
On SDSI’s Linked Local Name Spaces

Martı́n Abadi
Digital Equipment Corporation

Systems Research Center
ma@pa:dec:com

Abstract

Rivest and Lampson have recently introduced SDSI, a
Simple Distributed Security Infrastructure. One of the im-
portant innovations of SDSI is the use of linked local name
spaces. This paper suggests a logical explanation of SDSI’s
local name spaces, as a complement to the operational ex-
planation given in the SDSI definition.

1. Linked Local Names Spaces

Rivest and Lampson have recently introduced a Simple
Distributed Security Infrastructure (SDSI) [9]. One of the
important innovations of SDSI is the use of linked local
name spaces. In SDSI, each principal has a name space
where names are bound to values, possibly by reference to
the name spaces of other principals.

For example, in a particular local name space, the name
Lampson may be associated with a public keyKL. As a
consequence of this binding, any statement whose signature
can be verified usingKL will be viewed as coming from
Lampson. In addition, the nameRivest may be associated
with Lampson0s Rivest. As a consequence of this binding,
if Lampson says thatRivest’s public key isKR, then any
statement whose signature can be verified usingKR will
be viewed as coming fromRivest. Compound names like
Lampson0s Rivest allow one name space to import bind-
ings from another.

Linked local name spaces offer the promise of combin-
ing some of the advantages of PGP-style local certifica-
tion with those of hierarchical certification schemes (see,
e.g., [3, 5, 11, 2, 4]). In particular, SDSI certification is egal-
itarian, and does not need to assume any global trust or any
global notion of identity (beyond that inherent in public-key
cryptography). On the other hand, SDSI can take advantage
of structured trust relations and naming conventions, when
such exist.

The precise rules for local names are not as simple as our
first example may have suggested. Those rules deal with

complex names such asLampson0s Rivest0s secretary

and Lampson0s Rivest0s students, and also with DNS
names (that is, Internet e-mail names). The SDSI defini-
tion gives a rather operational account of local names. Ba-
sically, it explains local names by giving an algorithm for
name resolution that maps names to their meanings.

This paper suggests an alternative account of local
names. This account is based on a logic where one
can express compound names such asLampson0s Rivest,
and assert thatLampson0s Rivest is bound to the pub-
lic key KR. One can also ask whetherLampson0s

Lampson is Lampson, and whetherLampson0s Rivest0s

secretary is Lampson0s (Rivest0s secretary). These
questions can be addressed independently of the binding for
Lampson, and even when name resolution is not possible
becauseLampson has not yet been bound.

The purpose of the logic is to explain local names in a
general, self-contained way, without requiring reference to
particular implementations. Nevertheless, the SDSI name-
resolution algorithm can be recast as a sound proof method
within the logic. Hopefully, this work will contribute to the
understanding of naming in SDSI and in related systems
such as Simple Public Key Infrastructure [4].

The next section introduces basic concepts and notations.
Section 3 develops a logic for linked local name spaces,
and proves the soundness of the SDSI name-resolution algo-
rithm with respect to the logic. It also contains an example.
Section 4 defines a semantics for the logic. The semantics
serves as a mathematical tool, and as a precise counterpart
to some of the informal explanations of naming. Section 5
concerns self-reference. An appendix contains all proofs.

This work can be seen as a descendant of the work of
Lampson et al. in [8, 1, 10]. That work develops a calculus
of principals and their statements, analogous to that of sec-
tion 3; however, it does not explore the SDSI approach to
naming.

At this time (March 1997), a precise specification doc-
ument for SDSI is not yet available. All the information
about SDSI contained here comes from a comprehensive
but informal description [9]. SDSI is a rather sophisticated



design, with many aspects. This paper largely ignores as-
pects of SDSI other than linked local name spaces.

2. Concepts and Notations

This section is an informal discussion of basic concepts
related to linked local name spaces. The main goal of this
section is to review some of the ideas of SDSI at a suitable
level of abstraction and to clarify their meanings. This sec-
tion also introduces notations used in the rest of the paper.

2.1. Keys and Names

Hierarchical certification schemes rely on a general
agreement about the roots of certification hierarchies; the
names of these roots should be interpreted similarly in all
name spaces. On the other hand, in egalitarian certification
schemes, each principal can introduce names of its own, for
private use. SDSI supports both styles of naming. In our
study of SDSI, we therefore deal with both global and local
ways of referring to principals:

� Global identifiersare understood equally in all name
spaces. Global identifiers include public keys and
global names. Public keys are global because any two
principals should agree on the value of a public key
when they see it, and should agree that a statement
is signed using the inverse of a public key when they
see the public key and the statement. In addition, the
names of certain “special roots” are global, by special
dispensation from the designers of SDSI; for example,
DNS!! is a global name, and represents the root of the
DNS hierarchy.

� Local namesare the auxiliary names that each princi-
pal can use in its name space. For example,Lampson

may be used as a local name by anyone, and bound
to any value. The value could be a global identifier
(such as a public key), or another local name. Since
two principals may disagree on the value ofLampson,
they may not agree on whether a statement comes from
Lampson.

