
Talk May 30, 1997 2:20 pm 1

Everything is an Object

Luca Cardelli
based on joint work with Martín Abadi

Digital Equipment Corporation
 Systems Research Center

Talk May 30, 1997 2:20 pm 2

Abstract
I discuss the foundations of object-based programming. Recent results validate the
long-standing intuition that everything can be represented in terms of objects, includ-
ing functions and classes. Similarly, function types and class types can be represented
via object types. The basic constructions are simple, flexible, and powerful. So, why are
object-based languages not taking over the (class-based) world?

Talk May 30, 1997 2:20 pm 3

A Hierarchy of O-O Features

Object-Oriented

Class-Based Object-Based

Closures Prototypes

Embedding Delegation

Implicit . . . Explicit Implicit . . . Explicit

Talk May 30, 1997 2:20 pm 4

• I’ll try to explain why I think that:

~ Prototype-based languages are not just an obscure sub-sub-
branch of a complex language hierachy.

~ They are, foundationally, the most important sub-sub-branch.

• By the eventual inevitability of simplicity:

~ Prototype-based languages should become more prominent.

~ But we do not seem to be there yet.

Talk May 30, 1997 2:42 pm 5

The Imperative ς-calculus

The “simplest” prototype-based language.

• Fields can be encoded:

[..., l = b, ...] @ let x = b in [..., l = ς(y)x, ...]
b.l @ let x = b in x.l
b1.l := b2 @ let x1 = b1 in let x2 = b2 in x1.l Þ� ς(y)x2

b ::=
x
[li = ς(xi)bi iì1..n]
b.l
b1.l Þ� ς(x)b2

clone(b)
let x = b1 in b2

terms
identifiers
objects (i.e. object[l = method()...self...end, ...])
method invocation (with no parameters)
method update (imperative)
cloning (shallow copy)
local declaration (yields “;” and fields)

Talk May 30, 1997 2:42 pm 6

Basic Examples

Let o1 @ [l=ς(x)[]] A convergent method.
then o1.l ñ� []

Let o2 @ [l=ς(x)x.l] A divergent method.
then o2.l ñ� x.l{x←o2} 7 o2.l ñ� ...

Let o3 @ [l = ς(x)x] A self-returning method.
then o3.l ñ� x{x←o3} 7 o3

Let o4 @ [l = ς(y) (y.lÞ�ς(x)x)] A self-modifying method.
then o4.l ñ� (o4.lÞ�ς(x)x) ñ� [l = ς(x)x]

Talk May 30, 1997 2:42 pm 7

... but also suggestive and expressive.
~ role of self (hidden recursion)

~ data structures (numbers, trees, etc.)

~ controls structures (functions, classes, state encapsulation,
 conditionals, loops, recursion)

~ typing (soundness, subtyping, Self types)

~ semantics (formal o-o language definitions)

Talk May 30, 1997 2:42 pm 8

A.k.a. Obliq

b ::=
x
{li => meth(xi)bi end iì1..n }
b.l
b1.l := meth(x)b2 end
clone(b)
let x = b1 in b2 end

terms
identifiers
objects
method invocation
method update
cloning
local declaration (yields fields)

Talk May 30, 1997 2:20 pm 9

Stack-Frame Objects

arg
val

argument slot (initially undefined)
code slot for result value, with self =

Stack-frame object f:

clone(f) is stack-frame allocation (sharing the code for the frame).
f.arg := a is parameter-passing on the stack frame.
f.val is “jumping to the program counter” of the stack frame.

Talk May 30, 1997 2:20 pm 10

Procedures from Objects

Preview: this translation extends to typed calculi:

�A→B� @ [arg: �A�, val: �B�]

a, b ::= x | x:=a | λ(x)b | b(a) an imperative λ-calculus

�x� @ x

�x := a� @

let y = �a�
in x.arg := y

�λ(x)b� @

[arg = ς(x) x.arg,
 val = ς(x) �b�Yx←x.argZ]

�b(a)� @

let f = clone(�b�)
in let y = �a�

in (f.arg := y).val

Talk May 30, 1997 2:20 pm 11

• Call-by-value parameter passing is validated:

�(λ(x)b)(a)�
7 let f = clone([arg = ς(x) x.arg, val = ς(x) �b�{x←x.arg}])

in let y = �a� in (f.arg := y).val
~ let y = �a� in [arg = y, val = ς(x) �b�{x←x.arg}].val
= let y = �a� in �b�{x←y}
7 let x = �a� in �b�

(here ~ is equality modulo object identity)

• The technique generalizes easily to multiple parameters, default parameters, and
call-by-keyword.

