
A Type System for Java Bytecode Subroutines

Raymie Stata and Mart́ın Abadi
Digital Equipment Corporation

Systems Research Center

Abstract

Java is typically compiled into an intermediate language,
JVML, that is interpreted by the Java Virtual Machine. Be-
cause mobile JVML code is not always trusted, a bytecode
verifier enforces static constraints that prevent various dy-
namic errors. Given the importance of the bytecode verifier
for security, its current descriptions are inadequate. This
paper proposes using typing rules to describe the bytecode
verifier because they are more precise than prose, clearer
than code, and easier to reason about than either.

JVML has a subroutine construct used for the compi-
lation of Java’s try-finally statement. Subroutines are a
major source of complexity for the bytecode verifier because
they are not obviously last-in/first-out and because they re-
quire a kind of polymorphism. Focusing on subroutines, we
isolate an interesting, small subset of JVML. We give typ-
ing rules for this subset and prove their correctness. Our
type system constitutes a sound basis for bytecode verifica-
tion and a rational reconstruction of a delicate part of Sun’s
bytecode verifier.

1 Bytecode verification and typing rules

The Java language is typically compiled into an intermedi-
ate language that is interpreted by the Java Virtual Machine
(VM) [LY96]. This intermediate language, which we call
JVML, is an object-oriented language similar to Java. Its
features include packages, classes with single inheritance,
and interfaces with multiple inheritance. However, unlike
method bodies in Java, method bodies in JVML are se-
quences of bytecode instructions. These instructions are
fairly high-level but, compared to the structured statements
used in Java, they are more compact and easier to interpret.

JVML code is often shipped across networks to Java VMs
embedded in web browsers and other applications. Mobile
JVML code is not always trusted by the VM that receives it.
Therefore, a bytecode verifier enforces static constraints on
mobile JVML code. These constraints rule out type errors
(such as dereferencing an integer), access control violations
(such as accessing a private method from outside its class),

To appear in the Proceedings of the 25th Annual
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 1998.

object initialization failures (such as accessing a newly al-
located object before its constructor has been called), and
other dynamic errors.

Figure 1 illustrates how bytecode verification fits into
the larger picture of Java security. The figure represents
trusted and untrusted code. At the base of the trusted code
is the Java VM itself—including the bytecode verifier—plus
the operating system, which provides access to privileged
resources. On top of this base layer is the Java library, which
provides controlled access to those privileged resources. Java
security depends on the VM correctly interpreting JVML
code, which in turn depends on the verifier rejecting illegal
JVML code. If the verifier were broken but the rest of the
VM assumed it was correct, then JVML code could behave
in ways not anticipated by the Java library, circumventing
the library’s access controls.

Given its importance for security, current descriptions of
the verifier are deficient. The official specification of the ver-
ifier is a 20-page, prose description. Although good by the
standards of prose, this description is ambiguous, imprecise,
and hard to reason about. In addition to this specifica-
tion, Sun distributes what could be considered a reference
implementation of the verifier. As a description, this imple-
mentation is precise, but it is hard to understand and, like
the prose description, is hard to reason about. Furthermore,
the implementation disagrees with the prose description.

This paper proposes using typing rules to describe the
verifier. Typing rules are more precise than prose, easier
to understand than code, and they can be manipulated for-
mally. Such rules would give implementors of the verifier a
systematic framework on which to base their code, increas-
ing confidence in its correctness. Such rules would also give
implementors of the rest of the VM an unambiguous state-
ment of what they can and cannot assume about legal JVML
code.

From a typing perspective, JVML is interesting in at
least two respects:

• In JVML, a location can hold different types of val-
ues at different program points. This flexibility al-
lows locations to be reused aggressively, allowing in-
terpreters to save space. Thus, JVML contrasts with
most typed languages, in which a location has only one
type throughout its scope.

• JVML has subroutines to help compilers generate com-
pact code for Java try-finally statements. JVML sub-
routines are subsequences of the larger sequence of
bytecode instructions that make up a method’s body.

Trusted code

Untrustred code

Hostile JVML code

Library
level

Base
level

Java library (including
reference monitors)

C libraries/syscalls for
protected resources

Java VM
(including bytecode verifier)

Figure 1: The Java VM and security

The JVML instruction jsr jumps to the start of one
of these subsequences, and the JVML instruction ret
returns from one. Subroutines introduce two signifi-
cant challenges to the design of the bytecode verifier:
ensuring that ret is used in a well-structured manner,
and supporting a certain kind of polymorphism. We
describe these challenges in more detail in Section 2.

This paper addresses these typing problems. It defines a
small subset of JVML, called JVML0, presents a type sys-
tem and a dynamic semantics for JVML0, and proves the
soundness of the type system with respect to the dynamic
semantics. JVML0 includes only 9 instructions, and ignores
objects and several other features of JVML. This restricted
scope allows us to focus on the challenges introduced by sub-
routines. Thus, our type system provides a precise, sound
approach to bytecode verification, and a rational reconstruc-
tion of a delicate part of Sun’s bytecode verifier.

