
Fast Integrated Tools for Circuit Design with FPGAs

Stephan W. Gehringy, Stefan H.-M. Ludwigz

Institute for Computer Systems
Swiss Federal Institute of Technology (ETH)

Zürich, Switzerland
gehring@interval.com, ludwig@pa.dec.com

Abstract

To implement high-density and high-speed FPGA circuits, design-
ers need tight control over the circuit implementation process. How-
ever, current design tools are unsuited for this purpose as they lack
fast turnaround times, interactiveness, and integration. We present
a system for the Xilinx XC6200 FPGA, which addresses these is-
sues. It consists of a suite of tightly integrated tools for the XC6200
architecture centered around an architecture-independent tool frame-
work. The system lets the designer easily intervene at various
stages of the design process and features design cycle times (from
an HDL specification to a complete layout) in the order of seconds.

1 Introduction

Fully automatic circuit synthesis from an HDL description is a
difficult and computationally intensive task, especially for Field-
Programmable Gate Arrays (FPGAs). Ideally, circuits are mapped,
placed and routed without human intervention. However, to im-
plementhigh-densityor high-speedcircuits with FPGAs, today’s
designers are faced with the need tomanually intervenein the de-
sign process and reiterate the implementation cycle until the circuit
implementation meets the requirements [4, 20]. Unfortunately, de-
signers cannot expect much support from current design tools as the
latter do not support fast iterative design cycles and offer only lim-
ited interactivity. This effectively hinders the designer from con-
trolling the implementation process.

Developers of circuit design tools face yet a different problem:
the still growing number of new FPGA architectures pressures them
to create new tool suites at a rapid pace. Since the tools are typi-
cally tailored to a specific architecture, they are rewritten almost
completely for every new architecture. Over time this results in a
huge collection of difficult to maintain tools.

The system we present addresses these problems. It tightly in-
tegrates the circuit design process in a single environment, from
the initial circuit specification in an HDL down to bitstream gener-
ation. At all stages of the process, the user can exert control over
the circuit implementation and thus efficiently guide the tools to-
wards the desired solution. The system targets the experienced user

yInterval Research Corporation, Palo Alto, California
zDEC Systems Research Center, Palo Alto, California

desiring complete control over the circuit implementation and of-
fers a highly interactive and fast design cycle. It consists of an
architecture-independent framework (front-end) which is comple-
mented by architecture-dependent back-ends. This enhances tool
maintenance as the framework is reused for each back-end. A com-
plete back-end including layout synthesis has been developed for
the Xilinx XC6200 architecture [23]. A further back-end for the
Atmel AT6000 architecture [3] exists which comprises a layout ed-
itor for manual circuit implementation and a bitstream generator.

In the following, we first describe how the tight integration
of our tools is achieved. Then we explain how the designer can
influence the implementation process and discuss the techniques
used to achieve the necessary speedy design cycle. We support our
claims by measurements and compare our system with the vendor-
supplied development system for the XC6200. A more detailed
presentation of the described system can be found in [8] and [14].

2 Tool Integration

One of the major goals of this work was to tightly integrate the
various circuit design tools into a single development environment.
Traditionally, the tools used in the circuit design process are very
loosely coupled and are often developed by a variety of independent
companies. For instance, the tools used to capture designs may
come from a CAD tool developer, while the layout synthesis and
bitstream generation tools are provided by the chip manufacturer.
Typically, tool communication is achieved by exchanging disk files
containing the design data in standard formats.

We feel that this loose coupling bears several disadvantages.
First, it makes the seamless integration of the tools a difficult, if not
impossible, task. This, however, is a prerequisite to quickly switch
back and forth between design tools during the design process. Sec-
ond, file-based inter-tool communication necessitates conversions
between internal and external formats on both ends, which often
results in design information loss and makes data exchange a slow
and vulnerable process. Third, decoupled tool development does
not take into account that a significant part of a tool suite is inde-
pendent of any specific architecture and could thus profitably be
reused by several tools. Taking advantage of this reduces the size
and memory requirements of tools and eases system maintenance.

We have addressed these problems by capturing the common
traits of design tools in anapplication frameworkfor circuit design
tools [9, 8]. To create tools for a specific FPGA architecture, this
architecture-independent framework is extended with architecture-
specific components.

