Everything iIs an Object

Luca Cardelli

based on joint work with Martin Abadi

Digital Equipment Corporation
Systems Research Center

| discuss the foundations of object-based programming. Recent results validate the
long-standing intuition that everything can be represented in terms of objects, includ-
ing functions and classes. Similarly, function types and class types can be represented
via object types. The basic constructions are simple, flexible, and powerful. So, why are
object-based languages not taking over the (class-based) world?

Object-Oriented

~ N

Class-Based Object-Based

N PN

Closures Prototypes

PN

Embedding Delegation

N N

Implicit ... Explicit Implicit ... Explicit

e I’ll try to explain why | think that:

~ Prototype-based languages are not just an obscure sub-sub-
branch of a complex language hierachy.

~ They are, foundationally, the most important sub-sub-branch.

= By the eventual inevitability of simplicity:
~ Prototype-based languages should become more prominent.

~ But we do not seem to be there yet.

The “simplest” prototype-based language.

b= terms
X identifiers
[l = ¢(xi)b; '€+ objects (i.e. object[l = method()...self...end, ...])
b.l method invocation (with no parameters)
b1.l = ¢(X)b, method update (imperative)
clone(b) cloning (shallow copy)
let X = Dby in b, local declaration (yields “;”” and fields)

e Fields can be encoded:

[...1=Db,..]7% letx=bin[.., I=¢ly)x ..]
b.l 2 letx=binxl
b1.l:=hy 2 et X1 =bginletXo = by in X1l = c(y)x2

Basic Examples

Let
then

Let
then

Let
then

Let
then

0, = [l=¢(X)[]] A convergent method.
0.l v]

0, £ [l=¢(X)x.1] A divergent method.

02.1 v xXHx<0} = 0ol v

03 2 [l=¢X)X] A self-returning method.
03.| > X{X«—Og} = 03

0 2 [I=¢y) (y.l=¢(x)X)] A self-modifying method.

04l > (04.l=¢(Xx)x) > [I'=¢(X)X]

Talk

May 30, 1997 2:42 pm

... but also suggestive and expressive.

~ role of self (hidden recursion)
~ data structures (numbers, trees, etc.)

~ controls structures (functions, classes, state encapsulation,
conditionals, loops, recursion)

~ typing (soundness, subtyping, Self types)

~ semantics (formal o0-o language definitions)

A.k.a. Obliqg

b= terms
X identifiers
{li => meth(x;)b; end '¢1-"} objects
b.l method invocation
b1.l1 := meth(x)b, end method update
clone(b) cloning

let x =by in by end local declaration (yields fields)

Stack-frame object f:

»

arg P> argument slot (initially undefined)
val B code slot for result value, with self =

clone(f) Is stack-frame allocation (sharing the code for the frame).
f.arg:=a is parameter-passing on the stack frame.
f.val Is “jumping to the program counter” of the stack frame.

a,b = x| x=a]AX)b]ba)

an imperative A-calculus

xy & x

x:=a) 2
let y = {a)
in x.arg .=y
(A(X)b) 2
[arg = ¢(X) x.arg,
val = ¢(x) {b){x — x.arg}]

(b(@)) =
let f = clone({b})
inlety = {a)

in (f.arg :=y).val

(A-B) & [arg: (A}, val: (B)]

Preview: this translation extends to typed calculi:

= Call-by-value parameter passing is validated:

(AA)b)(

_—

a))

let f = clone([arg = ¢(x) x.arg, val = ¢(x) (b){x —x.arg}])
Inlety = {a) in (f.arg :=y).val

lety = {a) in [arg =y, val = ¢(x) {(b){x — x.arg}].val
lety = ¢a) in (b){x —y}

let x = ¢a) in (b))

(here ~ is equality modulo object identity)

= The technique generalizes easily to multiple parameters, default parameters, and
call-by-keyword.

= Thus, procedural languages are reduced to object-oriented languages.

x)y & x

Qi = cOa)bi ") 2 (i = A(xi)@bip T
(o.Iy) £ ¢b).1(¢b))

(b1l = (X)) £ (byd.:=A(X)(b2)
(clone(b)) £ clone(¢b})

(letx=ainbh) 2 letx=¢a)in {b)

(Assuming an encoding of records as procedures, or primitive records.)
Preview: this translation does not extend to typed calculi.

[IIBI iEl..n] é U(X)“IX—’ BI iEl..n>
But NOT,e.g.. HXNEXSA XSB) <0 p(YXLY - A)

« |Inheritance is method reuse. One can reuse methods by:

~ sharing them with other objects (delegation-based)
~ extracting them from other objects (embedding-based)
~ sharing/extracting them from traits or classes (class-based)

< Embedding-based inheritance is the simplest.