We present the type system in three stages:

1. The first stage is a simplified version for a subset of
JVML0 that excludes jsr and ret. This simplified
version provides an introduction to our notation and
approach, and illustrates how we give different types
to locations at different program points.

2. The next stage considers all of JVML0 but uses a struc-
tured semantics for jsr and ret. This structured se-
mantics has an explicit subroutine call stack for ensur-
ing that subroutines are called on a last-in, first-out
basis. In the context of this structured semantics, we
show how to achieve the polymorphism desired for sub-
routines.

3. The last stage uses a stackless semantics for jsr and
ret in which return addresses are stored in random-
access memory. The stackless semantics is closer to
Sun’s. It admits more efficient implementations, but
it does not dynamically enforce a last-in, first-out dis-
cipline on calls to subroutines. Because such a disci-
pline is needed for type safety, we show how to enforce
it statically.

The next section describes JVML subroutines in more
detail and summarizes our type system. Section 3 gives the
syntax and an informal semantics for JVML0. Sections 4–6
present our type system in the three stages outlined above.

Section 7 states the main soundness theorem for our type
system. Sections 8 and 9 discuss related work, including
Sun’s bytecode verifier. Section 8 also considers how our
type system could be extended to the full JVML. Section 10
concludes. Most formal claims and all proofs are omitted in
this summary.

2 Overview of JVML subroutines and our
type system

JVML subroutines are subsequences of a method’s larger
sequence of instructions; they behave like miniature pro-
cedures within a method body. Subroutines are used for
compiling Java’s try-finally statement.

Consider, for example, the Java method named bar at
the top of Figure 2. The try body can terminate in three
ways: immediately when i does not equal 3, with an excep-
tion raised by the call to foo, or with an execution of the
return statement. In all cases, the compiler must guarantee
that the code in the finally block is executed when the try
body terminates. Instead of replicating the finally code at
each escape point, the compiler can put the finally code in
a JVML subroutine. Compiled code for an escape from a
try body executes a jsr to the subroutine containing the
finally code.

Figure 2 illustrates the use of subroutines for compiling
try-finally statements. It contains a possible result of com-
piling the method bar into JVML, putting the finally code
in a subroutine in lines 13–16.

Figure 2 also introduces some of JVML’s runtime struc-
tures. JVML bytecode instructions read and write three
memory regions. The first region is an object heap shared by
all method activations; the heap does not play a part in the
example code of Figure 2. The other two regions are private
to each activation of a method. The first of these regions is
the operand stack, which is intended to be used on a short-
term basis in the evaluation of expressions. For example,
the instruction iconst 3 pushes the integer constant 3 onto
this stack, while ireturn terminates the current method
returning the integer at the top of the stack. The second
region is a set of locations known as local variables, which
are intended to be used on a longer-term basis to hold values
across expressions and statements (but not across method
activations). Local variables are not operated on directly.

int bar(int i) {
try {

if (i == 3) return this.foo();
} finally {

this.ladida();
}
return i;

}

01 iload 1 // Push i
02 iconst 3 // Push 3
03 if icmpne 10 // Goto 10 if i does not equal 3

// Then case of if statement
04 aload 0 // Push this
05 invokevirtual foo // Call this.foo
06 istore 2 // Save result of this.foo()
07 jsr 13 // Do finally block before returning
08 iload 2 // Recall result from this.foo()
09 ireturn // Return result of this.foo()

// Else case of if statement
10 jsr 13 // Do finally block before leaving try

// Return statement following try statement
11 iload 1 // Push i
12 ireturn // Return i

// finally block
13 astore 3 // Save return address in local variable 3
14 aload 0 // Push this
15 invokevirtual ladida // Call this.ladida()
16 ret 3 // Return to address saved on line 13

// Exception handler for try body
17 astore 2 // Save exception
18 jsr 13 // this.foo raised exception: do finally block
19 aload 2 // Recall exception
20 athrow // Rethrow exception

// Exception handler for finally body
21 athrow // Rethrow exception

Exception table (maps regions of code to their exception handlers):
Region Target
1–12 17
13–16 21

Figure 2: Example compilation of try-finally into JVML

Rather, values in local variables are pushed onto the stack
and values from the stack are popped into local variables via
the load and store instructions respectively. For example,
the instruction aload 0 pushes the object reference in lo-
cal variable 0 onto the operand stack, while the instruction
istore 2 pops the top value off the operand stack and saves
it in local variable 2.