We assume a set of global identifiersG and a disjoint set of
local namesN . The symbolsf , g, andh range overG, and
the symbolsm andn overN .

2.2. Compound Names

In SDSI, the use of compound names is the basic mech-
anism for linking local name spaces. A compound name is
an expression of the form(ref: p1 : : : pn), which is abbre-
viated top10s : : : 0s pn. Each ofp1, . . . ,pn may be a global
identifier, a local name, or a compound name. Intuitively,

p0s q is the principal that is calledq in the name space of
the principal that is calledp in the current name space. In
general,p10s : : : 0s pn is the principal that is calledpn in
the name space . . . of the principal that is calledp1 in the
current name space.

Going beyond these first intuitions about compound
names, some questions immediately arise:

� Does(ref: p1 : : : pn) make sense whenn = 0? SDSI
seems to allow this case. The meaning of(ref: ) is the
current principal—whoever is trying to do the name
resolution.

� Does(ref: p1 : : : pn) make sense whenn = 1? SDSI
explicitly allows this case, and says that(ref: p) is
equivalent top, since the first argument toref is al-
ways interpreted in the current name space.

� Is ((p0s q)0s r) the same as(p0s q0s r) and the same as
(p0s (q0s r))? This is not asserted in the SDSI paper,
but is consistent with it. It is valid in the logic of this
paper.

� Is (p0s p) the same asp? SDSI does not assume this,
as it would be unreasonable, for example in the case
wherep is spouse.

In light of these properties, we considerref only in the
binary case, without loss of generality:

� To recover the expressiveness of the nullary case
(n = 0), we introduce the constructSelf, and replace
(ref: ) with Self. We postpone the study ofSelf to
section 5.

� In the unary case, instead of writing(ref: p), we can
simply writep.

� The case wheren > 2 is reducible to the binary case,
since for example we can regard(p0s q0s r) as an ab-
breviation for((p0s q)0s r).

The set ofprincipal expressionsis the least setP con-
tainingG andN , and such that ifp; q 2 P then(p0s q) 2 P .
Thus, a principal expression is a syntactic representation for
a principal. The symbolsp, q, andr range overP .

2.3. Statements

SDSI is concerned with statements that principals make.
Those statements can be certificates and requests for ser-
vice, in particular. All statements are understood with re-
spect to a current name space.

A true statement may not be true forever. Consequently,
certificates contain temporal information, indicating their
periods of validity. For simplicity, we prefer to abstract



away issues of time (for example, interesting questions
about early versus late binding). Therefore, all statements
are understood with respect to an arbitrary but fixed time,
the current time.

We writep says s to indicate that the principal denoted
by p makes statements. Whenp is a public keyK, the
statement can be made by signing a textual representation
of s using the private key that corresponds toK.

2.4. Bindings and Their Meanings

A name spaceis a set of bindings of names to values.
We use the notationn 7! v to represent the binding of the
namen to the valuev. The namen and the valuev form
a name/value pair. The value can be an arbitrary object,
but the only case of relevance to this paper is that where the
value is a principal expression. In a name space where name
n is bound to principal expressionp, any statement byp is
taken as a statement byn.

Bindingn to p is much like definingn to bep within the
current name space. One may therefore view a binding as
an assertion of equality. For example, one may bind the lo-
cal namelawyer to the principal expressionTed0s lawyer

whenlawyer andTed0s lawyer represent the same “real”
principal.

Interpreting binding as equality is appealingly simple;
but this interpretation runs into some trouble. Suppose, for
example, that two different public keysKL1 andKL2 are
values for the local nameLampson in some name space
(perhaps because the “real” Lampson controls two keys).
SDSI allows this:

A local name can be undefined, or it can be bound
to some value [. . . ]. The principal may assign a
value to a local name by issuing a correspond-
ing certificate. If the local name already has a
valid name/value certificate, the new certificate
augments the old one, in the sense that a SDSI
application is deemed to act correctly if it uses
the name/value binding given in either certificate.

However, it is a little hard to make sense of the equali-
tiesKL1 = Lampson = KL2 , sinceKL1 andKL2 are
different. These equalities may make sense if we view
KL1 , Lampson, KL2 as being three ways of referring to
one “real” principal. It is not clear whether this is an
appropriate semantic intuition. One of the principles of
SDSI is that “principals are public keys”; the equalities
KL1 = Lampson = KL2 put us in an interesting situa-
tion where one principal is two different keys. Clearly, in
this situation, the principle that “principals are public keys”
should be understood loosely. Section 3 gives a stronger,
formal argument against the equality interpretation.

In light of these difficulties, we may consider a weaker
interpretation of binding. This weaker interpretation is pos-
sible because bindings need not be used in a symmetric way.
For example, the binding oflawyer to Ted0s lawyer may
be used to turn a statement byTed0s lawyer into a state-
ment bylawyer, not vice versa.

According to the weaker interpretation, a binding is sim-
ply an assertion of aspeaks-forrelation [8, 1]. Wheneverp
speaks forq, if p makes a statement thenq makes the same
statement. However, unlike equality, the speaks-for relation
is not symmetric. With this weaker interpretation, the bind-
ing of lawyer to Ted0s lawyer means thatTed0s lawyer

speaks forlawyer, not thatlawyer is Ted0s lawyer. Sim-
ilarly, the binding ofLampson toKL1 andKL2 means that
KL1 andKL2 both speak forLampson, but does not imply
the equality ofLampson, KL1 , andKL2 .

