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Abstract complex names such dampson's Rivest’s secretary
and Lampson's Rivest’s students, and also with DNS
Rivest and Lampson have recently introduced SDSI, anames (that is, Internet e-mail names). The SDSI defini-
Simple Distributed Security Infrastructure. One of the im- tion gives a rather operational account of local names. Ba-
portant innovations of SDSI is the use of linked local name sically, it explains local names by giving an algorithm for
spaces. This paper suggests a logical explanation of SDSI'sname resolution that maps names to their meanings.
local name spaces, as a complement to the operational ex- This paper suggests an alternative account of local
planation given in the SDSI definition. names. This account is based on a logic where one
can express compound names suchagson’s Rivest,
and assert thatampson’s Rivest is bound to the pub-

1. Linked Local Names Spaces lic key KR. One can also ask whethdrampson's
Lampson iS Lampson, and whethelL.ampson’s Rivest's

H ! . !

Rivest and Lampson have recently introduced a Simple S€cretary IS Lampson's (Rivest's secretary). These
Distributed Security Infrastructure (SDSI) [9]. One of the questions can be addressed mdependently (.)f the bmdmg for
important innovations of SDSI is the use of linked local 2TPSOD; and evre]:n when nat\)me r%solu(tjlon is not possible
name spaces. In SDSI, each principal has a name spacgecauS"Ti‘a”lpson as notyet been bound.

where names are bound to values, possibly by reference to 1he purpose of the logic is to explain local names in a
the name spaces of other principals. general, self-contained way, without requiring reference to

For example, in a particular local name space, the nameParticular implementations. Nevertheless, the SDSI name-
Lampson may be associated with a public ké§Z. As a resolution algorithm can be recast as a sound proof method

consequence of this binding, any statement whose signatur&/ithin the logic. Hopefully, this work will contribute to the
can be verified using<Z will be viewed as coming from understanding of naming in SDSI and in related systems

Lampson. In addition, the nam@ivest may be associated ~Such as Simple Public Key Infrastructure [4].

with Lampson’s Rivest. As a consequence of this binding, The next section introduces basic concepts and notations.
if Lampson says thaRivest's public key isKR, then any ~ Section 3 develops a logic for linked local name spaces,
statement whose signature can be verified udiii) will and proves the soundness of the SDSI name-resolution algo-

be viewed as coming fromivest. Compound names like ~ fithm with respect to the logic. It also contains an example.
Lampson's Rivest allow one name space to import bind- Section 4 defines a semantics for the logic. The semantics

ings from another. serves as a mathematical tool, and as a precise counterpart
Linked local name spaces offer the promise of combin- 0 some of the informal explanations of naming. Section 5
ing some of the advantages of PGP-style local certifica- concerns self-reference. An appendix contains all proofs.
tion with those of hierarchical certification schemes (see,  This work can be seen as a descendant of the work of
e.g., [3,5,11, 2, 4]). In particular, SDSI certification is egal- Lampson et al. in [8, 1, 10]. That work develops a calculus
itarian, and does not need to assume any global trust or anyf principals and their statements, analogous to that of sec-
global notion of identity (beyond that inherentin public-key tion 3; however, it does not explore the SDSI approach to
cryptography). On the other hand, SDSI can take advantagenaming.
of structured trust relations and naming conventions, when At this time (March 1997), a precise specification doc-
such exist. ument for SDSI is not yet available. All the information
The precise rules for local names are not as simple as oumabout SDSI contained here comes from a comprehensive
first example may have suggested. Those rules deal withbut informal description [9]. SDSI is a rather sophisticated



design, with many aspects. This paper largely ignores as+'s ¢ is the principal that is calleg in the name space of

pects of SDSI other than linked local name spaces. the principal that is calleg in the current name space. In
generalp,’s ...'s p, is the principal that is calleg,, in
2. Concepts and Notations the name space ... of the principal that is calledn the

current name space.
Going beyond these first intuitions about compound

This section is an informal discussion of basic concepts . . . .
names, some questions immediately arise:

related to linked local name spaces. The main goal of this
section is to review some of the ideas of SDSI at a suitable ¢ poes(ret: p; ...p,) make sense when= 0? SDSI

tion also introduces notations used in the rest of the paper. current principal—whoever is trying to do the name
resolution.

