 0 may

be derived: (1) B receives the message fKABgKSB
from R2�; (2) B

receives some other message from R2�; (3) R2� reacts on its own.

In case (1), P 0 is:

B0(KAB) j C

where C is a residue of R2� such that R2�
cSB�! (�)hfKABgKSB

iC. By
Lemma 9(2), C is of the form R0

2� with E ` R0
2. Thus, P

0 is:

B0(KAB) j R
0

2�

For Q0, we take:
B0

spec(M;KAB) j R
0

2�

We obtain Q! Q0 and P 0 �
�S3

�
� Q0 by letting R3 be R

0
2.

In case (2), we invoke Lemma 9(2) again, showing that the message
received by B cannot be a ciphertext encrypted under KSB. That

lemma implies that if R2�
cSB�! (�~n)hNiC (where we may assume that

the names ~n are fresh) then there is a process R0
2 and a term N2 with

E ` R0
2, E ` N2, C = R0

2�, and N = N2�. So N cannot be of the
form fN 0gKSB

unless N 0 is KAB . Therefore, B gets stuck, and P 0 is
barbed equivalent to (�~n)(R0

2�) by Propositions 8 and 5. For Q0, we
take (�~n)(R0

2�). We obtain Q! Q0 and P 0 �
� Q0.

In case (3), P 0 has the form B j C where, by Lemma 9(2), C = R0
2�

for some R0
2 such that E ` R0

2. Thus, P
0 is:

B j R0

2�

For Q0, we take:

Bspec(M) j R0

2�

We obtain Q! Q0 and P 0 �
�S2

�
� Q0.
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� Suppose P S3 Q, that is,

P = B0(KAB) j R3�

Q = B0

spec(M;KAB) j R3�

with E ` R3. There are three ways in which a reaction P ! P 0 may be

derived: (1) B receives the message fMgKAB
from R3�; (2) B receives

some other message from R3�; (3) R3� reacts on its own.

In case (1), P 0 � F (M) j C, where C is a process such that R3�
cAB�!

(�)hfMgKAB
iC. We take Q0 to be F (M) j C, obtaining Q ! Q0 and

P 0 �
� Q0.

In case (2), we invoke Lemma 9(2) again, showing that the message
received by B cannot be a ciphertext encrypted under KAB. That

lemma implies that if R3�
cAB�! (�~n)hNiC (where we may assume that

the names ~n are fresh) then there is an agent R0
3 and a term N3 with

E ` R0
3, E ` N3, C = R0

3�, and N = N3�. So N cannot be of the
form fN 0gKAB

unless N 0 is M . Therefore, B gets stuck, and P 0 is
barbed equivalent to (�~n)(R0

3�) by Propositions 8 and 5. For Q0, we
take (�~n)(R0

3�). We obtain Q! Q0 and P 0 �
� Q0.

In case (3), P 0 has the form B0(KAB) j C where, by Lemma 9(2),
C = R0

3� for some R0
3 such that E ` R0

3. Thus, P
0 is:

B0(KAB) j R
0

3�

For Q0, we take:
B0

spec(M;KAB) j R
0

3�

We obtain Q! Q0 and P 0 �
�S3

�
� Q0.

We can show by similar reasoning that if Q ! Q0 then there is P 0 with
P ! P 0 and either P 0 �

�S
�
� Q0 or P 0 �

� Q0. 2

As before, we prove a simpli�ed secrecy property as a step towards the

full secrecy property.

Lemma 18 Inst(M) ' Inst(M 0) if F (x) is ch�i, for any closed terms M

and M 0.
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Proof Exactly as in the proof of Proposition 17, it su�ces to exhibit a

relation S �
�
� that pairs

S j B j cAShfKABgKAS
i:cABhfMgKAB

i j R (7)

and

S j B j cAShfKABgKAS
i:cABhfM

0gKAB
i j R (8)

where R is any closed process such that the names KAS , KSB , and KAB do

not occur free in R.

We can obtain such a relation via the following de�nitions:

E
�

= x1:f�gKAS
; x2:f�gKSB

; x3:f�gKAB

�
�

= [fKABgKAS
=x1; fKABgKSB

=x2; fMgKAB
=x3]

�0
�

= [fKABgKAS
=x1; fKABgKSB

=x2; fM
0gKAB

=x3]

S1
�

= f(S j B j R1�; S j B j R1�
0)

j E ` R1 and fv(R1) � fx1; x3gg

S2
�

= f(B j R2�;B j R2�
0)

j E ` R2g

S3
�

= f(B0(KAB) j R3�;B
0(KAB) j R3�

0)
j E ` R3g

S
�

= S1 [ S2 [ S3

The relation S1 pairs the processes (7) and (8), since we can take R1 to be

cAShx1i:cABhx3i j R, as before. Therefore, the relation S pairs the processes
(7) and (8).

Moreover, via the same case analysis as in Proposition 17, and a broadly

similar argument, we obtain that S �
�
�. We show, for each i 2 1::3, that

P Si Q implies: (1) that any barb exhibited by P is also exhibited by Q, and
vice versa, and (2) that for any reaction P ! P 0 there is Q0 with Q! Q0 and

either P 0 �
�S

�
� Q0 or P 0 �

� Q0, and vice versa. Condition (1) is true, since

P Si Q implies that P and Q have almost identical structure; the di�erences
in substitutions do not a�ect the barbs of P and Q. To show condition (2),

we consider each Si in turn.

� Suppose P S1 Q, that is,

P = S j B j R1�

Q = S j B j R1�
0
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with E ` R1 and fv (R1) � fx1; x3g. There are four ways in which a

reaction P ! P 0 may be derived: (1) S receives the message fKABgKAS

from R1�; (2) S receives some other message from R1�; (3) B receives

some message from R1�; (4) R1� reacts on its own.

In case (1), P 0 is:
cSBhfKABgKSB

i j B j C

where C is a residue of R1� such that R1�
cAS�! (�)hfKABgKAS

iC. By

Lemma 9(2), (�)hfKABgKAS
iC can be written in the form (�)hN1�iR

0
1�

with E ` R0
1 and E ` N1. Thus, P

0 is:

cSBhfKABgKSB
i j B j R0

1�

For Q0, we take:
cSBhfKABgKSB

i j B j R0

1�
0

By Lemma 9(2), R1�
0 cAS�! (�)hN1�

0iR1�
0. Since N1� is fKABgKAS

, we

have that N1�
0 is also fKABgKAS

. Hence, R1�
0 cAS�! (�)hfKABgKAS

i
R1�

0, so Q ! Q0. Finally, we obtain P 0 �
�S2

�
� Q0 by letting R2 be

cSBhx2i j R
0
1.

In case (2), we invoke Lemma 9(2) again, showing that the message
received by S cannot be a ciphertext encrypted under KAS . That

lemma implies that if R1�
cAS�! (�~n)hNiC (where we may assume that

the names ~n are fresh) then there is a process R0
1 and a term N1 with

E ` R0
1, E ` N1, C = R0

1�, and N = N1�. So N cannot be of the form
fN 0gKAS

unless N 0 is KAB. Therefore, S gets stuck, and P 0 is barbed

equivalent to:
B j (�~n)(R0

1�)

by Propositions 8 and 5. For Q0, we take:

B j (�~n)(R0

1�
0)

By Lemma 9(2), R1�
0 cAS�! (�~n)hN1�

0iR0
1�

0; in addition, N1�
0 cannot

be of the form fN 0gKAS
either. Hence we obtain Q! Q0. Finally, we

obtain P 0 �
�S2

�
� Q0 by letting R2 be (�~n)R

0
1 and noting that E ` R0

1

implies E ` (�~n)R0
1.

In case (3), we invoke Lemma 9(2) again, showing this time that the

message received by B cannot be a ciphertext encrypted under KSB.
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In this case, that lemma says that if R1�
cSB�! (�~n)hNiC (where we

may assume that the names ~n are fresh) then there is a process R0
1 and

a term N1 with E ` R0
1, E ` N1, C = R0

1�, and N = N1�; in addition,

fv (N1) � fv (R1), and hence x2 62 fv (N1). So N cannot be of the form

fN 0gKSB
. Therefore, B gets stuck, and P 0 is barbed equivalent to:

S j (�~n)(R0

1�)

by Propositions 8 and 5. For Q0, we take:

S j (�~n)(R0

1�
0)

By Lemma 9(2), R1�
0 cSB�! (�~n)hN1�

0iR0
1�

0; in addition, N1�
0 cannot

be of the form fN 0gKSB
either. Hence we obtain Q! Q0. Finally, we

obtain P 0 �
� Q0 from Proposition 10, since � and �0 are injective, P 0

is (S j (�~n)R0
1)�, Q

0 is (S j (�~n)R0
1)�

0, and barbed equivalence is the

greatest barbed bisimulation.

In case (4), P 0 has the form S j B j C where R1�
�
�! C and, by

Lemma 9(2), C = R0
1� for some R0

1 such that E ` R0
1 and fv (R0

1) �
fv (R1). Thus, P

0 is:
S j B j R0

1�

For Q0, we take:
S j B j R0

1�
0

By Lemma 9(2), R1�
0 �
�! R0

1�
0, so Q! Q0. Finally, we have P 0 �

�S1
�
�

Q0.

� Suppose P S2 Q, that is,

P = B j R2�

Q = B j R2�
0

with E ` R2. There are three ways in which a reaction P ! P 0 may

be derived: (1) B receives the message fKABgKSB
from R2�; (2) B

receives some other message from R2�; (3) R2� reacts on its own.

In case (1), P 0 is:

B0(KAB) j C
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where C is a residue of R2� such that R2�
cSB�! (�)hfKABgKSB

iC. By

Lemma 9(2), (�)hfKABgKSB
iC can be written in the form (�)hN2�iR

0
2�

with E ` R0
2 and E ` N2. Thus, P

0 is:

B0(KAB) j R
0

2�

For Q0, we take:

B0(KAB) j R
0

2�
0

By Lemma 9(2), R2�
0 cSB�! (�)hN2�

0iR2�
0. Since N2� is fKABgKSB

, we

have that N2�
0 is also fKABgKSB

. Hence, R2�
0 cSB�! (�)hfKABgKSB

i
R2�

0, so Q! Q0. Finally, we obtain P 0 �
�S3

�
� Q0 by letting R3 be R

0
2.

In case (2), we invoke Lemma 9(2) again, showing that the message
received by B cannot be a ciphertext encrypted under KSB. That

lemma implies that if R2�
cSB�! (�~n)hNiC (where we may assume that

the names ~n are fresh) then there is a process R0
2 and a term N2 with

E ` R0
2, E ` N2, C = R0

2�, and N = N2�. So N cannot be of the form
fN 0gKSB

unless N 0 is KAB. Therefore, B gets stuck, and P 0 is barbed

equivalent to (�~n)(R0
2�) by Propositions 8 and 5. For Q0, we take

(�~n)(R0
2�

0). By Lemma 9(2), R2�
0 cSB�! (�~n)hN2�

0iR0
2�

0; in addition,

N2�
0 cannot be of the form fN 0gKSB

either. Hence we obtain Q! Q0.
Finally, we obtain P 0 �

� Q0 from Proposition 10, since � and �0 are
injective, P 0 is ((�~n)R0

2)�, Q
0 is ((�~n)R0

2)�
0, and barbed equivalence is

the greatest barbed bisimulation.

In case (3), P 0 has the form B j C where R2�
�
�! C and, by Lemma

9(2), C = R0
2� for some R0

2 such that E ` R0
2. Thus, P

0 is:

B j R0

2�

For Q0, we take:

B j R0

2�
0

By Lemma 9(2), R2�
0 �
�! R0

2�
0, so Q! Q0. Finally, we have P 0 �

�S2
�
�

Q0.

� Suppose P S3 Q, that is,

P = B0(KAB) j R3�

Q = B0(KAB) j R3�
0
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with E ` R3. There are three ways in which a reaction P ! P 0 may be

derived: (1) B receives the message fMgKAB
from R3�; (2) B receives

some other message from R3�; (3) R3� reacts on its own.

In case (1), P 0 � ch�i j C, where C is a process such that R3�
cAB�!

(�)hfMgKAB
iC. According to Lemma 9(2), (�)hfMgKAB

iC can be

written in the form (�)hN3�iR
0
3� with E ` R0

3 and E ` N3. In addi-

tion, R3�
0 cAB�! (�)hfM 0gKAB

iR0
3�

0, since N3 must be x3. Hence, we take

Q0 to be ch�i j R0
3�

0, obtaining Q ! Q0. Finally, we obtain P 0 �
� Q0

from Proposition 10, since � and �0 are injective, P 0 is (ch�i j R0
3)�, Q

0

is (ch�i j R0
3)�

0, and barbed equivalence is the greatest barbed bisimu-
lation.

In case (2), we invoke Lemma 9(2) again, showing that the message
received by B cannot be a ciphertext encrypted under KAB. That

lemma implies that if R3�
cAB�! (�~n)hNiC (where we may assume that

the names ~n are fresh) then there is an agent R0
3 and a term N3 with

E ` R0
3, E ` N3, C = R0

3�, and N = N3�. So N cannot be of the form
fN 0gKAB

unless N 0 is M . Therefore, B gets stuck, and P 0 is barbed
equivalent to (�~n)(R0

3�) by Propositions 8 and 5. For Q0, we take

(�~n)(R0
3�

0). By Lemma 9(2), R3�
0 cAB�! (�~n)hN3�

0iR0
3�

0; in addition,
N3�

0 cannot be of the form fN 0gKAB
either. Hence we obtain Q! Q0.

Finally, we obtain P 0 �
� Q0 from Proposition 10, since � and �0 are

injective, P 0 is ((�~n)R0
3)�, Q

0 is ((�~n)R0
3)�

0, and barbed equivalence is
the greatest barbed bisimulation.

In case (3), P 0 has the form B0(KAB) j C where R3�
�
�! C and, by

Lemma 9(2), C = R0
3� for some R0

3 such that E ` R0
3. Thus, P

0 is:

B0(KAB) j R
0

3�

For Q0, we take:
B0(KAB) j R

0

3�
0

By Lemma 9(2), R3�
0 �
�! R0

3�
0, so Q! Q0. Finally, we have P 0 �

�S3
�
�

Q0.

By symmetry, we have also a proof that if Q ! Q0 then there is P 0 with
P ! P 0 and either P 0 �

�S
�
� Q0 or P 0 �

� Q0. 2

The full secrecy property follows.
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Proposition 19 Inst(M) ' Inst(M 0) if F (M) ' F (M 0), for any closed

terms M and M 0.

Proof The argument is similar to that in Proposition 13. Given the au-

thenticity property (Proposition 17) and the specialised secrecy property

(Lemma 18), it is enough to prove:

Inst spec(N) ' (�c)(Inst(N; (x)ch�i) j c(y):F (N))

for all N . 2

6.4 Formalisation of the Attack of Section 3.2.3

Here we prove that the authenticity equation discussed in Section 3.2.3 does
not hold. We do this by formalising the replay attack sketched there.

The de�nitions of Sys and Sysspec are given in Section 3.2.3. We prove:

Proposition 20 If I is (i; j;M), I 0 is (i; j;M 0), and M and M 0 are di�erent

closed terms, then there exists F such that Sys(I; I 0) 6' Sysspec(I; I
0).

Proof We de�ne F (x; y; z) as chzi where c is a new name. According to
the de�nition of testing equivalence, it su�ces to construct a test (R;�) such
that Sys(I; I 0) passes (R;�) but Sysspec(I; I

0) does not pass (R;�).

For �, we take d where d is a name that does not occur free in Sysspec(I; I
0).