This paper generally favors the speaks-for interpretation
of binding. However, it is not strictly necessary to commit
to one specific interpretation. It suffices to assume proper-
ties of binding that seem compatible with either interpreta-
tion.

2.5. A General Form for Bindings

Suppose that a name spaceo contains the binding

sysAdmin 7! K1

and many bindings of the form

n 7! (sysAdmin0s CertAuthority0s n)

Suppose further thatK1 says

CertAuthority 7! K2

Within the name spaceo, we may deduce thatsysAdmin0s

CertAuthority corresponds toK2 , and then we may use
that fact to deduce

n 7! (K2 0s n)

In this situation, it is useful to generalize the7! relation
so that we can writep 7! q even whenp is not a simple
name. For example, we may write

(sysAdmin0s CertAuthority) 7! K2

in order to capture the association between the compound
namesysAdmin0s CertAuthority and the keyK2 . If
name resolution was implemented using a cache, then the
cache might record facts like

(sysAdmin0s CertAuthority) 7! K2

In general,p 7! q means thatp is bound toq in the cur-
rent name space, either as the result of an explicit binding
(like sysAdmin 7! K1 ), or as a consequence of other bind-
ings (like(sysAdmin0s CertAuthority) 7! K2 ).



Reflexivity: p 7! p

Transitivity: (p 7! q) � ((q 7! r) � (p 7! r))

Left-monotonicity: (p 7! q) � ((p0s r) 7! (q0s r))

Globality: (p0s g) 7! g

if g is a global identifier.

Associativity: ((p0s q)0s r) 7! (p0s (q0s r))
(p0s (q0s r)) 7! ((p0s q)0s r)

Linking: (p says (n 7! r)) � ((p0s n) 7! (p0s r))
if n is a local name.

Speaking-for: (p 7! q) � ((q says s) � (p says s))

Figure 1. Axioms for linked local name spaces.

3. A Logic for Linked Local Name Spaces

In this section, we define a logic based on the concepts
and notations of section 2. We also explain the SDSI name-
resolution algorithm as a particular proof method within the
logic, and show that it is sound.

3.1. Syntax

First we introduce a syntax for statements, building on
section 2. We assume a setS of atomic statements (written
s0, s1, s2, . . . ). The set offormulas(or statements) is the
least set such that:

� an atomic statement is a formula;

� if s andt are formulas then so are:s ands^t; we write
the implications � t as an abbreviation for:(s^:t);

� if p andq are principal expressions thenp 7! q is a
formula;

� if p is a principal expression ands is a formula then
p says s is a formula.

The symbolss andt range over the set of formulas.
The intuitive meanings of principal expressions, of7!,

and ofsays are those explained in section 2. As discussed
there, all formulas are understood with respect to a current
name space and a current time.

For example,KL says (Rivest 7! KR) is a formula
if KL andKR are global identifiers andRivest is a local
name. This formula expresses an assertion signed with the
inverse of the public keyKL. The assertion is thatRivest
is bound toKR. This binding is asserted for the local name
space associated withKL, not universally.

3.2. Axioms

Next we give a proof system; this proof system has three
components:

1. The standard axioms and rules of propositional logic,
such as the axiom(s ^ t) � s and the rule

s s � t

t

2. The standard axiom and rule of modal logic (e.g., [6]):

(p says (s � t)) � ((p says s) � (p says t))

s

p says s

These are useful for manipulating statements within
the scope ofsays , but we do not actually need them
in this paper. The axiom expresses that the statements
that a principal says are closed under consequence; the
rule expresses that every principal says all provable
statements.

3. New axioms that deal with linked local name spaces,
listed in Figure 1.

Reflexivity and Transitivity express that the binding re-
lation is reflexive and transitive.

Left-monotonicity means that ifp is bound toq then
p0s r is bound toq0s r. We do not have thatr0s p is
bound tor0s q, becausep may not be bound toq in r’s
name space.

Globality expresses that, ifg is a global identifier and
p an arbitrary principal expression, thenp0s g is bound
to g. (Nevertheless,p0s g might be bound to other val-
ues as well.) This axiom is justified by the globality
of g.



Associativity postulates that references are associative.
Two formulas are used because we do not assume that
7! is symmetric. (We actually need only the second
formula.)

Linking expresses that ifp says thatn is bound tor
(implicitly, in p’s name space), thenp0s n is bound to
p0s r (implicitly, in the current name space). Thus,p

is trusted on assertions about its name space.

Finally, Speaking-for expresses that ifp is bound toq,
then any statement byq is taken as a statement byp.

This axiom system could be extended in several ways. In
particular, we could add:

(a) the converse of Globality:g 7! (p0s g) for g a global
identifier;

(b) a generalization of Linking:(p says (q 7! r)) �

((p0s q) 7! (p0s r)) for q an arbitrary principal ex-
pression.