The foundation for the tight integration of the framework and
its extensions lies in the use of asingle data structureto represent
circuits throughout the system [9, 8]. That is, all tools, whether



architecture-independent or -dependent, use auniversal circuit rep-
resentationdefined in the core of the framework (Figure 1). The
design tools operate in a shared memory environment and modify
the data structurein situ. Data exchange between tools can thus
be realized efficiently just by passing a reference to the data struc-
ture. This avoids data structure conversions altogether and simpli-
fies both framework and tool implementations considerably. Keep-
ing even large circuits entirely in main memory is possible due to
the compactness and simplicity of the representation.

HDL

Compiler
Placer Router

Bitstream

Generator

Central

Data Structure

Figure 1: Single Circuit Representation Accessed by Multiple De-
sign Tools

The data structure represents circuits as a hierarchical forest of
binary trees. Each tree specifies the Boolean equation for a sin-
gle circuit output. To accommodate for the needs of placers and
routers, positional information and net lists can be attached to the
nodes. All tools involved in the implementation processsupport
and maintain the hierarchical circuit structure. We have found that
this greatly improves the efficiency and quality of the layout syn-
thesis tools (see Section 4).

To describe the hierarchy of a circuit, the framework usespa-
rameterizable templates. A template is a representation of a sub-
circuit. Every instance of such a template is an exact copy of the
template, i.e. it contains the same gates and net lists and they are at
the same (relative) positions as in the master copy. Tools, such as a
placer, can exploit this additional knowledge to efficiently produce
regular layouts for regular circuits, such as bit-sliced designs.

For textual design specification, the framework comprises a
compiler for the hardware description language Lola[21, 22]. The
compiler translates a Lola circuit specification into the universal
data structure ready to be processed further. The Lola HDL sup-
ports parameterized descriptions of subcircuits, e.g. N-bit adders,
and allows the designer to pass placement hints to back-end tools,
i.e. to constrain the placement of circuit components.

Also provided is alayout editor framework, which can be cus-
tomized to create layout editors for specific FPGA architectures.
The layout editors fully support hierarchical layout and allow cir-
cuits to be constructed manually. The latter option is typically used
only for small to medium sized circuits and in education. The lay-
out editor framework has proven so versatile that aschematics edi-
tor was implemented with the framework.

To aid in the secure manual construction of circuits, the frame-
work features adesign checker, which checks two circuit descrip-
tions, e.g. an HDL specification and a layout, for Boolean equiv-
alence. The design checker is mainly used in education, where
circuits are laid out manually by the student and are then checked
against a Lola specification. It has also been used to prove the cor-
rectness of the layout synthesis tools themselves. To prove equiv-
alence between two Boolean expressions, the design checker uses
ordered binary decision diagrams (OBDDs) [5].

In the course of our work, we have found that significant parts
of design tools are indeed architecture-independent and are there-
fore profitably implemented by the framework. The framework-
based approach also increases software reliability, as common func-
tionality is implemented once only and reused by several back-

ends. The use of a single circuit representation resulted in the de-
sired tightly integrated system with short response times and high
interactivity.

3 Controlling the Design Process

A key issue in the implementation of high-speed and high-density
circuits with FPGAs is allowing the (experienced) designer com-
plete control over the circuit implementation. This is because, un-
like in the software world, resources in an FPGA are scarce and
therefore need to be tightly managed. Being the creator of the cir-
cuit, the designer has the most intimate knowledge of the circuit’s
structure and therefore knows best how it should be laid out. How-
ever, the complexity of today’s circuits requires support by layout
synthesis tools. The designer’s goal is therefore to guide the syn-
thesis tools towards the desired solution. To enable this, our system
allows the designer to influence the outcome of the tools at various
levels.

At the circuit specification level, the designer can specify the
placement of circuit components usingposition assignmentsin the
Lola HDL. These placement hints are passed on to the automatic
placer which pre-places the parts prior to placing the remaining
circuit parts. After placement, the layout editor can be used to en-
hance the placement manually. Since the hierarchy of the circuit is
preserved by all tools and visualized by the layout editor, the de-
signer is able to quickly identify and rearrange individual cells or
entire subcircuits. As the layout editor is used frequently, we have
taken care to make circuit manipulation as simple and as fast as
possible. Once a satisfactory placement is achieved, more place-
ments hints can be added to the HDL specification to reflect the
new placement. These will constrain the placer during the next de-
sign iteration and will thus relieve the user from having to make the
same changes again during subsequent iterations. A compile-place
cycle takes only a few seconds and the design quickly converges to
the desired placement.