For R, we take:

cS(u):cShui:cShui:cj(x):cjhxi:cjhxi:c(y):c(z):[y is z] dh�i

This process duplicates a message u sent on cS and a message x sent on cj,
receives two messages y and z through c, and �nally sends a message on d if
y and z are equal. Intuitively, this process can be understood as an attacker

that replays an encrypted key u and some encrypted data x from i, and

signals on d if the replay attack may have worked, that is, if two identical

messages y and z appear on c.
The parallel composition of R with Sys(I; I 0) may eventually exhibit d,

because y and z may both equal M or M 0, as a result of the message dupli-
cations on cS and cj. Therefore, Sys(I; I

0) passes (R;�).

In contrast, the parallel composition of R with Sys spec(I; I
0) never exhibits

d, because each of M and M 0 will be transmitted at most once on c, so y

and z cannot match. Therefore, Sysspec(I; I
0) does not pass (R;�). 2
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6.5 Proofs for the Example of Section 3.2.4

As in Section 3.2.4, we consider a system with a server S and n other princi-

pals, which we call 1, 2, . . . . We let Prn = 1::n, and we use the metavariables

i and j to range over Prn. Each principal has an input channel; these input

channels have the names c1, c2, . . . , cn and cS. The server shares a pair of

keys with each other principal: principal i uses key KiS to send to S and key

KSi to receive from S, for each i 2 Prn. The system is parameterised by

a list of instances, I1, . . . , Im, indexed by the set Ins = 1::m, and a single

abstraction F such that F (i; j;M) is a process for any instance (i; j;M). We

use the metavariable k to range over Ins .
For an instance I = (i; j;M), the informal description of the protocol is:

Message 1 i! S : i on cS
Message 2 S ! i : NS on ci
Message 3 i! S : i; fi; i; j;KAB; NSgKiS

on cS
Message 4 S ! j : � on cj
Message 5 j ! S : NB on cS
Message 6 S ! j : fS; i; j;KAB; NBgKSj

on cj
Message 7 i! j : i; fMgKAB

on cj

We rephrase the formal description of the protocol through the following
de�nitions:

A1 (i; j;M)
�

= cShii j A2 (i; j;M)

A2 (i; j;M)
�

= ci(x):(�KAB)(cSh(i; fi; i; j;K; xgKiS
)i j cjh(i; fMgK)i)

S1
�

= cS(x):
Q
i2Prn [x is i] (�NS)(cihNSi j S2 (i;NS))

S2 (i;N)
�

= cS(x):let (y1; y2) = x in

[y1 is i] case y2 of fz1; z2; z3; z4; z5gKiS
inQ

j2Prn [z1 is i] [z2 is i] [z3 is j] [z5 is N ] S3 (i; j; z4)

S3 (i; j;K)
�

= cjh�i j S4 (i; j;K)

S4 (i; j;K)
�

= cS(x):cjhfS; i; j;K; xgKSj
i

B1 (j; F )
�

= cj(x):(�NB)(cShNBi j B2 (j; F;NB))

B2 (j; F;N)
�

= cj(x):case x of fy1; y2; y3; y4; y5gKSj
inQ

i2Prn [y1 is S] [y2 is i] [y3 is j] [y5 is N ] B3 (i; j; F; y4)

B3 (i; j; F;K)
�

= cj(x):let (y1; y2) = x in

[y1 is i] case y2 of fzgK in F (i; j; z)
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Sys(I1; : : : ; Im)
�

= (�KiS
i2Prn)(�KSj

j2Prn)

(
Q
k2Ins A1 (Ik) j !S1 j

Q
j2Prn !B1 (j; F ))

We rephrase the speci�cation as well:

A1 spec((i; j;M); F )
�

= (�p)(A1 (i; j; p) j p(x):F (i; j;M))

Fspec(i; j; p)
�

= ph�i

Sysspec(I1; : : : ; Im)
�

= (�KiS
i2Prn)(�KSj

j2Prn)

(
Q
k2Ins A1 spec(Ik; F ) j !S1 j

Q
j2Prn !B1 (j; Fspec))

In this section, we prove the stated authenticity and secrecy properties,
namely:

Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im),
for any instances I1, . . . , Im.

Sys(I1; : : : ; Im) ' Sys(J1; : : : ; Jm),
if each pair (I1; J1), . . . , (Im; Jm) is indistinguishable.

Proposition 21 For any instances I1; : : : ; Im,

Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im)

Proof Let I1; : : : ; Im be a list of instances, with Ins = 1::m. We begin
by reducing the problem to one involving �nite compositions rather than
replications, and give a bisimulation proof after this reduction.

First, we group the replications in Sys(I1; : : : ; Im) and Sysspec(I1; : : : ; Im)
using Proposition 30:

Sys(I1; : : : ; Im) ' (�KiS
i2Prn)(�KSj

j2Prn)
(
Q
k2Ins A1 (Ik) j

!(S1 j
Q
j2Prn B1 (j; F )))

(9)

Sysspec(I1; : : : ; Im) ' (�KiS
i2Prn)(�KSj

j2Prn)

(
Q
k2Ins A1 spec(Ik; F ) j

!(S1 j
Q
j2Prn B1 (j; Fspec)))

(10)

Further, we apply Proposition 29 to the right-hand sides of (9) and (10);

Proposition 29 implies that, to prove Sys(I1; : : : ; Im) ' Sysspec(I1; : : : ; Im),
it su�ces to prove:

fSys(I1; : : : ; Im; r) ' fSysspec(I1; : : : ; Im; r) (11)
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for all r � 0, where

fSys(I1; : : : ; Im; r)
�

= (�KiS
i2Prn)(�KSj

j2Prn)

(
Q
k2Ins A1 (Ik) jQ
s21::r(S1 j

Q
j2Prn B1 (j; F )))

fSysspec(I1; : : : ; Im; r)
�

= (�KiS
i2Prn)(�KSj

j2Prn)

(
Q
k2Ins A1 spec(Ik; F ) jQ
s21::r(S1 j

Q
j2Prn B1 (j; Fspec)))

Thus, we have eliminated replications.

Next we reformulate (11) by pulling restrictions to the top level, and
inserting certain additional � steps. For this purpose, we use the following
auxiliary de�nitions:

A1 0((i; j;M);K)
�

= cShii j A2
0((i; j;M);K)

A2 0((i; j;M);K)
�

= ci(x):(cSh(i; fi; i; j;K; xgKiS
)i j cjh(i; fMgK)i)

S1 0(N)
�

= cS(x):
Q
i2Prn [x is i] (cihNi j S2 (i;N))

B1 0(j; F;N)
�

= cj(x):(cShNi j B2 (j; F;N))

Lemmas 36 and 37 yield:

A1 (I) ' (�KAB)A1
0(I;KAB) (12)

A2 (I) ' (�KAB)A2
0(I;KAB) (13)

S1 ' (�NS)S1
0(NS) (14)

B1 (j; F ) ' (�NB)B1
0(j; F;NB) (15)

Moreover, equation (12) yields:

A1 spec(i; j;M) ' (�KAB)(�p)(A1
0((i; j; p);KAB) j p(x):F (i; j;M))(16)

We also introduce the sets of names:

fpk j k 2 Insg

fKABk j k 2 Insg
fNSs j s 2 1::rg

fNBjt j j 2 Prn & t 2 1::rg
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All the names listed are assumed distinct and fresh. Given that �:F is short

for the abstraction (x)�:F (x), we obtain:

fSys(I1; : : : ; Im; r) ' (�KiS
i2Prn)(�KSj

j2Prn)

(�KABk
k2Ins)(�NSs

s21::r)(�NBjt
j2Prn&s21::r)

(
Q
k2Ins A1

0(Ik;KABk) j
Q
s21::r S1

0(NSs) jQ
j2Prn

Q
s21::r B1

0(j; �:F;NBjt))

(17)

fSysspec(I1; : : : ; Im; r) ' (�KiS
i2Prn)(�KSj

j2Prn)(�pk
k2Ins)

(�KABk
k2Ins)(�NSs

s21::r)(�NBjt
j2Prn&s21::r)

((
Q
k2Ins A1

0((i; j; pk);KABk)
where Ik = (i; j;M)) j

(
Q
k2Ins pk(x):F (i; j;M)

where Ik = (i; j;M)) jQ
s21::r S1

0(NSs) jQ
j2Prn

Q
s21::r B1

0(j; Fspec ; NBjt))

(18)

The proof of (17) and (18) is in three steps. First, we expose all the re-
strictions in the processes fSys(I1; : : : ; Im; r) and fSysspec(I1; : : : ; Im; r) by

rewriting with equations (12), (13), (14), (15), and (16). Second, we use the
rules of structural equivalence to group all the restrictions at the top level of
the processes. Third, we use the � law (�:P ' P , Proposition 35) to insert
a � step before each call to F in fSys(I1; : : : ; Im; r). (The � step is useful
because it corresponds to the interaction on one of the pk's that precedes

each call to F in fSysspec(I1; : : : ; Im; r).)
Thus, we have reduced the property claimed in this proposition to equa-

tion (11), and in turn have reduced this equation to the equivalence of the
right-hand sides of equations (17) and (18), for an arbitrary number r � 0.

To prove this equivalence, we invoke Proposition 7, and show that when com-

posed with any closed process R the two right-hand sides of (17) and (18)
are barbed bisimilar. Without loss of generality we may assume that none

of the names bound in the outermost restrictions occurs free in R. Up to
structural equivalence, and therefore barbed equivalence, we may extrude

the scope of those restrictions to include R. Since barbed equivalence is pre-
served by restriction (Proposition 5(4)), it su�ces to prove that the following

two processes are barbed equivalent:

Q
k2Ins A1

0(Ik;KABk) jQ
s21::r S1

0(NSs) j
Q
j2Prn

Q
s21::rB1

0(j; �:F;NBjt) j R
(19)
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and

(�pk
k2Ins)

((
Q
k2Ins A1

0((i; j; pk);KABk) where Ik = (i; j;M)) j

(
Q
k2Ins pk(x):F (i; j;M) where Ik = (i; j;M)) jQ
s21::r S1

0(NSs) j
Q
j2Prn

Q
s21::rB1

0(j; Fspec; NBjt) j R)

(20)

for any closed R such that no KiS , KSj , KABk, NSs, NBjt, or pk occurs free

in R. (We have removed most of the outermost restrictions only for the

sake of notational simplicity. On the other hand, it is necessary to retain

the restriction on the pk's: otherwise the simpli�ed process (20) would have

input barbs pk that could not be matched by process (19).)
The remainder of our proof consists in constructing a relation S such that

�S� relates processes (19) and (20), and establishing that S is a barbed
bisimulation up to

�
� and restriction, hence that processes (19) and (20) are

barbed equivalent. We lead up to the de�nition of S with several preliminary

de�nitions:

� We let a world be a tuple W = (snd ; srv ; rcv ;X;E; �; �spec ; R) where
E is an environment and � and �spec are substitutions, R is a process,
X � Ins, and snd , srv , and rcv are �nite maps such that:

snd(k) 2 fa2 ; sent(L;L0) j any closed terms L and L0g

srv(s) 2 fs1 ; s2 (i); stuck ; s4 (k); sent(k; L; L0)
j i 2 Prn; k 2 Ins; any closed terms L and L0g

rcv(j; t) 2 fb1 ; b2 ; stuck ; b3 (k); run(k); done j k 2 Insg

for each k 2 Ins, s 2 1::r, and (j; t) 2 Prn�1::r. The symbols a2 , sent ,
s1 , s2 , stuck , s4 , b1 , b2 , stuck , b3 , run, and done are string tags; s2 (i)
is short for the pair (s2 ; i), sent (k; L; L0) for the pair (sent ; (k; L; L0)),
and similarly for the other tags.

Intuitively, k 2 X just if instance k may yet complete the protocol.
The maps snd , srv , and rcv represent the states of the senders, servers,

and receivers, respectively, that participate in the protocol.

� Given a world W = (snd ; srv ; rcv ;X;E; �; �spec; R), and given k 2 Ins,

s 2 1::r, and (j; t) 2 Prn � 1::r, we de�ne processes AW (k), AW
spec(k),

SW (s), BW (j; t), and BW
spec(j; t):

AW (k)
�

=

(
A2 0(Ik;KABk) if snd (k) = a2

0 otherwise
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AW
spec(k)

�

=

(
A2 0((i; j; pk);KABk) if snd(k) = a2 , Ik = (i; j;M)

0 otherwise

SW (s)
�

=

8>>><
>>>:

S1 0(NSs) if srv (s) = s1

S2 (i;NSs) if srv (s) = s2 (i)

S4 (i; j;KABk) if srv (s) = s4 (k), Ik = (i; j;M)

0 otherwise

BW (j; t)
�

=

8>>>>>>>>>>><
>>>>>>>>>>>:

B1 0(j; �:F;NBjt) if rcv(j; t) = b1

B2 (j; �:F;NBjt) if rcv(j; t) = b2

B3 (i; j; �:F;KABk) if rcv(j; t) = b3 (k),

Ik = (i; j;M)

�:F (i; j;M) if rcv(j; t) = run(k),
Ik = (i; j;M)

0 otherwise

BW
spec(j; t)

�

=

8>>>>>>>>>>><
>>>>>>>>>>>:

B1 0(j; Fspec; NBjt) if rcv (j; t) = b1

B2 (j; Fspec; NBjt) if rcv (j; t) = b2

B3 (i; j; Fspec;KABk) if rcv (j; t) = b3 (k),
Ik = (i; j;M)

pkh�i if rcv (j; t) = run(k),
Ik = (i; j;M)

0 otherwise

Intuitively, AW (k) is the process that sender k has left to run when its
state is snd(k). Similarly, in the context of the speci�cation, AW

spec(k) is

the process that sender k has left to run when its state is snd (k); this
process does not include pk(x):F (i; j;M), which is treated separately.
The other de�nitions deal analogously with replicas of the server and
of the receivers.

Given a world W = (snd ; srv ; rcv ;X;E; �; �spec ; R), we also let P
W be:Q

k2Ins A
W (k) j

Q
s21::r S

W (s) j
Q

(j;t)2Prn�1::rB
W (j; t) j R�

and QW be:

(�pk
k2Ins)(

Q
k2Ins A

W
spec(k) j

Q
s21::r S

W (s) j
Q

(j;t)2Prn�1::rB
W
spec(j; t) j

(
Q
k2X pk(x):F (i; j;M) where Ik = (i; j;M)) j R�spec)

Intuitively, PW is the process that the whole system has left to run

when its state is as described in W , and QW is the corresponding
process for the speci�cation.
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� Given a world W with maps snd , srv , and rcv , we de�ne the instance

sets of W to be the subsets XW
2 , XW

3 , XW
5 , XW

6 , XW
7 , XW

8 of Ins, such

that for any k 2 Ins with Ik = (i; j;M):

k 2 XW
2 i� snd (k) = a2

k 2 XW
3 i� 9s 2 1::r; i0 2 Prn(snd(k) = sent(NSs; NSs) &

srv(s) 2 fs1 ; s2 (i0)g)

k 2 XW
5 i� 9s 2 1::r(srv(s) = s4 (k))

k 2 XW
6 i� 9s 2 1::r; t 2 1::r

(srv(s) = sent(k;NBjt; NBjt) & rcv (j; t) 2 fb1 ; b2g)

k 2 XW
7 i� 9t 2 1::r(rcv(j; t) = b3 (k))

k 2 XW
8 i� 9t 2 1::r(rcv(j; t) = run(k))

Intuitively, if k 2 XW
s and s 2 f2; 3; 5; 6; 7g, then the message in the

protocol numbered s is the next to be received in instance k. Instance
set XW

8 represents instances that, having completed the protocol, are
a � step away from running F .

� A world W = (snd ; srv ; rcv ;X;E; �; �spec ; R) is possible if and only if
the following conditions hold:

(1) Sets XW
2 , XW

3 , XW
5 , XW

6 , XW
7 , XW

8 are pairwise disjoint.

(2) The union XW
2 [XW

3 [XW
5 [XW

6 [XW
7 [XW

8 is a subset of X.

(3) For any k 2 Ins, s 2 1::r, and terms L and L0, if either srv(s) =

s4 (k) or srv(s) = sent (k; L; L0) then snd(k) = sent (NSs; NSs).