2.1. Keys and Names
e Does(ref: p; ...p,) make sense whem = 1? SDSI

Hierarchical certification schemes rely on a general explicitly allows this case, and says thatef: p) is
agreement about the roots of certification hierarchies; the equglent top, since the first argument toef is al-
names of these roots should be interpreted similarly in all ways interpreted in the current name space.

name spaces. On the other hand, in egalitarian certification
schemes, each principal can introduce names of its own, for
private use. SDSI supports both styles of naming. In our
study of SDSI, we therefore deal with both global and local
ways of referring to principals:

e Is((p's q)'s r) the same a®'s ¢'s r) and the same as
(p's (¢'s r))? This is not asserted in the SDSI paper,
but is consistent with it. It is valid in the logic of this
paper.

e Is (p's p) the same ap? SDSI does not assume this,
as it would be unreasonable, for example in the case
wherep is spouse.

e Global identifiersare understood equally in all name
spaces. Global identifiers include public keys and
global names. Public keys are global because any two
principals should agree on the value of a public key
when they see it, and should agree that a statement,
is signed using the inverse of a public key when they
see the public key and the statement. In addition, the e To recover the expressiveness of the nullary case
names of certain “special roots” are global, by special (n = 0), we introduce the construgelf, and replace
dispensation from the designers of SDSI; for example, (ref: ) with Self. We postpone the study 8&1f to
DNS!! is a global name, and represents the root of the section 5.

DNS hierarchy.

In light of these properties, we considesf only in the
inary case, without loss of generality:

¢ In the unary case, instead of writirjge£: p), we can
¢ Local namesre the auxiliary names that each princi- simply writep.
pal can use in its name space. For examd@pson
may be used as a local name by anyone, and bound ® The case where > 2 is reducible to the binary case,
to any value. The value could be a global identifier since for example we can regafa's ¢'s r) as an ab-
(such as a public key), or another local name. Since  breviation for((p’s ¢)'s r).
two principals may disagree on the valuelafpson,
they may not agree on whether a statement comes fromtai
Lampson.

The set ofprincipal expressionss the least seP con-
ningG andN, and such that i, g € P then(p's q) € P.
Thus, a principal expression is a syntactic representation for
We assume a set of global identifig¥sand a disjoint set of @ principal. The symbolg, ¢, andr range over.

local namesV. The symbolg, g, andh range overs, and

the symbolsn andn over V. 2.3. Statements

2.2. Compound Names SDSl is concerned with statements that principals make.
Those statements can be certificates and requests for ser-
In SDSI, the use of compound names is the basic mech-vice, in particular. All statements are understood with re-
anism for linking local name spaces. A compound name is spect to a current name space.
an expression of the forifref: p; ...p,), which is abbre- A true statement may not be true forever. Consequently,
viated top,'s ...'s p,. Eachofpy, ...,p, may be aglobal certificates contain temporal information, indicating their
identifier, a local name, or a compound name. Intuitively, periods of validity. For simplicity, we prefer to abstract



away issues of time (for example, interesting questions

In light of these difficulties, we may consider a weaker

about early versus late binding). Therefore, all statementsinterpretation of binding. This weaker interpretation is pos-

are understood with respect to an arbitrary but fixed time,

the current time.
We writep says s to indicate that the principal denoted
by p makes statement Whenp is a public keyK, the

sible because bindings need not be used in a symmetric way.
For example, the binding dfawyer to Ted's lawyer may

be used to turn a statement byd’s lawyer into a state-
ment bylawyer, not vice versa.

statement can be made by signing a textual representation According to the weaker interpretation, a binding is sim-

of s using the private key that correspondd€o
2.4. Bindings and Their Meanings

A name spacés a set of bindings of names to values.
We use the notation — v to represent the binding of the
namen to the valuev. The namen and the value form
a name/value pair The value can be an arbitrary object,

ply an assertion of apeaks-forelation [8, 1]. Whenevep
speaks foy, if p makes a statement thgrmakes the same
statement. However, unlike equality, the speaks-for relation
is not symmetric. With this weaker interpretation, the bind-
ing of lawyer to Ted's lawyer means thaTed's lawyer
speaks follawyer, not thatlawyer is Ted's lawyer. Sim-
ilarly, the binding ofLampson to KL1 and KL2 means that
KL1 andKL2 both speak fol.ampson, but does not imply
the equality of.ampson, KL1, andKL2.

but the only case of relevance to this paper is that where the - s paper generally favors the speaks-for interpretation
value is a principal expression. Ina name space where namey yinding. However, it is not strictly necessary to commit

n is bound to principal expressign any statement by is
taken as a statement by
Bindingn to p is much like defining: to bep within the

to one specific interpretation. It suffices to assume proper-
ties of binding that seem compatible with either interpreta-
tion.

current name space. One may therefore view a binding as

an assertion of equality. For example, one may bind the lo-

cal namelawyer to the principal expressidfed’s lawyer
whenlawyer andTed’'s lawyer represent the same “real”
principal.