Subroutines pose two challenges to the design of a type
system for JVML:

• Polymorphism. Subroutines are polymorphic over the
types of the locations they do not touch. For example,
consider how variable 2 is used in Figure 2. At the jsr
on line 7, variable 2 contains an integer and is assumed
to contain an integer when the subroutine returns. At
the jsr on line 18, variable 2 contains a pointer to an
exception object and is assumed to contain a pointer
to an exception object when the subroutine returns.
Inside a subroutine, the type of a location such as vari-
able 2 can depend on the call site of the subroutine.
(Subroutines are not parametric over the types of the
locations they touch; the polymorphism of JVML is
thus weaker than that of ML.)

• Last-in, first-out behavior. In most languages, when
a return statement in procedure P is executed, the
dynamic semantics guarantees that control will return
to the point from which P was most recently called.
The same is not true of JVML. The ret instruction
takes a variable as a parameter and jumps to whatever
address that variable contains. This semantics means
that, unless adequate precautions are taken, the ret
instruction can transfer control to almost anywhere.
Using ret to jump to arbitrary places in a program is
inimical to static typing, especially in the presence of
polymorphism.

Our type system allows polymorphic subroutines and en-
forces last-in, first-out behavior. It consists of rules that
relate a program (a sequence of bytecode instructions) to
static information about types and subroutines. This infor-
mation maps each memory location of the VM to a type
at each program point, identifies the instructions that make
up subroutines, indicates the variables over which subrou-
tines are polymorphic, and gives static approximations to
the dynamic subroutine call stack.

Our type system guarantees the following properties for
well-typed programs:

• Type safety. An instruction will never be given an
operand stack with too few values in it, or with values
of the wrong type.

• Program counter safety. Execution will not jump to
undefined addresses.

• Bounded operand stack. The size of the operand stack
will never grow beyond a static bound.

3 Syntax and informal semantics of JVML0

In JVML0, our restricted version of JVML, a program is a
sequence of instructions:

P ::= instruction∗

We treat programs as partial maps from addresses to in-
structions. We write Addr for the set of all addresses. Ad-
dresses are very much like positive integers, and we use the
constant 1 and the function + on addresses. However, to
provide more structure to our semantics, we treat numbers
and addresses as separate sets. When P is a program, we
write Dom(P) for the domain of P (its set of addresses). We
assume that 1 ∈ Dom(P) for every program P .

In JVML0, there are no classes, methods, or objects.
There is no object heap, but there is an operand stack and
a set of local variables. We write Var for the set of names of
local variables. Local variables and the operand stack both
contain values. A value is either an integer or an address.

JVML0 has only 9 instructions:

instruction ::= inc | pop | push0
| load x | store x
| if L
| jsr L | ret x
| halt

where x ranges over Var and L ranges over Addr. Infor-
mally, these instructions behave as follows:

• The inc instruction increments the value at the top
of the operand stack if that value is an integer. The
pop instruction pops the top off the operand stack.
The push0 instruction pushes the integer 0 onto the
operand stack.

• The load x instruction pushes the current value of
local variable x onto the operand stack. The store x
instruction pops the top value off the operand stack
and stores it into local variable x.

• The if L instruction pops the top value off the operand
stack and either falls through when that value is the
integer 0 or jumps to L otherwise.

• At address p, the jsr L instruction jumps to address
L and pushes return address p + 1 onto the operand
stack. The ret x instruction jumps to the address
stored in x.

• The halt instruction halts execution.

4 Semantics without subroutines

This section introduces our approach and some notation.
It presents static and dynamic semantics for the subset of
JVML0 that excludes jsr and ret.

We use (partial) maps extensively throughout this pa-
per. When g is a map, Dom(g) is the domain of g; for
x ∈ Dom(g), g[x] is the value of g at x, and g[x 7→ v] is
the map with the same domain as g defined by the following
equation, for all y ∈ Dom(g):

(g[x 7→ v])[y] =

{
g[y] x 6= y
v x = y

We define equality on maps as follows:

f = g ≡ Dom(f) = Dom(g) ∧ ∀x ∈ Dom(f). f [x] = g[x]

We often use maps with domain Addr. We call those
maps vectors. When F is a vector and i is an address, we
may write F i instead of F [i].

P [pc] = inc

P ` 〈pc, f, n · s〉 → 〈pc + 1, f, (n+ 1) · s〉

P [pc] = pop

P ` 〈pc, f, v · s〉 → 〈pc + 1, f, s〉
P [pc] = push0

P ` 〈pc, f, s〉 → 〈pc + 1, f, 0 · s〉

P [pc] = load x

P ` 〈pc, f, s〉 → 〈pc + 1, f, f [x] · s〉
P [pc] = store x

P ` 〈pc, f, v · s〉 → 〈pc + 1, f [x 7→ v], s〉

P [pc] = if L

P ` 〈pc, f, 0 · s〉 → 〈pc + 1, f, s〉

P [pc] = if L
n 6= 0

P ` 〈pc, f, n · s〉 → 〈L, f, s〉

Figure 3: Dynamic semantics without jsr and ret

P [i] = inc
F i+1 = F i

Si+1 = Si = Int · α
i+ 1 ∈ Dom(P)