(4) For any k 2 Ins, j 2 Prn, and t 2 1::r, if either rcv (j; t) = b3 (k)

or rcv (j; t) = run(k) then there exists s 2 1::r such that srv(s) =
sent (k;NBjt; NBjt).

(5) For any k 2 Ins , terms L and L0, and name p, snd (k) = sent (L;L0)

implies either L = L0 = p or neither L = p nor L0 = p.

(6) For any k 2 Ins, s 2 1::r, terms L and L0, and name p, srv (s) =

sent (k; L; L0) implies either L = L0 = p or neither L = p nor
L0 = p.

(7) Environment E is:

xk:f�gKiS

k2Ins with Ik=(i;j;M);snd(k)=sent(L;L0);

yk:f�gKABk

k2Ins with Ik=(i;j;M);snd(k)=sent(L;L0);

zs:f�gKSj

s21::r with Ik=(i;j;M);srv(s)=sent(k;L;L0)
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(8) Substitution � is:

[fi; i; j;KABk; LgKiS
=xk

k2Ins with Ik=(i;j;M);snd(k)=sent(L;L0);

fMgKABk
=yk

k2Ins with Ik=(i;j;M);snd(k)=sent(L;L0);

fS; i; j;KABk; LgKSj
=zs

s21::r with Ik=(i;j;M);srv(s)=sent(k;L;L0)]

and substitution �spec is:

[fi; i; j;KABk; L
0gKiS

=xk
k2Ins with Ik=(i;j;M);snd(k)=sent(L;L0);

fpkgKABk
=yk

k2Ins with snd(k)=sent(L;L0);

fS; i; j;KABk; L
0gKSj

=zs
s21::r with Ik=(i;j;M);srv(s)=sent(k;L;L0)]

(9) Process R contains no free occurrence of any of the names pk, KiS ,
KSj , KABk and satis�es E ` R.

� Finally, we de�ne the relation S as follows:

S
�

= f(PW ; QW ) j any possible world Wg

Given a possible world (snd ; srv ; rcv ;X;E; �; �spec; R), conditions (7) and
(8) imply that E, �, and �spec are determined by the other components of

the world, and that E ` � and E ` �spec hold. Moreover, � is injective, as
we show next. Let us suppose that w and w0 are two variables that � maps
to the same term. Since � maps all variables to ciphertexts under keys in
one of three disjoint families, we can distinguish three possible cases:

� w is xk and w0 is xk0 for some k; k0 2 Ins. Since �(xk) has the form
fi; i; j;KABk; LgKiS

, �(xk) textually contains KABk. Similarly, �(xk0)

textually contains KABk0 in the same position. Therefore k = k0, so

w = w0.

� w is yk and w0 is yk0 for some k; k0 2 Ins. Since �(yk) has the form

fMgKABk
, �(yk) textually contains KABk. Similarly, �(yk0) textually

contains KABk0 in the same position. Therefore k = k0, so w = w0.

� w is zs and w0 is zs0 for some s; s0 2 1::r. For some k 2 Ins, we
have �(zs) = fS; i; j;KABk; LgKSj

where srv (s) = sent (k; L; L0) and

Ik = (i; j;M). Since �(zs0) = �(zs), there exists L
00 such that srv(s0) =

sent(k; L; L00). By condition (3), we obtain snd(k) = sent (NSs; NSs)
and snd(k) = sent(NSs0 ; NSs0). Therefore s = s0, so w = w0.
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Thus, if � maps two variables w and w0 to the same term then w = w0, so �

is injective. By the same argument, �spec is injective too.

Now we consider the world W = (snd ; srv ; rcv ; Ins; ;; ;; ;; R0) where

R0 �

= R j
Q
k2Ins(cShii where Ik = (i; j;M))

such that snd(k) = a2 for all k 2 Ins , srv(s) = s1 for all s 2 1::r, and

rcv(j; t) = b1 for all (j; t) 2 Prn � 1::r. The conditions for W to be possi-

ble are satis�ed. In particular, X and XW
2 both equal Ins, while all other

instance sets are empty. Furthermore, processes PW and QW are related by

S, and are structurally equivalent to processes (19) and (20) respectively.
Therefore, if we can show that S �

�
� it will follow that processes (19)

and (20) are barbed equivalent.
To prove that S �

�
�, we rely on Proposition 6: we show that S is a barbed

bisimulation up to
�
� and restriction. Thus, we prove, for any possible world

W = (snd ; srv ; rcv ;X;E; �; �spec; R), that: (1) any barb exhibited by PW is
also exhibited by QW , and vice versa, and (2) for any reaction PW ! P 0

there is Q0 with QW ! Q0 and there is a possible world W 0 and names ~n
such that P 0 �

� (�~n)PW 0

, Q0 �
� (�~n)QW 0

, and vice versa. We treat only
conditions (1) and (2); the symmetric conditions can be established by a

symmetric treatment.
Condition (1) holds because PW and QW have almost identical structure;

the only names to appear in one process but not the other are the pk's
occurring in QW ; but the outermost restriction on the pk's prevents their
being exhibited as barbs.

To show condition (2), we �rst recall that PW is:

Q
k2Ins A

W (k) j
Q
s21::r S

W (s) j
Q

(j;t)2Prn�1::rB
W (j; t) j R�

and QW is:

(�pk
k2Ins)(

Q
k2Ins A

W
spec(k) j

Q
s21::r S

W (s) j
Q

(j;t)2Prn�1::rB
W
spec(j; t) j

(
Q
k2X pk(x):F (i; j;M) where Ik = (i; j;M)) j R�spec)

As usual, we appeal to Proposition 3 in order to analyse the reactions of PW

in terms of its possible commitments. Processes AW (k), SW (s), BW (j; t)

have only input or � commitments, whereas the arbitrary process R� may

have input, output, or � commitments. Therefore, a reaction of PW can arise

only in one of the following ways:

67



(A) from the interaction of an output commitmentR�
�
�! (�~n)hL1iR1 and

an input commitment of one of the following seven kinds of process:

(1) AW (k) = A2 0(Ik;KABk)

where k 2 Ins and snd (k) = a2 ,

(2) SW (s) = S1 0(NSs)

where s 2 1::r and srv(s) = s1 ,

(3) SW (s) = S2 (i;NSs)

where s 2 1::r and srv(s) = s2 (i),

(4) SW (s) = S4 (i; j;KABk)
where s 2 1::r, srv(s) = s4 (k), and Ik = (i; j;M),

(5) BW (j; t) = B1 0(j; �:F;NBjt)

where (j; t) 2 Prn � 1::r and rcv(j; t) = b1 ,

(6) BW (j; t) = B2 (j; �:F;NBjt)
where (j; t) 2 Prn � 1::r and rcv(j; t) = b2 ,

(7) BW (j; t) = B3 (i; j; �:F;KABk)
where (j; t) 2 Prn � 1::r, rcv(j; t) = b3 (k), and Ik = (i; j;M),

(B) from a � commitment BW (j; t) = �:F (i; j;M)
�
�! F (i; j;M)

where rcv(j; t) = run(k) and Ik = (i; j;M),

(C) from a � commitment R�
�
�! R1.

In case (A), we may assume that the bound names ~n are fresh. Since
W is possible, it follows that E ` � and E ` �spec, and that both � and

� are injective substitutions. Therefore, given the commitment R�
�
�!

(�~n)hL1iR1, Lemma 9(2) guarantees that there is an agent A such that

E ` A, fv (A) � fv(R), fn(A) � fn(R), and (�~n)hL1iR1 = A�, and moreover

that R�spec
�
�! A�spec. From (�~n)hL1iR1 = A� it follows there are L2 and

R2 such that A = (�~n)hL2iR2, L1 = L2�, and R1 = R2�.

We now examine the input commitments of the seven kinds of process
above (ordered according to the enumeration of messages in the informal

description of the protocol) and exhibit in each case a possible world W 0

such that P 0 �
� (�~n)PW 0

and there is Q0 with QW ! Q0 and Q0 �
� (�~n)QW 0

,

where ~n are the names generated in the commitment of R.
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(1) The reaction PW ! P 0, where

P 0 � (�~n)(
Q
k2Ins A

W (k) j
Q
s021::r�fsgS

W (s0) jQ
i2Prn [L2� is i] (cihNSsi j S2 (i;NSs)) jQ
(j;t)2Prn�1::rB

W (j; t) j R2�)

arises when � is cS , and there is an input commitment

S1 0(NSs)
cS�! (x)

Q
i2Prn[x is i] (cihNSsi j S2 (i;NSs))

for some s 2 1::r such that srv(s) = s1 .

We argue by cases on whether there is i 2 Prn such that L2� = i.

When there is i 2 Prn such that L2� = i, we can simplify P 0 as follows:

P 0 � (�~n)(
Q
k2Ins A

W (k) j
Q
s021::r�fsgS

W (s0) j S2 (i;NSs)Q
(j;t)2Prn�1::rB

W (j; t) j cihNSsi j R2�)

We set:

W 0 = (snd ; srv 0; rcv ;X;E; �; �spec ; cihNSsi j R2)

where srv 0 is identical to srv except that srv 0(s) = s2 (i). With this
de�nition, P 0 � (�~n)PW 0

. Given the form of �, L2� = i implies that
L2 = i, and therefore also that L2�spec = i. Therefore, QW ! (�~n)QW 0

,
so we let Q0 = (�~n)QW 0

.

It remains to prove that the world W 0 is possible. Conditions (1)
and (2), which are about the instance sets of W 0, must hold since
the instance sets of W 0 equal those of W , which itself is possible. Con-
ditions (3) and (6) concern servers in states s4 and sent (k; L; L0); they

hold for W and continue to hold for W 0 as no servers have entered

those states. Conditions (4) and (5) continue to hold in W 0 as no
senders or receivers have changed state. Conditions (7) and (8) con-

cerning E, �, and �spec hold, since W is possible, no senders have
entered or left a sent(L;L0) state, and no servers have entered or left a

sent(k; L; L0) state. Finally, condition (9) is that cihNSsi j R2 contains
no free occurrence of any of the names pk, KiS , KSj , KABk and that

E ` cihNSsi j R2. It holds since the same condition holds for R, and

we know that fn((�~n)hL2iR2) � fn(R), that the names ~n are fresh, and
that E ` (�~n)hL2iR2. Therefore, W

0 is a possible world.
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Otherwise, when there is no i 2 Prn such that L2� = i, we can simplify

P 0 as follows:

P 0 �
� (�~n)(

Q
k2Ins A

W (k) j
Q
s021::r�fsgS

W (s0) jQ
(j;t)2Prn�1::rB

W (j; t) j R2�)

We set:

W 0 = (snd ; srv 0; rcv ;X;E; �; �spec ; R2)

where srv 0 is identical to srv except that srv 0(s) = stuck . With this

de�nition, P 0 �
� (�~n)PW 0

. Given the form of � and �spec, L2� 6= i

implies that L2�spec 6= i for every i 2 Prn. Letting

Q0 �

= (�~n)(�pk
k2Ins)(

Q
k2Ins A

W
spec(k) j

Q
s021::r�fsgS

W (s0) jQ
i2Prn [L2�spec is i] (cihNSsi j S2 (i;NSs)) jQ
(j;t)2Prn�1::rB

W
spec(j; t) j

(
Q
k2X pk(x):F (i; j;M) where Ik = (i; j;M)) j

R2�spec)

we obtain QW ! Q0 �
� (�~n)QW 0

.

In this case, it remains to show that the world W 0 is possible. Condi-
tions (1) and (2) concern the instance sets of W 0. We have:

XW 0

3 = fk 2 XW
3 j snd(k) 6= sent(NSs; NSs)g

from which it follows that XW 0

3 � XW
3 . All the other instance sets of

W 0 equal those of W . Since conditions (1) and (2) hold for W , they

hold also for W 0. The rest of the proof that the world W 0 is possible is

as in the case where there is i 2 Prn such that L2� = i.

(2) The reaction PW ! P 0, where

P 0 � (�~n)(
Q
k02Ins�fkgA

W (k0) j

cSh(i; fi; i; j;KABk; L2�gKiS
)i j cjh(i; fMgKABk

)i jQ
s21::r S

W (s) j
Q

(j;t)2Prn�1::rB
W (j; t) j R2�)

arises when � is ci, and there is an input commitment

A2 0(Ik;KABk)
ci�! (x)(cSh(i; fi; i; j;KABk; xgKiS

)i j cjh(i; fMgKABk
)i)
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for some k 2 Ins such that snd(k) = a2 and Ik = (i; j;M). We set:

W 0 = (snd 0; srv ; rcv ;X;E 0; �0; �0spec; R2 j cShxki j cjh(i; yk)i)

where snd 0 is identical to snd except that snd 0(k) = sent(L2�;L2�spec),

and

E0 �

= E; xk:f�gKiS
; yk:f�gKABk

�0
�

= �; fi; i; j;KABk; L2�gKiS
=xk; fMgKABk

=yk

�0spec
�

= �spec ; fi; i; j;KABk; L2�specgKiS
=xk; fMgKABk

=yk

With this de�nition, P 0 � (�~n)PW 0

; moreover, QW ! (�~n)QW 0

.

It remains to show that the world W 0 is possible. First, we consider
the instance sets of W 0. They are equal to those of W , except for:

XW 0

2 = XW
2 � fkg while k 2 XW

2

XW 0

3 =

8>>><
>>>:

XW
3 [ fkg if 9s 2 1::r; i0 2 Prn

(L2� = L2�spec = NSs &
srv (s) 2 fs1 ; s2 (i0)g)

XW
3 otherwise

Therefore, since conditions (1) and (2) hold for W , they hold also for
W 0. Condition (5) holds for W 0 because there are no names in the

range of � or �spec, so for any name n either L2� = L2�spec = n or
neither L2� = n nor L2�spec = n. Conditions (3), (4), (6), (7), (8),
and (9) hold for W , and it follows easily that they continue to hold for
W 0.

(3) The reaction PW ! P 0, where

P 0 � (�~n)(
Q
k2Ins A

W (k) j
Q
s021::r�fsgS

W (s0) jQ
(j;t)2Prn�1::rB

W (j; t) j R2� j

let (y1; y2) = L2� in

[y1 is i] case y2 of fz1; z2; z3; z4; z5gKiS
inQ

j2Prn [z1 is i] [z2 is i] [z3 is j] [z5 is NSs]
(cjh�i j S4 (i; j; z4)))

arises when � is cS , and there is an input commitment

S2 (i;NSs)
cS�! (x)let (y1; y2) = x in

[y1 is i] case y2 of fz1; z2; z3; z4; z5gKiS
inQ

j2Prn[z1 is i] [z2 is i] [z3 is j] [z5 is NSs]
(cjh�i j S4 (i; j; z4))
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for some s 2 1::r with srv(s) = s2 (i).

We argue by cases on whether L2� is a pair with �rst component i
and second component a ciphertext under KiS containing NSs as last

�eld. By condition (8), L2� has i as �rst component if and only if

L2 has i as �rst component. Similarly, since fn(L2) � fn(R) [ f~ng,

the second component of L2� is a ciphertext under KiS containing NSs

if and only if the second component of L2 is a variable xk for some

k 2 Ins such that snd (k) = sent (NSs; L
0) for some L0. In this case, the

second component of L2� is fi; i; j;KABk; NSsgKiS
where Ik = (i; j;M).

Thus, L2� determines k uniquely because of the presence of KABk. By

condition (5), L0 = NSs and snd (k) = sent (NSs; NSs), so if L2 has the
form (i; xk), then L2� and L2�spec both equal (i; fi; i; j;KABk; NSsgKiS

).
Conversely, the form of L2�spec determines the form of L2�.

