
Secure Communications Processing for

Distributed Languages

Mart́ın Abadi
ma@pa.dec.com

Systems Research Center
Compaq

Cédric Fournet
fournet@microsoft.com

Microsoft Research

Georges Gonthier∗
Georges.Gonthier@inria.fr

INRIA Rocquencourt

Abstract

Communications processing is an important part of dis-
tributed language systems with facilities such as RPC
(remote procedure call) and RMI (remote method in-
vocation). For security, messages may require crypto-
graphic operations in addition to ordinary marshaling.
We investigate a method for wrapping communications
processing around an entity with secure local communi-
cation, such as a single machine or a protected network.
The wrapping extends security properties of local com-
munication to distributed communication. We formu-
late and analyze the method within a process calculus.

1 Cryptography and distributed
languages

Because security in distributed systems often relies on
cryptography, much research has been devoted to the
intrinsic properties of cryptographic algorithms and
protocols. Although these properties are necessary and
interesting, they do not provide a complete account
of the use of cryptography; they focus on mechanisms
out of context, rather than on the intended or actual
higher-level effect of those mechanisms. For example,
protocol specifications and analyses often discuss the
creation and exchange of cryptographic keys but not
the security properties of the higher-level communica-
tion that relies on these keys (e.g., [13, 8, 30, 28]).

Much sophisticated machinery complements cryp-
tographic algorithms and protocols, forming complex,
delicate systems (cf. [7]). This machinery helps bridge
the gap between local computation and distributed
computation. In addition to network services (for ex-
ample, for naming), this machinery performs communi-
cations processing, which includes conversions between

∗Partly supported by ESPRIT CONFER-2 WG-21836.

internal data representations and network data repre-
sentations (marshaling and unmarshaling) and cryp-
tographic operations. Communications processing ef-
fectively maps application program interfaces (APIs)
for secure communication to particular mechanisms.
A sound cryptographic basis is necessary but not suf-
ficient for the security of communications processing.

This paper investigates a method for wrapping com-
munications processing (both marshaling and crypto-
graphic operations) around an entity with secure lo-
cal communication, such as a single machine or a pro-
tected network. It focuses on a generic wrapper that
operates much as a firewall with an encrypting tun-
nel (e.g., [14, 6, 2]): the wrapper relays messages to
and from a public network, applying cryptography and
converting message formats through appropriate mar-
shaling and unmarshaling procedures. The messages
may convey new capabilities for communication. The
cryptography is encapsulated in protocols that we treat
largely as black boxes. Assuming that these protocols
are correct, we argue that our method is correct by es-
tablishing some of its properties within a process cal-
culus.

Communications processing is an important part
of distributed language systems with facilities such as
RPC (remote procedure call) [12] and RMI (remote
method invocation) [10, 32]. Like our method, such
systems include marshaling and often rely on cryp-
tography for security [11, 21, 31, 29]. However, the
specifics of our method are apparently new, and so is
the formal precision with which we are able to define
it and analyze it. Since our aim is to provide a founda-
tion for secure distributed language systems (and not
a popular artifact), we can subordinate compatibility
and efficiency to generality and correctness.

A recently published companion to this paper [4]
gives an account of a simple API for secure communi-
cation and of a cryptographic implementation of this
API. The API is embodied in a minimal program-
ming language with primitive secure channels, the join-

calculus [16, 17, 18, 19]. The implementation is it-
self expressed as a translation from the join-calculus
to an extension of the join-calculus with constructs for
public-key encryption, called the sjoin-calculus. The
present paper provides an alternative translation from
the join-calculus to the sjoin-calculus (suggested briefly
in [4]): the wrapping is applied to a join-calculus pro-
cess and yields a sjoin-calculus process. This alter-
native translation has the distinguishing feature that
it requires encryption only for messages that cross
trust boundaries. (The join-calculus and the sjoin-
calculus are analogous to the pi-calculus [26] and the
spi-calculus [5], respectively, but better suited for our
purposes [1, 3].)

Sections 2 and 4 review the join-calculus and the
sjoin-calculus, respectively. Section 3 introduces an
example. Section 5 describes the communication fa-
cilities that our sjoin-calculus processes use. Sections 6
and 7, which are the core of this paper, present and
analyze our method for wrapping a join-calculus pro-
cess and obtaining a sjoin-calculus process. Section 8
revisits the example of section 3. Finally, section 9
concludes. An appendix contains some technical def-
initions. This paper assumes some ease with formal
notation but avoids many additional definitions and
all proofs, which appear in the companion paper and
in a longer manuscript [3].

2 The join-calculus (review)

The join-calculus is a calculus of concurrent processes
that communicate through named, one-directional
channels [16]. It can express functional and imperative
constructs, and constitutes the core of a distributed
programming language [19, 15]. From a security per-
spective, we may say that the channels of the join-
calculus have a strong secrecy property: only the pro-
cess that creates a channel can receive messages on the
channel. They also have a useful integrity property:
for sending a message on a channel, it is necessary
to have its name, which is an unforgeable capability.
Any process that knows the name of a channel may
transmit the name to other processes, possibly send-
ing the name outside the lexical scope of its definition.
In this important respect, the join-calculus resembles
the pi-calculus [26]; it also resembles object-oriented
languages where object references are capabilities for
invoking methods.

Each channel has an associated arity—a fixed, in-
teger size for the tuples passed on the channel. We
require that names be used consistently in processes,
respecting their arities, and enforce this requirement by
adopting a type system. While there exists a rich, poly-

morphic type system for the join-calculus [18], a sim-
ple monomorphic type system suffices for our present
purposes. We write 〈σ1, . . . , σn〉 for the type of chan-
nels that carry tuples with n values of respective types
σ1, . . . , σn, and restrict attention to types of this form.
We allow types to be recursively defined (formally, us-
ing a fixpoint operator), so we may have for example
σ = 〈σ, σ〉. We assume that each name is associated
with a type (although we usually keep this type im-
plicit), and that there are infinitely many names for
each type. Throughout, we consider only well-typed
processes.

In the pure join-calculus, as we describe it here,
names are used only as names of channels, and the
set of values is defined to be the set of names. In ex-
tensions, names are included in a larger set of values.
In any case, the contents of messages are values. We
use lowercase identifiers x, y, foo, bar , . . . to represent
names, and u, v, . . . to represent values. Further, we
write ṽ for a tuple v1, v2, . . . , vn.

In addition to a category of names, the syntax
of the join-calculus includes categories of processes,
definitions, and join-patterns. Processes, definitions,
and join-patterns are defined recursively in Figure 1.
The operator | has highest precedence, so for example
def D in P | P ′ means def D in (P | P ′).

Intuitively, the semantics of processes is as follows.

• x〈ṽ〉 sends the tuple of values ṽ on the channel
named x. This message is asynchronous, in the
sense that it does not require any form of hand-
shake or acknowledgment.

• def D in P is the process P in the scope of the
local definitions given in D.