• Thus, procedural languages are reduced to object-oriented languages.

Talk May 30, 1997 2:20 pm 12

Objects from Procedures

(Assuming an encoding of records as procedures, or primitive records.)

Preview: this translation does not extend to typed calculi.

[li:Bi iì1..n] @ µ(X)�li:X→Bi iì1..n�

But NOT, e.g.: µ(X)�l:X→A, l’:X→B� <: µ(Y)�l:Y→A�

�x� @ x

�[li = ς(xi)bi iì1..n]� @ �li = λ(xi)�bi� iì1..n�

�b.l� @ �b�.l(�b�)

�b1.l Þ� ς(x)b2� @ �b1�.l:=λ(x)�b2�

�clone(b)� @ clone(�b�)

�let x = a in b� @ let x = �a� in �b�

Talk May 30, 1997 2:30 pm 13

Classes from Objects

• Inheritance is method reuse. One can reuse methods by:

~ sharing them with other objects (delegation-based)

~ extracting them from other objects (embedding-based)

~ sharing/extracting them from traits or classes (class-based)

• Embedding-based inheritance is the simplest.

But one cannot easily extract a method of an existing object:
method extraction is not type-sound in typed languages.

• Delegation-based inheritance is more complex.

It has been handled formall [Honsell, Fisher, Mitchell], but is
harder to think about and to typecheck. We don’t discuss it.

Talk May 30, 1997 2:30 pm 14

• Class-based inheritance is useful or needed anyway.

We need something like classes, on top of objects, to achieve
(typable) inheritance in our object-based framework.

• Here is the general idea:

~ A pre-method is a function that is later used (over and over) as a
method.

~ A class is a collection of pre-methods plus a way of generating
new objects. (I.e., a class is a trait plus a generator.)

Talk May 30, 1997 2:30 pm 15

Classes and Inheritance

Example
We define classes cp1 and cp2 for one-dimensional and two-dimensional points:

We define points p1 and p2 by generating them from cp1 and cp2:

let cp1 =
[new = ς(z)[x = ς(s) z.x(s), mv_x = ς(s) z.mv_x(s)],
 x = λ(s) 0,
 mv_x = λ(s) λ(dx) s.x := s.x+dx];

let cp2 =
[new = ς(z)[…, y = ς(s) z.y(s), mv_y = ς(s) z.mv_y(s)],
 x = cp1.x,
 y = λ(s) 0,
 mv_x = cp1.mv_x,
 mv_y = λ(s) λ(dy) s.y := s.y+dy]

let p1 = cp1.new;
let p2 = cp2.new;

Talk May 30, 1997 2:30 pm 16

Dynamic Inheritance

We change the mv_x pre-method of cp1 so that it does not set the x coordinate of a point
to a negative number:

• The update is seen by p1 because p1 was generated from cp1.

• The update is seen also by p2 because p2 was generated from cp2 which inherited
mv_x from cp1:

cp1.mv_x Þ� ς(z) λ(s) λ(dx) s.x := max(s.x+dx, 0)

p1.mv_x(–3).x = 0
p2.mv_x(–3).x = 0

Talk May 30, 1997 2:30 pm 17

In General

• If o 7 [li=ς(xi)bi iì1..n] is an object,

c 7 [new = ς(z)[li = ς(s) z.li(s) iì1..n],
li = λ(xi)bi iì1..n]

then c is a class for generating objects like o.

• A (sub)class c’ may inherit pre-methods from c:

c’ 7 [new = ...
 ..., lk = c.lk, ...]

• Roughly the same technique extends to various typed calculi.