Assuming that L2� is a pair of the form described, we can simplify P 0

as follows:

P 0 � (�~n)(
Q
k2Ins A

W (k) j
Q
s021::r�fsgS

W (s0) jQ
(j;t)2Prn�1::rB

W (j; t) j

S4 (i; j;KABk) j R2� j cjh�i)

where i, j, and k are de�ned as explained above. We set:

W 0 = (snd ; srv 0; rcv ;X;E; �; �spec ; R2 j cjh�i)

where srv 0 is identical to srv except that srv 0(s) = s4 (k). With this

de�nition, P 0 � (�~n)PW 0

and QW ! (�~n)QW 0

.

It remains to show that the world W 0 is possible. All the instance sets

of W 0 equal those of W , except for:

XW 0

3 = XW
3 � fk0 2 XW

3 j snd(k0) = sent (NSs; NSs)g

while k 2 XW
3

XW 0

5 = XW
5 [ fkg

In particular, k =2 XW 0

3 . Therefore, conditions (1) and (2) hold for W 0.
Conditions (3), (4), (5), (6), (7), (8), and (9) hold for W , and it follows
easily that they continue to hold for W 0. For condition (3), we use the

fact that snd(k) = sent(NSs; NSs).
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On the other hand, if L2� is not of the form described, we can simplify

P 0 as follows:

P 0 �
� (�~n)(

Q
k2Ins A

W (k) j
Q
s021::r�fsgS

W (s0) jQ
(j;t)2Prn�1::rB

W (j; t) j R2�)

We set:

W 0 = (snd ; srv 0; rcv ;X;E; �; �spec ; R2)

where srv 0 is identical to srv except that srv 0(s) = stuck . With this

de�nition, P 0 �
� (�~n)PW 0

. Letting

Q0 �

= (�~n)(�pk
k2Ins)(

Q
k2Ins A

W
spec(k) j

Q
s021::r�fsgS

W (s0) j

let (y1; y2) = L2�spec in : : : jQ
(j;t)2Prn�1::rB

W
spec(j; t) j

(
Q
k2X pk(x):F (i; j;M) where Ik = (i; j;M)) j

R2�spec)

where the omitted code gets stuck, we obtain QW ! Q0 �
� (�~n)QW 0

.

In this case, it is easy to check that the world W 0 is possible. All the
instance sets of W 0 equal those of W , except for:

XW 0

3 = fk 2 XW
3 j snd(k) 6= sent(NSs; NSs)g

so XW 0

3 � XW
3 .

(4) The reaction PW ! P 0, where

P 0 � (�~n)(
Q
k2Ins A

W (k) j
Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W (j0; t0) j

cShNBjti j B2 (j; �:F;NBjt) j R2�)

arises when � is cj, and there is an input commitment

B1 0(j; �:F;NBjt)
cj
�! (x)(cShNBjti j B2 (j; �:F;NBjt))

for some (j; t) 2 Prn � 1::r such that rcv (j; t) = b1 . We set:

W 0 = (snd ; srv ; rcv 0;X;E; �; �spec; R2 j cShNBjti)

where rcv 0 is identical to rcv except that rcv 0(j; t) = b2 . With this

de�nition, P 0 � (�~n)PW 0

and QW ! (�~n)QW 0

. Given that W is a
possible world, so is W 0; in particular, the instance sets of W 0 equal
those of W .
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(5) The reaction PW ! P 0, where

P 0 � (�~n)(
Q
k2Ins A

W (k) j
Q
s021::r�fsgS

W (s0) jQ
(j;t)2Prn�1::rB

W (j; t) j

cjhfS; i; j;KABk; L2�gKSj
i j R2�)

arises when � is cS , and there is an input commitment

S4 (i; j;KABk)
cS�! (x)cjhfS; i; j;KABk; xgKSj

i

for some s 2 1::r such that srv(s) = s4 (k) and Ik = (i; j;M).

We set:

W 0 = (snd ; srv 0; rcv ;X;E 0; �0; �0spec ; R2 j cjhzsi)

where srv 0 is identical to srv except that srv 0(s) = sent(k; L2�;L2�spec),
and

E0 �

= E; zs:f�gKSj

�0
�

= �; fS; i; j;KABk; L2�gKSj
=zs

�0spec
�

= �spec; fS; i; j;KABk; L2�specgKSj
=zs

With this de�nition, P 0 � (�~n)PW 0

and QW ! (�~n)QW 0

.

It remains to show that the world W 0 is possible. First, we note that
if srv(s0) = s4 (k) then s = s0, because srv(s) = s4 (k) and by condi-

tion (3). Therefore, all the instance sets ofW 0 equal those ofW , except
for:

XW 0

5 = XW
5 � fkg

XW 0

6 =

(
XW

6 [ fkg sometimes|when is unimportant

XW
6 otherwise

So conditions (1) and (2) hold for W 0. Since W satis�es conditions
(4) and (5), so does W 0, trivially. Condition (3) for W implies that

snd(k) = sent (NSs; NSs); it follows that condition (3) holds for W 0.

Condition (6) holds forW 0 because there can be no names in the ranges

of � and �spec, so, for any name n, either L2� = L2�spec = n or neither

L2� = n nor L2�spec = n. Conditions (7), (8), and (9) for W 0 are easy

consequences of the corresponding conditions for W .
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(6) The reaction PW ! P 0, where

P 0 � (�~n)(
Q
k2Ins A

W (k) j
Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W (j0; t0) j R2� j

case L2� of fy1; y2; y3; y4; y5gKSj
inQ

i2Prn[y1 is S] [y2 is i] [y3 is j] [y5 is NBjt]

B3 (i; j; �:F; y4))

arises when � is cj, and there is an input commitment

B2 (j; �:F;NBjt)
cj
�! (x)case x of fy1; y2; y3; y4; y5gKSj

inQ
i2Prn [y1 is S] [y2 is i] [y3 is j] [y5 is NBjt]

B3 (i; j; �:F; y4)

for some (j; t) 2 Prn � 1::r with rcv(j; t) = b2 .

We argue by cases on whether L2� is a ciphertext underKSj containing
NBjt as last �eld. By condition (8), since fn(L2) � fn(R)[ f~ng, L2� is
a ciphertext under KSj containing NBjt if and only if L2 is a variable

zs for some s 2 1::r such that srv(s) = sent (k;NBjt; L
0) for some k and

L0. In this case, L2� is fS; i; j;KABk; NBjtgKSj
where Ik = (i; j;M).

Thus, L2� determines k uniquely because of the presence of KABk. By
condition (6), L0 = NBjt and srv(s) = sent(k;NBjt; NBjt), so if L2 is zs
then L2� and L2�spec both equal fS; i; j;KABk; NBjtgKSj

. Conversely,
the form of L2�spec determines the form of L2�.

Assuming that L2� is of the form described, we can simplify P 0 as
follows:

P 0 � (�~n)(
Q
k2Ins A

W (k) j
Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W (j0; t0) j B3 (i; j; �:F;KABk) j

R2�)

We set:

W 0 = (snd ; srv ; rcv 0;X;E; �; �spec ; R2)

where rcv 0 is identical to rcv except that rcv 0(j; t) = b3 (k). With this
de�nition, P 0 � (�~n)PW 0

and QW ! (�~n)QW 0

.

It remains to check that the world W 0 is possible. All the instance sets

of W 0 equal those of W , except for:

XW 0

6 = XW
6 � fk0 where Ik0 = (i0; j;M 0) j

9s0 2 1::r(srv(s0) = sent (k0; NBjt; NBjt))g
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while k 2 XW
6

XW 0

7 = XW
7 [ fkg

In particular, k =2 XW 0

6 . Therefore, conditions (1) and (2) hold for W 0.

Conditions (3), (5), (6), (7), (8), and (9) hold for W , and it follows

easily that they continue to hold for W 0. Condition (4) holds for W 0

because srv (s) = sent (k;NBjt; NBjt).

On the other hand, if L2� is not of the form described, we can simplify

P 0 as follows:

P 0 �
� (�~n)(

Q
k2Ins A

W (k) j
Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W (j0; t0) j R2�)

We set:
W 0 = (snd ; srv ; rcv 0;X;E; �; �spec ; R2)

where rcv 0 is identical to rcv except that rcv 0(j; t) = stuck . With this
de�nition, P 0 �

� (�~n)PW 0

. Letting

Q0 �

= (�~n)(�pk
k2Ins)(

Q
k2Ins A

W
spec(k) j

Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W
spec(j

0; t0) j

case L2� of fy1; y2; y3; y4; y5gKSj
in : : : j

(
Q
k2X pk(x):F (i; j;M) where Ik = (i; j;M)) j

R2�spec)

where the omitted code gets stuck, we obtain QW ! Q0 �
� (�~n)QW 0

.

In this case, it is easy to check that the world W 0 is possible. All the

instance sets of W 0 equal those of W , except for:

XW 0

6 = XW
6 � fk where Ik = (i; j;M) j

9s 2 1::r(srv(s) = sent (k;NBjt; NBjt))g

so XW 0

6 � XW
6 .

(7) The reaction PW ! P 0, where

P 0 � (�~n)(
Q
k2Ins A

W (k) j
Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W (j0; t0) j R2� j

let (y1; y2) = L2� in

[y1 is i] case y2 of fzgKABk
in �:F (i; j; z))
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arises when � is cj, and there is an input commitment

B3 (i; j; �:F;KABk)
cj
�! (x)let (y1; y2) = x in

[y1 is i] case y2 of fzgKABk
in �:F (i; j; z)

for some k 2 Ins and (j; t) 2 Prn � 1::r such that rcv(j; t) = b3 (k)

and Ik = (i; j;M) for some M .

We argue by cases on whether L2� is a pair with �rst component i and

second component a ciphertext under KABk. By condition (8), L2�

has i as �rst component if and only if L2 has i as �rst component.

Similarly, since fn(L2) � fn(R) [ f~ng, the second component of L2�

is a ciphertext under KABk if and only if the second component of

L2 is yk and snd (k) = sent (L;L0) for some L and L0. In this case,
the second component of L2� is fMgKABk

. Thus, if L2 has the form
(i; yk), then L2� equals (i; fMgKABk

), while L2�spec equals (i; fpkgKABk
).

Conversely, the form of L2�spec determines the form of L2�.

Assuming that L2� is a pair of the form described, we can simplify P 0

as follows:

P 0 � (�~n)(
Q
k2Ins A

W (k) j
Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W (j0; t0) j R2� j �:F (i; j;M))

We set:
W 0 = (snd ; srv ; rcv 0;X;E; �; �spec ; R2)

where rcv 0 is identical to rcv except that rcv 0(j; t) = run(k). With this

de�nition, P 0 � (�~n)PW 0

and QW ! (�~n)QW 0

.

In order to check that the world W 0 is possible, we �rst consider the

instance sets of W 0. First, we argue that k =2 XW 0

7 . It su�ces to show

that if rcv (j; t0) = b3 (k) then in fact t = t0. Condition (4) for W
says that there exists s 2 1::r such that srv (s) = sent (k;NBjt; NBjt),
and that if rcv(j; t0) = b3 (k) then there exists s0 2 1::r such that

srv(s0) = sent (k;NBjt0; NBjt0). Condition (3) for W says that snd(k) =
sent(NSs; NSs) and snd (k) = sent(NSs0 ; NSs0). Therefore, s = s0 and

then t = t0. We conclude that k =2 XW 0

7 . We obtain that the instance

sets of W 0 equal those of W except for:

XW 0

7 = XW
7 � fkg while k 2 XW

7

XW 0

8 = XW
8 [ fkg
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So conditions (1) and (2) hold for W 0. Conditions (3), (4), (5), (6),

(7), (8), and (9) hold for W , and it follows easily that they continue to

hold for W 0.

On the other hand, if L2� is not of the form described, we can simplify

P 0 as follows:

P 0 �
� (�~n)(

Q
k2Ins A

W (k) j
Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W (j0; t0) j R2�)

We set:

W 0 = (snd ; srv ; rcv 0;X;E; �; �spec ; R2)

where rcv 0 is identical to rcv except that rcv 0(j; t) = stuck . With this
de�nition, P 0 �

� (�~n)PW 0

. Letting

Q0 �

= (�~n)(�pk
k2Ins)(

Q
k2Ins A

W
spec(k) j

Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W
spec(j

0; t0) j

let (y1; y2) = L2� in : : : j
(
Q
k2X pk(x):F (i; j;M) where Ik = (i; j;M)) j

R2�spec)

where the omitted code gets stuck, we obtain QW ! Q0 �
� (�~n)QW 0

.

The proof that W 0 is possible is almost identical to that just given for
the other case; the only change is that XW 0

8 = XW
8 .

This completes case (A).

In case (B), the reaction PW ! P 0, where

P 0 �
Q
k2Ins A

W (k) j
Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W (j0; t0) j F (i; j;M) j R�

arises from the � commitment

BW (j; t)
�
�! F (i; j;M)

for some (j; t) 2 Prn�1::r such that rcv (j; t) = run(k) and Ik = (i; j;M) for
some k 2 Ins. Note that k 2 X, since rcv(j; t) = run(k) implies k 2 XW

8 �

X. We set:

W 0 = (snd ; srv ; rcv 0;X 0; E; �; �spec; F (i; j;M) j R)
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where rcv 0 is identical to rcv except that rcv 0(j; t) = done and where X 0 =

X � fkg. With this de�nition, P 0 � PW 0

. Moreover, we have:

QW = (�pk
k2Ins)(

Q
k2Ins A

W (k) j
Q
s21::r S

W (s) jQ
(j;t)2Prn�1::rB

W
spec(j; t) j

(
Q
k2X pk(x):F (i; j;M) where Ik = (i; j;M)) j R�spec)

� (�pk
k2Ins)(

Q
k2Ins A

W (k) j
Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W
spec(j

0; t0) j

(
Q
k2X 0 pk(x):F (i; j;M) where Ik = (i; j;M)) j

pkh�i j pk(x):F (i; j;M) j R�spec)

! (�pk
k2Ins)(

Q
k2Ins A

W (k) j
Q
s21::r S

W (s) jQ
(j0;t0)2Prn�1::r�f(j;t)gB

W
spec(j

0; t0) j
(
Q
k2X 0 pk(x):F (i; j;M) where Ik = (i; j;M)) j

F (i; j;M) j R�spec)

� QW 0

In order to check that the world W 0 is possible, we �rst argue that k =2 XW 0

8 .
It su�ces to show that if rcv(j; t0) = run(k) then in fact t = t0. Condition (4)
for W says that there exists s 2 1::r such that srv(s) = sent (k;NBjt; NBjt),
and that if rcv(j; t0) = run(k) then there exists s0 2 1::r such that srv(s0) =
sent (k;NBjt0; NBjt0). Condition (3) for W says that snd(k) = sent (NSs; NSs)

and snd(k) = sent(NSs0 ; NSs0). Therefore, s = s0 and then t = t0. We
conclude that k =2 XW 0

8 . We obtain that the instance sets of W 0 equal those
of W except for:

XW 0

8 = XW
8 � fkg

So conditions (1) and (2) hold for W 0. Conditions (3), (4), (5), (6), (7), (8),

and (9) hold for W , and it follows easily that they continue to hold for W 0.

For condition (9), we rely on the fact that F (i; j;M) is a closed process and

that it cannot contain free occurrences of any of the names pk, KiS , KSj ,
KABk. (The abstraction F cannot contain free occurrences of those names
because of our general convention that bound parameters of the protocol do

not occur free in F . The termM cannot because it is part of the arguments

to Sys and Sysspec .)
Finally, in case (C), the reaction PW ! P 0, where

P 0 �
Q
k2Ins A

W (k) j
Q
s21::r S

W (s) j
Q

(j;t)2Prn�1::rB
W (j; t) j R1
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arises from the � commitment R�
�
�! R1. Lemma 9(2) implies that there is

a process R2 such that E ` R2, fv (R2) � fv(R), fn(R2) � fn(R), R1 = R2�,

and R�spec
�
�! R2�spec. We set:

W 0 = (snd ; srv ; rcv ;X;E; �; �spec; R2)

With this de�nition, P 0 � PW 0

and Q ! QW 0

; moreover, W 0 is a possible

world.