• if v = v′ then P else P ′ tests whether v = v′,
and then runs the process P or the process P ′

depending on the result of the test.

• P | P ′ is the parallel composition of the processes
P and P ′.

• 0 is the null process, which does nothing.

A join-pattern is a non-empty list of message pat-
terns, each of the form x〈y1, . . . , yn〉. The names
y1, . . . , yn are bound, and should all be distinct. The
name x is also bound; intuitively, it is the name of a
channel being defined. A join-pattern is much like a
guard for a definition, in the sense that a definition
J . P says that the process P may run when there are
messages that match the join-pattern J . (If there are
messages that match the join-pattern J several times,
then as many instances of P may run.) Next we explain
the notion of matching through a few special cases.

v ::= values
x name

P ::= processes
x〈ṽ〉 message

| def D in P local definition
| if v = v′ then P else P ′ comparison
| P | P ′ parallel composition
| 0 null process

D ::= definitions
J .P reaction rule

| D ∧ D′ conjunction of definitions
J ::= join-patterns

x〈ỹ〉 message pattern
| J | J ′ join of patterns

Figure 1: Grammar of the join-calculus.

• Let us consider first the case where J is simply the
join-pattern x〈y〉. The join-pattern J is matched
when a message v has been sent on x. When this
happens, the message is consumed, and P is run,
with the actual argument v substituted for the for-
mal argument y. (Thus, x〈y〉 .P is analogous to
the definition of a function with name x, formal
argument y, and body P .)

• In the more general case where J is the join-
pattern x〈y1, . . . , ym〉, we say that J is matched
when a tuple v1, . . . , vm has been sent on x (with
the same m). When this happens, the message
is consumed, and P is run, with the actual argu-
ments v1, . . . , vm substituted for the formal argu-
ments y1, . . . , ym.

• Finally, in the case where J is the join-pattern
x〈y1, . . . , ym〉 | x′〈y′

1, . . . , y
′
m′〉, we say that J is

matched when there are messages on both of the
channels x and x′, and these messages have m and
m′ components, respectively. When this happens,
the messages are consumed, and P is run, with the
actual arguments substituted for the correspond-
ing formal arguments.

In addition to definitions of the form J .P , the
grammar allows definitions of the form D ∧ D′. A def-
inition D ∧ D′ is simply the conjunction of the defini-
tions D and D′. A conjunction like x〈y〉 .P ∧x〈z〉 .Q,
where the same defined name x appears in two con-
juncts, is legal; when there is a message x〈v〉, ei-
ther P or Q may run—the choice between them is non-
deterministic.

Definitions obey lexical scoping rules. In particular,
given a process def D in P , a channel name defined

in D is recursively bound in the whole of def D in P ,
including D.

As a small example, we consider the process:

def x〈y〉 .(if y = u then z〈〉 else 0) in x〈u〉
The definition x〈y〉 .(. . .) introduces the channel x and
causes an empty message on z in reaction to the mes-
sage u on x; the body x〈u〉 simply sends the message u
on x. Intuitively, we may care both about the integrity
of the message on x (so that a message on z is trig-
gered) and about its secrecy. In other words, we may
want that the process behave like z〈〉, which sends a
message on z and does not reveal u, no matter what
an attacker does. The following equivalence expresses
this property:

def x〈y〉 .(if y = u then z〈〉 else 0) in x〈u〉 ≈ z〈〉
We say that two processes P1 and P2 are equivalent,
and write P1 ≈ P2, when no context can distinguish
one from the other. Intuitively, we may think of the
context of P1 and P2 as an attacker; then P1 ≈ P2

means that an attacker cannot cause P1 and P2 to be-
have in ways that would enable the attacker to distin-
guish one from the other [5]. Thus, P1 ≈ P2 implies
both an integrity property (limiting the effect of the
attacker) and a secrecy property (limiting the observa-
tions of the attacker).

The appendix gives more precise definitions of the
semantics of processes and of the equivalence relation.

3 An example

We describe a larger example in some detail, both as
explanation of the join-calculus and as additional mo-

C[·] def= def entry〈a, n〉 | open〈〉 . a〈n+“ won”〉 | closed〈n〉
∧ entry〈a′, n′〉 | closed〈n〉 . a′〈n+“ won”〉 | closed〈n〉 in [·]

Ci[·] def= def entryi〈a, n〉 | openi〈〉 . entry〈a, n〉 | entry〈closedi, n〉
∧ entryi〈a′, n′〉 | closedi〈s〉 . a′〈s〉 | closedi〈s〉 in [·]

Figure 2: Some contexts for the contest example.

tivation for our work. Our example concerns a contest.
In its simplest variant, the contest relies on a server
that creates a channel and publishes its name; the par-
ticipant whose entry arrives first on this channel is the
winner. At the level of abstraction of the join-calculus,
it is relatively simple to understand the contest, to
state its properties, and to consider variants, in great
part because the join-calculus description of the con-
test hides challenging aspects of distributed commu-
nication (for example, cryptographic protection). We
address some of those aspects in later sections.

For convenience in this example, we use strings as
though they were primitive in the join-calculus, writ-
ing + for string concatenation. Strings could easily be
added to the join-calculus, but they can also be en-
coded through standard methods. As usual, a context
is a process with a hole; if C[·] is a context, then C[P]
is the result of filling its hole with P .

The context C[·] of Figure 2 essentially defines the
contest. The state of the contest is described by placing
a process in C[·], for example as in:

C[open〈〉 | plug〈entry〉]
and as in:

C[closed〈Alice〉 | plug〈entry〉]
The channel entry is the one on which participants
should send their entries. The channel open is local
to the server; the presence of a message on this chan-
nel signifies that the contest is open. Similarly, the
channel closed serves to represent that the contest is
closed. (It is common to represent local state in this
manner in process calculi.) The channel plug is free,
and its only purpose is the publication of entry. The
process open〈〉 | plug〈entry〉 emits an empty message
on the channel open and emits the name entry on the
channel plug. When the server receives a first pair a, n
on entry, it replies on a, with the string n+“ won”.
Thus, a is used as a continuation address; n is ar-
bitrary and represents the identity of the participant
that sent the message. The server records n locally by
producing the message closed〈n〉 while consuming the
message open〈〉. Later, whenever the server receives

another pair a′, n′ on entry, it replies on a′ with the
same string n+“ won”, thus telling the new participant
that an entry with the name n had priority. Thus,
C[open〈〉 | plug〈entry〉] represents the starting state of
the contest while C[closed〈Alice〉 | plug〈entry〉] repre-
sents a state where Alice has won.

In this example, an attacker cannot intercept or
modify the entries in the contest or the server’s replies.
For instance, an attacker cannot modify the name n
of the winner and cannot learn the name n′ of a loser.
We present some of these security properties, express-
ing them as equivalences; they follow from the scop-
ing rules of the join-calculus and can be proved easily
through standard bisimulation techniques [25].

