Implementing Photoshop™ Filters in Virtex™

S. Ludwig, R. Slous and S. Singh

© Springer-Verlag Berlin Heildelberg 1999. This paper was first pub-
lished in Field-Programmable Logic and Applications, Proceedings of
the 9th International Workshop, FPL '99, Lecture Notes in Computer
Science 1673, Springer-Verlag 1999, ISBN 3-540-66457-2, pp. 233—
242. Reproduced with the permission of Springer-Verlag.

http://www.springer.de

Implementing PhotoShop™ Filters in Virtex™

Stefan Ludwigl, Robert Slous” and Satnam Singh2

1Compaq Systems Research Center, Palo Alto, California, U.S.A.
Stefan.Ludwig@compag.com
2Xilinx Inc., San Jose, California, U.S.A.
{Robert.Slous, Satnam.Singh}@xilinx.com

Abstract. This paper presents a complete system that utilises a FPGA-based co-
processor to accelerate compute intensive image processing operations. Its main
contributions are a methodology for incorporating hardware-based acceleration
into a commercia image processing application by exploiting a plug-in architec-
ture; a presentation of anew PCl-based FPGA accelerator system suited for image
processing style applications; and theoretical calculations and empirical measure-
ments of the system that was actually built.

1 Introduction

The design, implementation and performance analysis of a FPGA-based co-processor
system for accelerating the image processing application Adobe Photoshop is presented.
We describe a general purpose FPGA co-processor system using the Xilinx Virtex
FPGA. We show how circuits performing various image processing applications are
realised on this FPGA hardware. The software interface between the card and the Pho-
toshop application is described as well as a description of how Adobe Photoshop was
made to communicate with the FPGA hardware. We instrument the performance of soft-
ware and hardware versions of two filters and compare against the theoretical perform-
ance of our hardware platform.

2 I mage Processing with Adobe Photoshop

Adobe markets a series of applications for producing or processing drawings (Adobe
Illustrator), photographic quality pictures (Adobe Photoshop) and video (Adobe Pre-
mier). In the paper we shall concentrate on the accel eration of Adobe Photoshop, but the
principles and techniques are equally applicable to the hardware-based acceleration of
the other applications. Indeed, the hardware and software we produce can be directly
incorporated into Adobe Illustrator and Adobe Premier without change. Other third party
tools also use Adobe-style plug-ins and these can also immediately benefit from our
hardware-based filter accel erator.

Photoshop is a widely used image processing package which provides a modular
architecture for extending its functionality based on plug-ins. Imagesto be processed are
often in true-colour (24-bits) and may be sampled from a photograph or video camera at
a high resolution. Photoshop provides filters that can manipulate an image in various
ways including colour manipulation and filtering (e.g. Gaussian blur). For large images
these filters can take a long time to run, and there is already a market for specialised
DSP-based cards which can be used with plug-ins to accelerate Photoshop. The work
presented in this paper has been carried out using Adobe Photoshop version 5.0.

By using a FPGA-based co-processor system, one can producefiltersthat are accel-
erated using specialised circuits that operate at hardware speeds. One can distribute
image processing circuits as plug-ins, making them a commodity item that is conven-
iently packaged. If high speed filters can be produced then there may be a market for
FPGA -based boards in the desktop publishing niche.

Adobe Photoshop provides a collection of ‘filters that performvarious image
procesing operation. Thefilter menu of Phtmshopis shown in kg. 1 below. Thavail-
able filters ag notfixed, but instead are read dsig-insto Phdoshop. This means that
auser can purchase or develop more filters andnghthe functionéity of Photoshop
without access to the source code of the application.

We wsed the publicly available Phatoop Softwae Development Kit (SDK) to
implemen a varietyof filters tha use the Virtex FBA to reduce image processitime.
We have been conceating on colour space conversiRGB to greyscale conv&on)
and convolution style calallations (e.g. Gaussian Blur). Gaussian Bluis one of the
slowestoperatias in Photosbp ard is often used as bexchmak when assessj the
performane of desktop publishing systens.

el
EEd

(]
T
Tl
18] |

Fig. 1. The Filter Menu of Adobe Photoshop

The filter plug-ins were develged in C++ ad conpiled as Whdows dyamic link
libraries (DLLs). The binarprogrammingnformatian bitstream fo the accelerators is

compiled into the DLL allowing the hardware and software to be delivered in one conven-
ient package.

3 Accelerating Photoshop Filters

Photoshop filters communicate with Adobe Photoshop using a series of messages that
specify the nature of the image to be processed, as shown in Fig. 2.

el =

Adabe Photoshop® 4.0 Dizoclve Filter Plug-in

Initmlze parameatars. St flag
to display user interface.