Interpreting binding as equality is appealingly simple;

2.5. A General Form for Bindings

Suppose that a name spaceontains the binding

sysAdmin — K1

but this interpretation runs into some trouble. Suppose, for and many bindings of the form

example, that two different public keys§L1 and KL2 are
values for the local nameampson in some name space

n — (sysAdmin's CertAuthority's n)

(perhaps because the “real” Lampson controls two keys).suppose further tha 7 says

SDSI allows this:

A local name can be undefined, or it can be bound
to some value [...]. The principal may assign a
value to a local name by issuing a correspond-
ing certificate. If the local name already has a
valid name/value certificate, the new certificate
augments the old one, in the sense that a SDSI
application is deemed to act correctly if it uses
the name/value binding given in either certificate.

However, it is a little hard to make sense of the equali-
ties KL1 = Lampson = KL2, sinceKL! and KL2 are

CertAuthority — K2

Within the name spacge we may deduce thalysAdmin's
CertAuthority corresponds td(2, and then we may use
that fact to deduce

n— (K2'sn)

In this situation, it is useful to generalize the relation
so that we can writ¢ — ¢ even wherp is not a simple
name. For example, we may write

(sysAdmin's CertAuthority) — K2

different. These equalities may make sense if we view in order to capture the association between the compound

KL1, Lampson, KL2 as being three ways of referring to
one “real” principal. It is not clear whether this is an
appropriate semantic intuition. One of the principles of
SDSI is that “principals are public keys”; the equalities
KL1 = Lampson = KL2 put us in an interesting situa-
tion where one principal is two different keys. Clearly, in
this situation, the principle that “principals are public keys”

namesysAdmin’s CertAuthority and the keyK2. If
name resolution was implemented using a cache, then the
cache might record facts like

(sysAdmin's CertAuthority) — K2

In generalp — ¢ means thap is bound tog in the cur-
rent name space, either as the result of an explicit binding

should be understood loosely. Section 3 gives a stronger{like sysAdmin — K1), or as a consequence of other bind-

formal argument against the equality interpretation.

ings (like (sysAdmin's CertAuthority) — K2).



Reflexivity: pEp

(p=q)D((g—=r)D(prr))
(p—=q) D ((p'sr) = (d's7))

if ¢ is a global identifier.

Transitivity:

Left-monotonicity:

Globality: (P'sg)—g

Associativity: ((p'sq)'sr)
(p's (¢'s 1))

Linking:

= (p's (¢'s 7))
= ((P'sq)'sT)
(p says (n 1)) D ((p'sn)— (p'sT))

if n is alocal name.

Speaking-for:

(p+ q) D ((q says s) D (p says s))

Figure 1. Axioms for linked local name spaces.

3. A Logic for Linked Local Name Spaces

In this section, we define a logic based on the concepts
and notations of section 2. We also explain the SDSI name-
resolution algorithm as a particular proof method within the
logic, and show that it is sound.

3.1. Syntax

First we introduce a syntax for statements, building on
section 2. We assume a sebf atomic statements (written
8o, 81, S2, ...). The set oformulas(or statementsis the
least set such that:

e an atomic statement is a formula;

¢ if s andt are formulas then so ares andsAt; we write
the implications D ¢ as an abbreviation fof(s A —it);

¢ if p andq are principal expressions then— ¢ is a
formula;

e if pis a principal expression andis a formula then
p says s is a formula.

The symbols; andt range over the set of formulas.

The intuitive meanings of principal expressions,of
and of says are those explained in section 2. As discussed
there, all formulas are understood with respect to a current
name space and a current time.

For example KL says (Rivest — KR) is a formula
if KL and KR are global identifiers anBivest is a local
name. This formula expresses an assertion signed with the
inverse of the public keXL. The assertion is th&tivest
is bound toKR. This binding is asserted for the local name
space associated witkiL, not universally.

3.2. Axioms

Next we give a proof system; this proof system has three

components:

1. The standard axioms and rules of propositional logic,
such as the axiorts A t) D s and the rule

s sDOt
t

2. The standard axiom and rule of modal logic (e.qg., [6]):

(p says (s D t)) D ((p says s) D (p says t))

p says s

These are useful for manipulating statements within
the scope ofays, but we do not actually need them

in this paper. The axiom expresses that the statements
that a principal says are closed under consequence; the
rule expresses that every principal says all provable
statements.

3. New axioms that deal with linked local name spaces,

listed in Figure 1.

Reflexivity and Transitivity express that the binding re-
lation is reflexive and transitive.

Left-monotonicity means that jf is bound tog then
p's r is bound tog's . We do not have that's p is
bound tor’s ¢, becaus@® may not be bound tgin r’s
name space.

Globality expresses that, ifis a global identifier and
p an arbitrary principal expression, thefs ¢ is bound
to g. (Neverthelesgy's g might be bound to other val-
ues as well.) This axiom is justified by the globality
of g.



Associativity postulates that references are associativethat it does not in Corollary 6 of section 4. We show that,
Two formulas are used because we do not assume thaho matter whatk'Z says, one cannot deripSs!! — KL.