• Only a participant with access to entry may win
the contest. The following equivalence concerns
the extreme case where in fact only one participant
has access to entry:

C[open〈〉 | entry〈a, Alice〉]
≈ C[closed〈Alice〉 | a〈Alice+“ won”〉]

• The outcome of the contest cannot be affected
once the contest is closed:

C[closed〈Alice〉 | plug〈entry〉]
≈

(
def entry〈a, n〉 . a〈Alice+“ won”〉 in
plug〈entry〉

)
The latter process behaves monotonously, just like
the contest after closing.

• A loser remains anonymous with respect to other
participants:

C[closed〈Alice〉 | plug〈entry〉 | entry〈a′, Bob〉]
≈ C[closed〈Alice〉 | plug〈entry〉 | entry〈a′, Pat〉]
This equivalence means that the outer context
cannot distinguish an entry that contains Bob and
an entry that contains Pat. The two processes
being compared are in fact equivalent to:

C[closed〈Alice〉 | plug〈entry〉 | a′〈Alice+“ won”〉]
which is independent of Bob and Pat.

v ::= values
x name

| {ṽ}v encryption
P ::= processes

. . . as for the join-calculus
| decrypt v using v′ to x̃ in P else P ′ decryption

D ::= definitions
. . . as for the join-calculus

| fresh x fresh name
| keys x+, x− fresh pair of keys

J ::= join-patterns
. . . as for the join-calculus

Figure 3: Grammar of the sjoin-calculus.

The contest server may spread its work over aux-
iliary components (proxies), as follows. Each of the
proxies makes available a distinct channel entryi for
entries, forwards the first entry that it receives to the
server, waits for an answer, and remembers this answer
so that it can immediately return it in response to later
entries. The context Ci[·] of Figure 2 describes proxy i.
The main difference between a proxy and the server
is that, when it receives its first entry entryi〈a, n〉, a
proxy cannot decide by itself whether this entry is the
winning one. The proxy leaves this decision to the
server by submitting two entries with the same name n
but with different continuation addresses. The message
entry〈a, n〉 will lead to a direct response on a to partic-
ipant n; in effect, this message extends the capability
to send messages on a to the server. On the other hand,
the message entry〈closedi, n〉 will result in an identical
response on closedi to the proxy. The proxy remem-
bers this response, so it can handle subsequent entries
without consulting the server.

Combining the contexts C[·] and Ci[·], we can as-
semble a system with a main server and two proxies:

C

 open〈〉
| C1[open1〈〉 | plug1〈entry1〉]
| C2[open2〈〉 | plug2〈entry2〉]


This system shares the essential security properties of
the system without proxies (for instance, the anonymi-
ty of losers). The question of whether the proxies may
misbehave does not arise: since we have their code, we
can verify them.

Intuitively, the main server, the proxies, and the
participants may be located at different sites. A dis-
tributed implementation of the contest may therefore
rely on some amount of cryptography. Obviously, the
implementation could protect the channels between

the sites with cryptographic protocols. In addition,
the implementation could represent channel names as
unguessable capabilities, so only the processes that
obtain a continuation address as the result of legiti-
mate communication can send messages to the address.
Like other high-level programming languages, the join-
calculus abstracts away these difficult details of dis-
tributed communication. We reconsider these details
in section 8.

4 The sjoin-calculus (review)

The sjoin-calculus (named by analogy with the spi-
calculus [5]) is an extension of the join-calculus with
constructs for encryption and decryption, and with
names that can be used not only for channels but also
as keys, nonces, or other tags. It relies on a simple
black-box model of cryptographic operations (cf. [22]).
In this model, neither cleartext nor encryption key can
be extracted from a ciphertext without knowledge of
the corresponding decryption key; knowledge of this
key reveals the cleartext, which contains sufficient re-
dundancy so that successful decryption is evident. The
grammar of the sjoin-calculus is given in Figure 3.

The set of values includes not only names but also
ciphertexts of the form {ṽ}v. In the ciphertext {ṽ}v,
the subscript v is the encryption key and the tuple ṽ is
the cleartext.

Ciphertexts can be compared, as for example in the
process if {v}x = {v′}x then P else P ′. This compar-
ison would enable a recipient of {v}x with knowledge
of x and v′ to deduce whether v equals v′.

The syntax of processes includes a new decryption
form. The process decrypt v using v′ to x̃ in P else P ′

attempts to decrypt v using v′ as decryption key. If
this decryption succeeds, then P runs, with the results

of the decryption substituted for x̃; if the decryption
fails, then P ′ runs. For example, if y+ is the name of
an encryption key and y− is the name of the inverse
decryption key, then the process decrypt {z}y+ using

y− to x in P else P ′ will decrypt {z}y+ using y− and
will run P with z substituted for x.

The syntax of definitions includes constructs for in-
troducing names and pairs of keys. The construct
fresh x introduces the fresh name x. The construct
keys x+, x− introduces the names of keys x+ and x−;
the key x+ is an encryption key and x− is the inverse
decryption key. Note that x+ and x− range over or-
dinary names: the symbols + and − are used only
conventionally.

Given this context-free grammar, one can write silly
expressions, for example def keys x+, x− in x+〈y〉
which uses a key x+ as a channel. A straightforward ex-
tension of the type system of the join-calculus excludes
such expressions. This extension consists in adding a
basic type BitString, with the rules that the names in-
troduced by the constructs fresh x and keys x+, x− are
of type BitString, and that encryption and decryption
operations apply only to arguments of type BitString
and yield results of type BitString.

5 Low-level communication

Next we introduce some definitions that enable us to
discuss encrypted communication on a public network
in the context of the sjoin-calculus.

Our informal assumptions about the public network
are mostly standard in the literature on protocols [27].
We assume an asynchronous network, where messages
may be lost or intercepted by an intruder; the intruder
may also modify, duplicate, or inject messages. In net-
works without any default traffic, an intruder that sees
an encrypted message may deduce significant informa-
tion simply from the appearance of the message, even
if it cannot decrypt it. Therefore, we require that the
network has enough “noise” to prevent traffic analysis
attacks. (Alternatively, if this assumption is not quite
met, we can qualify our results to allow for the possi-
bility of such attacks.)

We model the network interface available to a pro-
cess P as a pair of channels, emit and recv (of types
〈BitString〉 and 〈〈BitString〉〉, respectively). Using these
channels, P can send and receive messages of type
BitString, as follows.

• For output, P sends its message on emit.

• For input, P sends a continuation channel κ
on recv. The network will then return a single

message on κ. The message may not be intended
for P , and it may even be unintelligible to P , so
P may need to do some filtering and retrying.

We write Env [·] for a context that defines the channels
emit and recv, publishes their names, and produces
the required “noise”. Intuitively, Env [P] represents
a situation where both P and any process running in
parallel may use emit and recv. We omit the precise
definition of Env [·], which is not necessary for this
paper and appears in [4].