The designer can also influence the routing process. The router
allows individual nets to be routedand also supports the record-
ing and playback ofrouting scripts, which define the sequence in
which the nets are routed. These scripts can be conveniently ap-
pended to the HDL specification text. Furthermore, the router can
be constrained to only use certain types of routing resources, e.g.
only use the local interconnect. Should the automatic router fail to
route a design successfully, the designer can use the layout editor
to route certain nets manually.

Typically, the final layout is achieved only after a number of it-
erations. The ability to predict the outcome of changes made to the
circuit specification is therefore of utmost importance. Our tools
comply with this requirement by employing onlydeterministic al-
gorithms. Stochastic algorithms, such as simulated annealing, are
ruled out, as minor changes to the circuit specification may result
in drastically different layouts.

4 Speed of Design Cycle

Current CAD tools take a considerable amount of runtime (several
minutes to hours) to compile, place and route a design. One goal
of the presented tools is to achieve design cycle times that lie in
the same range as those common in software development, namely
minutes at most. The Lola front-end and the XC6200 back-end [14]
achieve this through various techniques discussed in this section.

4.1 Lola HDL Compilation

Due to the simplicity of the Lola language, most notably the re-
striction to a structural description style, the compilation process is
straightforward. No elaboration process has to be performed, i.e.



the mapping of source language constructs to implementable gates
is obvious. A two-pass compiler is used, which first translates the
source code into a syntax tree and then interprets this syntax tree,
generating the universal data structure directly into main memory.
The first pass takes time linear in the size of the source code and
the second pass takes time linear in the size of the described circuit.

4.2 Technology Mapping to the XC6200

The Xilinx XC6200 FPGA consists of an array of simple cells and
a hierarchical routing network [23]. Each cell can implement any
function of one or two inputs or a multiplexer, and contains an
optional register, possibly with feedback. The match between the
universal data structure and the possible cell configurations of the
XC6200 is almost perfect. Only simple transformation steps have
to be performed, such as translating an SR-latch into two cross-
coupled Nand-gates. Packing multiple components into a single
cell is deferred to the placement phase, which deals with the ge-
ometric properties of the circuit. Therefore, no time-consuming
packing step has to be performed, as is the case for most coarse-
grained FPGAs like the XC4000 series. The mapping process takes
time linear in the size of the circuit.

4.3 Placement

The XC6200 back-end uses aconstructive, deterministic placement
algorithm. For the same input it produces the same output, which
is a very important and desirable property of a tool that is used it-
eratively and interactively. It gives the designer the least surprises
when a design is recompiled. Stochastic placement algorithms such
as simulated annealing [12] are inappropriate for this task, as they
typically produce different results every time they are run and ex-
hibit long runtimes.

The placing algorithm proceeds bottom-up, placing the inner-
most subcircuits (templates) first. It is similar to the algorithm de-
scribed in [15]. Within a template, it proceeds as follows: first,
instances and expression trees with associated position hints are
placed. Second,array structuresare placed using a simple heuris-
tic that places elements of an array either from left to right or from
bottom to top, depending on the aspect ratio of the element. A
good heuristic for arrays is essential for the placement of regular,
bit-sliced designs which frequently occur in data paths. Finally, in-
dividual instances and expression trees are placed using a recursive
algorithm: the root of an expression is placed into the first avail-
able cell. The expression trees, from which the root cell reads, are
placed recursively to the right of the root cell and above it. The tree
above is offset by the vertical height of the tree to the right of the
cell. Free space is managed using a bitmap. This simple placement
strategy does not produce dense layouts, but is fast and guarantees
a routable design. If necessary, the user can optimize this initial
placement manually. Figures 2 and 3 give two examples of how
expressions and arrays are placed.

Once a template is placed, the derivedpositional information is
propagated to all instancesof that same template. This preserves
the invariant of the front-end, which requires that all instances of
the same template have the same structural, placement, and wiring
information. Moreover, it also speeds up the placement algorithm,
which uses time linear in the size of the circuit.

