
FPGA Synthesis on the XC6200 using
 IRIS and Trianus/Hades

 (or from Heaven to Hell and back again1)

R Woods*, S Ludwig+2
, J Heron*, D Trainor* and S Gehring+

*  Institute of Advanced Microelectronics +  Institut für Computersysteme
The Queen’s University of Belfast Eidgenössische Technische Hochschule

Stranmillis Road, Belfast, N Ireland Zürich, Switzerland

                                                          
1 IRIS is the messenger between the Greek Gods and earth and Hades, the Greek god of the Underworld
2 Present address: Digital Systems Research Center, Palo Alto, California

ABSTRACT

The implementation of a number of FIR filter
structures in the Xilinx XC6200 technology is
presented. The designs have been implemented
using a combination of IRIS, an architectural
synthesis tool and Trianus/Hades a set of
integrated tools for implementing algorithms on
Custom Computing Machines. The main
attraction of this approach is that it allows
algorithms to be compiled quickly allowing
performance changes to be made at the
architectural level in IRIS rather than at the
FPGA layout level.

1 INTRODUCTION

There has been considerable interest in the
development of custom computing machines
based on re-configurable FPGAs and a number
of systems have been presented at the FPGAs
for Custom Computing Machines (FCCM)
conferences in the past years. These range from
the earliest devices such as the NCSU Anyboard
[Bou92] from Brown University, to the DEC
PeRLe-1 from the DEC Paris Research
Laboratory [Ber93], Splash-2 system [Pri93],
OneChip [Wit96] from the University of
Toronto and the MATRIX [Mir96] from MIT.
However, considerable effort is still required to
create the hardware programs. This typically

involves tedious hand crafting of designs using
logic synthesis techniques and conventional
FPGA designs.

Work has been presented to allow
implementation of C programs on FPGA based
systems [Pet96, Waz93]. However, conventional
programming languages only allow serial
programs to be implemented and it has long
been recognised that custom computing
machines will only become dominant if they can
efficiently implement algorithms which exhibit
considerable parallelism. There has been some
development in languages suitable for FPGA
compilation e.g. Ruby [LSC96]. A number of
simple examples have been presented using
Ruby but the system still relies on performing
synthesis via Synopsys and using conventional
FPGA place and route tools to achieve the
designs [LSC96].

In this paper, we present a synthesis approach
which links up a high level synthesis tool,
developed originally for VLSI Architectures,
IRIS with a closely coupled, FPGA design
framework, Trianus and synthesis back-end
Hades. The major advantage of the approach is
that it allows you to modify algorithmic
descriptions and implement FPGA layout in
minutes rather than hours. This quick iteration
cycle allows the user to relax placement



constraints originally deemed necessary to
achieve high performance results [Woo96] and
to quickly iterate to solutions optimised for both
time and area. An example for an FIR filter is
examined.

2 ARCHITECTURAL SYNTHESIS

A considerable body of work has been carried
out into the synthesis of VLSI architectures for
computational complex algorithms in particular
DSP algorithms. These techniques include
methods based on Recurrence Equations
[Bal94], dependence graphs [Kun88] and,
algebraic methods [Luk89]. Many of the high
level methods have the advantage that they
derive a great number of solutions from a single
algorithmic representation. Whilst specialist
tools can produce architectural representations
from high levels of abstraction, they are unable
to produce functionally-correct, implementable
circuits, as issues such as internal word growth,
truncation and data organisation, have not been
considered. These issues can have considerable
effect on circuit performance such as latency
and data timing and can invalidate any derived
architecture. It is left to the IC or FPGA designer
to modify and refine the initial architectures
taking into considerations these design details.

A number of synthesis tools have also been
developed such as CATHEDRAL [DeM90],
PHIDEO [Lip91], and HYPER [Bro92] which
can take algorithmic descriptions and apply
scheduling, assignment and hardware mapping
techniques to synthesise an architecture. With
these systems, hardware mapping, the process
that maps a flow graph onto the available
hardware blocks, is carried out after the various
scheduling and assignment procedures. The
assumption is therefore made that hardware
mapping does not alter the structure or
functionality of the design. For the hardware
units generally used in reported design examples
synthesised by these tools, this may be a valid
assumption. However, it has been demonstrated
[Tra95] that if the hardware units are complex

pipelined processors, hardware mapping can
invalidate the architecture. This needs to be
resolved if the circuit is to operate correctly
once implemented using the chosen hardware,
and has been shown to be a complex task
[Tra95].