On top of the public network, we assume a protocol
for transmitting a tuple ṽ of values using a key pair
x+, x−. The protocol may require multiple messages;
it consists of two sjoin-calculus processes Ex[ṽ] and Rx.

• Using the key x+ for encryption, Ex[ṽ] sends ṽ.

• Using the key x− for decryption, Rx receives mes-
sages, then forwards their cleartext contents on an
auxiliary, internal channel x◦.

Intuitively, the protocol should guarantee the integrity
and secrecy of ṽ. In [4], we give a precise correct-
ness criterion for such a protocol. Moreover, relying
on nonces and confounders, we give two correct proto-
cols. The definitions and results of this paper assume
only that we use a correct protocol, but its choice does
not matter.

6 The wrapping

Any correct protocol for sending a single message is
the basis of a compositional translation from the join-
calculus to the sjoin-calculus [4]. That translation re-
places every join-calculus communication step with an
execution of the protocol. It has a direct inductive def-
inition, where for example the parallel composition of
two processes is mapped to the parallel composition
of their respective translations. That translation does
not make any assumptions about the distribution of
the process being translated. Intuitively, every mes-
sage could be exposed on a hostile network by crossing
machine boundaries or Intranet boundaries. Because
encryption is applied uniformly and abundantly, the
security properties of the translation do not depend on
any notion of security perimeter (of “inside” and “out-
side”).

An implementation of the join-calculus that does
not assume anything about distribution may be ele-
gant, but it may also be rather wasteful: it requires
encryption even for messages internal to a protected
site. In this paper we describe an implementation that
avoids encryption in those cases. Instead of being de-
fined inductively, the implementation of a process P is

simply P put in a suitable context. This context serves
as a wrapper or filter. It does not disturb messages in-
ternal to P . It does however catch messages that cross
the boundary of P , adding or removing encryption,
and translating contents (marshaling and unmarshal-
ing). For example, a message that would leave P on
a channel x gets turned into a BitString message en-
crypted with a corresponding key x+; if the message
contains the channel name v, then v gets replaced with
the corresponding key v+. Conversely, when a message
arrives at the filter encrypted with a key y+ and the
filter has the key y−, the contents of the message are
translated and relayed on a channel y.

This filter resembles a firewall with an encrypting
tunnel, so we refer to it as a firewall (a little abusively
perhaps). From the programmer’s point of view, this
filter serves as a run-time system for distributed com-
munication that takes care of encryption and decryp-
tion and of marshaling and unmarshaling.

6.1 Data structures

Our firewall keeps track of the correspondence between
encryption keys on the outside and channel names on
the inside of a process. This correspondence is recorded
in association tables. These association tables are aux-
iliary data structures that can be encoded in the join-
calculus and a fortiori in the sjoin-calculus. We omit
their encoding, and describe only their interface.

• The definition assoc S, t(x) = T, t′(x+) = T ′

introduces an association table with contents S.
This definition binds two lookup functions t and t′,
and attaches the processes T and T ′ to them.

• The contents S is a finite set of pairs (x, v) where x
is a channel name and v is a value of type BitString.

• In a definition assoc S, t(x) = T, t′(x+) = T ′ of
an association table, the processes T and T ′ are
both of the form def D in Q | enter x, x+. The
process enter x, x+, which appears once in T and
once in T ′, has the role of entering the association
between x and x+ in the table, adding the pair
(x, x+) to S. In T , x+ is defined in D while x is
free. In T ′, conversely, x is defined in D while x+

is free.

• The process let x+ = t(v) in P looks for a key
associated with v in S. If one is found, then P is
executed with the key substituted for x+. Other-
wise, the process T attached to t is executed; it
creates a key and enters the association between v
and this key. In parallel, P is executed with the
key substituted for x+.

• Similarly, the process let x = t′(v′) in P ′ looks
for a channel name associated with v′ in S and, if
one is not found, creates a channel name. In any
case P ′ is executed with a channel name associated
with v′ substituted for x.

6.2 The dynamics of filtering

The interface between a process and its environment
can evolve as they exchange new names in messages.
To capture this dynamic aspect of communication, we
draw on techniques developed in earlier work on the
join-calculus [16]: mutually recursive definitions filter
all messages and unfold new filters for their arguments.
Some complications arise because the join-calculus fea-
tures several types of channels. Accordingly, we main-
tain a channel-key association table for every type that
may traverse the firewall.

Assume that S is a finite set of names and that Σ
is a set of channel types that contains all the types
of names in S and that is closed under decomposition
(that is, if 〈σ1, . . . , σn〉 ∈ Σ then σ1, . . . , σn ∈ Σ). For
every σ ∈ Σ, let Sσ be the set of names of type σ in S.

The definition DΣ(S) creates an association table
for every type σ in Σ, with an entry for each name
in Sσ. This definition is given in Figure 4, top-down.
Throughout, we associate three names x+, x−, and x◦

with each channel name x. We may write Dx . Ex
and

Dx◦ . x for Dσ, x . Ex
and Dσ, x◦ . x, respectively, when σ

is unimportant or clear from context.
In our construction of a firewall in section 6.3, we

use a definition DΣ(S) for intercepting and forward-
ing messages, performing conversions between channel
names and keys, encrypting and decrypting, and un-
folding new filters for processing future messages. We
explain DΣ(S) further by distinguishing two ways in
which entries appear in association tables at the fire-
wall:

• Suppose that the entry (x, x+) has been registered
in an association table at the firewall from the
inside, by a call to tσ(x). This call would have
allocated a new pair of keys x+, x−, unfolded a
definition Dσ, x◦ . x, and forked a process Rx.

Whenever a process outside the firewall knows the
key x+ and produces a message on x by run-
ning the process Ex[y+

1 , . . . , y+
n] on the public net-

work, the process Rx first performs a decryption
with x−, then delivers the message x◦〈y+

1 , . . . , y+
n 〉

to a second stage.

In this second stage, the effect of receiving y+
1 ,

. . . , y+
n on x◦ is described in Dσ, x◦ . x. Ac-

cording to Dσ, x◦ . x, the encryption keys re-

DΣ(S) def=
∧

σ∈Σ

assoc {(x, x+) | x ∈ Sσ}, tσ(x) = Tσ, t′σ(x+) = T ′
σ

Tσ
def= def Dσ, x◦ . x ∧ keys x+, x− in Rx | enter x, x+

T ′
σ

def= def Dσ, x . Ex
in enter x, x+

D〈σ1,...,σn〉, x◦ . x
def=

x◦〈y+
1 , . . . , y+

n 〉 .
let y1 = t′σ1

(y+
1) in . . . let yn = t′σn

(y+
n) in

x〈y1, . . . , yn〉

D〈σ1,...,σn〉, x . Ex

def=
x〈y1, . . . , yn〉 .

let y+
1 = tσ1(y1) in . . . let y+

n = tσn
(yn) in

Ex[y+
1 , . . . , y+

n]

Figure 4: Filter definitions.

ceived (y+
1 , . . . , y+

n) are mapped to channel names
(y1, . . . , yn). For this purpose, the firewall per-
forms a lookup for every key y+

i in the association
table corresponding to the expected type for yi.
Once every name yi has been obtained, the plain
message x〈y1, . . . , yn〉 is delivered to some defini-
tion inside the firewall.