Both of these extensions may seem reasonable. Interest-
ingly, however, there is a fundamental conflict between
them. For instance, suppose that we have the formula
KL says (DNS!! 7! KL), whereKL is a public key; this
formula expresses thatKL says thatDNS!! is bound toKL,
a suspicious but possible statement. By (b), we can de-
rive (KL0s DNS!!) 7! (KL0s KL); by (a), we can conclude
DNS!! 7! KL. This is an undesirable consequence: it means
that a strange statement by an arbitrary keyKL can pollute
the current name space. By Speaking-for, once we have the
bindingDNS!! 7! KL any statement fromKLwill be viewed
as a statement fromDNS!!; thus,KL can hijackDNS!!. There-
fore, (a) and (b) are incompatible.

Another possible addition is the following symmetry ax-
iom:

(c) (p 7! q) � (q 7! p).

This axiom is motivated by the equality interpretation of
binding. Interestingly, it has undesirable consequences too.
For instance, suppose that we have the formulasKL says

(n 7! KL) andKL says (n 7! DNS!!), wheren is a lo-
cal name. By Linking, Globality, and Transitivity, we ob-
tain (KL0s n) 7! KL and (KL0s n) 7! DNS!!. By the
new symmetry axiom and Transitivity, we can conclude
DNS!! 7! KL. Thus, again, statements by an arbitrary key
KL can pollute the current name space. This provides a
strong argument against the adoption of symmetry, and (at
least in the setting of our logic) against the equality inter-
pretation of binding.

In the arguments about (a), (b), and (c), somewhat plau-
sible axioms lead to catastrophic results. A bit of paranoia is
therefore in order. How can we know that our present axiom
system does not lead to exactly the same results? We prove

that it does not in Corollary 6 of section 4. We show that,
no matter whatKL says, one cannot deriveDNS!! 7! KL.
This proof should not be construed as a final guarantee of
the security of our logic or of SDSI. It is however a useful
sanity check.

3.3. An Example

In order to illustrate how the logic is used, we work
through an example. Applying a SDSI abbreviation, we
write smith@aol:com as a shorthand for

DNS!!0s com0s aol0s smith

Note that we have omitted some parentheses in the expres-
sion DNS!!0s com0s aol0s smith. By axiom Associativity,
fortunately, we do not have to worry about how this expres-
sion is parenthesized. We omit parentheses in the rest of the
example, with the same justification.

Consider the following bindings for the current name
space and the following certificates:

1. the local nameBrokersInc is bound to the public key
K1 ,

2. the local namebroker is bound toBrokersInc0s

NYoffice0s Smith,

3. a certificate signed with the inverse ofK1 says that the
local nameNYoffice is bound to the public keyK2 ,

4. a certificate signed with the inverse ofK2 says that the
local nameSmith is bound tosmith@aol:com.

Logically, we represent these bindings and certificates with
the formulas:

1. BrokersInc 7! K1 ,

2. broker 7! (BrokersInc0s NYoffice0s Smith),

3. K1 says (NYoffice 7! K2 ),

4. K2 says (Smith 7! smith@aol:com).

Using these formulas as hypotheses, we construct the semi-
formal proof of Figure 2. Thus, we obtain that the local
namebroker is bound tosmith@aol:com.

Following Lampson, we can examine a proof like this
one much like we would examine an audit trail. We can
identify which of the hypotheses are used, and how they
contribute to the conclusion. In this case, it is clear, for
example, that both of the certificates fromK1 andK2 are
relevant, and thatK1 andK2 must be trusted to have issued
them appropriately.

A name likebroker may be used in an ACL. Given
a signed request, one may need to determine whether



1. BrokersInc says (NYoffice 7! K2 ) from hypotheses (1) and (3) by Speaking-for.

2. (BrokersInc0s NYoffice) 7! (BrokersInc0s K2 ) from step (1) by Linking.

3. (BrokersInc0s NYoffice) 7! K2 from step (2) by Globality and Transitivity.

4. (BrokersInc0s NYoffice) says (Smith 7! smith@aol:com) from hypothesis (4) and step (3) by Speaking-for.

5. (BrokersInc0s NYoffice0s Smith) 7! smith@aol:com from step (4) by Linking, Globality, and Transitivity, since
DNS!! is a global name andsmith@aol:com stands forDNS!!0s com0s aol0s smith.

6. broker 7! smith@aol:com from hypothesis (2) and step (5) by Transitivity.

Figure 2. A proof.

that request comes frombroker in order to make an
access-control decision. By Speaking-for and the bind-
ing broker 7! smith@aol:com, it suffices to determine
whether the signature is that ofsmith@aol:com. This de-
termination requires a chain of certificates starting from the
root of the DNS hierarchy. However, the resultbroker 7!

smith@aol:com can be derived (and evaluated) before that
chain of certificates is presented.