This concludes the proof of the authenticity property, Proposition 21. 2

Proposition 21 is rather strong, so we obtain the secrecy property as a
corollary:

Proposition 22 If each pair (I1; J1), . . . , (Im; Jm) is indistinguishable, then

Sys(I1; : : : ; Im) ' Sys(J1; : : : ; Jm)

Proof When I = (i; j;M) and J = (i; j;M 0), the pair (I; J) is indis-

tinguishable only if F (i; j;M) ' F (i; j;M 0). Using the fact that testing
equivalence is a congruence (Proposition 1), we obtain:

A1 spec(I; F ) = (�p)(A1 (i; j; p) j p(x):F (i; j;M))

' (�p)(A1 (i; j; p) j p(x):F (i; j;M 0))

= A1 spec(J; F )

If each pair (I1; J1), . . . , (Im; Jm) is indistinguishable, then Propositions 1
and 21 permit the following calculation:

Sys(I1; : : : ; Im) ' Sys spec(I1; : : : ; Im)

= (�KiS
i2Prn)(�KSj

j2Prn)
(
Q
k2Ins A1 spec(Ik; F ) j !S1 j

Q
j2Prn !B1 (j; Fspec))

' (�KiS
i2Prn)(�KSj

j2Prn)

(
Q
k2Ins A1 spec(Jk; F ) j !S1 j

Q
j2Prn !B1 (j; Fspec))

= Sys spec(J1; : : : ; Jm)

' Sys(J1; : : : ; Jm)

This completes the proof of the secrecy property. 2
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7 Further Cryptographic Primitives

Although so far we have discussed only shared-key cryptography, other kinds

of cryptography are also easy to treat within the spi calculus. In this section

we show how to handle cryptographic hashing, public-key encryption, and

digital signatures. We add syntax for these operations to the spi calculus and

give their semantics. We thus provide evidence that our ideas are applicable

to a wide range of security protocols, beyond those that rely on shared-key

encryption. We believe that we may be able to deal similarly with Di�e-

Hellman techniques and with secret sharing. However, protocols for oblivious

transfer and for zero-knowledge proofs, for example, are probably beyond the
scope of our approach.

7.1 Hashing

A cryptographic hash function has the properties that it is very expensive to
recover an input from its image or to �nd two inputs with the same image.
Functions such as SHA and RIPE-MD are generally believed to have these

properties [Sch94].
When we represent hash functions in the spi calculus, we pretend that

operations that are very expensive are altogether impossible. We simply add
a construct to the syntax of terms of the spi calculus:

L;M;N ::= terms
: : : as in Section 3.1
H(M) hashing

The syntax of processes is unchanged. Intuitively,H(M) represents the hash

of M . The absence of a construct for recovering M from H(M) corresponds

to the assumption that H cannot be inverted. The lack of any equations

H(M) = H(M 0) corresponds to the assumption that H is free of collisions.

7.2 Public-Key Encryption and Digital Signatures

Traditional public-key encryption systems are based on key pairs. Normally,
one of the keys in each pair is private to one principal, while the other key

is public. Any principal can encrypt a message using the public key; only a

principal that has the private key can then decrypt the message.
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We assume that neither key can be recovered from the other. We could

just as easily deal with the case where the public key can be derived from

the private one. Much as in Section 3.1, we also assume that the only way to

decrypt an encrypted packet is to know the corresponding private key; that

an encrypted packet does not reveal the public key that was used to encrypt

it; and that there is su�cient redundancy in messages so that the decryption

algorithm can detect whether a ciphertext was encrypted with the expected

public key.

We arrive at the following syntax for the spi calculus with public-key

encryption. (This syntax is concise, rather than memorable.)

L;M;N ::= terms

: : : as in Section 3.1
M+ public part
M� private part
f[M ]gN public-key encryption

P;Q ::= processes

: : : as in Section 3.1
case L of f[x]gN in P decryption

If M represents a key pair, then M+ represents its public half and M�

represents its private half. Given a public key N , the term f[M ]gN represents
the result of the public-key encryption ofM withN . In case L of f[x]gN in P ,
the variable x is bound in P . This construct is useful when N is a private key

K�; then it binds x to the M such that f[M ]gK+ is L, if such an M exists.
It is also common to use key pairs for digital signatures. Private keys are

used for signing, while public keys are used for checking signatures. We can

represent digital signatures through the following extended syntax:

L;M;N ::= terms

: : : as above
[fMg]N private-key signature

P;Q ::= processes

: : : as above

case N of [fxg]M in P signature check
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Given a private key N , the term [fMg]N represents the result of the signa-

ture of M with N . Again, the variable x is bound in P in the construct

case N of [fxg]M in P . This construct is dual to case L of f[x]gN in P . The

new construct is useful when N is a public key K+; then it binds x to the

M such that [fMg]K� is L, if such an M exists. (Thus, we are assuming that

M can be recovered from the result of signing it; but there is no di�culty in

dropping this assumption.)

Formally, the semantics of the new constructs is captured with two new

rules for the reduction relation:

(Red Public Decrypt) case f[M ]gN+ of f[x]gN� in P > P [M=x]
(Red Signature Check) case [fMg]N� of [fxg]N+ in P > P [M=x]

We believe that our basic theoretical results for the spi calculus still apply.
As a small example, we can write the following public-key analogue for

the protocol of Section 3.2.1:

A(M)
�

= cABhf[M; [fH(M)g]K�

A
]gK+

B
i

B
�

= cAB(x):case x of f[y]gK�

B
in

let (y1; y2) = y in

case y2 of [fzg]K+

A
in

[H(y1) is z] F (y1)

Inst(M)
�

= (�KA)(�KB)(A(M) j B)

In this protocol, A sends M on the channel cAB, signed with A's private key

and encrypted under B's public key; the signature is applied to a hash of M
rather than to M itself. On receipt of a message on cAB, B decrypts using
its private key, checks A's signature using A's public key, checks the hash,
and applies F to the body of the message (toM). The key pairs KA and KB

are restricted; but there would be no harm in sending their public parts K+
A

and K+
B on a public channel.

Undoubtedly, other formalisations of public-key cryptography are possi-
ble, perhaps even desirable. In particular, we have represented cryptographic

operations at an abstract level, and do not attempt to model closely the prop-

erties of any one algorithm. We are concerned with public-key encryption
and digital signatures in general rather than with their RSA implementa-

tions, say. The RSA system satis�es equations that our formalisation does
not capture. For example, in the RSA system, [ff[M ]gK+g]K� equals M . We

leave the treatment of those equations for future work.
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8 Conclusions

We have applied both the standard pi calculus and the new spi calculus in

the description and analysis of security protocols. As examples, we chose

protocols of the sort commonly found in the authentication literature. We

showed how to represent the protocols, how to express their security proper-

ties, and how to prove some of these properties. Our model of protocols takes

into account the possibility of attacks, but does not require writing explicit

speci�cations for an attacker. In particular, we express secrecy properties as

simple equations that mean indistinguishability from the point of view of an

arbitrary attacker. To our knowledge, this sharp treatment of attacks has
not been previously possible.

Although our examples are small, we have found them instructive. Some

of the techniques that we developed may be amenable to automation; the
experience in other process algebras is encouraging. Moreover, there seems
to be no fundamental di�culty in writing other kinds of examples, such
as protocols for electronic commerce. Unfortunately, the speci�cations for
those protocols do not yet seem to be fully understood, even in informal

terms [Mao96].
In both the pi calculus and the spi calculus, restriction and scope extru-

sion play a central role. The pi calculus provides an abstract treatment of
channels, while the spi calculus expresses the cryptographic operations that
usually underlie channels in systems for distributed security. Thus, the pi

calculus and the spi calculus are appropriate at di�erent levels.
Those two levels are however related. In particular, as we have discussed

brie
y, we can specify a security protocol abstractly and then implement it
using cryptography. Similarly, we may give an API (application program-
ming interface) for secure channels and implement it on top of an API for
cryptography. In more formal terms, it should be possible to de�ne crypto-

graphic implementations for the pi calculus, translating restricted channels

into public channels with encryption. Implementation relations such as these
are useful in practice; they seem worth studying further.
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Appendices

A Encoding Encryption in the Pi Calculus

Before inventing the spi calculus, we considered but rejected several schemes

for encoding encryption within the pi calculus.

An obvious �rst idea is to represent keys as channels, and encrypted

communication as communication on restricted channels. This scheme works

reasonably well in some examples, but it is not clear how to turn it into a

general encoding. For example, it is not straightforward to represent data
encrypted under several keys.

Milner has shown how to represent a piece of data as a process located

at a channel m, that is, a process listening on channel m. A second scheme
for encoding encryption extends Milner's idea. Let F be a pi calculus ab-
straction (a process with an abstracted name) that represents some data.
We can represent F encrypted with K, to be located at m, by the following
abstraction:

fFgK
�

= (m)m(J; n):[J is K] F (n)

Given a channelm, the right-hand side is a process that inputs the pair (J; n)
o� channel m. If J is the key K, then it runs F with the abstracted variable
instantiated to n; otherwise it does nothing. In other words, it o�ers access
to F to anyone who can provide the secret key K. We can then represent

an abstraction that attempts to decrypt such an encrypted datum, located
at m, and locates the result at its parameter n, as follows:

Decrypt(m;K)
�

= (n)mh(K;n)i

When we locate these abstractions at namesm and n, we obtain the reactions:

fFgK(m) j Decrypt(m;K)(n)!� F (n)

This representation certainly prevents anybody from accessing F unless they

know K. But it allows attacks:

(1) An agent who possesses a secret key must transmit it to the process

representing the encrypted data. In the simple scheme described here
there is nothing to stop an attacker from impersonating encrypted data

and thereby obtaining the corresponding secret key.
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(2) After decryption there is no guarantee that the message returned was

really encrypted with the secret key. An attacker could masquerade as

a piece of encrypted data and provide an incorrect message to anyone

who asks.

A third scheme is based on a mild extension of the pi calculus in which

channels may be multi-names, that is, tuples of names. We modify the encod-

ing above so that the encrypted process fFgK(m) inputs n o� the multi-name

channel (m;K). Decryption amounts to sending n on this multi-name. Syn-

chronisation on the pair (m;K) guarantees simultaneously that both parties

know both the location m of the data and the secret keyK. The two attacks
above are therefore no longer possible. This scheme is attractive, because it

enables us to remain close to the standard pi calculus. Unfortunately, this
scheme does not account for protocols in which keys are made by hashing
data, for instance.

A fourth scheme relies on a process, the \Global Cryptographic Device"
(GCD for short), trusted by all participants; GCD mediates all encryption

and decryption via a global list of encrypted messages. In this scheme there
would be a private channel between each participant and GCD used by the
participant to invoke encryption or decryption. To decrypt a message, the
participant would send the necessary secret key to GCD, rather than to
the purported encrypted message. We are reluctant to pursue this scheme
because of its complexity.

Having syntax both for processes and data, as in the spi calculus, gives
us advantages over these schemes. First, we avoid having to encode data
as processes. In addition, we can axiomatise encryption and decryption,
for both shared-key and public-key cryptography, directly in our operational
semantics. This higher-level approach appears to be more convenient to

work with than any approach based on encodings, while retaining many of
the fundamental ideas of the pi calculus.

B Proofs about Commitment

In this section we prove Propositions 2, 3, and 4, from Section 5.1, which

connect the relations of reaction, commitment, and exhibition of a barb.
We begin with a lemma that relates the free names of a process to the

free names of any agent to which it commits.
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Lemma 23

(1) If P
�
�! Q then fn(Q) � fn(P ).

(2) If P
m
�! (x)Q then fmg [ fn(Q) � fn(P ).

(3) If P
m
�! (�~n)hMiQ then fmg [ fn((�~n)hMiQ) � fn(P ) and f~ng �

fn(M).

Proof By induction on the derivation of the commitment. 2

The purpose of the next lemma is to show that P
�
�! Q implies P ! Q,

half of Proposition 3.

Lemma 24

(1) If P
m
�! (x)Q then there are Q1, Q2, and names ~p such that m =2 f~pg,

P � (�~p)(Q1 j m(x):Q2), and Q[M=x] � ((�~p)(Q1 j Q2))[M=x] for any
closed M .

(2) If P
m
�! (�~n)hMiQ then there are Q1, Q2, and names ~p such that

m =2 f~pg, fn(M) \ f~pg = ;, P � (�~n; ~p)(Q1 j mhMi:Q2), and Q �
(�~p)(Q1 j Q2).

(3) If P
�
�! Q then P ! Q.

Proof In each case, by induction on the derivation of the commitment
of P . 2

The key fact we need for the other direction of Proposition 3 is that
structural equivalence is a strong bisimulation.

Lemma 25 P � Q implies that:

(1) whenever P
�
�! A there is B with Q

�
�! B and A � B;

(2) whenever Q
�
�! B there is A with P

�
�! A and A � B.

Hence structural equivalence is a strong bisimulation.

Proof By induction on the derivation of P � Q.

First, we consider the possibility that P � Q is an instance of one of the

six basic equations of structural equivalence. We show two representative
cases.
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(Struct Switch) Here P = (�m)(�n)R and Q = (�n)(�m)R. The case

where m and n are the same is trivial. In the case where m and n

are distinct, we examine the commitments of R, which determine the

commitments of both P and Q.

� R
p
�! (x)R0. If p 2 fm;ng then neither P nor Q has a commit-

ment. Otherwise, the only commitments of P and Q are:

P
p

�! (x)(�m)(�n)R0 and Q
p
�! (x)(�n)(�m)R0

We have ((�m)(�n)R0)[M=x] � ((�n)(�m)R0)[M=x] for any closed

M , so we are done.

� R
�
�! R0. The only commitments of P and Q are:

P
�
�! (�m)(�n)R0 and Q

�
�! (�n)(�m)R0

and we have (�m)(�n)R0 � (�n)(�m)R0.

� R
p
�! (�~n)hMiR0. We may assume that the set of bound names

f~ng is disjoint from fm;ng. If p 2 fm;ng then neither P nor Q
has a commitment. Otherwise, the only commitment of P is one

of the following:

(1) P
p

�! (�~n)hMi(�m)(�n)R0 if m =2 fv(M) and n =2 fv (M);

(2) P
p

�! (�m;~n)hMi(�n)R0 if m 2 fv (M) and n =2 fv(M);

(3) P
p

�! (�n; ~n)hMi(�m)R0 if m =2 fv (M) and n 2 fv(M);

(4) P
p

�! (�m; n; ~n)hMiR0 if m 2 fv (M) and n 2 fv (M).

In each case the only commitment of Q matches the commitment

of P . In case (4), Q
p
�! (�n;m;~n)hMiR0 and we have:

(�m; n; ~n)hMiR0 � (�n;m;~n)hMiR0

since the de�nition of � allows the restricted names to be per-
muted. (If this permutation were not allowed, (Struct Switch)

would prevent structural equivalence from being a strong bisimu-

lation.)

In each of these cases, the lemma's parts (1) and (2) follow.

(Struct Drop) Here P = (�m)0 and Q = 0. Therefore, neither P nor Q

has any commitments, so they trivially satisfy parts (1) and (2).
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The cases for (Struct Nil) and (Struct Comm) are simple. The cases for

(Struct Extrusion) and (Struct Assoc) involve larger case analyses|but are

no harder|than the cases shown.

Second, we consider the possibility that P � Q is obtained through one

of the inference rules of structural equivalence.

(Struct Red) Here P > Q. By inspecting the de�nition of the reduction

relation, we can see that the only commitment rule that applies to P

is (Comm Red). Moreover, if P > Q0 then Q0 is Q. Therefore for any

� and A, we have that P
�
�! A i� Q

�
�! A. Since � is re
exive,

parts (1) and (2) follow.