In case a key y+
i is not present in the corresponding

association table, the allocator T ′
σi

registers a fresh
name yi so that future messages sent on yi inside
the firewall are encrypted and forwarded outside
using the key y+

i . Note that, as a result of this
method, the same key y+

i may eventually appear
in the association tables for several different types,
associated with a different channel name in each
of these tables.

• In the other direction, suppose that the entry
(x, x+) has been registered in an association ta-
ble at the firewall from the outside, by a call to
t′σ(x+). This call would have given rise to a defi-
nition Dσ, x . Ex

that binds x.

Whenever a message x〈y1, . . . , yn〉 is emitted
within the firewall, first every channel name yi is
replaced with an encryption key y+

i (possibly ex-
tending the association tables if these names are
crossing the firewall for the first time), then the
resulting contents is encrypted by the sending pro-
cess Ex[y+

1 , . . . , y+
n].

The definition of DΣ(S) extends smoothly to vari-
ants of the join-calculus with basic types (such as the
types of integers and strings). Instead of including an
association table in DΣ(S) for each basic type σ, we as-
sume given a bijective function tσ for marshaling values
from σ to BitString and its inverse t′σ for unmarshaling
values from BitString to σ.

6.3 Putting a process behind a firewall

Next we show how to construct a firewall for a process.
The firewall will depend only on the output interface
of the process, that is, on the free names of the pro-
cess. We bind all those free names in the firewall, and
register them associating each of them with a free en-
cryption key. When the process exports other names,
as it runs, the firewall evolves too. Thus, we guarantee
that the firewall intercepts every message between the
process and its environment. We put a process P be-
hind a firewall simply by placing it in a context FS [·],
where S is a finite set that includes all the free names
of P . The context FS [·] is defined by:

FS [P] def= def DΣ(S) ∧
∧
x∈S

Dx . Ex
in P

where Σ is the smallest set of types that contains the
types of all the names in S and that is closed under
decomposition. Every well-typed join-calculus process
uses only a finite number of types [15], so Σ is finite,
so the context FS [·] is well-defined. Without loss of
generality, we can assume that the lookup functions
tσ, t′σ are not free in P .

For each name x ∈ S of type σ, the firewall of FS [P]
has an entry (x, x+) in the table for σ and a definition
Dx . Ex

. This definition takes outputs from P on x,
marshals them, and relays them using encryption with
the key x+. In the course of computation, though, P
may export the names of channels defined in P , for
input. Accordingly, it is sometimes useful to describe
the state of a firewall that exports encryption keys that
correspond to those names.

We therefore generalize the definition of the firewall
context as follows. Given a process P

def= def D in Q,
assume that S and X are two finite disjoint sets of
names such that S includes all the free names of P and

X includes only names defined in D. We let:

FX
S [D, Q] def= def DΣ(X ∪ S)

∧ ∧
x∈X Dx◦ . x ∧ ∧

x∈S Dx . Ex

∧ D in
Q | ∏

x∈X Rx

where Σ is the smallest set of types that contains the
types of all the names in X ∪ S and that is closed un-
der decomposition, and where

∏
x∈X Rx is the parallel

composition of all processes Rx for x ∈ X.
Intuitively, S is the output interface of P while X

is its input interface. This input interface consists of
names in D that have been exported. For every such
name x, the firewall has an entry (x, x+) in an associ-
ation table and a definition Dx . Ex

. In addition, the
firewall forks a process Rx for receiving messages en-
crypted with x+.

The firewall is well-typed and provides a well-typed
interface for the process that it encloses. Its only inter-
face with the environment consists of the names emit
and recv and of values of type BitString. It does not
make any further assumptions about the types used by
the environment. The environment may even overload
one of its keys, using it as though it represented sev-
eral channels of different types and causing it to appear
in several association tables at the firewall, without a
security compromise. This property of the firewall is
essential: security should not depend on a typing as-
sumption about the environment, since the environ-
ment could well violate such an assumption.

7 Analysis

In this section we analyze the method defined in sec-
tion 6. Our main theorems show that wrapping pre-
serves equivalences between processes and that it is
compositional (up to equivalence).

7.1 Behavior through a firewall

Intuitively, we may think of FS [P] as an implementa-
tion of P . Technically, this intuition is not quite satis-
factory, particularly if we adopt a standard concept of
implementation according to which Q implements P if
and only if every possible behavior of Q is a possible
behavior of P (e.g., [20]).

1. This intuition is not accurate, because FS [P] may
behave in ways in which P could not behave. In
particular, FS [P] typically sends messages on the
channels emit and recv even when these names
are not present in P .

2. This intuition is not quite sufficient, because it
does not imply that the proposed implementation
shares the security properties of P : the implemen-
tation relation need not preserve those properties
(e.g., [23, 24]).

Security properties can sometimes be phrased as equiv-
alences (as in section 3), so the second objection sug-
gests that we phrase our result in terms of equivalences
rather than in terms of implementation relations. The
first objection suggests that we should take the context
Env [·] into account and that we should not directly
equate FS [P] and P . We arrive at the following first
theorem:

Theorem 1 For all join-calculus processes P and Q,
and every finite set of names S that includes all the
free names of P and Q,

P ≈ Q if and only if Env [FS [P]] ≈ Env [FS [Q]]

In programming-language terminology, this theorem
is a full-abstraction result. From a security perspec-
tive, full abstraction means that attackers have the
same power at the two levels of abstraction being com-
pared [1]. It helps transfer properties established for
a high-level process to its low-level counterpart, sim-
plifying arguments about the latter. In this case, how-
ever, the “only if” direction of full abstraction is rather
trivial, as it follows from basic congruence properties.
The “if” direction remains important: it shows that,
although FS [P] and P may behave differently, the be-
havior of FS [P] corresponds bijectively to the behavior
of P .

Despite the benefits of putting a process behind a
firewall, a firewall is not a guarantee of security when
the process may behave improperly as a result of in-
competence or malice. Suppose that x is a channel
name free in P , that y is bound in P , and that P in-
cludes y in a message on x. In FS [P], the firewall will
translate P ’s message relaying a key y+ instead of y to
the outside. Perhaps y was intended for internal use
only, so messages on y may be trusted in P somehow
(wrongly). Then an attack against FS [P] may be able
to exploit the knowledge of y+, since the firewall will
decrypt any message encrypted with y+ and relay its
contents on y. In this situation, the firewall does not
help, but it does not hurt either (as Theorem 1 indi-
cates). By giving up some transparency, the firewall
could be supplemented with restrictions for auditing
or preventing the escape of keys like y+.