For larger circuits, which cannot be placed using this simple
strategy, a floor-planner can be used to place subcircuits by hand
and optimize their layouts individually.

4.4 Routing

The routing algorithm used in the back-end is amaze-running rou-
ter based on the algorithm presented in [13]. It finds a path between

TYPE Example1; Forest

IN a, b, c, d, e: [N] BIT;

OUT z: [N] BIT;

BEGIN

FOR i := 0 .. N−1 DO

z.i := ˜((a.i * b.i) − (c.i + ˜d.i * e.i))

END

END Example1;

0/0
e2

z.0

z.1

c.0

c.1

a.0
b.0

a.1
b.1

d.0
e.0

d.1
e.1

Figure 2: Compact Placement of Expressions and Arrays

TYPE Example2(N); Selector

IN a, b, c, d: BIT; q, r, s, t: [N] BIT;

OUT p: [N] BIT;

BEGIN

FOR i := 0 .. N−1 DO

p.i := a * q.i + b * r.i + c * s.i + d * t.i

END

END Example2;

0/0

0/4

e3

p.0

d
t.0

d
t.1

p.1

c
s.0

c
s.1

b
r.0

b
r.1

a
q.0

a
q.1

Figure 3: Placement Leaving Empty Cells



two cells (terminals) by spreading a wave from the destination to-
wards the source until it finds the source cell or a wire segment
driven by that source cell. A cost function determines the shape of
the spreading wave.

The router proceeds bottom-up, routing the innermost templates
first. Since all instances of a given template must have identical
wiring, the router must take into account the different positions
of the instances when determining the routing resources available
for routing the given template. It sorts all nets according to their
length and routes the shortest nets first. This simple, but effective,
scheduling policy achieves quite satisfactory results.

To limit the size of the wave expansion, abounding rectangleis
used, which bounds the size of the wave. If a subcircuit is routed,
the size of this rectangle is the size of the subcircuit’s bounding
box. If the net is in the top-level the rectangle is made1=4 larger
on each side than the bounding box spanned by the source (S) and
destination (D) nodes (cf. Figure 4). If routing fails within this
rectangle, it is enlarged to the size of the chip and a new attempt is
made. The effectiveness of this two-phase approach is dramatic, as
it can reduce the routing times by an order of magnitude.

S

D

Full Chip Size

Bounding Box

of S and D

25% Wider and Taller

1

2

Figure 4: Two-Phase Growing of Router Bounding Box

Once a template is routed, therouting information is propa-
gated to all instancesof that template occurring in the design. This
propagation process speeds up the routing time of the whole de-
sign considerably, as the costly wave spreading is only performed
once for each net in each template. In designs with many repeti-
tive structures, the speedup is directly proportional to the number
of instances of the same template.

To allow for manual intervention by the user, the router takes
already routed nets into account by extracting the connectivity in-
formation prior to routing. Critical nets can therefore be pre-routed
manually.

5 Evaluation

We evaluate the Lola front-end and the XC6200 back-end and com-
pare it to the XACT Step 6000 V1.1.2 software available from the
chip vendor. While our system offers an integrated design flow
from HDL specification to bitstream generation, XACT provides
the back-end functionality and relies on third party front-ends. The
measurements were carried out on a Digital Celebris GL 5166ST
PC, equipped with a 166 MHz Intel Pentium processor, 256 KB of
second-level cache, 128 MB of main memory, running Microsoft’s

Windows NT operating system, version 4.0. The Lola system is
implemented in the Oberon-2 programming language [16] and runs
within ETH’s Oberon for Windows System V4.0 [11] using the im-
plementation from the University of Linz, version 2.0.

5.1 Architecture Independence

The usefulness of the framework approach with an architecture-in-
dependent front-end and several architecture-dependent back-ends
manifests itself in the size of the tools. Table 1 lists the software
complexity of the front-end and of two back-ends, one for the Xil-
inx XC6200 and one for the Atmel AT6000 FPGA. The AT6000
back-end consists of a layout editor and bitstream generator. It was
developed by a student and proves that a layout editor back-end
can be developed by a programmer with no prior knowledge of the
framework within reasonable time (3 months).