F , S, i ` P

P [i] = if L
F i+1 = FL = F i

Si = Int · Si+1 = Int · SL
i+ 1 ∈ Dom(P)
L ∈ Dom(P)

F , S, i ` P

P [i] = pop
F i+1 = F i
Si = T · Si+1

i+ 1 ∈ Dom(P)

F , S, i ` P

P [i] = push0
F i+1 = F i

Si+1 = Int · Si
i+ 1 ∈ Dom(P)

F , S, i ` P

P [i] = load x
x ∈ Dom(Fi)
F i+1 = F i

Si+1 = F i[x] · Si
i+ 1 ∈ Dom(P)

F , S, i ` P

P [i] = store x
x ∈ Dom(Fi)

F i+1 = F i[x 7→ T]
Si = T · Si+1

i+ 1 ∈ Dom(P)

F , S, i ` P

P [i] = halt

F, S, i ` P

Figure 4: Static semantics without jsr and ret

We also use strings. The constant ε denotes the empty
string. If s is a string, then v · s denotes the string obtained
by prepending v to s.

4.1 Dynamic semantics
We model a state of an execution as a tuple 〈pc, f, s〉, where
pc is the program counter, f is the current state of local
variables, and s is the current state of the operand stack.

• The program counter pc is an address, that is, an ele-
ment of Addr.

• The current state of local variables f is a total map
from Var to the set of values.

• The current state of the stack s is a string of values.

All executions start from states of the form 〈1, f, ε〉, where
f is arbitrary and where ε represents the empty stack.

Figure 3 contains a small-step operational semantics for
all instructions other than jsr and ret. This semantics
relies on the judgement

P ` 〈pc, f, s〉 → 〈pc′, f ′, s′〉

which means that program P can take one step from state
〈pc, f, s〉 to state 〈pc′, f ′, s′〉. In Figure 3 (and in the rest
of this paper), n matches only integers while v matches any
value. Thus, for example, the pattern “n · s” represents
a non-empty stack whose top element is an integer. Note
that there is no rule for halt—execution stops when a halt
instruction is reached. Execution may also stop as the result
of a dynamic error, for example attempting to execute a pop
instruction with an empty stack.

4.2 Static semantics
Our static semantics employs the following typing rules for
values:

v is a value

v : Top

n is an integer

n : Int

K,L are addresses

K : (ret-from L)

The type Top includes all values. The type Int is the type
of integers. Types of the form (ret-from L) include all
addresses. However, the typing rules for programs of Sec-
tions 5 and 6 make a more restricted use of address types,
preserving strong invariants. As the syntax (ret-from L)
suggests, we use L as the name for the subroutine that starts
at address L, and use (ret-from L) as the type of return
addresses generated when L is called. Collectively, we refer
to the types Top, Int, and (ret-from L) as value types.

Types are extended to stacks as follows:

(Empty hypothesis)

ε : ε

v : T s : α

v · s : T · α

where T is a value type and α is a string of value types.
A program is well-typed if there exists a vector F of

maps from variables to types and a vector S of strings of
types satisfying the judgement:

F , S ` P

The vectors F and S contain static information about the
local variables and operand stack, respectively. The map

F i assigns types to local variables at program point i. The
string Si gives the types of the values in the operand stack
at program point i. For notational convenience, the vectors
F and S are defined on all of Addr even though P is not;
F j and Sj are dummy values for out-of-bounds j.

We have one rule for proving F, S ` P :

F 1 = E
S1 = ε

∀i ∈ Dom(P). F , S, i ` P
F, S ` P

where E is the map that maps all variables to Top and ε is
(as usual) the empty string. The first two hypotheses are
initial conditions; the third is a local judgement applied to
each program point. Figure 4 has rules for the local judge-
ment F , S, i ` P . These rules constrain F and S at point i
by referring to F j and Sj for all points j that are control-
flow successors of i.

5 Structured semantics

This section shows how to handle jsr and ret, achieving
the kind of polymorphism described in Section 2. To isolate
the problem of polymorphism from the problem of ensuring
that subroutines are used in a well-structured manner, this
section presents what we call the structured semantics for
JVML0. This semantics is structured in that it defines the
semantics of jsr and ret in terms of an explicit subroutine
call stack. This section shows how to achieve polymorphism
in the context of the structured semantics.

5.1 Dynamic semantics
In the structured semantics, we augment the state of an
execution to include a subroutine call stack. This call stack
holds the return addresses of subroutines that have been
called but have not yet returned. We model this call stack
as a string ρ of addresses. Thus, the state of an execution
is now a four-tuple 〈pc, f, s, ρ〉.