7.2 Multiple firewalls

Further theorems address issues of distribution by an-
alyzing systems with multiple firewalls. The join-

calculus can be refined to account for computations
distributed over several sites [17]. For our purposes,
distribution simply means a fairly arbitrary partition
of processes and definitions. Thus, when we write:

def D in P | Q

we may intend that the different parts of this expression
(D, P , Q) be executed at several sites interconnected
by a public network—although we do not rely on any
special syntax to indicate this in the join-calculus. This
section shows that, following our method, we can wrap
a firewall around the code for each site, making the
site boundaries explicit. Each firewall communicates
with its outside (including the firewalls for other sites)
through a poor interface: the public network, where
traffic is unprotected and limited to type BitString.
Moreover, we do not assume a particular low-level cryp-
tographic protocol (given by Ex[ṽ] and Rx) or a partic-
ular higher-level application protocol for D, P , and Q.
Nevertheless, the distribution across sites preserves se-
curity properties.

Section 6.3 shows how to enclose a single process
within a firewall. More generally, firewalls can be
placed around any part of a composite system. For
example, we can write:

Env [FS [P] | FS [Q]]

representing two separate processes P and Q, each with
its own firewall, on a public network modeled as the
environment Env [·]. Each firewall maintains its own
association tables; the two firewalls may map an en-
cryption key to different local names of channels. We
have the following compositionality property:

Theorem 2 For all join-calculus processes P and Q,
and every finite set of names S that includes all the
free names of P and Q,

Env [FS [P | Q]] ≈ Env [FS [P] | FS [Q]]

This property means that we can partition the pro-
cess P | Q into two components P and Q, locate these
components at different sites with their own firewalls,
let them communicate with each other and with the en-
vironment through the firewalls, and be sure that the
environment will not be able to detect any difference
with the situation where P | Q is at a single site with
one firewall.

Another compositionality property deals with the
distribution of definitions; it is analogous but more
complex and more general.

Theorem 3 For all join-calculus processes P and Q,
for all join-calculus definition D, let X be the set of

names that are free in P and defined in D. For every
finite set S disjoint from X that includes all the free
names of def D in P |Q,

Env [FS [def D in P |Q]]

≈ Env
[

def
∧

x∈X keys x+, x− in

FX∪S [P] | FX
S [D, Q]

]
This property means that we can partition the pro-

cess def D in P |Q into two components and still guar-
antee that communication on channels defined in D
proceeds much as though D, P , and Q were all at the
same site. One component consists of D and Q; com-
munication between D and Q is local. The names in X
represent the input interface of this component. The
other component consists of P . A definition introduces
a key pair x+, x− for each name x ∈ X: the firewalls
for the two sites can communicate using x+, x− but
neither x+ nor x− is available to the outside initially.

When P sends a message on a channel x ∈ X, the
message traverses the two firewalls, undergoing first en-
cryption with x+ and then decryption with x−. If the
message contains another name y ∈ X ∪ S, this name
is converted to a key y+ and back to a channel name
as it traverses the firewalls. If the message contains a
name z that P is exporting for the first time, a new
key z+ appears and is successively recorded at both
firewalls; this key is associated with z at the firewall for
P and with a new name at the firewall for D and Q.
The result is the establishment of a secure communica-
tion path in the reverse direction, from D and Q back
to P . As other channel names are exchanged, the com-
ponents keep communicating just as they would do if
they were at the same site. The firewalls are trans-
parent, and they extend transparently whenever a new
channel name traverses them.

8 An example, revisited

In order to illustrate the use of our method, we revisit
the example of section 3 and describe two implemen-
tations of the contest server defined there.

First we discuss the effect of wrapping a firewall
around the contest server in its initial state, which is
described by the process:

C[open〈〉 | plug〈entry〉]

This process has a single free name, plug, but its
type is quite complicated. We explain this type
bottom-up, writing String for the basic type of strings.
The type of a and closed is 〈String〉, so the type
of entry is 〈〈String〉, String〉 and the type of plug is

Env

F{plug1,plug2}

def D in
open〈〉

| C1[open1〈〉 | plug1〈entry1〉]
| C2[open2〈〉 | plug2〈entry2〉]

 

≈ Env


def keys entry+, entry− in

F{entry}
∅ [D, open〈〉]

| F{plug1,entry}[C1[open1〈〉 | plug1〈entry1〉]]
| F{plug2,entry}[C2[open2〈〉 | plug2〈entry2〉]]



Figure 5: An equivalence in the contest example.

〈〈〈String〉, String〉〉. In order to protect the contest
server, our firewall contains a table for each of the three
types in the following set Σ:

{〈String〉, 〈〈String〉, String〉, 〈〈〈String〉, String〉〉}
An implementation of the contest server with a sin-

gle site is described by:

I
def= Env

[
F{plug}[C[open〈〉 | plug〈entry〉]]

]
Initially the firewall contains only the pair (plug,
plug+) in the table for 〈〈〈String〉, String〉〉. As a result,
the message plug〈entry〉 is intercepted, the contents
entry is marshaled, a fresh pair of keys entry+, entry−

is stored in the table for 〈〈String〉, String〉, and two pro-
cesses are forked: Eplug[entry+] which encrypts and
sends entry+, and Rentry which awaits messages en-
crypted with entry+. The evolution of I is summarized
in the following equivalence:

I ≈ Env

[
def keys entry+, entry− in

Eplug[entry+] | F{entry}
{plug} [D, open〈〉]

]

where D is the definition such that C[·] = def D in
[·]. The environment can then obtain the encryption
key entry+, typically but not necessarily by using a
process Rplug, and hence can participate in the con-
test. Later, whenever a new entry is received by Rentry

and unmarshaled, it provides a key for encrypting a re-
sponse; a local continuation channel of type 〈String〉 is
allocated for this response. The size of the table for
〈String〉 may grow each time an entry is processed.

Similarly, we can wrap three-table firewalls around
all the processes of section 3. By applying Theorem 1
to the security properties stated in section 3, we ob-
tain corresponding implementation-level security prop-
erties.

As a second implementation of the contest server,
we consider the variant with proxies. This variant can
naturally be mapped to several sites, each protected

by a firewall of the kind described above. Applying
Theorem 3 and Theorem 2 we obtain the equivalence
of Figure 5, which expresses that the distribution of
proxies is transparent. The top process describes a cen-
tralized system where the contest server and the prox-
ies are all at a single site protected by a firewall. The
bottom process describes a distributed implementation
with three components protected by their own firewalls.
The two processes have different structure, but partici-
pants in the contest cannot distinguish them. More im-
portantly, perhaps, sjoin-calculus attackers cannot dis-
tinguish these two processes either—so, in our model,
communication between the proxies and the server over
the public network does not enable attacks.

9 Conclusions

In this paper we define a method that combines lo-
cal communication with encrypted communication on
public channels and we study its security. The method
is largely independent of the nature of the channels and
of the programs at their endpoints. Those endpoints
require no modification, only a new layer with marshal-
ing and cryptographic operations and with tables that
dynamically associate channels with keys. This trans-
parency property has obvious benefits, but it also has
a cost—simpler and cheaper specialized methods prob-
ably exist for particular applications. In addition, our
method does not include important optimizations such
as the multiplexing of application channels on node-to-
node channels.