(Struct Re
) Here P = Q, so parts (1) and (2) follow at once.

(Struct Symm) Here P � Q is obtained from Q � P . Part (2) of the
induction hypothesis supplies part (1) of what is to be proved; part (1)
of the induction hypothesis supplies the other part.

(Struct Trans) Here P � Q is obtained from P � P 0 and P 0 � Q, for some
intermediate process P 0. For part (1), suppose that P

�
�! A. Since

P � P 0, the induction hypothesis implies that there is an agent A0 such
that P 0 �

�! A0 and A � A0. Since P 0 � Q, the induction hypothesis
implies that there is an agent B such that Q

�
�! B and A0 � B. Since

� is transitive, so is �. Therefore we have A � B, completing the
proof of part (1). Part (2) follows by symmetry.

(Struct Par) Here P � Q is obtained from P1 � Q1 with P = P1 j R and
Q = Q1 j R. For part (1), suppose that P

�
�! A. There are four cases

to consider.

(Comm Inter 1) Here � = � , P1
m
�! (x)P2, R

m
�! (�~n)hMiR0, and

A = (�~n)(P2[M=x] j R0). By induction hypothesis, there exists Q2

such that Q1
m
�! (x)Q2 and (x)P2 � (x)Q2. Therefore, since M

is closed, P2[M=x] � Q2[M=x]. We let B = (�~n)(Q2[M=x] j R0).

By (Comm Inter 1), we have Q
�
�! B. Moreover A � B, since

(�~n)(P2[M=x] j R0) � (�~n)(Q2[M=x] j R0)

and A and B are processes.

89



(Comm Inter 2) Here � = � , P1
m
�! (�~n)hMiP2, R

m
�! (x)R0, and

A = (�~n)(P2 j R
0[M=x]). By induction hypothesis, there exist

Q2 and ~m such that Q1
m
�! (� ~m)hMiQ2, P2 � Q2, and ~m is a

permutation of ~n. We let B = (� ~m)(Q2 j R
0[M=x]). By (Comm

Inter 2), we have Q
�
�! B and A � B, since

(�~n)(P2 j R
0[M=x]) � (�~n)(Q2 j R

0[M=x])

and then, by (Struct Switch) and (Struct Res),

(�~n)(P2 j R
0[M=x]) � (� ~m)(Q2 j R

0[M=x])

(Comm Par 1) Here P1
�
�! A1 and A = A1 j R. By induction

hypothesis, there exists B1 such that Q1
�
�! B1 and A1 � B1.

We let B = B1 j R. By (Comm Par 1), we have Q
�
�! B.

Whether A1 and B1 are processes, abstractions, or concretions,

A1 � B1 implies A1 j R � B1 j R.

(Comm Par 2) Here R
�
�! A1 and A = P j A1. By (Comm Par 2),

we have Q
�
�! Q j A1. Whether A1 is a process, an abstraction,

or a concretion, P � Q implies P j A1 � Q j A1.

This completes the proof of part (1); part (2) follows by symmetry.

(Struct Res) Here P � Q is obtained from P1 � Q1, where P = (�m)P1

and Q = (�m)Q2. Again by symmetry we need to consider only
part (1). Suppose that P

�
�! A. The rule (Comm Res) is the only one

that can yield a commitment from a restriction. So there must be A1

such that P1
�
�! A1 with � =2 fm;mg and A = (�m)A1. By induction

hypothesis, there is B1 with Q1
�
�! B1 and A1 � B1. By (Struct Res),

we have Q
�
�! (�m)B1. Whether A1 and B1 are processes, abstrac-

tions, or concretions, A1 � B1 implies (�m)A1 � (�m)B1. Therefore
part (1) follows. 2

We can now prove the three propositions claimed in Section 5.1.

Proof of Proposition 2 P # � i� 9A(P
�
�! A).

Proof This is not entirely trivial, as the # relation is de�ned using struc-

tural equivalence, but the transition relation
�
�! is not. We can easily show
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that P
�
�! A implies P # � by induction on the derivation of P

�
�! A,

using (Barb Struct) where necessary. On the other hand, we can show that

P # � implies 9A(P
�
�! A) by induction on the derivation of P # �. The

case of (Barb Struct) needs the fact that if 9A(P
�
�! A) and P � Q then

9A(Q
�
�! A) also, which follows from Lemma 25. 2

Proof of Proposition 3 P ! Q i� P
�
�!� Q.

Proof For the backwards direction suppose P
�
�! R and R � Q. By

Lemma 24(3), P ! R, and then P ! Q by (React Struct).
We can show that P ! Q implies that there exists R such that P

�
�! R

and R � Q by induction on the derivation of P ! Q. The only interesting
case is (React Struct). Suppose that P ! Q follows from P � P 0, P 0 ! Q0,
and Q0 � Q. By induction hypothesis, P 0 �

�! Q00 with Q00 � Q0. By
Lemma 25, structural equivalence is a strong bisimulation, so P

�
�! R for

some R such that R � Q00. This with the previous equations gives R � Q as

required. 2

Proof of Proposition 4 P passes a test (R;�) i� there exist an agent A

and a process Q such that P j R
�
�!

�

Q and Q
�
�!A.

Proof By de�nition, P passes a test (R;�) i� P j R + �, which holds i�

there is Q with P j R!� Q and Q # �, which by (Barb Struct), Lemma 25,
and Propositions 2 and 3 is equivalent to there being Q and A with P j

R
�
�!

�

Q and Q
�
�! A. 2

C Proofs about Replication

This section is devoted to lemmas concerning the interaction between repli-
cation and commitment, reaction, and convergence.

Lemma 26

(1) If !P
m
�! (x)Q, then there is R with P

m
�! (x)R and Q[M=x] �

R[M=x] j !P for any closed M .

(2) If !P
m
�! (�~n)hMiQ, then there is R with P

m
�! (�~n)hMiR and Q �

R j !P .
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(3) If !P
�
�! Q, then there is R with P j P

�
�! R and Q � R j !P .

Proof

(1) By induction on the derivation of !P
m
�! (x)Q. Such a commitment

must be derived from P j !P
m
�! (x)Q via (Comm Red) and (Red

Repl). The latter commitment must be derived from (Comm Par 1) or

(Comm Par 2). In the �rst case, we have P
m
�! (x)R and Q = R j !P ,

so we are done. In the second case, we have !P
m
�! (x)R0 and Q =

P j R0. By induction hypothesis, there is R such that P
m
�! (x)R and

R0[M=x] � R[M=x] j !P for any closed M . Hence, for any closed M ,
Q[M=x] � P j R[M=x] j !P � R[M=x] j !P , so we are done.

(2) By induction on the derivation of !P
m
�! (�~n)hMiQ. Such a com-

mitment must be derived from P j !P
m
�! (�~n)hMiQ via (Comm

Red) and (Red Repl). The latter commitment must be derived from
(Comm Par 1) or (Comm Par 2). In the �rst case, we immediately

have P
m
�! (�~n)hMiR and Q = R j !P . In the second case, we

have !P
m
�! (�~n)hMiR0 and Q = P j R0. By induction hypothe-

sis, there is R such that P
m
�! (�~n)hMiR and R0 � R j !P . Hence

Q � P j R j !P � R j !P .

(3) By induction on the derivation of !P
�
�! Q. Such a commitment must

be derived from P j !P
�
�! Q via (Comm Red) and (Red Repl). There

are four rules that could yield the latter commitment.

(Comm Par 1) Here P
�
�! R0 and Q = R0 j !P . Let R = R0 j P .

We may derive P j P
�
�! R by (Comm Par 1) and indeed Q �

R0 j P j !P � R j !P .

(Comm Par 2) Here !P
�
�! R0 and Q = P j R0. By induction

hypothesis, there is R such that P j P
�
�! R and R0 � R j !P .

Since Q � P j R j !P � R j !P , we are done.

(Comm Inter 1) Here P
m
�! (x)P1 and !P

m
�! (�~n)hMiP2 with

Q = (�~n)(P1[M=x] j P2). By part (2), there is R such that P
m
�!

(�~n)hMiR and P2 � R j !P . By (Comm Inter 1), P j P
�
�!

(�~n)(P1[M=x] j R) and we can calculate the following:

Q = (�~n)(P1[M=x] j P2)
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� (�~n)(P1[M=x] j R j !P )

� (�~n)(P1[M=x] j R) j !P

The last step uses (Struct Extrusion), and the fact that we may

assume that the bound names f~ng do not occur free in P .

(Comm Inter 2) Here P
m
�! (�~n)hMiP1 and !P

m
�! (x)P2 withQ =

(�~n)(P1 j P2[M=x]). By part (1), there is R such that P
m
�! (x)R

with P2[M=x] � R[M=x] j !P . By (Comm Inter 2), P j P
�
�!

(�~n)(P1 j R[M=x]) and we can calculate:

Q = (�~n)(P1 j P2[M=x])

� (�~n)(P1 j (R[M=x] j !P ))

� (�~n)(P1 j R[M=x]) j !P

The last step uses (Struct Extrusion) and the fact that we may

assume that the bound variable x and the bound names f~ng are
not free in P .

This completes the proof of part (3). 2

Intuitively, part (3) states that any reaction of !P can be obtained from
two copies of P running in parallel. As Pierce and Sangiorgi [PS93] have
remarked, we can strengthen part (3) to require only one copy of P , but this
stronger property would fail for an extended language with a choice construct.
The claim with two copies would remain true for such an extended language.

Lemma 27 Suppose !P j R
�
�! Q. Then there is Q0 such that Q � !P j Q0

and P j P j R
�
�! Q0.

Proof By case analysis of the rules that could yield !P j R
�
�! Q.

(Comm Par 1) Here !P
�
�! P 0 and Q = P 0 j R. By Lemma 26 there is

P 00 with P j P
�
�! P 00 and P 0 � P 00 j !P . Let Q0 = P 00 j R. By (Comm

Par 1), P j P j R
�
�! Q0, and Q � P 00 j !P j R � !P j Q0.

(Comm Par 2) Here R
�
�! R0 and Q = !P j R0. Let Q0 = P j P j R0. By

(Comm Par 2) twice, P j P j R
�
�! Q0. Moreover, Q � !P j P j P j

R0 � !P j Q0.
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(Comm Inter 1) Here !P
m
�! (x)P1 and R

m
�! (�~n)hMiR0 with Q =

(�~n)(P1[M=x] j R0). By Lemma 26 there is P2 with P
m
�! (x)P2 and

P1[M=x] � P2[M=x] j !P . Let Q0 = (�~n)(P j P2[M=x] j R0). By

(Comm Par 2) and (Comm Inter 1), P j P j R
�
�! Q0. Moreover,

Q � (�~n)((P2[M=x] j !P ) j R0) � !P j Q0, since we may assume that

the bound names f~ng and the bound variable x do not occur free in P .

(Comm Inter 2) Here !P
m
�! (�~n)hMiP1 and R

m
�! (x)R0 with Q =

(�~n)(P1 j R
0[M=x]). By Lemma 26 there is P2 with P

m
�! (�~n)hMiP2

and P1 � P2 j !P . Let Q
0 = (�~n)(P j P2 j R

0[M=x]). By (Comm Par 2)
and (Comm Inter 2), P j P j R

�
�! Q0. Moreover, Q � (�~n)(P2 j !P j

R0[M=x]) � !P j Q0. 2

For n � 0, we let P !n Q mean that P = P0 ! P1 ! P2 ! � � � ! Pn =
Q for some processes P0, P1, . . . , Pn.

Lemma 28

(1) Whenever !P j R !n Q there is Q0 with (
Q
i21::2nP ) j R !n Q0 and

Q � !P j Q0.

(2) Whenever !P j R + � there is n such that (
Q
i21::n P ) j R + �.

Proof

(1) By induction on n. In case n = 0, !P j R = Q, so we let Q0 = R.
Otherwise, we assume that the claim holds for n, and prove it for n+1.

We suppose, then, the following:

!P j R!n Qn ! Q

By induction hypothesis, there is Q0
n with

(
Q
i21::2nP ) j R!n Q0

n

and Qn � !P j Q0
n. By Proposition 3, !P j Q0

n ! Q implies that
!P j Q0

n

�
�! Q� for some Q� � Q. By Lemma 27, it follows that there

is Q0 such that P j P j Q0
n

�
�! Q0 and Q� � !P j Q0, so Q � !P j Q0.

By Proposition 3, it follows that P j P j Q0
n ! Q0. By (React Par), we

obtain:

(
Q
i21::2(n+1)P ) j R � P j P j (

Q
i21::2nP ) j R!n P j P j Q0

n ! Q0

and thus (
Q
i21::2(n+1)P ) j R!n+1 Q0 and Q � !P j Q0.
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(2) If !P j R + � then there must be n and Q such that !P !n Q and

Q # �. By the previous part, there is Q0 with (
Q
i21::2nP ) j R !n Q0

and Q � !P j Q0. We have !P j Q0 # �; hence P j Q0 # �, by Lemma 26

and Proposition 2. By (React Par), we obtain:

(
Q
i21::2n+1 P ) j R � P j (

Q
i21::2nP ) j R!n P j Q0 # �

and hence (
Q
i21::2n+1 P ) j R + �. 2

Proposition 29 If (�~p)(P1 j
Q
i21::n P2) ' (�~p)(Q1 j

Q
i21::nQ2) for all n �

0, then (�~p)(P1 j !P2) ' (�~p)(Q1 j !Q2).

Proof Assume that (�~p)(P1 j
Q
i21::nP2) ' (�~p)(Q1 j

Q
i21::nQ2) for all

n � 0. Consider an arbitrary test (R;�), and suppose that (�~p)(P1 j !P2)
passes this test, that is, (�~p)(P1 j !P2) j R + �. We may assume without
loss of generality that the bound names ~p do not occur in R or �. By

Lemmas 31(1, 5) and 28(2) there exists n such that (�~p)(P1 j
Q
i21::n P2) j

R + �. By hypothesis, we have (�~p)(Q1 j
Q
i21::nQ2) j R + � also. Since

!Q1 � !Q1 j
Q
i21::nQ1, Lemma 31(1{2, 5) yields (�~p)(Q1 j !Q2) j R + �,

that is, (�~p)(Q1 j !Q2) passes (R;�). Thus, (�~p)(Q1 j !Q2) passes the same
tests as (�~p)(P1 j !P2). Symmetrically, (�~p)(P1 j !P2) passes the same tests

as (�~p)(Q1 j !Q2). We conclude that (�~p)(P1 j !P2) ' (�~p)(Q1 j !Q2). 2

Proposition 30 !(P j Q) ' !P j !Q.

Proof First, we prove !(P j Q) v !P j !Q. Suppose that !(P j Q) j R + �

for some arbitrary test (R;�). By Lemma 28(2) there exists n such thatQ
i21::n(P j Q) j R + �. By Lemma 31(1), (

Q
i21::n P ) j (

Q
i21::nQ) j R + �.

By Lemma 31(2), !P j !Q j (
Q
i21::n P ) j (

Q
i21::nQ) j R + �. By Lemma 31(1),

!P j !Q j R + �. Thus, !P j !Q passes the same tests as !(P j Q).

Second, we prove !P j !Q v !(P j Q). Suppose that !P j !Q j R + �

for some arbitrary test (R;�). Applying Lemma 28(2) twice, we obtain

that there exist m and n such that (
Q
i21::mP ) j (

Q
i21::nQ) j R + �. By

Lemma 31(2),

!(P j Q) j (
Q
i21::mQ) j (

Q
i21::nP ) j (

Q
i21::m P ) j (

Q
i21::nQ) j R + �

Since !(P j Q) � !(P j Q) j (
Q
i21::mQ) j (

Q
i21::n P ) j (

Q
i21::mP ) j (

Q
i21::nQ),

Lemma 31(1) yields !(P j Q) j R + �. Thus, !(P j Q) passes the same tests

as !P j !Q. 2
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D Proofs about Equivalences

D.1 Testing Equivalence

The following are auxiliary facts needed for the proofs in this section.