Talk May 30, 1997 2:30 pm 18

Typed Classes and Inheritance
If A 7 [li:Bi iì1..n] is an object type, then:

Class(A) @ [new:A, li:A→Bi iì1..n]

where

new:A is a generator for objects of type A
li:A→Bi is a pre-method for objects of type A

c : Class(A) @
[new = ς(c:Class(A)) [li = ς(x:A) c.li(x) iì1..n],

 li = λ(xi:A) bi{xi} iì1..n]

We can produce new objects as follows:

c.new 7 [li = ς(x:A) bi{x} iì1..n] : A

Talk May 30, 1997 2:30 pm 19

Subsumption Validates Inheritance

Let A 7 [li:Bi iì1..n] and A’ 7 [li:Bi iì1..n, lj:Bj jìn+1..m], with A’ <: A.

Class(A’) may inherit from Class(A) iff A’<:A

Note that Class(A) and Class(A’) are not related by subtyping.

Let c: Class(A), then

c.li: A→Bi <: A’→Bi.

Hence c.li is a good pre-method for Class(A’). For example, we may define:

c’ @ [new=..., li=c.li iì1..n, ...] : Class(A’)

where class c’ inherits the methods li from class c.

Talk May 30, 1997 3:52 pm 20

TRANSLATIONS

• The representation of object-oriented notions in λ-calculi has normally been carried
out informally and incompletely, in terms of examples.

• Object calculi allow us to discuss these representation issues formally and complete-
ly, in terms of translations of object calculi into λ-calculi.

• Trying to translate object calculi into λ-calculi means, intuitively, “trying to program
in object-oriented style within a procedural language”.

Talk May 30, 1997 3:52 pm 21

Untyped Translations
• Give insights into the nature of object-oriented computation.

• Objects = records of functions.

O-O Language

λ-calculusς-calculus

= easy translation

Talk May 30, 1997 3:52 pm 22

Type-preserving Translations
• Give insights into the nature of object-oriented typing and subsumption/coercion.

• Object types = recursive records-of-functions types.

[li:Bi iì1..n] @ µ(X)�li:X→Bi iì1..n�

typed

λ-calculusς-calculus

= useful for semantic purposes
impractical for actual programming
losing the “oo-flavor”

O-O Language

typed typed

Talk May 30, 1997 3:52 pm 23

Subtype-preserving Translations
• Give insights into the nature of subtyping for object types.

• Object types = recursive bounded existential types.

[li:Bi iì1..n] @ µ(Y)ï(X<:Y)�r:X, lisel:X→Bi iì1..n, liupd:(X→Bi)→X iì1..n�

O-O Language

λ-calculusς-calculus

= very difficult to obtain,
impossible to use in actual programming

typed

typed typed

with <:

Talk May 30, 1997 2:29 pm 27

Summary

• Everything can indeed be an object. (Even with types.)

~ Objects can emulate procedures (by “stack frame objects”).

~ Objects can emulate classes (by trait-like structures).

~ Objects can also emulate numbers, data structures, etc.

• Conversely, can everything be a function?

~ This is the dominant view in foundations (λ-calculus).

~ Untyped objects can be easily represented functionally.

~ But typed objects are very hard to represent functionally. And
even if possible, it is practically unfeasible.

• Hence, objects are more basic than procedures.

Talk May 30, 1997 2:29 pm 28

Future Directions

• I look forward to the continued development of typed
object-based languages.

~ The notion of object type arise more naturally in object-based
languages than in class-based languages.

~ Traits, method update, and mode switching are typable
(general reparenting is not easily typable).

• No real need for dichotomy.

~ object-based and class-based features can be merged within a
single language, based on the common object-based semantics
(Beta, O–1, O–2, O–3).

Talk May 30, 1997 2:29 pm 29

BIBLIOGRAPHY

[1] Abadi, M. and L. Cardelli, A theory of objects. Springer. 1996 (to appear).
[2] Abadi, M. and L. Cardelli, A theory of primitive objects: untyped and first-or-

der systems. Proc. Theoretical Aspects of Computer Software. Lecture Notes in
Computer Science 789, 296-320. Springer-Verlag. 1994.

[3] Adams, N. and J. Rees, Object-oriented programming in Scheme. Proc. 1988
ACM Conference on Lisp and Functional Programming, 277-288. 1988.

[4] Agesen, O., L. Bak, C. Chambers, B.-W. Chang, U. Hölzle, J. Maloney, R.B.
Smith, D. Ungar, and M. Wolczko, The Self 3.0 programmer's reference manu-
al. Sun Microsystems. 1993.