An alternative synthesis framework, called IRIS
has been employed at Queen’s University
[Tra95]. It works on the building block
philosophy where the designers can define the
processing blocks and perform synthesis on
these circuits. Starting with a Signal Flow Graph
(SFG), the users selects processing blocks from
the library and embeds these in the SFG. These
blocks have specific timing and data
organisation and simply inserting them into the
SFG would invalidate the design. However, by
use of re-timing routines, IRIS synthesises an
architectural description which implements the
original SFG using the blocks specified.

At first glance, this methodology may not appear
attractive but hardware designers typically like
to mix and match circuits, use different number
representation and clever circuit design
techniques to achieve efficient FPGA solutions.
IRIS achieves this by enabling the extraction of
parameterised expressions from complex VLSI
processing elements, and using these
expressions to achieve functionally-correct
solutions for circuits built from these processors.
Designers can quickly create and evaluate
architectures that utilise existing hardware
blocks and realise hardware using commercial
synthesis tools.

2.1 IRIS Structure and Operation

The system viewpoint for IRIS is given in
Figure 1. The IRIS shell is the central
communicating process which processes
commands from the user, invokes and monitors
several tools within the IRIS framework, and
relays the text and graphical information by
these tools back to the user. Parameter files



provide the shell with information regarding the
display and location of files.

From the shell, the user has control over the
invocation and operation of two tools, a
Schematic Editor which also functions as an
interface for the various synthesis functions and
a Process Designer (PD) for the design of the
parameterised models required within IRIS. The
PD is currently a simple parameter capture tool
which allows the user to derive the various
parameterised expressions for the particular
circuit. In addition, the user can associate
relevant speed and area estimates obtained from
synthesised circuits.
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Fig. 1. IRIS System Functionality

The main design entry is via Signal Flow Graph
(SFG) which the users creates in the schematic
by using instances of various processing blocks
connected together by wires (representing
signals in the SFG) and terminated using
external connectors (signifying external SFG
inputs and outputs). At this stage, a number of
design functions can be invoked including a
symbolic simulator which generates a difference
equation corresponding to the SFG and a
numerical error analysis tools which currently
provides Mean Square Error analysis. One of the
core design functions is the retiming routines
which ensure that the circuit derived using user
defined processors, implements the original
signal flow graph. This uses delay scaling,
retiming and processor embedding.

Architectural optimisation is available within
IRIS in a number of ways. The user can use
transformations available within IRIS such as
hardware scheduling, lookahead computation
and power minimisation techniques.
Alternatively, the user can choose different
processing blocks (e.g. different multiplier
structures), different internal pipeline strategies
and vary wordlengths. Combining both of these
techniques gives the user considerable
architectural freedom, offering an extremely
powerful environment for achieving optimal
hardware implementation for the SFG.

IRIS can produce a VHDL description of the
synthesised architecture using parameterised
VHDL descriptions of the processor blocks held
in the IRIS processor library allowing designs to
be implemented by VHDL-based logic synthesis
tools. A Lola [Wir95] interface has now been
developed which allows the user to produce
complete Lola descriptions for the
Trianus/Hades environment. This is discussed
later.

It should be pointed out that, though IRIS
presently uses a graphical SFG input and was
aimed initially at DSP algorithms, internally it
works on a weighted graph and can thus accept
any algorithm than can be represented in this
form.

3 TRIANUS AND HADES

Today’s hardware synthesis tools are usually big,
bulky and slow. They provide little support for
an iterative design cycle and even less for
manual intervention by the user. Especially
during the implementation of FPGA circuits, the
designer’s knowledge about the structure and
layout of the design is often needed to meet the
specifications. However, this knowledge cannot
easily enter the design cycle in current tools.