3.4. Simulating Name Resolution

Name resolution is the process of mapping a principal
expression to a global identifier. Name resolution happens
in the context of assumptions, in particular assumptions
about the values of local names. The form of those assump-
tions may vary, depending on protocols and architecture.
We consider a set of assumptions of the formsn 7! q and
g says (n 7! q), wheren is a local name,q a principal
expression, andg a global identifier. The assumptions of
the formn 7! q correspond to bindings in the current name
space. Those of the formg says (n 7! q) correspond to
certificates about bindings in other name spaces. Typically
g is a public keyK, andg says (n 7! q) is implemented as
a certificate signed with the inverse ofK. We letE be the
conjunction of all those assumptions. It is an easy exercise
to include also bindings for global names (for example, a
binding ofDNS!! to a corresponding public key).

In SDSI, name resolution is specified as a recursive algo-
rithm. The core of the algorithm is presented as a (nonde-
terministic) functionREF2(o; p) that returns the meaning of
p in the name space associated witho. The argumento may
be eithercurrent principal (cp, for short) or a global
identifierg.

Figure 3 gives an adaptation of SDSI’s definition of
REF2. It is fairly faithful, but simpler than the original
because, for example, it does not deal with quoting or en-
crypted objects. We write assumptions(o) for the set of as-
sumptions foro: (1) assumptions(cp) consists of the as-

sumptions of the formn 7! q, (2) assumptions(g) con-
sists of the assumptions of the formg says (n 7! q).
The computation ofREF2(o; p) is nondeterministic because
assumptions(o) may include several bindings of the form
n 7! q for a givenn. We say thatREF2(o; p) yieldsf when
f is one of the possible outputs ofREF2(o; p).

In this section, we show howREF2 can be simulated
within our logic. We carry this out in two steps. First, we
define a new set of rules, called thename-resolution rules.
These rules rely on the notation of the logic, but consti-
tute a separate proof system. We establish that the name-
resolution rules are equivalent toREF2. As a second step,
we show that the name-resolution rules are sound with re-
spect to the logic.

The name-resolution rules are simple rules designed for
proving formulas of the formE � (p 7! f). They are
given in Figure 4. One can understand this set of rules as
an algorithm. The algorithm starts out with an inputp and
assumptionsE; it finds a suitablef , if one exists. The al-
gorithm does a case analysis on the form ofp. There is one
rule (Base case 1) for whenp is a global identifierf , one
rule (Local name 1) for whenp is a local namen, and four
rules for whenp is of the formq0s r. Three of those four
(Base case 2, Local name 2, Ref 2) do a case analysis on
the form ofr whenq is a global identifierg. The remaining
rule (Ref 1) applies wheneverp is of the formq0s r.

Despite their apparent differences, the name-resolution
rules andREF2 are equivalent, as the following proposition
shows:

Proposition 1 Assume that a set of bindings, each of the
form (n 7! q), is given forcp and for each global identifier
g. LetE be the conjunction of the formulas(n 7! q), for
each binding(n 7! q) for cp, andg says (n 7! q), for
each binding(n 7! q) for g. For every principal expression
p and global identifiersg andf , we have:

� E � (p 7! f) is provable with the name-resolution
rules if and only ifREF2(cp; p) yieldsf .



REF2(o; p) = if p is a global identifierf

then returnf

else ifp is a local namen

and assumptions(o) includesn 7! q

then returnREF2(o; q)

else ifp is a compound nameq0s r

then returnREF2(REF2(o; q); r)

else fail

Figure 3. Name-resolution algorithm.

(Base case 1)

f 2 G

E � (f 7! f)

(Base case 2)

f; g 2 G

E � ((g0s f) 7! f)

(Local name 1)

n 7! q is a conjunct inE E � (q 7! f)

E � (n 7! f)

(Local name 2)

g says (n 7! q) is a conjunct inE E � ((g0s q) 7! f)

E � ((g0s n) 7! f)

(Ref 1)

E � (q 7! f0) E � ((f0
0s r) 7! f)

E � ((q0s r) 7! f)

(Ref 2)

g 2 G E � ((g0s q) 7! f0) E � ((f0
0s r) 7! f)

E � ((g0s (q0s r)) 7! f)

Figure 4. Name-resolution rules.



� E � ((g0s p) 7! f) is provable with the name-
resolution rules if and only ifREF2(g; p) yieldsf .

The next proposition relates the name-resolution rules to
the logic of section 3.2:

Proposition 2 The name-resolution rules are sound with
respect to the logic. That is, ifE � (p 7! f) is provable
using those rules, then it is also provable in the logic.

We conclude:

Corollary 3 The name-resolution algorithm is sound with
respect to the logic. That is, givenE as in Proposition 1 and
any principal expressionp, if REF2(cp; p) yields a global
identifierf , thenE � (p 7! f) is provable in the logic.

The converse of this property does not hold: some-
timesE � (p 7! f) is provable in the logic although
REF2(cp; p) does not yieldf . In particular, the logic’s
Globality axiom yields(n0s g) 7! g even when we do
not know hown is defined. Furthermore, given the as-
sumptionsm 7! f1, m 7! f2, f1 says (n1 7! n2),
and f2 says (n2 7! h), the logic enables us to derive
(m0s n1) 7! h, while REF2(cp;m0s n1) does not yieldh.
It should be easy enough to restrict the logic in order to
prevent these results, but it is not clear whether they are
harmful, and they might in fact be useful.

The logic is more powerful than the algorithm also
in that it permits more general arguments. For exam-
ple, using the logic, one can reason that ifRivest 7!