Our approach relies on a precise model of a dis-
tributed language, assumes the use of adequate cryp-
tographic algorithms, and must be complemented with
appropriate high-level security policies. In return, it
yields precise definitions and guarantees. We believe
that employing the join-calculus and similar formalisms
is an effective way to achieve this degree of precision.

Appendix

This appendix reviews the scoping rules, the opera-
tional semantics, and the definition of equivalence (≈)
for the sjoin-calculus (omitting the treatment of asso-
ciation tables, given in [3]). The corresponding defini-
tions for the join-calculus fragment are analogous.

Scopes

First, in Figure 6, we define the sets of free names (fv[v],
fv[P], and fv[D]), defined names (dv[J] and dv[D]),
and received names (rv[J]), for values, processes, join-
patterns, and definitions. A name is fresh with respect
to an expression or set of expressions when it does not
occur free in them. We write {v/x} for the substitution
of the value v for the name x, write {ṽ/̃

x
} for the substi-

tution of the values v1, . . . , vn for the names x1, . . . , xn

when ṽ = v1, . . . , vn and x̃ = x1, . . . , xn, and let σ
range over arbitrary substitutions. We usually identify
expressions up to renaming of bound names, assuming
implicit α-conversion in order to avoid name clashes.
We require that, in every join-pattern, all names be
distinct. We also require that each name be defined in
at most one clause of the form keys x, y or fresh z.

Operational semantics

We present our operational semantics in chemical
style [9], as a variant of the reflexive chemical abstract
machine [16]. The state of a computation is repre-
sented by a pair of multisets (D,P), called a chemical
solution, and written D ` P, where:

• P is a multiset of processes, intuitively the pro-
cesses running;

• D is a multiset of definitions.

The rules for computation operate on chemical solu-
tions. They form two families, structural rules and re-
duction rules.

Structural rules are reversible, and express the syn-
tactic rearrangements of expressions in a solution. We
write them in the form D1 ` P1 ⇀↽ D2 ` P2, where ⇀
represents “heating” and ↽ represents “cooling”. We
usually omit the parts of D1, P1, D2, and P2 that are
the same on both sides of ⇀↽. With this abbreviation
convention, we adopt the following structural rules for
the sjoin-calculus:

Str-Null ` 0 ⇀↽ `
Str-Par ` P1 | P2 ⇀↽ ` P1, P2

Str-And D1 ∧ D2 ` ⇀↽ D1, D2 `
Str-Def ` def D in P ⇀↽ Dσdv ` Pσdv

with the side condition for Str-Def that dom(σdv) =
dv[D] and that range(σdv) consists of fresh and dis-
tinct names. The first three rules state that | and ∧
are associative and commutative, with unit 0 for |. The
rule Str-Def describes the introduction of new names
and reaction rules in a solution; its side condition en-
sures that we follow a static scoping discipline.

As an example, we rewrite the rule Str-Def with-
out our abbreviation convention. It becomes: for every
process def D in P and multisets D and P, for every
substitution σdv that maps dv[D] to pairwise distinct
names not in fv[P] ∪ fv[D] ∪ fv[def D in P],

D ` P ∪ {def D in P} ⇀↽ D ∪ {Dσdv} ` P ∪ {Pσdv}
Reduction rules represent proper, basic computa-

tion steps. We write them in the form D1 ` P1 −→
D2 ` P2. We adopt the reduction rules of Figure 7
for the sjoin-calculus, with the following side condi-
tions: in Red, that dom(σrv) = rv[J]; in the second
clause of Compare, that w 6= v ; in the first clause
of Decrypt, that ṽ and ỹ are tuples of the same length;
in the second clause of Decrypt, that w is not of the
form {ṽ}x+ with ṽ and ỹ of the same length. The rule
Red describes the use of a definition clause to consume
messages and to produce a new instance of a guarded
process. The two rules Compare concern the com-
parison of values. The two rules Decrypt concern
attempts to decrypt values. Note that a process that
attempts to decrypt with a non-key will get stuck, like
decrypt w using {}x+ to ỹ in P else P ′ which uses {}x+

instead of a key; however, this problem does not affect
the processes that we construct, and it does not modify
the capabilities of attackers.

Chemical semantics provides a concise way to define
concurrent reduction modulo structural equivalence.
This presentation, however, is equivalent to a more tra-
ditional presentation based on reduction on processes
(instead of chemical solutions). For processes, we de-
fine the relations of structural equivalence and of reduc-
tion modulo structural equivalence by a combination of
heating, reduction, and cooling of chemical solutions:

P ≡ P ′ def= ∅ ` {P} ⇀↽∗ ∅ ` {P ′}
P → P ′ def= ∅ ` {P} ⇀↽∗−→⇀↽∗ ∅ ` {P ′}

Equivalence

Evaluation contexts are the contexts generated by the
following grammar:

C[·] ::= [·] P |C[·] def D in C[·]
For every process P and name x, P ⇓x holds if P

may output on x, either immediately or after some re-
duction. (We omit a formal definition.)

fv[x] def= {x}
fv[{v1, . . . , vn}v] def= fv[v] ∪ ⋃

i∈1..n fv[vi]

fv[x〈v1, . . . , vn〉] def= {x} ∪ ⋃
i∈1..n fv[vi]

fv[if v = v′ then P else P ′] def= fv[P] ∪ fv[P ′] ∪ fv[v] ∪ fv[v′]
fv[decrypt v using v′ to x̃ in P else P ′] def= (fv[P] \ {x̃}) ∪ fv[P ′] ∪ fv[v] ∪ fv[v′]

fv[def D in P] def= (fv[P] ∪ fv[D]) \ dv[D]
fv[P | P ′] def= fv[P] ∪ fv[P ′]

fv[0] def= ∅

rv[x〈y1, . . . , yn〉] def= {y1, . . . , yn}
rv[J | J ′] def= rv[J]] rv[J ′]

fv[J . P] def= dv[J] ∪ (fv[P]\rv[J])
fv[fresh x] def= {x}

fv[keys x+, x−] def= {x+, x−}
fv[D ∧ D′] def= fv[D] ∪ fv[D′]

dv[x〈y1, . . . , yn〉] def= {x}
dv[J | J ′] def= dv[J]] dv[J ′]

dv[J . P] def= dv[J]
dv[fresh x] def= {x}

dv[keys x+, x−] def= {x+, x−}
dv[D ∧ D′] def= dv[D] ∪ dv[D′]

Figure 6: Scopes.

Red J . P ` Jσrv −→ J .P ` Pσrv

Compare ` if v = v then P else P ′ −→ ` P
` if v = w then P else P ′ −→ ` P ′

Decrypt keys x+, x− ` decrypt {ṽ}x+ using x− to ỹ in P else P ′

−→ keys x+, x− ` P
{

ṽ/̃
y

}
keys x+, x− ` decrypt w using x− to ỹ in P else P ′

−→ keys x+, x− ` P ′

Figure 7: Reduction rules.