One reason for this is the use of stochastic
algorithms, such as simulated annealing, during



layout synthesis. Because they are stochastic,
different runs of the algorithm produce different
layouts even for the same input. If several
design cycles are needed to achieve a
satisfactory result (for instance, because a layout
is not routable), this unpredictability of the
outcome is unwanted. Instead, the designer will
want to gain control over the synthesis process,
e.g. by specifying the circuit’s placement by
hand. Manual placement is often used for
building high-performance FCCMs [Ber93,
Pri93].

A reason for the inefficiency of synthesis is the
lack of interoperability between different design
tools. As the user switches from one tool (such
as a schematics editor) to the next one (such as a
layout editor), a number of design files are
typically stored to disk and read again, i.e. the
data structures representing the design in the
first tool are externalized to disk and
subsequently internalized and translated to the
data structures needed by the second tool.

3.1 Trianus Framework

To remedy the aforementioned problems, the
Trianus framework was developed [GL96,
Geh97]. Trianus is an extensible framework of
tightly integrated FPGA architecture-
independent tools (front-end), which are
supplemented with architecture-dependent tools
for specific FPGA architectures (back-ends).
Together they form complete circuit
development systems from initial design entry to
bit-stream downloading.

The Trianus front-end comprises an HDL
compiler for the Lola language [Wir95], a
schematic editor and a framework for the
construction of layout editors. Additionally, a
circuit checker allows to validate manual circuit
modifications.

Trianus can represent designs in three different
ways: textually, schematically or using layout
editors (Fig. 2). Arrows in the figure denote

transitions from one representation to another.
The three representations are centered around an
architecture-independent, hierarchical data
structure which is used system-wide. In the
hierarchical data structure, instances of the same
type (component) are always represented
identically (e.g. the multiply-accumulate
structures in the FIR filter example of Fig. 4).
The hierarchical information is maintained by
all tools and is available at all times.

This approach bears several advantages:
    - High speed of operation, as no translation
between circuit representations is necessary.
    - New tools can be developed in short time, as
only one data structure has to be supported.
    - A consistent user interface of various tools
is guaranteed by the editor framework.
    - The hierarchical data structure encourages
the use of hierarchical information for design
representation.

Data
Structure

HDL Schema

Layout

Extract
Place & Route

Extract

Compile
Place & Route

Extract

Fig. 2. Trianus Tools

3.2 Hades Synthesis Back-End

The Hades software [GL96, Lud97] implements
a Trianus back-end and comprises a technology
mapper, a placer, a router, a bitstream generator
and a runtime system. The Hades hardware is a
reconfigurable coprocessor based on the
XC6200 FPGA from Xilinx and is described in
[Lud96, Lud97].

The technology mapper is concerned with the
packing of Boolean operators and registers into
the available cells of the FPGA. Thanks to the
simple and regular architecture of the XC6200,



this is a relatively easy task, which can be
executed in linear time.

The placement algorithm uses a greedy
heuristics and places Boolean expression trees in
a constructive way. It first places the root of a
tree into a cell and then places the two children
to the right and above that cell. This simple
strategy ensures the routability of the expression
tree. Arrays of trees (as often occur in data
paths) are placed either vertically or
horizontally. Using and preserving the available
hierarchical information, the circuit is placed
from the inside out, and every instance of the
same type has the same placement. The
algorithm is very fast, taking time linear in the
number of tree nodes.

An automatic router based on the well-known
Lee-type maze-running algorithm is used to
route a placed circuit [Lee61]. It, too, makes use
of hierarchical information by routing from the
inside out. Once a type is routed, the routing
information is copied to all instances of that
type. By using this copying process, the
quadratic runtime of the Lee-algorithm is not
such a severe problem. A design using 90% of
an XC6216 can be routed in under 1 minute on a
Pentium-class PC.

As further tools, a bitstream generator and
loader and a runtime system were developed.
The latter supports the development of
coprocessor applications by representing the
hardware part of an FCCM application through
an automatically generated software interface to
the programmer.