— is symmetric. (We actually need only the second This proof should not be construed as a final guarantee of
formula.) the security of our logic or of SDSI. It is however a useful

Linking expresses that i says that is bound tor sanity check.

(implicitly, in p’'s name space), thesis n is bound to
p's r (implicitly, in the current name space). Thys, 3-3- AN Example

is trusted on assertions about its name space.
In order to illustrate how the logic is used, we work

through an example. Applying a SDSI abbreviation, we
write smith@aol.comas a shorthand for

Finally, Speaking-for expresses thapifs bound tog,
then any statement hyis taken as a statement py

This axiom system could be extended in several ways. In

. ! ! ! .
particular, we could add: DNS!!'s com’s aol's smith

(@) the converse of Globality — (p's g) for g a global Note that we have omitted some parentheses in the expres-

identifier; sionDNS!!"s com’s aol’s smith. By axiom Associativity,
fortunately, we do not have to worry about how this expres-
(b) a generalization of Linking((p says (¢ — 7)) O sjonis parenthesized. We omit parentheses in the rest of the
((p's q) = (p's 7)) for ¢ an arbitrary principal ex-  example, with the same justification.
pression. Consider the following bindings for the current name

Both of these extensions may seem reasonable. InterestzP3c€ and the following certificates:

ingly, however, there is a fundamental conflict between 1 the local nam@rokersIncis bound to the public key
them. For instance, suppose that we have the formula gy,

KL says (DNS!! — KL), whereKL is a public key; this

formula expresses th&L says thabns!! is bound toKL, 2. the local namebroker is bound toBrokersInc's
a suspicious but possible statement. By (b), we can de- NYoffice's Smith,

rive (KL's DNS!!) — (KL's KL); by (a), we can conclude
DNS!! — KL. This is an undesirable consequence: it means
that a strange statement by an arbitrary k&ycan pollute

the current name space. By Speaking-for, once we have the 4. 3 certificate signed with the inverselsg says that the

3. acertificate signed with the inversel§f says that the
local nameNYoffice is bound to the public key2,

bindingDNS!! — KL any statement frork L will be viewed local namesmith is bound tosmith@aol.com.

as a statement frobNs!!; thus,K L can hijackons!!. There-

fore, (a) and (b) are incompatible. Logically, we represent these bindings and certificates with
Another possible addition is the following symmetry ax- the formulas:

iom:

1. BrokersInc+— K1,
© (p—4q)D(g—p).

This axiom is motivated by the equality interpretation of
binding. Interestingly, it has undesirable consequences too.
For instance, suppose that we have the formll(f.ﬁSsays 4. K2 says (Smith — smith@aol.com).
(n — KL) andKL says (n — DNS!!), wheren is a lo-
cal name. By Linking, Globality, and Transitivity, we ob- Using these formulas as hypotheses, we construct the semi-
tain (KL'sn) — KL and (KL'sn) — DNS!l. By the formal proof of Figure 2. Thus, we obtain that the local
new symmetry axiom and Transitivity, we can conclude namebroker is bound tosmith@aol.com.
DNS!! — KL. Thus, again, statements by an arbitrary key  Following Lampson, we can examine a proof like this
KL can pollute the current name space. This provides aone much like we would examine an audit trail. We can
strong argument against the adoption of symmetry, and (atidentify which of the hypotheses are used, and how they
least in the setting of our logic) against the equality inter- contribute to the conclusion. In this case, it is clear, for
pretation of binding. example, that both of the certificates fraift and K2 are

In the arguments about (a), (b), and (c), somewhat plau-relevant, and thak'f and K2 must be trusted to have issued
sible axioms lead to catastrophic results. A bit of paranoia isthem appropriately.
therefore in order. How can we know that our presentaxiom A name likebroker may be used in an ACL. Given
system does not lead to exactly the same results? We prova signed request, one may need to determine whether

2. broker — (BrokersInc's NYoffice's Smith),

3. K1 says (NYoffice — K2),



. BrokersInc says (NYoffice — K2) from hypotheses (1) and (3) by Speaking-for.
. (BrokersInc's NYoffice) — (BrokersInc's K2) from step (1) by Linking.

BrokersInc's NYoffice) — K2 from step (2) by Globality and Transitivity.

oA W NP

(
. (BrokersInc's NYoffice) says (Smith — smith@aol.com) from hypothesis (4) and step (3) by Speaking-for.
(

BrokersInc's NYoffice's Smith) — smith@aol.com from step (4) by Linking, Globality, and Transitivity, since
DNS!! is a global name angmith@aol.com stands foDNS!!s com’s aol’s smith.