Caleulzte memmory require-
ments and allocate memony
neaded.

fitterselect orPammeters

Filter

Command

“Last Filter” fikerselectarPrepare

Command

fiterselectorstan

o Chedk scripting pammeters ver-
03 our pararneters. Update if
necessary. Show Ul if flgged!
neaded.

If using

Audvan = State, filker
im=ge and loop
until error ar erpty
rectangle.

Set initial image rectanglesto
process,

fiterselectorlontinue

Loop until error ar

empty rectangle. Update image rectangles for

e-my Filter a portion of the image.
newt peEss.

fiterselectorFinish

Clean up. Pass back scripting
parameters.

Daone.

Fig. 2. Photoshop Plug-In Architecture

When Photoshop startsup it scans a series of directories containing plug-in DLLsand reg-
isters them (adding menu options to the Filter menu for each filter). Plug-ins respond to
filter commands as shown in Fig. 2 which results in a series of messages begin passed,
specifying the size and nature of the image to be processed.

The plug-in software that we produced asks for the image to be presented in red/
green/blue/alpha format (32-bits). Every time one of our filters is selected Photoshop

copies its internal working image into a buffer for our use. We then manipulate this
buffer to cal culate anew image which is placed into a destination buffer. When the filter
completes, Photoshop copies the destination buffer back into its own internal buffer
(which requiresit to reformat the image to the internal representation). Consequently for
both the software and hardwarefiltersweincur an image movement cost that is not under
our control. We do not instrument the cost of copying these buffers.

The filters that dispatch the image to the FPGA co-processor just pass the image
datadirectly to the hardware and then read back the processed resultsinto the destination
buffer.

3.1 Filtersused for Performance M easurements

We decided to use two filters in our measurements: one of O(1) computational complex-
ity and one of O(nz). The first one is a colour to greyscale filter and the second a 5x5
convolution with loadable weights. For each filter we made a software and hardware
implementation.

The greyscale filter in hardware uses 22 slices (1% of an XCV300) and can process
100 million pixels per second. The 5x5 convolver circuit takes up 2790 slices (90% uti-
lisation) and 12 BlockRAMs (out of 16). It can process 33 million pixels per second.
Both designswere specified in VHDL, synthesised without much consideration for opti-
misation and compiled without any layout constraints.

The convolver buffers 4 lines of image data which means that although each pixel
has to be multiplied and added to 24 other pixels we need only communicate each pixel
once to the FPGA. The core of the convolver then has high speed access to the required
pixels held in BlockRAMs.

4 The Photoshop Co-Processor Hardware

The co-processor hardware consists of a PCl-Pamette card and a daughtercard using the
Xilinx Virtex FPGA. Both cards were developed at the Systems Research Center of
Compag Computer Corp.

4.1 The PCIl-Pamette

The PCI-Pamette is a generic PCl-card based on reconfigurable logic [3]. One Xilinx
XC4010E FPGA implements amaster and slave PCI interface supporting 32- and 64-bit
transactions and contains a DMA engine capable of transferring data at full PCI-bus
speed. The card features a PCl mezzanine card connector (PMC) for daughtercards.

4.2 The Virtex Daughtercard

The daughtercard is based on the new Xilinx Virtex FPGA series[8]. Fig. 3 showsablock
diagram of the card and Fig. 4 a photograph. The daughtercard consists of the following
components:

e 1 XCV300Virtex FPGA in a BGA package

» 2independat banks of synchronous ZBT SRAM (18-bitswide), 1 MB total

* 2independat banks of synchronous DRAM (16-bits wide) 4 MB total

« programmale dock generator

* generalpurpose @-pin comecbr for input/cutput (34 signal pins)

* 64-bit PCI interface to PCI-Pamette

» clock bdfer, 2.5 V switching power suppltemperature sensors

We use a Xilinx VirtexX CV300FPA in a Ball-Grid Array package. It is connected to
a totalof 5 MB of memory. We usnew Zero-Bus Turnaround synchron@RAMs[9]
and more traditional synchrom® DRAMs. The four independebanks of SRAM and
DRAM allow for an aggregated memory bandwidth of over 1 GB/s.

The daughtercat hasa flexible clocking scheme. Based ar20 MHz oscillator ora
signal from he PCI-Pamette [3] the clock generat is cgable of generatingny fre-
quency betweer) and90 MHz. This ca be multiplied using the deyalockedloop
circuits (DLL) of the Virtex FPGAo generathigher frequencieshe resuing signais
distributed to the RAMs ard back b the FPGA itself by an external clock buffédsing
anothe DLL in the FPGA we can generate a zero-skew cogytlee board clock for the
FPGA circuit. Thee are two addition& clock sourca available: a copwyf the PClI clock,
generatedby a phasdockedloop on the PCI-Pametiinda clodk signal coming fran one
of the FR5As on the PCI-Pamette. The latter canubed, for instance, to implement a
software cbck.