Figure 5 defines the structured dynamic semantics of
JVML0. The rules of Figure 5 use the subroutine call stack
to communicate return addresses from jsr instructions to
the corresponding ret instructions. Although ret takes an
operand x, the structured dynamic semantics ignores this
operand; similarly, the structured dynamic semantics of jsr
pushes the return address onto the operand stack as well as
onto the subroutine call stack. These definitions enable us
to transfer the properties of the structured semantics of this
section to the stackless semantics of the next section.

5.2 Static semantics
The structured static semantics relies on a new typing judge-
ment:

F , S s̀ P

This judgement is defined by the rule:

F 1 = E
S1 = ε
R1 = {}

∀i ∈ Dom(P). R, i ` P labeled
∀i ∈ Dom(P). F , S, i s̀ P

F , S s̀ P

P [pc] = inc

P s̀ 〈pc, f, n · s, ρ〉 → 〈pc + 1, f, (n+ 1) · s, ρ〉

P [pc] = pop

P s̀ 〈pc, f, v · s, ρ〉 → 〈pc + 1, f, s, ρ〉

P [pc] = push0

P s̀ 〈pc, f, s, ρ〉 → 〈pc + 1, f, 0 · s, ρ〉

P [pc] = load x

P s̀ 〈pc, f, s, ρ〉 → 〈pc + 1, f, f [x] · s, ρ〉

P [pc] = store x

P s̀ 〈pc, f, v · s, ρ〉 → 〈pc + 1, f [x 7→ v], s, ρ〉

P [pc] = if L

P s̀ 〈pc, f, 0 · s, ρ〉 → 〈pc + 1, f, s, ρ〉

P [pc] = if L
n 6= 0

P s̀ 〈pc, f, n · s, ρ〉 → 〈L, f, s, ρ〉

P [pc] = jsr L

P s̀ 〈pc, f, s, ρ〉 → 〈L, f, (pc + 1) · s, (pc + 1) · ρ〉

P [pc] = ret x

P s̀ 〈pc, f, s, pc′ · ρ〉 → 〈pc′, f, s, ρ〉

Figure 5: Structured dynamic semantics

P [i] ∈ {inc, pop, push0, load x, store x}
Ri+1 = Ri

R, i ` P labeled

P [i] = if L
Ri+1 = RL = Ri
R, i ` P labeled

P [i] = jsr L
Ri+1 = Ri
RL = {L}

R, i ` P labeled

P [i] ∈ {halt, ret x}
R, i ` P labeled

Figure 6: Rules labeling instructions with subroutines

P [i] = jsr L
Dom(F i+1) = Dom(F i)
Dom(FL) ⊆ Dom(F i)

∀y ∈ Dom(F i)\Dom(FL). F i+1[y] = F i[y]
∀y ∈ Dom(FL). FL[y] = F i[y]
SL = (ret-from L) · Si

i+ 1 ∈ Dom(P)
L ∈ Dom(P)

F , S, i s̀ P

P [i] = ret x
RP,i = {L}

∀j. P [j] = jsr L⇒
(
∀y ∈ Dom(F i). F j+1[y] = F i[y]
∧ Sj+1 = Si

)
F , S, i s̀ P

Figure 7: Structured static semantics for jsr and ret

The new, auxiliary judgement

R, i ` P labeled

is used to define what it means to be “inside” a subroutine.
Unlike in most languages, where procedures are demarcated
syntactically, in JVML0 and JVML the instructions making
up a subroutine are identified by constraints in the static se-
mantics. For the instruction at address i, Ri is a subroutine
label that identifies the subroutine to which the instruction
belongs. These labels take the form of either the empty set
or a singleton set consisting of an address. If an instruc-
tion’s label is the empty set, then the instruction belongs
to the top level of the program. If an instruction’s label is
the singleton set {L}, then the instruction belongs to the
subroutine that starts at address L. Figure 6 contains rules
for labeling subroutines. These rules do not permit subrou-
tines to have multiple entry points, but they permit multiple
exits.

For some programs, more than one R may satisfy both
R1 = {} and the constraints of Figure 6 because the labeling
of unreachable code is not unique. It is convenient to assume
a canonical R for each program P , when one exists. (The
particular choice of R does not matter.) We write RP for
this canonical R, and RP,i for the value of RP at address i.

Much as in Section 5, the judgement

F , S, i s̀ P

imposes local constraints near program point i. For the
instructions considered in Section 5 (that is, for all instruc-
tions but jsr and ret), the rules are the same as in Figure 4.
Figure 7 contains rules for jsr and ret.

The elements of F need not be defined on all variables.
For an address i inside a subroutine, the domain of F i in-
cludes only the variables that can be read and written inside
that subroutine. The subroutine is polymorphic over vari-
ables outside Dom(F i).

6 Stackless semantics

The remaining problem is to eliminate the explicit subrou-
tine call stack of the previous section, using instead the

operand stack and local variables to communicate return
addresses from a jsr to a ret. As discussed in Section 2,
when the semantics of jsr and ret are defined in terms
of the operand stack and local variables, uncontrolled use of
ret combined with the polymorphism of subroutines is inim-
ical to type safety. This section presents a static semantics
that rules out problematic uses of ret. This static semantics
restricts programs to operate as if an explicit subroutine call
stack like the one from the previous section were present. In
fact, the soundness argument for the stackless semantics re-
lies on a simulation between the structured semantics and
the stackless semantics.