(Lampson0s Rivest) andLampson 7! KL thenRivest 7!
(KL0s Rivest), independently of any certificates about
KL0s Rivest. Without such certificates, in contrast, the
algorithm fails.

4. Semantics

In this section, we define a semantics for the logic of
section 3. By the standards of logicians, the semantics is
rather elementary. It could probably be enhanced (and com-
plicated) using ideas from the modal-logic literature (see
e.g. [6, 1, 7]). Despite its simplicity, the semantics was
helpful in refining the rules of section 3, and it can be rather
useful, as we demonstrate with Corollary 6 below.

Recall thatG is the set of global identifiers,N the set of
local names,P the set of all principal expressions, andS
the set of atomic propositions. The semantics assumes:

� a setW ,

� a mapping� fromG to subsets ofW ,

� a mapping� fromN �W to subsets ofW , and

� a mapping� from S �W to truth values.

In the vocabulary of modal logic,W is a set of possible
worlds. The choice of the setW does not matter for our
purposes. What matters is thatW has a subset�(g) for
eachg 2 G; a subset�(a; n) for eacha 2 W andn 2 N ;
and that�(si; a) indicates whethersi is true or false at each
a 2 W .

Givenp 2 P anda 2 W , we define[[p]]a to be a subset
of W , as follows:

� [[g]]a = �(g) if g 2 G,

� [[n]]a = �(n; a) if n 2 N ,

� [[p0s q]]a =
S
f[[q]]b j b 2 [[p]]ag.

For eachp, we obtain a relation onW , namelyf(a; b) j b 2
[[p]]ag. The relation forp0s q is simply the composition of
the relations forp andq.

Given a statements anda 2 W , we writea j= s to mean
thats is true ata. The definition ofa j= s is:

� a j= si is �(si; a), for si 2 S,

� a j= (s ^ t) is true iff botha j= s anda j= t are true,

� a j= (:s) is true iff a j= s is false,

� a j= (p 7! q) is true iff [[p]]a � [[q]]a,

� a j= (p says s) is true iff b j= s is true for allb 2 [[p]]a.

Here we are not using the equality interpretation of binding,
as the interpretation ofp 7! q is obviously not symmetric.
The interpretation guarantees thatq speaks forp in the sense
that if q says s thenp says s.

A statements is valid if and only if a j= s is true for
all choices ofW , �, �, and�, and alla 2 W . The fol-
lowing proposition establishes the soundness of the logic
of section 3 with respect to the semantics of this section.
The converse to this proposition (completeness) is probably
false.

Proposition 4 If s is provable in the logic, thens is valid.

Soundness implies consistency:

Corollary 5 If s is provable in the logic, then:s is not.

As a sanity check, we can now show that some unde-
sirable formulas (discussed in section 3) are not derivable
in the logic. We show that a formulaDNS!! 7! KL can-
not be derived from two hypothesess andt. The first hy-
pothesis,s, lists some “normal” statement thatDNS!! makes,
binding local names to principal expressions; one may be
able to generalize the corollary to include other “normal”
statements. The second hypothesis,t, lists statements that
KL makes, possibly with the goal of hijackingDNS!!; these
statements are completely arbitrary. The corollary guaran-
tees that, despite these arbitrary statements byKL, one can-
not derive thatDNS!! is bound toKL.



Corollary 6 Assume thatKL andDNS!! are distinct global
identifiers. Lets be any formula of the formDNS!! says
(n1 7! p1) ^ : : : ^ DNS!! says (nk 7! pk), wheren1, . . . ,
nk are local names andp1, . . . , pk are arbitrary principal
expressions. Lett be any formula of the formKL says t1 ^

: : :^KL says tk, wheret1, . . . ,tk are arbitrary statements.
Then the formulas ^ t � (DNS!! 7! KL) is not derivable in
the logic.

5. Self

In this section, we consider the constructSelf, which is
our notation forref with no arguments,(ref: ).

Intuitively, Self represents the current principal. There-
fore, it seems sensible to addSelf to the set of principal
expressions, and to extend the logic with the following four
axioms:

Identity: (Self0s p) 7! p p 7! (Self0s p)
(p0s Self) 7! p p 7! (p0s Self)

It is also easy to extend the semantics, validating the new
axioms. (It suffices to let[[Self]]a = fag for everya 2 W .)

Given the formal properties ofSelf, it may appear as a
fairly dull construct. After all, the new axioms show how
it can be eliminated from expressions; and the semantics of
Self is routine.

Nevertheless, the use ofSelf is sometimes convenient.
For example, it enables us to write the formulap says

(n 7! Self). In the case in whichp is a public keyK
andn is Ted, this statement corresponds to a certificate that
bindsTed to K. The certificate would not need to men-
tion K explicitly. Instead, it can refer toK asSelf, that
is, the public key used for verifying the signature on the
certificate. GivenK says (Ted 7! Self), we can derive
(K 0s Ted) 7! (K 0s Self), hence(K 0s Ted) 7! K. In
this respect,K says (Ted 7! Self) has the same effect
asK says (Ted 7! K), but the “wire representation” of
K says (Ted 7! Self) might be different.