Lemma 31

(1) P + � and P � Q imply Q + �.

(2) P + � implies P j Q + �.

(3) If (�m)P
�
�! R there is Q with P

�
�! Q and R = (�m)Q.

(4) If (�m)P # � then P # � and � =2 fm;mg.

(5) (�m)P + � i� P + � and � =2 fm;mg.

Proof

(1) By analysis of the last rule of the derivation of P + �. In case (Conv

Barb), we have P # �. By (Barb Struct), Q # � too. By (Conv Barb),
Q + �. In case (Conv React), we have P ! P 0 and P 0 + �. By (React
Struct), we have Q! P 0, and then by (Conv React) Q + �.

(2) By induction on the derivation of P + �, using rules (Barb Par) and
(React Par).

(3) (Comm Res) is the only rule that might yield (�m)P
�
�! R. Hence

there is Q with P
�
�! Q and R = (�m)Q.

(4) By Proposition 2, there isA such that (�m)P
�
�! A. This commitment

can only have been derived from (Comm Res), and so it must be that

A = (�m)B with P
�
�! B and � =2 fm;mg. By Proposition 2 again,

we obtain P # �.

(5) Suppose that P + � with � =2 fm;mg. Therefore, there is Q with

P !� Q and Q # �. By Proposition 3, there is Q0 with P
�
�!

�

Q0

and Q0 � Q. By repeated use of (Comm Res), (�m)P
�
�!

�

(�m)Q0, so
(�m)P!� (�m)Q by Proposition 3 since (�m)Q0 � (�m)Q. Moreover,

(�m)Q # � by (Barb Res). Therefore, (�m)P + �.
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If (�m)P + �, then there must be Q0 with (�m)P!�Q0 and Q0 # �. By

Proposition 3, there is Q00 such that (�m)P
�
�!

�

Q00 and Q00 � Q0. By

repeated use of part (3), there isQ such that P
�
�!

�

Q andQ00 = (�m)Q.

By (Barb Struct), Q0 # � implies Q00 # �, and part (4) yields Q # �

with � =2 fm;mg. Finally, P
�
�!

�

Q implies P !� Q by Proposition 3;

combining this with Q # �, we obtain P + �. 2

Lemma 32 � � '.

Proof Lemma 31(1) says that if P + � and P � Q then Q + �. The result

then follows from the de�nition of ' in terms of +. 2

If R is a relation on closed processes, we let its open extension R� be the

relation on arbitrary processes such that PR�Q if and only if P� R Q� for
any substitution � of closed terms for variables such that both P� and Q�

are closed.
A congruence on closed processes is an equivalence relation S on closed

processes such that P S Q implies C[P ] S C[Q] for every closed context C.

Similarly, a congruence on open processes is an equivalence relation S on
open processes such that P S Q implies C[P ] S C[Q] for every context C.
The notion of precongruence is analogous, except that a precongruence must
be a preorder instead of an equivalence relation.

We give an alternative characterisation of congruence and precongruence

that avoids the use of contexts. When R is a relation on open processes, we
let its compatible re�nement cR be the relation on open processes given by
the rules in Figure 3.

Lemma 33 Suppose thatR is a preorder. Then R is a precongruence (closed

under arbitrary contexts) i� cR � R.

See [Gor95] for the proof of a similar proposition.

Lemma 34 The open extension of testing equivalence, '�, is a congruence.

Proof Since v� is clearly a preorder, it su�ces to show that cv� � v�.
Given two open processes P 0 and Q0, we assume that P 0 cv� Q0 and prove

that P 0 v� Q0. For this proof, we show that, for every test (R;�) and every
substitution � for the free variables of P 0 and Q0, if P 0� passes (R;�) then

Q0� passes (R;�). According to Proposition 4, it su�ces to assume that
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(Comp Out)

P R Q

M hNi:P cRM hNi:Q

(Comp In)

P R Q

M(x):P cRM(x):Q

(Comp Par)

P1 R Q1 P2 R Q2

P1 j P2
cR Q1 j Q2

(Comp Res)

P R Q

(�n)P cR (�n)Q

(Comp Repl)

P R Q

!P cR !Q

(Comp Match)

P R Q

[M is N ] P cR [M is N ]Q

(Comp Nil)

0 cR 0

(Comp Split)

P R Q

let (x; y) =M in P cR let (x; y) =M in Q

(Comp IntCase)

P1 R Q1 P2 R Q2

case M of 0 : P1 suc(x) : P2
cR case M of 0 : Q1 suc(x) : Q2

(Comp Decrypt)

P R Q

case N of fxgM in P cR case N of fxgM in Q

Figure 3: Rules of Compatible Re�nement
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there exist a process P 00 and an agent A such that P 0� j R
�
�!

�

P 00 and

P 00 �
�! A, and to prove that there exist a process Q00 and an agent B such

that Q0� j R
�
�!

�

Q00 and Q00 �
�!B. The argument is by case analysis of the

rules that de�ne cv�.

(Comp Out) Suppose that P 0 = MhNi:P and Q0 = MhNi:Q, with P v�

Q. We have that there exist an agent A and a process P 00 such that

M�hN�i:P� j R
�
�!

�
P 00 and P 00 �

�! A. By examining the de�nition

of the commitment relation, we distinguish three cases:

� If M� is � then Q0� j R
�
�! ((�)hN�iQ�) j R, so we let Q00 be

simply Q0� j R and B be ((�)hN�iQ�) j R.

� If R
�
�!

�

R0 and R0 �
�! A0 for some R0 and A0, then we let Q00 be

Q0� j R0 and B be Q0� j A0.

� Otherwise, for some R0, we have that R
�
�!

�

R0, R0 has the com-

mitment R0 M�
�! (x)R00 for some abstraction (x)R00, and P� j

R00[N�=x]
�
�!

�

P 00. By Proposition 4, this implies that P� passes
the test R00[N�=x]. Therefore, since P v� Q, we obtain that

Q� passes the test R00[N�=x]. By Proposition 4, there exist Q00

and B such that Q� j R00[N�=x]
�
�!

�

Q00 and Q00 �
�!B. Finally,

R
�
�!

�

R0, R0 M�
�! (x)R00, and Q� j R00[N�=x]

�
�!

�

Q00 imply that
Q0� j R

�
�!

�

Q00.

(Comp In) Suppose that P 0 = M(x):P and Q0 = M(x):Q, with P v� Q.
Without loss of generality, we assume that �(x) is not de�ned. We have

that there exist an agent A and a process P 00 such that M�(x):P� j

R
�
�!

�

P 00 and P 00 �
�!A. By examining the de�nition of the commitment

relation, we distinguish three cases:

� If M� is � then Q0� j R
�
�! ((x)Q�) j R, so we let Q00 be simply

Q0� j R and B be ((x)Q�) j R.

� If R
�
�!

�
R0 and R0 �

�! A0 for some R0 and A0, then we let Q00 be

Q0� j R0 and B be Q0� j A0.

� Otherwise, for some R0, we have that R
�
�!

�

R0, R0 has the

commitment R0 M�
�! (�m1) � � � (�mk)hNiR

00 for some concretion
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(�m1) � � � (�mk)hNiR
00, and (�m1) � � � (�mk)(P�[N=x] j R

00)
�
�!

�

P 00. By Lemma 31(3), P 00 has the form (�m1) � � � (�mk)P
000 for

some P 000 such that P�[N=x] j R00 �
�!

�

P 000; and by Proposi-

tion 2 and Lemma 31(4), P 000 # � with � 62 fm1;m1; : : : ;mk;mkg.

By Proposition 4, this implies that P�[N=x] passes the test R00.

Therefore, since P v� Q, we obtain that Q�[N=x] passes the test

R00. By Proposition 4, there exist Q000 and B0 such that Q�[N=x] j

R00 �
�!

�

Q000 and Q000 �
�! B0. We let Q00 be (�m1) � � � (�mk)Q

000,

obtaining (�m1) � � � (�mk)(Q�[N=x] j R
00)

�
�!

�
Q00 and Q00 �

�!B0.

Finally, R
�
�!

�

R0, R0 M�
�! (�m1) � � � (�mk)hNiR

00, and (�m1) � � �
(�mk)(Q�[N=x] j R

00)
�
�!

�

Q00 imply that Q0� j R
�
�!

�

Q00.

(Comp Par) Suppose that P 0 = P1 j P2 and Q0 = Q1 j Q2, with P1 v
� Q1

and P2 v
� Q2. If P

0� passes (R;�), then P1� passes (P2� j R;�). Since
P1 v

� Q1, we obtain that Q1� passes (P2� j R;�). Equivalently, we
have that P2� passes (Q1� j R;�). Since P2 v

� Q2, we obtain that
Q2� passes (Q1� j R;�). Therefore, Q

0� passes (R;�).

(Comp Res) Suppose that P 0 = (�n)P and Q0 = (�n)Q, with P v� Q. We
may assume that the bound name n does not occur free in R, so that

P 0� j R � (�n)(P� j R). Since P 0� passes (R;�), ((�n)P�) j R + �.
By Lemma 31(1), it follows that (�n)(P� j R) + �. By Lemma 31(5),
it follows that P� j R + � and that � =2 fn; ng. From P v� Q we
obtain Q� j R + �. By Lemma 31(5), it follows that (�n)(Q� j R) + �.
By Lemma 31(1), we conclude that Q0� j R + �. Therefore, Q0� passes
(R;�).

(Comp Repl) Suppose that P 0 = !P and Q0 = !Q, with P v� Q. We have
!P� j R + �. By Lemma 28, there is n such that (

Q
i21::n P�) j R + �.

Much as in the case of (Comp Par), it follows that (
Q
i21::nQ�) j R +

�. By Lemma 31(2), we obtain !Q� j (
Q
i21::nQ�) j R + �. Since

!Q� j (
Q
i21::nQ�) j R � !Q� j R, we conclude that !Q� j R + � by

Lemma 31(1), so Q0� passes (R;�).

(Comp Match) Suppose that P 0 = [M is N ] P and Q0 = [M is N ] Q,
with P v� Q. If M� and N� are equal, then P 0� � P� and Q0� �

Q�, and the result follows from Lemma 32 and the assumption that

P v� Q. Otherwise, both P 0� and Q0� are stuck, and hence they are
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barbed congruent to 0 by Proposition 8; by Proposition 7, it follows

that P 0� ' Q0�.

(Comp Nil) Suppose that P 0 = 0 and Q0 = 0. Since ' is re
exive, P 0� '

Q0�, and hence P 0 v� Q0.

(Comp Decrypt) Finally, suppose that P 0 = case N of fxgM in P and

Q0 = case N of fxgM in Q, with P v� Q. Without loss of generality,

we assume that �(x) is not de�ned. If N� is fN 0gM� for some N 0,

then P 0� � P�[N 0=x] and Q0� � Q�[N 0=x], and the result follows

from Lemma 32 and the assumption that P v� Q. Otherwise, both
P 0� and Q0� are stuck, and hence they are barbed congruent to 0 by
Proposition 8; by Proposition 7, it follows that P 0� ' Q0�.

The other cases|(Comp Split) and (Comp IntCase)|are similar. 2

We obtain:

Proof of Proposition 1

(1) Structural equivalence implies testing equivalence.

(2) Testing equivalence is re
exive, transitive, and symmetric.

(3) Testing equivalence is a congruence on closed processes.

Proof That structural equivalence implies testing equivalence is said in

Lemma 32. Whenever S is a relation on closed processes and S� is a congru-
ence on open processes, S is a congruence on closed processes. 2

The remainder of this section concerns some testing equivalences that we
use in reasoning about protocols.

Proposition 35 For any closed process P , P ' �:P .

Proof First we show that P v �:P . By Proposition 4, if P passes a test

(R;�) there is Q such that P j R
�
�!

�

Q and Q # �. By induction on the
length of the computation P j R

�
�!

�

Q, we can show that there is Q0 such
that there is a computation �:P j R

�
�!

�

Q0 with Q0 # �. Hence �:P passes
the test (R;�). Roughly speaking, the second computation is a copy of the

�rst, except that if ever P contributes to the �rst (by itself or by reacting

with R) then we can include �:P
�
�! P in the second computation, and then

proceed as in the �rst computation.

By a similar argument �:P v P , and hence P ' �:P . 2
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Lemma 36 For any P with fv (P ) � fxg and any distinct names m and n,

m(x):(�n)P ' (�n)m(x):P .

Proof Since both m(x):(�n)P and (�n)m(x):P have each just one com-

mitment, to the same abstraction:

m(x):(�n)P
m
�! (x)(�n)P

(�n)m(x):P
m
�! (�n)(x)P = (x)(�n)P

they are strongly bisimilar, hence testing equivalent by Proposition 7. 2

Lemma 37 Let n be a name, M a (possibly open) term, fNi j i 2 Ig a set of

distinct closed terms, and fPi j i 2 Ig a set of (possibly open) processes, where
I is a �nite set of indices. Then

Q
i2I [M isNi](�n)Pi '

� (�n)
Q
i2I [M isNi]Pi.

Proof According to the de�nition of '�, it su�ces to consider all substitu-

tion instances of the claimed equivalence. So we show that, taking all terms
and processes to be closed,

Q
i2I [M is Ni] (�n)Pi ' (�n)

Q
i2I[M is Ni] Pi.

For each i 2 I, ifNi 6=M then [M isNi]Pi ' 0 and [M isNi](�n)Pi ' 0 by
Propositions 8 and 7. For Ni =M , on the other hand, [M is Ni]Pi ' Pi and
[M isNi] (�n)Pi ' (�n)Pi by Proposition 1. Thus, both (�n)

Q
i2I [M isNi]Pi

and
Q
i2I [M is Ni] (�n)Pi are testing equivalent to 0 if M 62 fNi j i 2 Ig and

to (�n)Pj if Nj =M . 2

D.2 Barbed Equivalence

Proof of Proposition 5

(1) Barbed equivalence is re
exive, transitive, and symmetric.

(2) Strong bisimilarity implies barbed equivalence.

(3) Structural equivalence implies barbed equivalence.

(4) Barbed equivalence is preserved by restriction.

Proof

(1) As usual, we can show that the identity relation is a barbed bisimula-

tion, that the composition of two barbed bisimulations yields a barbed

bisimulation, and that the converse of a barbed bisimulation is a barbed

bisimulation.
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(2) It is enough to show that strong bisimilarity is a barbed bisimulation.

Given Propositions 2 and 3 this is easy.

(3) By Lemma 25, structural equivalence is a strong bisimulation. By

part (2), it is contained in barbed equivalence.

(4) It su�ces to show that f((�n)P; (�n)Q) j P
�
� Qg is a barbed bisimu-

lation. The proof is straightforward. 2

Proof of Proposition 6 If S is a barbed bisimulation up to
�
� and re-

striction, then S �
�
�. A fortiori, if S is a barbed bisimulation up to

�
�, then

S �
�
�.

Proof We prove the proposition using a generalisation of the standard

technique [MPW92]; an alternative would be to use the modular framework
recently developed by Sangiorgi [San94].

We construct a relation S� larger than S and show that S� is a barbed
bisimulation. The relation S� is de�ned by:

S0 = S

Sk+1 = f((�m)P; (�m)Q) j P
�
�Sk

�
� Q;m is any nameg

S� =
[
k<!

(
�
�Sk

�
�)

First we observe that S� enjoys the following properties:

(Star S)

P S Q

P S� Q

(Star Res)

P S� Q

(�m)P S� (�m)Q

(Star
�
�)

P
�
�S� �

� Q

P S� Q

Property (Star S) follows easily from the de�nition of S� (and the re
exivity

of
�
�). Property (Star Res) holds because P S� Q implies P

�
�Sk

�
� Q for

some k and, for every k, P
�
�Sk

�
� Q implies (�m)P

�
�Sk+1

�
� (�m)Q which in

turn implies (�m)P S� (�m)Q. Property (Star
�
�) holds because P

�
�S� �

� Q

implies that, for some k, P
�
� P0

�
�Sk

�
� Q0

�
� Q and (by the transitivity of

�
�) P

�
�Sk

�
� Q, and hence P S� Q.