4 FPGA IMPLEMENTAION USING
IRIS AND TRIANUS/HADES

Automated synthesis of FPGA layouts without
thought to structure can lead to low density
designs. In order to avoid difficulties at the place
and route level, it is important to either build in
enough redundancy (e.g. over specify the
performance) to ensure the specification will be

met or employ a strict architectural and/or
floorplanning strategy. This strategy has been
shown to work well [Woo96, Luk96] but is
acknowledged as time-consuming [LSC96].

IRIS can produce workable architectural
descriptions from high level descriptions where
wordlength and truncation issues have been
considered and the Hades synthesis tools can
quickly generate FPGA layouts from Lola
descriptions.

IRIS has now been closely integrated with
Hades resulting in a powerful system capable of
investigating FPGA implementation. It has been
achieved by developing a Lola interface from
IRIS which allows IRIS to produce Lola code
for the algorithm under question. The systems
are well matched as there is considerable
structure within IRIS which Hades can preserve
and quickly translate into layout. This allows a
different design strategy to be employed which
removes the designer from the low level design
flow. For example, if the designer finds the
required target performance has not been met at
the circuit layout stage, one can go back to IRIS
and choose many of the circuit transforms
available. The use of adding pipelining delays is
a particularly good option for FPGAs as it can
sometimes be implemented with no extra cost.
The key issue is that circuit optimisation is
being performed at the algorithm/architectural
level which is less consuming than varying
placement and routing at the FPGA level. The
design flow for using IRIS with Trianus/Hades
is shown in Figure 3.

5 FIR FILTER EXAMPLE

The equation for an n-tap FIR filter is given as:

y a xn i n
i

n
=

=

−
∑

0

1
                          (1)

where xn is the input data stream, yn, the filtered
output and ai represents the filter response.
There are a number of possible SFG



representations for this FIR filter one of which is
given in Figure 4.
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Fig. 3. Unified IRIS/Trianus/Hades Design flow

It has been decided to build a 3 tap filter with a
throughput rate of 20MHz. For this example, we
will examine the possibility of using the carry-
save Mac block.
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Fig. 4. FIR Filter implementation using MACs

This implementation involves combining the
multiplier and adder from a classical SFG

description into a single Multiplier Accumulate
(Mac) operation which can be implemented
using a number of available Mac structures. The
Carry-Save structure given in Figure 5 has been
used in this instance.

Fig. 5. Structure of Carry-Save MAC Processor

The carry-save is useful in this application as it
can be easily parameterised and the level of
pipelining can be varied within the block
allowing both area and speed to be varied. The
inputs pi and qi correspond to multiplier and
multiplicand respectively and si correspond to
the additive input (subscripts i refers to inputs
and o to the outputs). An abstract model for this
structure which is what IRIS uses is shown in
Figure 6. The parameterised expression in the
boxes refers to the latency of that particular
datapath, whilst the data time shape is shown
graphically at each input and output of the
model. The values m and n represent the
wordlengths of the datapaths p and s
respectively and x represents the level of
pipelining. The effect of truncating data between
processors models is included within the



processor block by the parameters tq, ts and tp

referring to each datapath respectively.

Inserting this particular processor into the signal
flow graph results in the circuit of Figure 7.
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Fig. 6. Carry-Save MAC Model.
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Fig. 7. FIR Filter implementation using MACs

The choice of a wordlength of 5 bits in this
example for each of the MACs has resulted in
both of the latencies being 5 (we are actually
using 4 bits but we have made this 5 to avoid
truncation in this example - something which is
easily dealt with within IRIS). The resulting
circuit is shown in Figure 8.

The total area of the XC6200 used is 520 CLBs
with a throughput rate of 50MHz. As the
throughput rate exceeds that required (20MHz),
we would want to examine alternative solutions
that use a smaller area. Hardware sharing and
reducing levels of pipelining have been chosen
for this example.