It is interesting to compare the sizes of the framework front-
end to the XC6200 back-end. Note that in addition to the tools
described in Section 4, the XC6200 back-end includes a bitstream
generator and a timing analyzer, as well as hardware driver soft-
ware. The front-end is nearly of the same size as the back-end.
Put in another way, approximately40% of the circuit design system
is architecture-independent. This fact clearly supports our propo-
sition that a common architecture-independent front-end substan-
tially reduces the effort to develop new back-ends.

Subsystem Lines Object (KB)
Front-End 11300 199
XC6200 Back-End 18100 296
Total (Front-End+XC6200) 29400 495
AT6000 Layout Editor 4400 80

Table 1: Software Size

For comparison, the commercial tool XACT running under Win-
dows NT has an object code size of 1192 KB. It is more than
twice as large as our system and features neither an HDL compiler
nor does it contain architecture-independent parts, which may be
reused for different architectures.

Memory requirements of our tools are modest. The biggest de-
sign of the next section is compiled, placed and routed using no
more than 16 MB, while the memory requirement of XACT for the
same design is 46 MB.

5.2 Speed of Design Cycle

We use two designs to evaluate the tools. The first is afloating point
adderfor 16-bit operands. The second is apattern matcher, which
consists of a regular datapath, and a small amount of random logic.
It matches 5-bit characters stored in the FPGA (the patterns) against
a stream of 5-bit characters (the text) and signals a match. Three
design variants are evaluated: one with 2 parallel pattern matchers
of 4 characters each, one with 16 pattern matchers of 12 charac-
ters each and one with 32 parallel pattern matchers of 24 characters
each. Both designs are data-path intensive circuits, for which the
XC6200 is particularly well suited. Table 2 lists the characteristics
of the four designs after successful layout synthesis. The biggest
design is implemented on an XC6264 (128x128 cells) while all
other designs are implemented on an XC6216 (64x64 cells). Fig-
ures 5 and 6 show the placed and routed layouts of the floating point
adder and the medium pattern matcher, respectively.

Table 3 shows the time spent in each phase of the Lola system.
Note that routing is not involved in the design cycle until the user
is satisfied with the placement of the circuit. Therefore the first



CLBs Nets Bounding Box Util.
FP-Adder 542 1283 64 x 34 25%
Small PM 248 630 18 x 46 30%
Medium PM 3048 6310 60 x 61 83%
Large PM 11748 23830 107 x 121 90%

Table 2: Design Characteristics

Figure 5: Layout of Floating Point Adder

Figure 6: Layout of Medium Pattern Matcher

column lists the combined times of HDL compilation, mapping and
placement. The (nh)-rows list the results for Lola code without
placement hints. The number of unrouted connections is listed as
well and clearly indicates how the quality of the routing is affected
by the placement. The time for routing dominates the total design
cycle time.

Compile+
Place Route Total Unroutes

FP-Adder (nh) 1.1 16.3 17.4 32
FP-Adder 1.1 4.5 5.6 0
Small PM (nh) 0.2 6.4 6.6 21
Small PM 0.3 2.0 2.3 0
Medium PM 3.5 17.1 20.6 0
Large PM 33.5 162.6 196.1 0

Table 3: Speed of Lola System (Times in Seconds)

Table 4 lists the times spent in the XACT tool. Since the HDL
compiler is not integrated into XACT, the first column lists the com-
bined times for reading the mapped netlist and placement. The
mapped netlists were produced with our Lola compiler and a con-
version tool. With no hints, XACT uses more time in the placement
phase, trying to produce a good placement using stochastic algo-
rithms. Repetitive runs on the same input do not yield the same re-
sult, which can affect the result of the routing phase as well. Hence,
little progress can be made between iterations. The placement and
the routing can be influenced by the user through various switches.
To produce the data presented in Table 4, those settings were cho-
sen that ran the fastest, or achieved a completed design.

Read+
Place Route Total Unroutes

FP-Adder (nh) 58.4 1046.2 1104.6 81
FP-Adder 5.9 125.2 131.1 0
Small PM (nh) 6.6 683.1 689.7 9
Small PM 3.0 281.1 284.1 0
Medium PM 22.2 216.5 238.7 0
Large PM 273.9 2543.1 2817.0 0

Table 4: Speed of XACT (Times in Seconds)

Table 5 lists the total times and the speedup obtained by using
the Lola system. As the table shows, the Lola system isone to two
orders of magnitude fasterthan the commercial tool. In contrast to
XACT, our router does not support the “Magic” routing resource
of the XC6200 — but still routes the designs — and only supports
one global clock signal. However, this does not fully explain the
difference in execution time. Moreover, the times for our tools in-
clude HDL compilation. Commercial HDL compilers are typically
at least an order of magnitude slower than our Lola compiler.