Continuing this example, let us assume thatEdward 7!

K holds in the current name space. FromK says (Ted 7!
Self) we obtainEdward says (Ted 7! Self), and then
(Edward0s Ted) 7! Edward. This is a nice minor result
that we would not have reached fromK says (Ted 7! K).

According to our new axioms,K 0s Self and K are
bound to each other. Therefore,K could say, truthfully,
K 7! Self. SinceK speaks forEdward, Edward would
say K 7! Self as well. This is a somewhat perplex-
ing consequence of apparently sensible hypotheses: a true
statement byK leads to a suspicious statement byEdward.
On the other hand,Edward’s statement should be harmless,
sinceEdward should not have the authority to convince oth-
ers that it speaks forK when in factEdward is bound toK
but not vice versa.

In summary, the constructSelf (in SDSI,(ref: )) may
be useful occasionally. However, it has the potential to be
surprising; like all relative names, it should be handled with
care.

6. Conclusions

SDSI’s linked local name spaces appear as a promising
innovation. This paper attempts to contribute to their under-
standing, both through informal explanations and through
the development of a logic. The logic generalizes the SDSI
name-resolution algorithm. It permits not only the evalu-
ation of compound names, but also reasoning about those
names and their bindings. Having a logic is not synony-
mous with security; however, a logic can complement an
operational approach, and provide another perspective from
which to examine security issues.

Acknowledgements

Ron Rivest made many useful comments on a draft of
this paper.

Appendix: Proofs

Proposition 1 Assume that a set of bindings, each of the
form (n 7! q), is given forcp and for each global identifier
g. LetE be the conjunction of the formulas(n 7! q), for
each binding(n 7! q) for cp, andg says (n 7! q), for
each binding(n 7! q) for g. For every principal expression
p and global identifiersg andf , we have:

� E � (p 7! f) is provable with the name-resolution
rules if and only ifREF2(cp; p) yieldsf .

� E � ((g0s p) 7! f) is provable with the name-
resolution rules if and only ifREF2(g; p) yieldsf .

Proof The “if” direction of the proof is by induction on
the execution ofREF2(o; p), for both kinds ofo together.

� First, let us suppose that the algorithm terminates im-
mediately returningp whenp is a global identifierf .
In that case, we obtain:

– E � (f 7! f) by rule Base case 1,

– E � ((g0s f) 7! f) by rule Base case 2.

� Next, if p is a local namem, and the assumptions for
o include(m 7! q), then the algorithm invokes itself
recursively, andREF2(o; q) returnsf . By induction hy-
pothesis,E � (q 7! f) is provable wheno is cp, and
E � ((g0s q) 7! f) is provable wheno is g. We ob-
tain:



– E � (m 7! f) by rule Local name 1,

– E � ((g0sm) 7! f) by rule Local name 2.

� Finally, suppose thatp is (q0s r). Then the algorithm
invokes itself recursively twice. In the first recursive
invocation,REF2(o; q) yields a resultf0. By induction
hypothesis,E � (q 7! f0) is provable ifo is cp, and
E � ((g0s q) 7! f0) is provable ifo is g. In the second
recursive invocation,REF2(f0; r) yields the final result
f . By induction hypothesis,E � ((f0

0s r) 7! f) is
provable. We obtain:

– E � ((q0s r) 7! f) by rule Ref 1,

– E � ((g0s (q0s r)) 7! f) by rule Ref 2.

The “only if” direction of the proof is by induction on the
proof ofE � (p 7! f) orE � ((g0s p) 7! f). There is one
case for each of the name-resolution rules:

� Base case 1: trivial, sinceREF2(cp; f) yieldsf .

� Base case 2: trivial, sinceREF2(cp; (g0s f)) and
REF2(g; f) yield f .

� Local name 1: By induction hypothesis,REF2(cp; q)
yieldsf . This implies thatREF2(cp; n) yieldsf if n is
bound toq.

� Local name 2: By induction hypothesis,REF2(g; q)
yieldsf . This implies that bothREF2(cp; (g0s n)) and
REF2(g; n) yieldf if n is bound toq in g’s name space.

� Ref 1: By induction hypothesis,REF2(cp; q) yields
f0 andREF2(f0; r) yieldsf , henceREF2(cp; (q0s r))
yieldsf . In the case whereq happens to be a global
identifier h, we also need to prove thatREF2(h; r)
yieldsf . But if q is h andREF2(cp; q) yieldsf0, then
h is f0, and we already have thatREF2(f0; r) yieldsf .

� Ref 2: By induction hypothesis,REF2(cp; (g0s q))
and REF2(g; q) yield f0, and REF2(f0; r) yields f .
First we prove thatREF2(cp; (g0s (q0s r))) yields f .
An invocation of REF2(cp; (g0s (q0s r))) turns into
an invocation ofREF2(REF2(cp; (g0s q)); r); since
REF2(cp; (g0s q)) yieldsf0, this turns into an invoca-
tion of REF2(f0; r), which yieldsf . Next we prove
that REF2(g; q0s r) yields f . This is an immediate
consequence of the facts thatREF2(g; q) yieldsf0 and
REF2(f0; r) yieldsf .