Fig.8. FIR Filter implementation
(Trianus/Hades Screen View)

5.1 Hardware sharing

One option is to multiplex the hardware. This is
achieved by working out the schedule for the
computation. Figure 9 gives the current
schedule.
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Fig. 9. Schedule for FIR Filter of Fig. 7

The scheduling process is similar to that
employed in many synthesis systems but has
been modified to cope with several overlapped



iterations of the algorithms due to the latencies
within the block. The cycles are listed on the y-
axis and the progression of the iterations of the
algorithm is given in the x-axis. The lines
indicate the dependencies which must always be
preserved. It can be seen that all three iterations
overlap so it is necessary to schedule the
operations to occur at different times. This is
done by reducing the computation rate to once
every two cycles. This gives the schedule of
Figure 10. It can be seen that from this, we can
either multiplex operations 1 and 3, 1 and 2 or 2
and 3.

This scheduling process is contained within
IRIS and the user simply chooses to merge two
operators, for this case 2 and 3. The resulting
circuit is given in Figure 11.
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Fig. 10. Revised Schedule to allow multiplexing
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Fig. 11. FIR Filter with hardware sharing

IRIS has added multiplexers (signified by the M
blocks) and additional timing delays necessary
to preserve the timing. This results in a design
with a throughput rate of 20MHz (half the clock
rate) and an area of 380 CLBs. This meets the
specification required. For demonstration, we
have also shown the results of hardware sharing
all three operations as given by Figure 12.
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Fig. 12. Hardware sharing onto a single MAC

5.2 Levels of Pipelining

Another method of reducing area is to reduce
the levels of pipelining in the circuit. This
involves taking ever other row of latches from
the circuit of Figure 5. Fortunately, this is one of
the parameters within the IRIS model (see
Figure 6) and just involves changing a
parameter. In this example, we have reduced the
pipelining to once every other row. This reduces
the delay in the MAC block from 5 to 3. The
circuit is shown in Figure 13.
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Fig. 13. FIR Filter implementation using MACs

6 DISCUSSION

The results for each of these four examples
(Figures 7, 11, 12 and 13) are given in Table 1.
The table gives the figures for the actual CLBs
used to implement logic, the bounding area (i.e.



rectangle) of the design and the throughput rate.
Table 2 gives the CLB utilisation which is
computed by dividing the CLBs used by the
bounding box and the area relative to the largest
design, i.e. Figure 7.

It can be seen from Table 2, that the pipelined
designs give the highest throughput rate. The
hardware sharing results in proportional
reduction in hardware and speed much as
expected. In this case, there is no area penalty
for the additional routing needed to route the
feedback lines of Figure 11. There is available
routing due to the 60% utilisation.

Circuit No of
CLBs

Bounding
Box (h*v)

Data rate
(MHz)

Fig. 7
Fig. 11
Fig. 12
Fig. 13

520
380
225
508

15 x 56
16 x 40
18 x 16
15 x 52

47
20
11
25

Tab. 1. FIR Filter comparison

It can be seen that reducing pipelining gives a
drop in performance with no real area gain. This
is due to the XC6200 feature that allows a
flipflop and combinational logic to be
implemented in one CLB. Thus, to a certain
extent, pipelining can be viewed as a “free”
algorithmic transform which increases
performance with little area penalty.

Circuit Utilisation
(% CLBs

used)

Relative
area

Data
rate

(MHz)
Fig. 7
Fig. 11
Fig. 12
Fig. 13

62
59
78
65

1
0.76
0.35
0.93

47
20
11
25

Tab. 2. FIR Filter comparison

7 CONCLUSIONS

In this paper, we have presented a fast efficient
synthesis route for implementing FPGA

hardware using IRIS and Hades, the back-end of
the Trianus system. A simple example for a FIR
was presented which was synthesised into a
FPGA layout, then optimised using transforms
within IRIS and then synthesised again.

The advantage of this approach is that the
systems are well matched and is fast compared
to existing approaches and thereby allows you to
evaluate circuit output without the need for
considerable work at the circuit level. It gives
the user more time to explore different solutions
at the algorithmic and architectural level which
will give greater performance improvement than
attempting to optimise at the circuit level.
Concepts such as blocks utilising distributed
arithmetic and different number representations
can be included within IRIS and used in the
design flow. Thus, it is possible to develop
specific circuits and transforms suitable for a
particular class of FPGA families.
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