The tables do not show quantitative results of the layouts be-
cause our timing analyzer is not yet fully functional. Inspection of
the layouts, however, reveals critical paths of similar lengths.

Our system exhibits exceptionally fast turnaround times and is
therefore well suited for interactive circuit development. The fast
turnaround times of compile, map and place are especially notice-
able when many design iterations are being performed.



XACT Lola Speedup
FP-Adder (nh) 1104.6 17.4 63.5
FP-Adder 131.1 5.6 23.4
Small PM (nh) 689.7 6.6 104.5
Small PM 284.1 2.3 123.5
Medium PM 238.7 20.6 11.6
Large PM 2817.0 196.1 14.3

Table 5: Speed of Lola System vs. XACT (Times in Seconds)

6 Related Work

Many different frameworks for circuit design are reported in the
literature, and the term “framework” is defined in various contexts.
For instance, the CAD Framework Initiative (CFI), an international
consortium developing framework standards, defines a framework
as “a software infrastructure that provides a common operating en-
vironment for CAD tools” [6]. This definition targets theinterop-
erability of loosely coupled design toolsthrough a standard layer
which is separate from the tools. Itencapsulatesexisting tools
which have been developed independently and thusfocuses on the
managementrather than the implementation of design tools. Ex-
emplary for this philosophy is the Nelsis framework [17, 19].

Our front-end differs from this approach in that itclosely cou-
ples extensible design tools. It does not need any data translators
since a common data structure is used. More in the spirit of our
tools is the FACE environment [18], which is a framework contain-
ing a design manager and a user interface toolkit centered around a
common design representation model.

Because the bitstream formats of most FPGAs are kept propri-
etary by their respective vendors, CAD tools developed by third
parties generate netlists that are then read by commercial tools.
Therefore, these third party tools suffer from the lack of integra-
tion and speed and the design cycle times are slow, although these
times are seldom published in the literature. Examples for such
tools are PamDC from Digital’s Paris Research Laboratory [4] and
the SPLASH-tools from the Supercomputing Research Center in
Maryland [2]. The only systems we know of, which have compa-
rably fast turnaround times are Tsutsuji [7] for the Teramac cus-
tom computing machine from Hewlett-Packard Laboratories [1],
and the Debora/CALLAS tools for the Algotronix CAL architec-
ture [10]. The bitstream formats of both FPGAs were available
to the tool developers. Compared to our system, the CALLAS syn-
thesis tools make no use of hierarchical information and the Debora
HDL can not be annotated with placement information.

7 Summary and Conclusions

We have developed circuit design tools for FPGAs which feature
a very fast design cycle. They give the usertight control over the
implementation processand encourage an iterative, exploratory de-
sign style. This is particularly useful for experienced users who
push the technology to its limits. Our tools should be seen ascom-
plements, rather than replacements, to sophisticated design tools
that offer fully automatic synthesis at the expense of execution
time.

The separation into an architecture-independent front-end and
architecture-dependent back-ends is beneficial, as it relieves the
tool implementor from having to (re)implement common behavior
for each back-end anew.

By centering all tools around a universal data structure, the
speed of the tools is improved and the memory requirements are
lowered. Preserving the hierarchical informationavailable on the

HDL level throughout the system proved to be valuable both to en-
hance the predictability of the synthesized layouts and to reduce
execution times of the design tools.

The resultingdesign cycle is one to two orders of magnitude
faster than what can be achieved with vendor-supplied tools and
approaches that of tools for software development. We hope that
this enabling technology will spark interest in thesoftware commu-
nity to use FPGAs for custom computing applications.

Acknowledgments

We would like to thank Marco Sanvido for implementing a timing
analyzer for the XC6200 FPGA and Daniel Hofmann for the im-
plementation of the Atmel AT6000 layout editor. We are grateful
to Xilinx Development Corporation in Scotland for their continu-
ing support and to Virtual Computer Corporation in California for
making our tools available to a wider community.