6. broker — smith@aol.comfrom hypothesis (2) and step (5) by Transitivity.
Figure 2. A proof.

that request comes fromroker in order to make an sumptions of the forrm — ¢, (2) assumptiong] con-
access-control decision. By Speaking-for and the bind- sists of the assumptions of the forgn says (n — q).
ing broker — smith@aol.com, it suffices to determine  The computation 0REF2(o, p) is nondeterministic because
whether the signature is that shith@aol.com. This de- assumptions() may include several bindings of the form
termination requires a chain of certificates starting from the n — ¢ for a givenn. We say thaREF2(o, p) yields f when
root of the DNS hierarchy. However, the resbitioker +—» f is one of the possible outputs REF2 (o, p).
smith@aol.comcan be derived (and evaluated) before that  In this section, we show howREF2 can be simulated

chain of certificates is presented. within our logic. We carry this out in two steps. First, we
define a new set of rules, called thame-resolution rules
3.4. Simulating Name Resolution These rules rely on the notation of the logic, but consti-

tute a separate proof system. We establish that the name-
resolution rules are equivalent REF2. As a second step,

Namg resolution is t'he Process of mapping a principal we show that the name-resolution rules are sound with re-
expression to a global identifier. Name resolution happensSpect to the logic

mbth(:tﬁor\l/telxt of ?Issurﬂ?tlrc:]ns, lph pz;trtrlﬁ]ula;rthassumptlonr]\s The name-resolution rules are simple rules designed for
aboutthe values otfocal names. Theform oTthose assu pproving formulas of the formE > (p — f). They are

tions may vary, depending on protocols and arCh'teCture'given in Figure 4. One can understand this set of rules as

We consider a Setv\(l);: arssu:nptlcl)ns ?fnthni fomms»rig ?ndl an algorithm. The algorithm starts out with an inpuind
g says (n — q), wheren is a local nameg a principa assumptiond; it finds a suitablef, if one exists. The al-

?th][erS;'on’ ang ?r gIOb?‘I dlgert;?rl:ldei; T?:tﬁssurprptrll?r;s r(r)1f gorithm does a case analysis on the fornp.oThere is one
€ formn = g corresponato gs ecurrentname (Base case 1) for whenis a global identifierf, one

space. Those of the fprm says (n = ¢) correspond tp rule (Local name 1) for whep is a local name:, and four
certificates about bindings in other name spaces. TyplcaIIyrules for wherp is of the formg's r. Three of those four

g1s at.F;.UbIt'C keyK, dan(j[a fﬁys. (n qgswpllegegte?has (Base case 2, Local name 2, Ref 2) do a case analysis on
a certinicate sighed wi € Inverse . YVe le € he the form ofr wheng is a global identifiegy. The remaining

conjunction of all those assumptions. It is an easy exercise, o (Ref 1) applies wheneveris of the formg's r-

to include also bindings for global names (for example, a Despite their apparent differences, the name-resolution

L " X .
binding ofbNs!! to a corrgqundlng pgbllc key). . rules ancREF2 are equivalent, as the following proposition
In SDSI, name resolution is specified as a recursive algo—shows,

rithm. The core of the algorithm is presented as a (nonde-

terministic) functiorREF2(o, p) that returns the meaning of Proposition 1 Assume that a set of bindings, each of the
pin the name space associated witiThe argument may — form (n - ¢), is given forcp and for each global identifier
be eithercurrent principal (cp, for short) or a global ;| et £ be the conjunction of the formulds +~ ), for
identifierg. each binding(n — ¢) for cp, andg says (n — g), for
Figure 3 gives an adaptation of SDSI's definition of each bindingn  ¢) for g. For every principal expression

REF2. It is fairly faithful, but simpler than the original  j and global identifierg and f, we have:
because, for example, it does not deal with quoting or en-

crypted objects. We write assumptioms{or the set of as- e £ D (p — f) is provable with the name-resolution
sumptions foro: (1) assumptionsfp) consists of the as- rules if and only ifREF2(cp, p) yieldsf.



REF2(o,p) = Iif pisaglobalidentifierf
then returnf
else ifp is a local namey
and assumptions) includesn +— ¢
then returrREF2(o, q)
else ifp is a compound namgs r
then returrREF2(REF2(o, q), )
else fall

Figure 3. Name-resolution algorithm.

(Base case 1)
fea
ED(frf)

(Base case 2)
f,ged
ED((g's f) = f)

(Local name 1)
n — q is a conjunct inkE ED (g f)
ED>((nwf)

(Local name 2)
g says (n — q) is a conjunctink ED ((g'sq)— f)

ED ((g'sn) = f)

(Ref 1)
E D> (¢~ fo) ED ((fo'sr)—f)
ED((¢'sr) = f)

(Ref 2)
geG  ED(¢'sg—=fo) ED((fo'sr)— f)

ED>((¢g's(d's7) = f)

Figure 4. Name-resolution rules.



e E D ((¢'sp) — f) is provable with the name-
resolution rules if and only REF2(g, p) yieldsf.