[5] Alagic, S., R. Sunderraman, and R. Bagai, Declarative object-oriented program-
ming: inheritance, subtyping, and prototyping. Proc. ECOOP'94. Lecture
Notes in Computer Science 821, 236-259. Springer-Verlag. 1994.

[6] Andersen, B., Ellie: a general, fine-grained, first-class, object-based language.
Journal of Object Oriented Programming 5(2), 35-42. 1992.

[7] Apple, The NewtonScript programming language. Apple Computer, Inc. 1993.
[8] Blaschek, G., Type-safe OOP with prototypes: the concepts of Omega. Struc-

tured Programming 12(12), 1-9. 1991.

Talk May 30, 1997 2:29 pm 30

[9] Blaschek, G., Object-oriented programming with prototypes. Springer-Verlag.
1994.

[10] Borning, A.H., The programming language aspects of ThingLab, a constraint-
oriented simulation laboratory. ACM Transactions on Programming Languages
and Systems 3(4), 353-387. 1981.

[11] Borning, A.H., Classes versus prototypes in object-oriented languages. Proc.
ACM/IEEE Fall Joint Computer Conference, 36-40. 1986.

[12] Cardelli, L., A language with distributed scope. Computing Systems, 8(1), 27-59.
MIT Press. 1995.

[13] Chambers, C., The Cecil language specification and rationale. Technical Re-
port 93-03-05. University of Washington, Dept. of Computer Science and Engi-
neering. 1993.

[14] Chambers, C., D. Ungar, and E. Lee, An efficient implementation of Self, a dy-
namically-typed object-oriented language based on prototypes. Proc. OOPS-
LA'89, 49-70. ACM Sigplan Notices 24(10). 1989.

[15] Dony, C., J. Malenfant, and P. Cointe, Prototype-based languages: from a new
taxonomy to constructive proposals and their validation. Proc. OOPSLA'92,
201-217. 1992.

[16] Lieberman, H., A preview of Act1. AI Memo No 625. MIT. 1981.
[17] Lieberman, H., Using prototypical objects to implement shared behavior in

object oriented systems. Proc. OOPSLA'86, 214-223. ACM Press. 1986.

Talk May 30, 1997 2:29 pm 31

[18] Lieberman, H., Concurrent object-oriented programming in Act 1. In Object-
oriented concurrent programming, A. Yonezawa and M. Tokoro, ed., MIT Press. 9-
36. 1987.

[19] Madsen, O.L., B. Møller-Pedersen, and K. Nygaard, Object-oriented program-
ming in the Beta programming language. Addison-Wesley. 1993.

[20] Paepcke, A., ed., Object-oriented programming: the CLOS perspective. MIT
Press, 1993.

[21] Rajendra, K.R., E. Tempero, H.M. Levy, A.P. Black, N.C. Hutchinson, and E. Jul,
Emerald: a general-purpose programming language. Software Practice and Ex-
perience 21(1), 91-118. 1991.

[22] Stein, L.A., H. Lieberman, and D. Ungar, A shared view of sharing: the treaty
of Orlando. In Object-oriented concepts, applications, and databases, W. Kim and F.
Lochowsky, ed., Addison-Wesley. 31-48. 1988.

[23] Taivalsaari, A., Kevo, a prototype-based object-oriented language based on
concatenation and module operations. Report LACIR 92-02. University of Vic-
toria. 1992.

[24] Taivalsaari, A., A critical view of inheritance and reusability in object-orient-
ed programming. Jyväskylä Studies in computer science, economics and statis-
tics No.23, A. Salminen, ed., University of Jyväskylä. 1993.

[25] Taivalsaari, A., Object-oriented programming with modes. Journal of Object
Oriented Programming 6(3), 25-32. 1993.

Talk May 30, 1997 2:29 pm 32

[26] Ungar, D., C. Chambers, B.-W. Chang, and U. Hölzle, Organizing programs
without classes. Lisp and Symbolic Computation 4(3), 223-242. 1991.

[27] Ungar, D. and R.B. Smith, Self: the power of simplicity. Lisp and Symbolic Com-
putation 4(3), 187-205. 1991.

Talk May 30, 1997 2:30 pm 33

References

http://www.research.digital.com/SRC/
personal/Luca_Cardelli/TheoryOfObjects.html