2

Proposition 2 The name-resolution rules are sound with
respect to the logic. That is, ifE � (p 7! f) is provable
using those rules, then it is also provable in the logic.

Proof The proof is by induction on the proof ofE �

(p 7! f) with the name-resolution rules. There is one case
for each of the rules.

� Base case 1: by axiom Reflexivity.

� Base case 2: by axiom Globality. (Note that only a
special case of Globality is needed:(f 0s g) 7! g.)

� Local name 1: by axiom Transitivity.

� Local name 2: by axioms Linking and Transitivity.

� Ref 1: by axioms Left-monotonicity and Transitivity.

� Ref 2: by axioms Associativity, Left-monotonicity,
and Transitivity. (Note that Associativity is used only
in one direction, and in a special case:(f 0s (q0s r)) 7!
((f 0s q)0s r).)

2

Proposition 4 If s is provable, thens is valid.

Proof The propositional axioms and rules are validated,
since the propositional connectives are interpreted in the
usual manner. So are the standard axiom and rule of modal
logic. Reflexivity and Transitivity are validated, straight-
forwardly. Associativity holds essentially because the com-
position of binary relations is associative. The remaining
axioms require small arguments:

� For Globality: Ifg is a global identifier, then[[g]]a is in-
dependent ofa (and is determined by� alone); there-
fore, [[p0s g]]a =

S
f[[g]]b j b 2 [[p]]ag � [[g]]a. Equality

holds whenever[[p]]a 6= ;; otherwise,[[p0s g]]a = ;.

� For Linking: If a j= (p says (n 7! r)) is true, then
b j= n 7! r is true for allb 2 [[p]]a, and[[n]]b � [[r]]b
for all suchb. Hence,

S
f[[n]]b j b 2 [[p]]ag �

S
f[[q]]b j

b 2 [[p]]ag, that is, [[p0s n]]a � [[p0s r]]a. Therefore,
a j= (p0s n) 7! (p0s r) is true.

� For Speaking-for: Ifa j= q 7! r is true, then[[q]]a �
[[r]]a. Therefore, ifa j= r says s is true, thenb j= s is
true for allb 2 [[r]]a, andb j= s is true for allb 2 [[q]]a,
soa j= q says s is true.

2

Corollary 6 Assume thatKL and DNS!! are distinct
global identifiers. Lets be any formula of the form
DNS!! says (n1 7! p1) ^ : : : ^ DNS!! says (nk 7! pk),
wheren1, . . . ,nk are local names andp1, . . . ,pk are arbi-
trary principal expressions. Lett be any formula of the form
KL says t1 ^ : : : ^ KL says tk, wheret1, . . . , tk are arbi-
trary statements. Then the formulas ^ t � (DNS!! 7! KL)
is not derivable in the logic.



Proof If the formula in question was derivable, then it
would be valid, according to Proposition 4. So we show
that it is not valid. It suffices to give a setW , an element
a 2 W , and functions�, �, and� such thata j= s ^ t is true
while a j= DNS!! 7! KL is false. Trivial choices suffice. We
letW be the singletonf1g, let a = 1, let �(KL) = ; and
�(DNS!!) = W , and let�(ni; a) = ; for all local names
ni. (Any remaining properties of�, �, and� are irrelevant.)
We have thata j= s is true, since�(ni; a) = ;, thata j= t is
true, since�(KL) = ;, and thata j= DNS!! 7! KL is false,
since�(DNS!!) 6� �(KL). 2

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A
calculus for access control in distributed systems.ACM
Transactions on Programming Languages and Systems,
15(4):706–734, Oct. 1993.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. InProceedings 1996 IEEE Symposium on Se-
curity and Privacy, pages 164–173, May 1996.

[3] CCITT. Blue Book (Recommendation X.509 and ISO 9594-
8: The directory-authentication framework). CCITT, 1988.

[4] C. M. Ellison, B. Frantz, and B. M. Thomas. Sim-
ple public key certificate. Internet draft, athttp:
//www.clark.net/pub/cme/spki.txt , 1996.

[5] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The
Digital Distributed System Security Architecture. InPro-
ceedings of the 1989 National Computer Security Confer-
ence, pages 305–319, Oct. 1989.

[6] R. Goldblatt. Logics of Time and Computation. Number 7
in CSLI Lecture Notes. CSLI, Stanford, 1987.

[7] A. J. Grove and J. Y. Halpern. Naming and identity in epis-
temic logics, I: The propositional case.Journal of Logic and
Computation, 3(4):345–378, 1993.

[8] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in distributed systems: Theory and practice.
ACM Transactions on Computer Systems, 10(4):265–310,
Nov. 1992.

[9] R. L. Rivest and B. Lampson. SDSI — A Simple Distributed
Security Infrastructure. Version 1.1, athttp://theory.
lcs.mit.edu/˜rivest/sdsi11.html , October 2,
1996.

[10] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Au-
thentication in the Taos operating system.ACM Transac-
tions on Computer Systems, 12(1):3–32, Feb. 1994.

[11] P. R. Zimmermann.The Official PGP User’s Guide. MIT
Press, 1995.