A switching powe supply is used to geerate he FPGA core supply voltage of2.5V.
Two temperature sens®f2] are used tanonitor the ambient tempagure of the fronand
the back 6the card. When mounted on alPRamette, most componenfstioe daughter-
card face the components on the Riard The temperature senrsaan be used to provide
ashutdown fundton, shouldthe boards get too hot.

4.3 Interface to PCl-Pamette and the Host-PC

A 64-bit PCI interface (9&vires) is povided through 3 fothe 4 connectors (see Fi§).
Nothing abotithe interface is PCl-specific excepeibin-ou as prescribed byhe stand-
ard. PCHPanette is capable of trangfing dagto and from memgy at a sustained 120
MB/s by using DMA transfersThis rate depends dhe host-bridge ad the system bus
speed used in the PThe figureswereport hee arefor an Intel440BX AGP chipset [5]
running the g/stem bus at 00 MHz.

The PCI-Pamette is configured with an interface, which passes data back and forth
between the MUiex daughtecard and the PC’s host menyo Curently, only pro-
gramma IO is supported, hut aDMA mode is under devebpment. The programmed 10
mockeallows fa data transfer speeds of 50 MBssand 10 MB/s from the car@lhe inter-
face is also used to connect to the configungtiart of the Virtex FRBA.

4.4 Softwar e Interface

To configurethe Virtex FPGAwith a circut, we first configure the PCI-Pamette with
the aforementioned interface and then download the accelerator to the VitG#x. FRe
sditware can move data t@and fom the daughtercard by fiting to o readirg from an
address in PCl-space.

34-Bit Input/Output 64-Bit PCI-Bus
(viaPMC)
10 (34) I I PCI (98)
ZBT Adr (18) + Citrl Adr (12) + Ctrl
SSRAM [—»| SDRAM
133MHz —> —> 143MHz
Data (18) Virtex Data (16)
XCV300
7ZBT Adr (18) + Ctrl FPGA Adr (12) + Ctrl
SSRAM [—»| SDRAM
133MHz | 3 143MHz
Data (18) Data (16)

I

Progr. Clock Generator Configuration &
& Clock Buffer e Control (viaPMC)

Fig. 3. The Virtex daughtercard architecture
5 Performance Analysis

5.1 Theoretical Performance

In the following, we calculate the maximal performance of a 5x5 convolution, imple-
mented in software on a Pad & a circuit on the cgprocessn respectively. For the
analysiswe cansider a 6”x 4" photogrgph scamed at ®0 dpi in 24-bit RGB colour (pad-
dedto 32 bits pepixel). This resukin a35 MB image of & million pixels, which has

to be transfeed from main mmory to the computing device and back. Eveojour

value of every pixel is subjected to the filter, which results in 25 multiplications and 24
additions per colour.

On the PC, transferring the image from memory to the CPU and back takes 70 MB /
800 MB/s = 88 ms or 1.25 ns/BIf we couldfit dl filter coeficients into the CPU’s reg-
isters(this is not possible oa Pentiun-11) we coulddo one multiplyaccumulate step
every 1.25 cycledgnoringall other overhead, calculating the filtakes 3125 cycles per
byte. At 500 MHz this is 187.5 ns per pixel or 1.62 secdodshe whole imageThus,
thetime offiltering is dominatd by the calculation time. Tk results in a theoretical per-
formance of 5.3 milbn pixelsper second.

Fig. 4. A photograph of the Virtex daughtercard

On the daughtered, tran$erring the image takes 70 MBE20 MB/s = 583 mgor 8.3
ns/B. We can fithe 5x5filter completely in the Wtex FPGA and can therefoget 75
MACSs (multiply-accumulatesper cycle. At 66 MH thisis 15.2 ns per pixel or 131 ms
for the whole image. Since the performamd the hardware filter islominaed by
memory transfer speede achievea throughpubf 14.8 millionpixels per second. Takg
into account the transfer speed thiges us a factor & improvemenbver the PC.

We have to emphasize that in the above calculations, very optimistic assumptions
have been made for the performance of the software. In reality, we should be able to
achieve higher speedups.

52 M easurements and Analysis
Approximate performance measurements are shown in Table 1. The measurementswere

Table 1. Performance M easurements (in mega-pixels per second)

Filter 200K Pixels 3.4M Pixels
Greyscale (Software) 458 4.6
Greyscale (Hardware) 1.07 (speedup 0.23) 1.06 (speedup 0.23)
Convolver 5x5 (Software) 0.73 0.79
Convolver 5x5 (Hardware) | 1.08 (speedup 1.48) 1.08 (speedup 1.37)

instrumented by calculating the total time taken to communicate the image data to and
from the FPGA card, as well the time spent processing the image and performing the
filter protocol commands. The software measurements were taken on a high-end per-
sonal computer with a 500MHz Pentium I11 processor and 192MB of memory. Each
filter was executed five times for each image and an average of the processing time was
calcul ated.