The Lola tools can be downloaded free of charge from http://www.-
lola.ethz.ch and a version supporting the H.O.T. Works develop-
ment system of Virtual Computer Corporation is available from
http://www.vcc.com.

References

[1] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, G.
Snider. Teramac — Configurable Custom Computing.Proc.
IEEE Symposium on FPGAs for Custom Computing Ma-
chines.IEEE Computer Society Press, 1995.

[2] J. M. Arnold, D. A. Buell, E. G. Davis. Splash 2.Proc. 4th
Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, 1992.

[3] Atmel. Configurable Logic: Design & Application Book,
1995.

[4] P. Bertin, H. Touati. PAM Programming Environments:
Practice and Experience.Proc. IEEE Symposium on FPGAs
for Custom Computing Machines.IEEE Computer Society
Press, 1994.

[5] R. E. Bryant. Symbolic Boolean Manipulation with Ordered
Binary Decision Diagrams.ACM Computing Surveys, Vol.
24, 293–318, 1992.

[6] CFI Architecture Technical Subcommittee.CAD Framework
Users, Goals, and Objectives, Version 0.91, CAD Frame-
work Initiative, 1990.

[7] B. Culbertson, T. Osame, Y. Otsuru, J. B. Shackleford, M.
Tanaka.The HP Tsutsuji Logic Synthesis System. Hewlett-
Packard Journal, August 1993.

[8] S. Gehring.An Integrated Framework for Structured Cir-
cuit Design with Field-Programmable Gate Arrays.Disser-
tation No. 12188, ETH Z¨urich, 1997 (http://www.inf.ethz.-
ch/publications/diss.html).

[9] S. Gehring, S. Ludwig. The Trianus System and its Appli-
cation to Custom Computing.Proc. 6th Intl. Workshop on
Field-Programmable Logic and Applications.LNCS 1142,
Springer, 1996.

[10] B. Heeb and C. Pfister. Chameleon: A Workstation of a Dif-
ferent Colour.2nd Intl. Workshop on Field-Programmable
Logic and Applications.LNCS 705, Springer, 1992.

[11] Institute for Computer Systems.The Oberon Archive.ftp:-
//ftp.inf.ethz.ch/pub/software/Oberon.



[12] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecci. Optimization
by Simulated Annealing.Science, Vol. 220, May, 1983.

[13] C. Y. Lee. An Algorithm for Path Connections and its Ap-
plications. IRE Trans. Electronic Computer, Vol. EC-10,
September 1961.

[14] S. Ludwig. Hades — Fast Hardware Synthesis Tools and
a Reconfigurable Coprocessor. Dissertation No. 12276,
ETH Zürich, 1997 (http://www.inf.ethz.ch/publications/-
diss.html).

[15] L. M. Monier, J. Dion. Recursive Layout Generation.Proc.
16th Conference on Advanced Research in VLSI.IEEE Com-
puter Society Press, 1995.

[16] H. Mössenb̈ock, N. Wirth. The Programming Language
Oberon-2.Structured Programming.Vol. 12, No. 4, 1991.

[17] Technical University of Delft.The Nelsis CAD Framework.
http://www.ddtc.dimes.tudelft.nl, 1996.

[18] W. Smith, D. Duff, M. Dragomirecky, J. Caldwell, M.
Hartman, J. Jasica, M. d’Abreu. FACE Core Environment:
The Model and its Application in CAE/CAD Tool Devel-
opment.Proc. 23rd Design Automation Conference, IEEE,
1989.

[19] P. van der Wolf.CAD Frameworks — Principles and Archi-
tecture.Kluwer Academic Publishers, 1994.

[20] R. Woods, A. Cassidy, J. Gray. VLSI Architectures for Field
Programmable Gate Arrays: A Case Study.Proc. of the IEEE
Symposium on FPGAs for Custom Computing Machines.
IEEE Computer Society Press, 1996.

[21] N. Wirth. Digital Circuit Design. An Introductory Textbook.
Springer, 1995.

[22] N. Wirth. The Language Lola and Programmable Devices in
Teaching Digital Circuit Design.Proc. of the 2nd Intl. Andrei
Ershov Memorial Conference. LNCS 1181, Springer, 1996.

[23] Xilinx. The Programmable Logic Data Book, September
1996.