The static and dynamic semantics described in this sec-
tion are closest to typical implementations of JVML. Thus,
we consider these the official semantics of JVML0.

6.1 Dynamic semantics
The stackless dynamic semantics consists of the rules of Fig-
ure 3 plus the rules for jsr and ret of Figure 8. The jsr in-
struction pushes the return address onto the operand stack.
To use this return address, a program must first pop it into
a local variable and then reference that local variable in a
ret instruction.

6.2 Static semantics
To define the stackless static semantics, we revise the rule
for F , S ` P of Section 4. The new rule is:

F 1 = E
S1 = ε
C1 = ε

∀i ∈ Dom(P). C, i ` P strongly labeled
∀i ∈ Dom(P). F , S, i ` P

F, S ` P

The new, auxiliary judgement

C, i ` P strongly labeled

constrains C to be an approximation of the subroutine call
stack. Each element of C is a string of subroutine labels.

P [pc] = jsr L

P ` 〈pc, f, s〉 → 〈L, f, (pc + 1) · s〉

P [pc] = ret x

P ` 〈pc, f, s〉 → 〈f [x], f, s〉

Figure 8: Stackless dynamic semantics for jsr and ret

P [i] ∈ {inc, pop, push0, load x, store x}
Ci+1 = Ci

C, i ` P strongly labeled

P [i] = if L
Ci+1 = CL = Ci

C, i ` P strongly labeled

P [i] = jsr L
L 6∈ Ci

Ci+1 = Ci
CL = L · c

Ci is a subsequence of c

C, i ` P strongly labeled

P [i] ∈ {halt, ret x}
C, i ` P strongly labeled

Figure 9: Rules approximating the subroutine call stack at each instruction

01 jsr 4 // C1 = ε
02 jsr 7 // C2 = ε
03 halt // C3 = ε
04 store 1 // C4 = 4 · ε
05 jsr 10 // C5 = 4 · ε
06 ret 1 // C6 = 4 · ε
07 store 2 // C7 = 7 · ε
08 jsr 10 // C8 = 7 · ε
09 ret 2 // C9 = 7 · ε
10 store 3 // C10 = 10 · 4 · 7 · ε
11 ret 3 // C11 = 10 · 4 · 7 · ε

Figure 10: Example of C labeling

P [i] = jsr L
Dom(F i+1) = Dom(F i)
Dom(FL) ⊆ Dom(F i)

∀y ∈ Dom(F i)\Dom(FL). F i+1[y] = F i[y]
∀y ∈ Dom(FL). FL[y] = F i[y]
SL = (ret-from L) · Si

(ret-from L) 6∈ Si
∀y ∈ Dom(FL). FL[y] 6= (ret-from L)

i+ 1 ∈ Dom(P)
L ∈ Dom(P)

F, S, i ` P

P [i] = ret x
RP,i = {L}
x ∈ Dom(F i)

F i[x] = (ret-from L)

∀j. P [j] = jsr L⇒
(
∀y ∈ Dom(F i). F j+1[y] = F i[y]
∧ Sj+1 = Si

)
F, S, i ` P

Figure 11: Stackless static semantics for jsr and ret

For each address i, the string Ci is a linearization of the
subroutine call graph to i. Of course, such a linearization
of the subroutine call graph exists only when the call graph
is acyclic, that is, when subroutines do not recurse. (We
believe that we can prove our theorems while allowing re-
cursion, but disallowing recursion simplifies our proofs and
agrees with Sun’s specification [LY96, p. 124].) Figure 9
contains the rules for this new judgement, and Figure 10
gives an example; in this example, the order 4 and 7 could
be reversed in C10 and C11.

As with R, more than one C may satisfy both C1 = ε
and the constraints in Figure 9. We assume a canonical
C for each program P , when one exists. We write CP for
this canonical C, and CP,i for the value of CP at address
i. Programs that satisfy the constraints in Figure 9 also
satisfy the constraints in Figure 6; we define RP from CP
as follows:

RP,i =

{
{} when CP,i = ε
{L} when CP,i = L · c for some c

Figure 11 contains the rules that define F , S, i ` P for
jsr and ret; rules for other instructions are in Figure 4.
The rule for jsr L assigns the type (ret-from L) to the
return address pushed onto the operand stack. This type
will propagate to any location into which this return address
is stored, and it is checked by the following hypotheses in
the rule for ret:

x ∈ Dom(F i)
F i[x] = (ret-from L)

Typing return addresses helps ensure that the return address
used by a subroutine L is a return address for L, not for
some other subroutine. By itself, ensuring that the return
address used by a subroutine L is a return address for L does
not guarantee last-in, first-out behavior. One also has to
ensure that the only return address for L available inside L is
the most recent return address, not one tucked away during
a previous invocation. This is achieved by the following

hypotheses in the rule for jsr:

(ret-from L) 6∈ Si
∀y ∈ Dom(FL). FL[y] 6= (ret-from L)

These hypotheses guarantee that the only value of type
(ret-from L) available inside L is the most recent value
of this type pushed by the jsr instruction. (These hypothe-
ses might be redundant for reachable code; we include them
because our rules apply also to unreachable code.) Except
for the lines discussed above, the rules for jsr and ret are
the same as those of the structured static semantics.