The measurements show that the calculations performed on the FPGA subsystem
are memory bound since the 5x5 convolver [O(nz) i.e. 75 multiply-adds per pixel] pro-
ceeds roughly the same number of pixels per second as the far less computationally
challenging greyscale operation [O(1)]. As expected, the software version of the con-
volver is compute bound, operating six times slower than the greyscale filter.

We also instrumented the built-in 5x5 convolver provided by Adobe and it per-
formed at 1.13 mega-pixels per second. This shows that the plug-in version of the
convolver is not much slower than the highly optimised built-in version. Indeed the
built-in version only achieves afifth of the theoretical throughput.

Although the results show very modest speedups, the relative results are encourag-
ing. The memory transfer speed to the co-processor board is currently only 8 MB per
second, but this can be improved by an order of magnitude using DMA. This would
result in a speedup of 14 over our convolver plug-in or aspeedup of 10 over the built-in
version.

6 Related Work

FPGA-based Photoshop accelerators have been previously designed and built by the
authors using a XC6200 [7] based system on a PCI-card [6] which contained 2MB of
SRAM. This system demonstrated how Photoshop, plug-ins, device drivers, program-
ming bit-streams and run-time control could be used to accelerate commercial applica-
tions with FPGAs. However the XC6200 system used a considerably smaller FPGA
device which lacked on-chip memory blocks. Furthermore, the previous system required
carefully hand-crafted filters with each cell being manually placed. Our current systemis
synthesised from a high level description and contains no location constraints (except for
the 10s).

7 Summary and Conclusions

This project is still in progress and we have just presented preliminary results. The spee-
dups at this stage of the project are very small, but with further enhancement of the com-
munication infrastructure we expect speedups that make a FPGA-based Photoshop
accelerator board competitive with high-end workstations or DSP-based co-processor
boards. Not al types of filtering operations are suitable for acceleration with a FPGA-
based co-processor and one has to carefully analyse the computational complexity of the
filter, its memory requirements and its memory access behaviour.

The experiments we have performed show that the hardware solution scales linearly
since the pixels per second performance for a large image is no worse than for a much
smaller image. The experiments also show that the measured performance of both the
hardware and the softwareis significantly lessthan the theoretical valuesthat we have cal-
culated. However, the hardware solution suffers from limited memory bandwidth, which
we can improve in the future.

Thefilters that we have designed and implemented can be directly used to accelerate
other Adobe Photoshop applicationslike Illustrator (for producing drawings) and Premier
(for processing moving images). Although we have concentrated on the acceleration of a
specific application using an FPGA-based co-processor we believe the general technique
is applicable to a wide class of problems. Many modern computer applications are
designed to use plug-insto extend their capability after shipment, e.g. Netscape Commu-
nicator. Applications that require a significant amount of computation per datum after
transfer are good candidates for acceleration using our technique. Examples include
encryption/decryption, encoding/decoding and compressi on/decompression.

The measurements here have been performed without fully exploiting all the features
of the Virtex daughtercard. For example, we could use the on-board SRAMs to cache
large portions of the image to implement larger filters (e.g. to time-multiplex a 7x7 con-
volver which would not otherwise fit into the FPGA). Alternatively we could use the
SRAMSs to convolve images which are too wide to fit into BlockRAMs.

“Virtex “XCV300”, “XC4010E” and “XC6200” are trademarks #filinx Inc.

References

[1] Conpaq ProfessionalVorkstation AP200 Series. Cmpaq Conputer Gorp. 1998.
http://www.compacgom/products/workstations/ap200/index.html

[2] DS1820, 1-Wire™Digital Thermomeer. DallasSemiconductor Corpl998. http:/
/www.dallassemiconductor.com/Prod_info/Thermal/thermal.html#1820

[3] PCI Development Ptiorm. CompaqComputer Corp. 1996. http:ivw.re-
search.digital.coSRC/pamette

[4] J.D. Foley, A. Van DamComputer Graphics: Principles aRdactice. Addison
Weslgy. 1997.

[5] Intel 440BX APGset. Intel Corp. 1998. http://deymerintel.com/desigfthipsets/
440bx/index.htm

[6] Satnam Sinlgand Rbert SlousAccel er ating Adobe Photoshop with Reconfigura-
ble Logic. FCCM'98. NapaCalifornia. IEEE Compute Society Pressl998.

[7] Xilinx. XC6200 FPGA Family Data Sheet. Xiihnc. 1995.

[8] Xilinx Virtex™ 25V FPGA Product Secification. Xilinx Inc. 1998. http://
www.xilinx.com/products/irtex.htm

[9] Pipelinad ZBT™ Synchronous &t Static RAM. Motorola, Inc. 1998ttp://mot-
sps.con/productsmemory/srams/syichronous/zbts/ind&.html