In the vocabulary of modal logidyV is a set of possible
worlds. The choice of the séd does not matter for our
purposes. What matters is that has a subset(g) for

The next proposition relates the name-resolution rules toeachg € G; a subsep(a,n) for eacha € W andn € N

the logic of section 3.2:

Proposition 2 The name-resolution rules are sound with
respect to the logic. Thatis, £ D (p — f) is provable
using those rules, then it is also provable in the logic.

We conclude:

Corollary 3 The name-resolution algorithm is sound with
respect to the logic. Thatis, givéhas in Proposition 1 and
any principal expressiom, if REF2(cp, p) yields a global
identifier f, thenE D (p — f) is provable in the logic.

The converse of this property does not hold: some-
timesE D (p — f) is provable in the logic although
REF2(cp, p) does not yieldf. In particular, the logic’s
Globality axiom yields(n's g) — g even when we do
not know hown is defined. Furthermore, given the as-
sumptionsm — fi, m — fo, fi says (n1 — na),
and f> says (n2 — h), the logic enables us to derive
(m's ny) — h, while REF2(cp, m's n;) does not yieldh.

It should be easy enough to restrict the logic in order to

and thatu(s;, a) indicates whethes; is true or false at each
aeW.

Givenp € P anda € W, we defin€[p], to be a subset
of W, as follows:

e [gla =alg)if g €G,
e [n]. = p(n,a)ifn e N,
o [P's qla = Uflalo [ 0 € [Pla}-

For eaclp, we obtain a relation oWV, namely{(a,b) | b €
[p].}. The relation for's ¢ is simply the composition of
the relations fop andg.

Given a statementanda € W, we writea |= s to mean
thats is true ata. The definition ofa |= s is:

e a|=s;isu(s;,a),fors; €5,
e a |= (s At) istrue iff botha |= s anda |= t are true,
e a |=(—s)istrueiffa = s is false,

e al=(pr q)istrueiff [p].  [q]a,

prevent these results, but it is not clear whether they are

harmful, and they might in fact be useful.

The logic is more powerful than the algorithm also
in that it permits more general arguments. For exam-
ple, using the logic, one can reason thaRifvest
(Lampson’s Rivest) andLampson — KL thenRivest —
(KL's Rivest), independently of any certificates about
KIL's Rivest. Without such certificates, in contrast, the
algorithm fails.

4. Semantics

e a|= (p says s)istrueiffb = sistrue forallb € [p],.

Here we are not using the equality interpretation of binding,
as the interpretation gf — ¢ is obviously not symmetric.
The interpretation guarantees thapeaks fop in the sense
that if ¢ says s thenp says s.

A statements is valid if and only if a |= s is true for
all choices ofW, «, p, andy, and alla € W. The fol-
lowing proposition establishes the soundness of the logic
of section 3 with respect to the semantics of this section.
The converse to this proposition (completeness) is probably
false.

In this section, we define a semantics for the logic of proposition 4 If s is provable in the logic, theris valid.
section 3. By the standards of logicians, the semantics is

rather elementary. It could probably be enhanced (and com-
plicated) using ideas from the modal-logic literature (see Corollary 5 If s is provable in the logic, thers is not.

Soundness implies consistency:

e.g. [6, 1, 7]). Despite its simplicity, the semantics was
helpful in refining the rules of section 3, and it can be rather
useful, as we demonstrate with Corollary 6 below.

Recall that( is the set of global identifiersy the set of
local names P the set of all principal expressions, afd
the set of atomic propositions. The semantics assumes:

e asetWy,
e a mappingx from G to subsets oV,
e amapping from N x W to subsets o¥V, and

e amappingu from S x W to truth values.

As a sanity check, we can now show that some unde-
sirable formulas (discussed in section 3) are not derivable
in the logic. We show that a formulaNs!! — KL can-
not be derived from two hypothesesandt. The first hy-
pothesissg, lists some “normal” statement thaitS!! makes,
binding local names to principal expressions; one may be
able to generalize the corollary to include other “normal”
statements. The second hypothesidists statements that
KL makes, possibly with the goal of hijackimgs!!; these
statements are completely arbitrary. The corollary guaran-
tees that, despite these arbitrary statement& byone can-
not derive thadNs!! is bound toK L.



Corollary 6 Assume thaKL andDNS!! are distinct global
identifiers. Lets be any formula of the forrdns!! says be useful occasionally. However, it has the potential to be
(n1 — p1) A ... ANDNS!! says (ny — pi), whereny, ..., surprising; like all relative names, it should be handled with
ny are local names ang, ..., p; are arbitrary principal care.

expressions. Létbe any formula of the forlKL says t; A
...NKL says t, wheret,, ...,t; are arbitrary statements.
Then the formula At D (DNS!! — KL) is not derivable in
the logic.