Observational equivalence (≈) is the largest symmet-
ric relation R on processes such that P R Q implies
that: (1) if P ⇓x then Q ⇓x ; (2) if C[·] is an evalua-
tion context then C[P] R C[Q]; (3) if P → P ′ then,
for some Q′, P ′ R Q′ and Q →∗ Q′. (Our results
hold also if ≈ denotes other equivalences, for example
testing equivalence.)

References

[1] M. Abadi. Protection in programming-language trans-
lations. In Proceedings of the 25th International Col-
loquium on Automata, Languages and Programming,
pages 868–883, July 1998.

[2] M. Abadi, A. Birrell, R. Stata, and E. Wobber. Se-
cure web tunneling. Computer Networks and ISDN
Systems, 30(1–7):531–539, Apr. 1998. Proceedings of
the 7th International World Wide Web Conference.

[3] M. Abadi, C. Fournet, and G. Gonthier. Secure im-
plementation of channel abstractions. Manuscript,
full version of [4] and this paper, on the Web at
http://join.inria.fr/.

[4] M. Abadi, C. Fournet, and G. Gonthier. Secure im-
plementation of channel abstractions. In Proceedings
of the Thirteenth Annual IEEE Symposium on Logic
in Computer Science, pages 105–116, June 1998.

[5] M. Abadi and A. D. Gordon. A calculus for crypto-
graphic protocols: The spi calculus. Information and
Computation, 148(1), Jan. 1999. An extended version
appeared as Digital Equipment Corporation Systems
Research Center report No. 149, January 1998.

[6] K. F. Alden and E. P. Wobber. The AltaVista tun-
nel: Using the Internet to extend corporate networks.
Digital Technical Journal, 9(2):5–15, Oct. 1997. On
the Web at http://www.digital.com/info/DTJQ01/

DTJQ01HM.HTM.
[7] R. Anderson. Why cryptosystems fail. In 1st ACM

Conference on Computer and Communications Secu-
rity, pages 215–227, Nov. 1993.

[8] M. Bellare and P. Rogaway. Provably secure session
key distribution: The three party case. In Proceed-
ings of the 27th Annual ACM Symposium on Theory
of Computing, 1995.

[9] G. Berry and G. Boudol. The chemical abstract ma-
chine. Theoretical Comput. Sci., 96:217–248, 1992.

[10] A. Birrell, G. Nelson, S. Owicki, and E. Wobber.
Network objects. Software Practice and Experience,
S4(25):87–130, Dec. 1995.

[11] A. D. Birrell. Secure communication using remote pro-
cedure calls. ACM Transactions on Computer Sys-
tems, 3(1):1–14, Feb. 1985.

[12] A. D. Birrell and B. J. Nelson. Implementing remote
procedure calls. ACM Transactions on Computer Sys-
tems, 2(1):39–59, February 1984.

[13] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. Proceedings of the Royal Society of
London A, 426:233–271, 1989. A preliminary version

appeared as Digital Equipment Corporation Systems
Research Center report No. 39, February 1989.

[14] P.-C. Cheng, J. A. Garay, A. Herzberg, and H. Kraw-
czyk. Design and implementation of modular key man-
agement protocol and IP secure tunnel on AIX. In
Proceedings of the 5th USENIX UNIX Security Sym-
posium, June 1995.

[15] C. Fournet. The Join-Calculus: a Calculus for Dis-
tributed Mobile Programming. PhD thesis, Ecole Poly-
technique, Palaiseau, Nov. 1998.

[16] C. Fournet and G. Gonthier. The reflexive chemical
abstract machine and the join-calculus. In Proceedings
of POPL ’96, pages 372–385. ACM, Jan. 1996.

[17] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and
D. Rémy. A calculus of mobile agents. In U. Montanari
and V. Sassone, editors, Proceedings of the 7th Inter-
national Conference on Concurrency Theory, volume
1119 of Lecture Notes in Computer Science. Springer-
Verlag, Aug. 1996.

[18] C. Fournet, C. Laneve, L. Maranget, and D. Rémy.
Implicit typing à la ML for the join-calculus. In
A. Mazurkiewicz and J. Winkowski, editors, Proceed-
ings of the 8th International Conference on Concur-
rency Theory, volume 1243 of Lecture Notes in Com-
puter Science, pages 196–212. Springer-Verlag, July
1997.

[19] C. Fournet and L. Maranget. The join-calculus lan-
guage (version 1.03). Source distribution and doc-
umentation available from http://join.inria.fr/,
June 1997.

[20] L. Lamport. A simple approach to specifying concur-
rent systems. Commun. ACM, 32(1):32–45, Jan. 1989.

[21] B. Lampson, M. Abadi, M. Burrows, and E. Wob-
ber. Authentication in distributed systems: Theory
and practice. ACM Transactions on Computer Sys-
tems, 10(4):265–310, Nov. 1992.

[22] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov.
A probabilistic poly-time framework for protocol anal-
ysis. In Proceedings of the Fifth ACM Conference on
Computer and Communications Security, pages 112–
121, Nov. 1998.

[23] J. McLean. Security models. In J. Marciniak, editor,
Encyclopedia of Software Engineering. Wiley & Sons,
1994.

[24] J. McLean. A general theory of composition for a
class of “possibilistic” properties. IEEE Transactions
on Software Engineering, 22(1):53–66, Jan. 1996.

[25] R. Milner. Communication and Concurrency. Prentice
Hall International, 1989.

[26] R. Milner, J. Parrow, and D. Walker. A calculus of mo-
bile processes, parts I and II. Information and Com-
putation, 100:1–40 and 41–77, Sept. 1992.

[27] R. M. Needham and M. D. Schroeder. Using encryp-
tion for authentication in large networks of computers.
Communications of the ACM, 21(12):993–999, Dec.
1978.

[28] L. C. Paulson. The inductive approach to verifying
cryptographic protocols. Journal of Computer Secu-
rity, 6(1–2), 1998.

[29] Sun Microsystems, Inc. RMI enhancements. Web
pages at http://java.sun.com/products/jdk/1.2/

docs/guide/rmi/, 1997.
[30] F. J. Thayer Fábrega, J. C. Herzog, and J. D.

Guttman. Strand spaces: Why is a security proto-
col correct? In Proceedings 1998 IEEE Symposium on
Security and Privacy, pages 160–171, May 1998.

[31] L. van Doorn, M. Abadi, M. Burrows, and E. Wobber.
Secure network objects. In Proceedings 1996 IEEE
Symposium on Security and Privacy, pages 211–221,
May 1996.

[32] A. Wollrath, R. Riggs, and J. Waldo. A distributed
object model for the Java system. Computing Systems,
9(4):265–290, Fall 1996.