7 Soundness

Our main soundness theorem is:

Theorem 1 (Soundness) Given P , F , and S such that
F , S ` P :

∀pc, f0, f, s.(
P ` 〈1, f0, ε〉 →∗ 〈pc, f, s〉
∧ 6∃pc′, f ′, s′. P ` 〈pc, f, s〉 → 〈pc′, f ′, s′〉

)
⇒ P [pc] = halt ∧ s : Spc

This theorem says that if a computation stops, then it stops
because it has reached a halt instruction, not because the
program counter has gone out of bounds or because a pre-
condition of an instruction does not hold. This theorem also
says that the operand stack is well-typed when a computa-
tion stops. This last condition is important because, when
a JVML method returns, its return value is on the operand
stack.

One of the main lemmas in the proof of this theorem es-
tablishes a correspondence between the stackless semantics
and the structured semantics. The lemma relies on the defi-
nition of a relation between states of the stackless semantics
and subroutine call stacks. The lemma says that if F , S ` P
and

P ` 〈pc, f, s〉 → 〈pc′, f ′, s′〉

then, for all ρ related to 〈pc, f, s〉, there exists ρ′ related to
〈pc′, f ′, s′〉 such that

P s̀ 〈pc, f, s, ρ〉 → 〈pc′, f ′, s′, ρ′〉

This lemma enables us to obtain properties of the stackless
semantics from properties of the simpler structured seman-
tics.

The full version of this paper contains additional results,
for example implying a bound on the size of the operand
stack. It also contains complete proofs.

8 Sun’s rules

Sun has published two descriptions of the bytecode verifier,
a prose specification and a reference implementation. This
section compares our rules with both of these descriptions.

8.1 Scope
While our rules simply check static information, Sun’s byte-
code verifier infers that information. Inference may be im-
portant in practice, but only checking is crucial for type
safety (and for security). It is therefore reasonable to study
checking apart from inference.

JVML has around 200 instructions, while JVML0 has
only 9. A rigorous treatment of most of the remaining JVML
instructions should pose only minor problems. In particu-
lar, many of these instructions are for well understood, arith-
metic operations; small difficulties may arise because of their
exceptions and other idiosyncrasies. The other instructions
(around 20) concern objects and concurrency. Their rig-
orous treatment would require significant additions to our
semantics—for example, a model of the heap. Fortunately,
some of these additions are well understood in the context of
higher-level, typed languages. Stephen Freund (in collabora-
tion with John Mitchell and with us) is currently extending
our rules to the full JVML.

8.2 Technical differences
Our rules differ from Sun’s reference implementation in the
handling of recursive subroutines. Sun’s specification disal-
lows recursive subroutines, as do our rules, but Sun’s refer-
ence implementation allows recursion in certain cases. We
believe that recursion is sound in the sense that it does not
introduce security holes. However, recursion is an unneces-
sary complication since it is not useful for compiling Java.
Therefore, we believe that the specification should continue
to disallow recursion and that the reference implementation
should be corrected.

Our rules deviate from Sun’s specification and reference
implementation in a few respects.

• Sun’s rules forbid load x when x is uninitialized or
holds a return address. Our rules are more general
without compromising soundness.

• Sun’s rules allow at most one ret instruction per sub-
routine, while our rules allow an arbitrary number.

• Our rules allow ret to return only from the most re-
cent call, while Sun’s rules allow ret to return from
calls further up the subroutine call stack. Adding this
flexibility to our rules would complicate the structured
semantics, but it should not be difficult.

Finally, our rules differ from Sun’s reference implemen-
tation on a couple of other points. Sun’s specification is
ambiguous on these points and, therefore, does not provide
guidance.

• Sun’s reference implementation does not constrain un-
reachable code. Our rules put constraints on all code.
Changing our rules to ignore unreachable code would
not require fundamental changes.

• When it comes to identifying what subroutine an in-
struction belongs to, our rules are more restrictive than
the rules implicit in Sun’s reference implementation.
The flexibility of Sun’s reference implementation is im-
portant for compiling finally clauses that can throw
exceptions. Changing our rules to capture Sun’s ap-
proach would not be difficult, but changing our sound-
ness proof to support this approach may be.