In summary, the construsielf (in SDSI, (ref: )) may

6. Conclusions

SDSI’s linked local name spaces appear as a promising
innovation. This paper attempts to contribute to their under-
standing, both through informal explanations and through
the development of a logic. The logic generalizes the SDSI

In this section, we consider the constrg@et f, which is name-resolution algorithm. It permits not only the evalu-
our notation forref with no argumentsret: ). ation of compound names, but also reasoning about those

Intuitively, Self represents the current principal. There- names and their bindings. Having a logic is not synony-
fore, it seems sensible to add1f to the set of principal  mous with security; however, a logic can complement an
expressions, and to extend the logic with the following four operational approach, and provide another perspective from
axioms: which to examine security issues.

5.S8elf

Identity:  (Self'sp) — p

(p's Self) —p

p > (Self's p)

p— (p's Self) Acknowledgements

It is also easy to extend the semantics, validating the new Ron Rivest made many useful comments on a draft of
axioms. (It suffices to lefSel£f], = {a} for everya € W.) this paper.

Given the formal properties @felf, it may appear as a
fairly dull construct. After all, the new axioms show how Appendix: Proofs
it can be eliminated from expressions; and the semantics of
Self is routine.

Nevertheless, the use B&1f is sometimes convenient.
For example, it enables us to write the formulasays
(n — Self). In the case in whiclp is a public keyK
andn is Ted, this statement corresponds to a certificate that
bindsTed to K. The certificate would not need to men-
tion K explicitly. Instead, it can refer t& asSelf, that
is, the public key used for verifying the signature on the
certificate. GivenK says (Ted — Self), we can derive
(K's Ted) — (K's Self), hence(K's Ted) — K. In
this respectK says (Ted — Self) has the same effect
asK says (Ted — K), but the “wire representation” of
K says (Ted — Self) might be different.

Continuing this example, let us assume thatard —
K holds in the current name space. Frémsays (Ted —
Self) we obtainEdward says (Ted — Self), and then

Proposition1  Assume that a set of bindings, each of the
form (n — ¢), is given forcp and for each global identifier
g. Let E be the conjunction of the formulds +— ¢), for
each binding(n — q) for cp, andg says (n — q), for
each bindingn — q) for g. For every principal expression
p and global identifiergy and f, we have:

e E D (p — f) is provable with the name-resolution
rules if and only ifREF2(cp, p) yieldsf.

e E D ((¢'sp) — f) is provable with the name-
resolution rules if and only REF2(g, p) yieldsf.

Proof The “if” direction of the proof is by induction on
the execution oREF2(o, p), for both kinds ofo together.

o First, let us suppose that the algorithm terminates im-

(Edward's Ted) — Edward. This is a nice minor result
that we would not have reached frdih says (Ted — K).
According to our new axiomsK's Self and K are
bound to each other. Therefor&, could say, truthfully,
K — Self. SinceK speaks foEdward, Edward would
say K — Self as well. This is a somewhat perplex-

mediately returningg whenp is a global identifierf.
In that case, we obtain:

— E D (f — f)byrule Base case 1,
— E D ((¢'s f) = f) by rule Base case 2.

ing consequence of apparently sensible hypotheses: a true e Next, if p is a local namen, and the assumptions for

statement byX leads to a suspicious statementHaward.

On the other han&dward’s statement should be harmless,
sinceEdward should not have the authority to convince oth-

ers that it speaks fak when in factEdward is bound toK
but not vice versa.

o include (m — ¢), then the algorithm invokes itself
recursively, an®&EF2(o, q) returnsf. By induction hy-
pothesis,E D (q — f) is provable whemw is cp, and
E D> ((¢'s q) — f) is provable whemw is g. We ob-
tain:



— E D (m — f) by rule Local name 1,
— E > ((¢'sm) — f) by rule Local name 2.

¢ Finally, suppose that is (¢'s r). Then the algorithm
invokes itself recursively twice. In the first recursive
invocation REF2(o, q) yields a resulify. By induction
hypothesisE D (¢ — fo) is provable ifo is cp, and
E > ((¢'s q) — fo)isprovableifoisg. Inthe second
recursive invocatiorREF2( f, r) yields the final result
f. By induction hypothesist > ((fo'sr) — f)is
provable. We obtain:

— ED((¢'sr)~ f)byrule Ref1,
— ED ((¢'s (¢'sr)) — f) by rule Ref 2.