In order to establish that S� is a barbed bisimulation, we prove by induc-

tion on k that P
�
�Sk

�
� Q implies:

(1) for each barb �, if P # � then Q # �, and
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(2) if P ! P 0 then there exists Q0 such that Q! Q0 and P 0 S� Q0.

In the base case, k = 0, we have P
�
� P0 S Q0

�
� Q.

(1) Suppose that P # �. Since P
�
� P0, P0 # �. Since P0 S Q0, Q0 # �,

by de�nition of a barbed bisimulation up to
�
� and restriction. Finally,

since Q0
�
� Q, Q # � too.

(2) Suppose that P ! P 0. Since P
�
� P0, there is P

0
0 such that P0 ! P 0

0

and P 0 �
� P 0

0. Since P0 S Q0, by de�nition of a barbed bisimulation

up to
�
� and restriction, there is Q0

0 such that Q0 ! Q0
0, and there

are P 00, Q00, and names ~n such that P 0
0

�
� (�~n)P 00, Q0

0
�
� (�~n)Q00, and

P 00 S Q00. By (Star S), P 00 S� Q00. By (Star Res), (�~n)P 00 S� (�~n)Q00.
By (Star

�
�), P 0

0 S
� Q0

0. Since Q0
�
� Q, there is Q0 such that Q ! Q0

and Q0
0

�
� Q0. Finally, given P 0 �

� P 0
0, P

0
0 S

� Q0
0, and Q0

0
�
� Q0, we

obtain P 0 S� Q0 by (Star
�
�).

In the inductive case, we have P
�
�Sk+1

�
� Q, so there exist m, P0, and Q0

such that P
�
� (�m)P0, P0

�
�Sk

�
� Q0, and (�m)Q0

�
� Q.

(1) Suppose that P # �. Since P
�
� (�m)P0, (�m)P0 # �. Therefore P0 # �

and � =2 fm;mg. By induction hypothesis, P0
�
�Sk

�
� Q0 implies that

Q0 # �. Since � =2 fm;mg, (�m)Q0 # �. Finally, since (�m)Q0
�
� Q,

Q # � too.

(2) Suppose that P ! P 0. Since P
�
� (�m)P0, there is P 0

1 such that
(�m)P0 ! P 0

1 and P 0 �
� P 0

1. By Lemma 31(3) and Proposition 3,
there is P 0

0 such that P 0
1 � (�m)P 0

0 and P0 ! P 0
0. By induction hy-

pothesis, there is Q0
0 such that Q0 ! Q0

0 and P 0
0 S

� Q0
0. By (React

Res), (�m)Q0 ! (�m)Q0
0. Since (�m)Q0

�
� Q, there is Q0 such that

Q ! Q0 and (�m)Q0
0

�
� Q0. By (Star Res), (�m)P 0

0 S
� (�m)Q0

0. Fi-

nally, given P 0 �
� (�m)P 0

0, (�m)P 0
0 S

� (�m)Q0
0, and (�m)Q0

0
�
� Q0, we

obtain P 0 S� Q0 by (Star
�
�).

This completes the proof by induction. The de�nition of S� yields that S� is
a barbed bisimulation, so S� �

�
�. Using (Star S), we conclude that S �

�
�.

2
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D.3 Barbed Congruence

The main task of this section is to show c�� � ��, from which it follows that

�� is a congruence. The following is an adaptation of the proof by Pierce

and Sangiorgi [PS93].

We begin with two lemmas concerning replication and commitment.

Lemma 38 c�� � ��.

Proof For any P 0 and Q0, we need to show that P 0 c�� Q0 implies that

P 0� j R
�
� Q0� j R (21)

for any closed R and substitution �, with fv (P 0) [ fv(Q0) � dom(�). We do
so by an analysis of the (Comp �) rule used to derive P 0 c�� Q0.

(Comp Out) Here P 0 = MhNi:P and Q0 = MhNi:Q, with P �� Q. So
P 0� = M�hN�i:P� and Q0� = M�hN�i:Q�. Let S be the following

relation:
S = f(P 0� j R;Q0� j R) j any Rg

Equation (21) will follow if we can show that S [
�
� is a barbed bisim-

ulation. Clearly both P 0� j R and Q0� j R have the same barbs. By
using the rules of commitment, we can see that if P 0� j R has a �

commitment, either R has one by itself or there is an interaction be-
tween M�hN�i:P� and R. In either case Q0� j R can match this �
commitment, via S and

�
� respectively.

(Comp In) Here P 0 = M(x):P and Q0 = M(x):Q, with P �� Q. So
P 0� = M�(x):P� and Q0� = M�(x):Q�; since x is bound we may
assume that x =2 dom(�). As in the previous case, if we set S =
f(P 0� j R;Q0� j R) j any Rg, it is enough to show that S [

�
� is a

barbed bisimulation, and this follows by a similar argument.

(Comp Par) Here P 0 = P1 j P2 and Q0 = Q1 j Q2. Using assumptions that

P1 �
� Q1 and P2 �

� Q2, and the properties of barbed equivalence in
Proposition 5, we can calculate equation (21) as follows.

(P1� j P2�) j R � P1� j (P2� j R)
�
� Q1� j (P2� j R)

� P2� j (Q1� j R)
�
� Q2� j (Q1� j R)

� (Q1� j Q2�) j R
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(Comp Res) Here P 0 = (�n)P and Q0 = (�n)Q. Using the assumption

that P �� Q, together with Proposition 5, here is a calculation of

equation (21).

((�n)(P�)) j R � (�n)(P� j R)
�
� (�n)(Q� j R)

� ((�n)(Q�)) j R

(Comp Repl) Here P 0 = !P and Q0 = !Q with P �� Q. We prove that

S = f(!P� j R; !Q� j R) j any Rg

is a barbed bisimulation up to
�
�. Hence equation (21) will follow by

Proposition 6. Clearly both sides have the same barbs. Consider any
reaction !P� j R ! R0. By Lemma 27, there is a process R00 with

reaction P� j P� j R ! R00, such that R0 � !P� j R00. By assumption
P �� Q, we can calculate the following.

!Q� j R � Q� j (!Q� j R)
�
� P� j (!Q� j R)

� Q� j (!Q� j P� j R)
�
� P� j (!Q� j P� j R)

� !Q� j P� j P� j R

! !Q� j R00

By the de�nition of
�
�, there must be a reaction !Q� j R ! Q00 with

Q00 �
� !Q� j R00. Moreover we have R0 � !P� j R00 S !Q� j R00 �

� Q00, so
we have satis�ed the condition for S to be a bisimulation up to

�
�.

(Comp Match) Here P 0 = [M is N ] P and Q0 = [M is N ] Q with P ��

Q. Let S = f([M� is N�] P� j R; [M� is N�] Q� j R) j any Rg.

Then equation (21) follows easily by showing that S [
�
� is barbed

bisimulation.

(Comp Decrypt) Here P 0 = case N of fxgM in P and Q0 = case N of

fxgM in Q with P �� Q. Since x is bound, we may assume x =2
dom(�), and therefore that P 0� = case N of fxgM in P� and Q0� =

case N of fxgM in Q�. Let S = f(P 0� j R;Q0� j R) j any Rg. Again,
it is easy to see that S [

�
� is a barbed bisimulation, and hence that

equation (21) holds.
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The other cases|(Comp Nil), (Comp Split), and (Comp IntCase)|are sim-

ilar. 2

Now we can prove the basic facts about barbed congruence claimed in

Section 5.2.3.

Proof of Proposition 7

(1) Barbed congruence is re
exive, transitive, and symmetric.

(2) Barbed congruence is a congruence on closed processes.

(3) Structural equivalence implies barbed congruence.

(4) Strong bisimilarity implies barbed congruence.

(5) Barbed congruence implies testing equivalence.

Proof

(1) Since
�
� is an equivalence relation, so is �.

(2) Lemma 38 yields that the open extension of barbed congruence, ��, is
a congruence on open processes. It follows that barbed congruence is

a congruence on closed processes.

(3) This follows from part (4), since we know from Lemma 25 that struc-

tural equivalence implies strong bisimilarity.

(4) It su�ces to check that the following relation is a barbed bisimulation:

S = f(P j R;Q j R) j P and Q strongly bisimilarg

We omit the routine proof, which involves using the commitment rela-
tion to analyse the possible barbs and reactions of P j R and Q j R,

and showing that they match up to S.

(5) Suppose that P � Q, and consider any test (R;�). By de�nition of

barbed congruence, (P j R)
�
� (Q j R). Hence, (P j R) + � implies

(Q j R) + � too. Therefore, P ' Q. 2
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E Proofs about Underpinning

First, we need the following fact about underpinning and injective substitu-

tions.

Lemma 39 Suppose E ` M , E ` N , and E ` �. If � is injective, then

M� = N� implies M = N .

Proof By induction on the structure of M .

� Suppose M is the variable x. Since E ` x, x 2 dom(�). Since E ` �,

x� must be a ciphertext, say fM 0gK, with K 2 keys(E). Since E ` N ,
K =2 fn(N). Since N� = fM 0gK, it must be that N is a variable y,
with y 2 dom(�) and y� = x�. Since � is injective, x = y, that is,
M = N .

� Suppose M is the name n. The set of names is de�ned to be distinct
from the set of variables, so M� = n. Similarly, since N� = n, it
follows that N = n and therefore that M = N .

� Suppose M is the ciphertext fM1gM2
. Therefore M� = fM1�gM2� =

N�. Either N is some variable x 2 dom(�) or N = fN1gN2 . If the
latter, we have E `Mi, E ` Ni, Mi� = Ni� for i = 1; 2. By induction

hypothesis, Mi = Ni for i = 1; 2, and therefore M = N as required.

Otherwise, if N = x, suppose that x� is the ciphertext fN 0gK. Since
M� = N�, M2� = K and moreover M2 = K. Since E ` �, K 2
keys(E). Since E ` M , K =2 fn(M) but M = fM1gK. This is a
contradiction.

� Suppose M is the pair (M1;M2). From (M1�;M2�) = N� it must be
that N = (N1; N2), since the range of � includes only ciphertexts. As

in the previous case, we have E ` Mi, E ` Ni, Mi� = Ni� for i = 1; 2.

By induction hypothesis, Mi = Ni for i = 1; 2, and therefore M = N

as required.

The other cases, when M = 0 and M = suc(M 0), are similar. 2

Proof of Lemma 9 Suppose that E ` P and E ` �, and that � is

injective.
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(1) If P� > Q0 then there is a process Q with E ` Q, fv (Q) � fv (P ),

fn(Q) � fn(P ), and Q0 = Q� such that, whenever E ` �0 and �0 is

injective, P�0 > Q�0.

(2) If P�
�
�! A0 then there is an agent A with E ` A, fv(A) � fv (P ),

fn(A) � fn(P ), and A0 = A� such that, whenever E ` �0 and �0 is

injective, P�0
�
�! A�0.

Proof

(1) By analysis of the rules that may yield P� > Q0.

(Red Decrypt) Here P = case M of fxgN in R withM� = fM 0
1gN�

and Q0 = R�[M 0
1=x], given that we may assume that bound vari-

able x is not in the domain or range of �. Since M� = fM 0
1gN�,

either M is a variable y 2 dom(�) or a ciphertext fM1gM2
.

In the former case, y� = fM 0
1gN� so N� must be a member of

keys(E), and therefore is a name, say K. Since the range of �
consists of ciphertexts, N itself must be the name K. But then
we have K 2 keys(E) while also K 2 fn(P ), which contradicts
our assumption that E ` P .

Therefore M = fM1gM2
. It follows that M1� = M 0

1 and M2� =
N�. By Lemma 39, M2 = N . Let Q = R[M1=x]. From E ` P it
follows that E ` Q too. Further, fv (Q) � fv(M1)[(fv (R)�fxg) �
fv (P ) and fn(Q) � fn(M1) [ fn(R) � fn(P ). For any injective �0

with E ` �0, we have:

P�0 = case fM1�
0gN�0 of fxgN�0 in R�0

> R�0[M1�
0=x]

= (R[M1=x])�
0

So we have P�0 > Q�0 as required.

(Red Match) Here P = [N1 is N2]Q with N1� = N2� and Q0 = Q�.
By Lemma 39, N1 = N2. From E ` P it follows that E ` Q too.
Since Q is a part of P , fv(Q) � fv (P ) and fn(Q) � fn(P ). For any

injective �0 with E ` �0, we have P�0 = [N1�
0 is N2�

0]Q�0 > Q�0

as required.

The other cases are routine, given that M must be a ciphertext if it is

in the range of �.
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(2) By induction on the derivation of P�
�
�! A0.

(Comm In) Here P =M(x):Q withM� = m = � and A0 = (x)(Q�),

where we may assume that bound variable x is not in the domain

or range of �. Since M� is a name, m, it must be that M itself

is the name, since only ciphertexts are in the range of �. Let

A = (x)Q. From E ` P it follows that E ` A too. Further,

fv (A) = fv (Q) � fxg � fv(P ) and fn(A) = fn(Q) � fn(P ). We

have A0 = (x)(Q�) = A�. For any injective �0 with E ` �0, we

have:

P�0 = m(x):Q�0
m
�! (x)(Q�0) = A�0

as required.

(Comm Inter 1) Here P = P1 j P2, with P1�
m
�! F 0 and P2�

m
�! C 0,

� = � , and A0 = F 0@C 0. By induction hypothesis, there is F

such that F 0 = F�, E ` F , fv (F ) � fv (P1), fn(F ) � fn(P1),
and P1�

0 m
�! F�0 for all injective �0 with E ` �0. By induction

hypothesis, there is C such that C 0 = C�, E ` C, fv (C) � fv (P2),

fn(C) � fn(P2), and P2�
0 m
�! C�0 for all injective �0 with E ` �0.

Let A = F@C. Interaction, @, is de�ned so that it commutes
with substitution, so we have A� = F�@C� = F 0@C 0 = A0.
From E ` F and E ` C follows E ` A. Further, fv(A) � fv (F )[

fv (C) � fv (P1) [ fv (P2) = fv (P ) and fn(A) = fn(F ) [ fn(C) �
fn(P1) [ fn(P2) = fn(P ). For any injective �0 with E ` �0, we
have:

P�0 = P1�
0 j P2�

0

�
�! F�0@C�0

= (F@C)�0

where the � commitment follows using (Comm Inter 1) and the

facts that P1�
0 m
�! F�0 and P2�

0 m
�! C�0. We have obtained

P�0
�
�! A�0, as required.

(Comm Red) Here P� > Q0 and Q0 �
�! A0. By part (1), there is Q

with E ` Q, fv (Q) � fv(P ), fn(Q) � fn(P ), Q0 = Q�, and P�0 >

Q�0 for all injective �0 with E ` �0. Since E ` Q and Q�
�
�! A0,

by induction hypothesis, there is A with E ` A, fv (A) � fv (Q),
fn(A) � fn(Q), A0 = A�, and Q�0

�
�! A�0 for all such �0. By
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transitivity, we have fv(A) � fv(P ) and fn(A) � fn(P ). Further,

for any injective �0 with E ` �0, we have obtained P�0 > Q�0 and

Q�0
�
�! A�0, so by (Comm Red) P�

�
�! A�0, as required.

The case for (Comm Out) is similar to that for (Comm In). The case

for (Comm Inter 2) is like that for (Comm Inter 1). Those for (Comm

Par 1), (Comm Par 2), and (Comm Res) are by simple uses of the

induction hypothesis. 2

This lemma would still hold in a spi calculus with the mismatch operator

mentioned in Section 4.2. The case for mismatch in part (1) would be like
that of (Red Match), with a similar appeal to Lemma 39.
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