9 Other related work

In addition to Sun’s, there exist several implementations of
the bytecode verifier. Only recently has there been any sys-
tematic attempt to understand all these implementations.
In particular, the Kimera project has tested several im-
plementations, pointing out some mistakes and discrepan-
cies [SMB97]. We take a complementary approach, based
on rigorous reasoning rather than on testing. Both rigorous
reasoning and testing may affect our confidence in bytecode
verification. While testing does not provide an adequate re-
placement for precise specifications and proofs, it is a cost-
effective way to find certain flaws and oddities.

More broadly, there have been several other implemen-
tations of the Java VM. Of particular interest is a par-
tial implementation developed at Computational Logic, Inc.
[Coh97]. This implementation is defensive, in the sense that
it includes strong (and expensive) dynamic checks, remov-
ing the need for bytecode verification. The implementation
is written in a formal language, and is intended as a model
rather than for production use. Ultimately, one may hope
to prove that the defensive implementation is equivalent to
an aggressive implementation plus a sound bytecode verifier
(perhaps one based on our rules).

There have also been typed intermediate languages other
than JVML. Several have been developed for ML and Haskell
[TIC97]. We discuss the TIL intermediate languages [Mor95,
MTC+96] as representative examples. The TIL intermedi-
ate languages provide static guarantees similar to those of
JVML. Although these languages have sophisticated type
systems, they do not include an analogue to JVML sub-
routines; instead, they include constructs as high-level as
Java’s try-finally statement. Therefore, the main problems
addressed in this paper do not arise in the context of TIL.

Finally, the literature contains many proofs of type sound-
ness for higher-level languages, and in particular proofs for
a fragment of Java [DE97, Sym97]. Those proofs have not
had to deal with JVML peculiarities (in particular, with
subroutines); nevertheless, their techniques may be helpful
in extending our work to the full JVML.

In summary, there has not been much work closely re-
lated to ours. We do not find this surprising, given that the
handling of subroutines is one of the most original parts of
the bytecode verifier; it was not derived from prior papers
or systems [Yel97]. However, interest in the formal treat-

ment of bytecode verification seems to be mounting; several
approaches are currently being pursued [Qia97, Sar97].

10 Conclusions

The bytecode verifier is an important part of the Java VM;
through static checks, it helps reconcile safety with effi-
ciency. Common descriptions of the bytecode verifier are
ambiguous and contradictory. This paper suggests the use
of a type system as an alternative to those descriptions.
It explores the viability of this suggestion by developing a
sound type system for a subset of JVML. This subset, de-
spite its small size, is interesting because it includes JVML
subroutines, a source of substantial difficulty in the design
of a type system.

Our results so far support the hypothesis that a type
system is a good way to describe the bytecode verifier. Sig-
nificant problems remain, such as handling objects and con-
currency, and scaling up to the full JVML. However, we
believe that these problems will be no harder than those
posed by subroutines, and that a complete type system for
JVML could be both tractable and useful.

Acknowledgements
We thank Luca Cardelli, Drew Dean, Sophia Drossopoulou,
Stephen Freund, Mark Lillibridge, Greg Morrisett, George
Necula, and Frank Yellin for useful information and sugges-
tions.

References

[Coh97] Richard M. Cohen. Defensive Java Virtual Ma-
chine version 0.5 alpha release. Web pages at
http://www.cli.com/, May 13, 1997.

[DE97] Sophia Drossopoulou and Susan Eisenbach. Java
is type safe—probably. In Proceedings of
ECOOP’97, pages 389–418, June 1997.

[LY96] Tim Lindholm and Frank Yellin. The Java
Virtual Machine Specification. Addison-Wesley,
1996.

[Mor95] Greg Morrisett. Compiling with Types. PhD the-
sis, Carnegie Mellon University, December 1995.

[MTC+96] G. Morrisett, D. Tarditi, P. Cheng, C. Stone,
R. Harper, and P. Lee. The TIL/ML compiler:
Performance and safety through types. In Work-
shop on Compiler Support for Systems Software,
1996.

[Qia97] Zhenyu Qian. A formal specification of Java(tm)
Virtual Machine instructions (draft). Web
page at http://www.informatik.uni-bremen
.de/~qian/abs-fsjvm.html, 1997.

[Sar97] Vijay Saraswat. The Java bytecode verification
problem. Web page at http://www.research
.att.com/~vj/main.html, 1997.

[SMB97] Emin Gün Sirer, Sean McDirmid, and Brian
Bershad. Kimera: A Java system security ar-
chitecture. Web pages at http://kimera.cs
.washington.edu/, 1997.

[Sym97] Don Syme. Proving Java type soundness. Tech-
nical Report 427, University of Cambridge Com-
puter Laboratory, June 1997.

[TIC97] ACM SIGPLAN Workshop on Types in Compi-
lation (TIC97). June 1997.

[Yel97] Frank Yellin. Private communication. March
1997.