The “only if” direction of the proof is by induction on the
proof of E D (p+ f)orE D ((¢'s p) — f). Thereis one
case for each of the name-resolution rules:

e Base case 1: trivial, SInGEF2(cp, f) yields f.

e Base case 2: trivial, SInCREF2(cp,(¢'s f)) and
REF2(g, f) yield f.

e Local name 1: By induction hypothes&EF2(cp, q)
yields f. This implies thaREF2(cp, n) yields f if n is
bound toq.

e Local name 2: By induction hypothesiBEF2(g, q)
yields f. This implies that botREF2(cp, (¢'s n)) and
REF2(g,n) yield f if n is bound tgy in g's name space.

e Ref 1. By induction hypothesi®EF2(cp, q) yields
fo andREF2( fy, ) yields f, henceREF2(cp, (¢'s 7))
yields f. In the case wherg happens to be a global
identifier h, we also need to prove th&EF2(h,r)
yields f. But if ¢ is h andREF2(cp, q) yields fy, then
his fo, and we already have thREF2( fy, ) yields f.

e Ref 2: By induction hypothesisREF2(cp, (¢'s q))
and REF2(g, q) yield fo, and REF2(fo,r) yields f.
First we prove thaREF2(cp, (¢'s (¢'s r))) yields f.
An invocation of REF2(cp, (¢'s (¢'s r))) turns into
an invocation ofREF2(REF2(cp,(¢'s q)),r); since
REF2(cp, (¢'s q)) yields fy, this turns into an invoca-
tion of REF2(fy,r), which yieldsf. Next we prove
that REF2(g,¢'s r) yields f. This is an immediate
consequence of the facts ta&F2(g, ¢) yields fy and
REF2( fo,r) yields f.

O

Proposition 2  The name-resolution rules are sound with

respect to the logic. Thatis, £ D (p — f) is provable
using those rules, then it is also provable in the logic.

Proof The proof is by induction on the proof d >
(p — f) with the name-resolution rules. There is one case
for each of the rules.

e Base case 1: by axiom Reflexivity.

e Base case 2: by axiom Globality. (Note that only a
special case of Globality is needdd’s g) — g.)

e Local name 1: by axiom Transitivity.
e Local name 2: by axioms Linking and Transitivity.
e Ref 1: by axioms Left-monotonicity and Transitivity.

e Ref 2. by axioms Associativity, Left-monotonicity,
and Transitivity. (Note that Associativity is used only
in one direction, and in a special ca$¢'s (¢'s r)) —

((f's @)'s 7))

O

Proposition 4  If s is provable, thers is valid.

Proof  The propositional axioms and rules are validated,
since the propositional connectives are interpreted in the
usual manner. So are the standard axiom and rule of modal
logic. Reflexivity and Transitivity are validated, straight-
forwardly. Associativity holds essentially because the com-
position of binary relations is associative. The remaining
axioms require small arguments:

e For Globality: Ifg is a global identifier, thefly], is in-
dependent ofi (and is determined by alone); there-

fore, [p's gla = U{l9ls | b € [pla} € [9]a- Equality
holds whenevefp],, # 0; otherwise[p's g], = 0.

e For Linking: If a = (p says (n+ r)) is true, then
bl=nristrue for allb € [p],, and[n]s C [r]s
for all suchb. Hence|J{[n]s | b € [pl.} € U{lals |
b € [pl.}, thatis,[p's n]l. C [p's r].. Therefore,
al= (p'sn) — (p'sr)istrue.

e For Speaking-for: lfa |= ¢ — r is true, then[q], C
[rle- Therefore, ifa |= r says s is true, therb = s is
true for allb € [r],, andb |= s is true for allb € [q¢],,
SOa |= ¢ says s is true.

O

Corollary 6  Assume thatKL and DNS!! are distinct
global identifiers. Lets be any formula of the form
DNS!! says (n1 — p1) A ... ADNS!! says (ng — pg),
whereny, ...,n; are local names ang,, ..., p; are arbi-
trary principal expressions. Letbe any formula of the form
KL says t; A ... A KL says ty, wheret, ...,t; are arbi-
trary statements. Then the formula\ ¢ O (DNS!! — KL)
is not derivable in the logic.



Proof If the formula in question was derivable, then it
would be valid, according to Proposition 4. So we show
that it is not valid. It suffices to give a s&V, an element
a € W, and functiongy, p, andu such thats |= s A tis true
while e |= DNS!! — KL is false. Trivial choices suffice. We
let W be the singleto{1}, leta = 1, leta(KL) = § and
a(DNS!!) = W, and letp(n;,a) = 0 for all local names
n;. (Any remaining properties af, p, andy are irrelevant.)
We have that |= s is true, sincep(n;, a) = (), thata = tis
true, sincen(KL) = §, and thats = DNS!! — KL is false,
sincea(DNS!!) Z «(KL). m|
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