But one cannot easily extract a method of an existing object:
method extraction is not type-sound in typed languages.

= Delegation-based inheritance is more complex.

It has been handled formall [Honsell, Fisher, Mitchell], but is
harder to think about and to typecheck. We don’t discuss it.

= Class-based inheritance is useful or needed anyway.

We need something like classes, on top of objects, to achieve
(typable) inheritance in our object-based framework.

« Here is the general idea:

~ A pre-method is a function that is later used (over and over) as a
method.

~ A class is a collection of pre-methods plus a way of generating
new objects. (l.e., aclass is a trait plus a generator.)

Example

We define classes cp; and cp, for one-dimensional and two-dimensional points:

let cpy =
[new = ¢(z)[x = ¢(s) z.X(S), mv_X = ¢(s) z.mVv_x(3)],
X =A(s) 0,
mv_X = A(S) A(dx) s.X := s.x+dx];

let cpy =

[new = ¢(2)[..., y = ¢(s) z.y(s), mv_y = ¢(s) z.mv_y(s)],
X = CP1.X,

y =A(s) 0,

MV_X = Cp1.MV_X,

mv_y = A(s) A(dy) s.y :=s.y+dy]
We define points p; and p, by generating them from cp; and cp:

let p; = cp1.new;
let p, = cpo.new;

Dynamic Inheritance

We change the mv_x pre-method of cp; so that it does not set the x coordinate of a point
to a negative number:

cp1.Mmv_X = ¢(2) A(S) A(dX) s.X := max(s.x+dx, 0)

e The update is seen by p; because p; was generated from cp;.
e The update is seen also by p, because p, was generated from cp, which inherited
mv_Xx from cpy:

pr.mv_x(-3).x = 0
po.mv_x(-3).x = 0

In General

- If 0 = [li=¢(xj)b; '€*"] is an object,

¢ = [new = ¢(2)[li = (s) z.Ii(s) ',
|i -)\(Xi)bi iel..n]

then c is a class for generating objects like o.

= A (sub)class ¢’ may inherit pre-methods from c:
¢’ =[new = ...
ey Ik - C.|k,]

= Roughly the same technique extends to various typed calculi.

Typed Classes and Inheritance

If A = [l;:B; "] is an object type, then:

Class(A) 2 [new:A, l;A - B; '€l

where
new:A IS a generator for objects of type A
li:A - B; Is a pre-method for objects of type A
c:Class(A) 2

[new = ¢(c:Class(A)) [li = ¢(x:A) c.li(x) '€,
Ii =)\(Xi:A) bi{xi} iEl..n]

We can produce new objects as follows:
c.new = [l; = ¢(x:A) bi{x} '] : A

Talk May 30, 1997 2:30 pm

Subsumption Validates Inheritance

Let A = [I;:B; " and A’ = [I;:B; '€1-", 1;:B; €™M, with A’ <: A

Class(A’) may inherit from Class(A) iff A’<A
Note that Class(A) and Class(A’) are not related by subtyping.

Let c: Class(A), then
cli A-Bj<: A’ - B;.

Hence c.l; is a good pre-method for Class(A’). For example, we may define:
¢’ 2 [new=..., li=c.li'¢*", ...]: Class(A’)

where class ¢’ inherits the methods I; from class c.

= The representation of object-oriented notions in A-calculi has normally been carried
out informally and incompletely, in terms of examples.

= Obiject calculi allow us to discuss these representation issues formally and complete-
ly, in terms of translations of object calculi into A-calculi.

e Trying to translate object calculi into A-calculi means, intuitively, “trying to program
in object-oriented style within a procedural language”.

= Give insights into the nature of object-oriented computation.

= Objects = records of functions.

O-0O Language

»>
c-calculus A-calculus
-

——» = easy translation

= Give insights into the nature of object-oriented typing and subsumption/coercion.
= Object types = recursive records-of-functions types.
[Ii:Bi iel..n] A H(X)<||X—> Bi iel..n>

typed
O-0O Language

d

typed =~ "—- typed

c-calculus -< A-calculus

= = USeful for semantic purposes
impractical for actual programming
losing the “oo-flavor”

= Give insights into the nature of subtyping for object types.
= Object types = recursive bounded existential types.
[Ii:Bi iel..n] A p(Y)El(X<Y)(I’X, IiseI:X—> B iEl..n’ |iUde(X—> BI) % iEl..I’])

typed
O-0O Language

) 2
) 2
) 2

DY

RN NN = typed
c-gﬁ:ﬁ?us A-calculus

- with <;

= = = = Vvery difficult to obtain,
impossible to use in actual programming

e Everything can indeed be an object. (Even with types.)

~ Objects can emulate procedures (by “stack frame objects”).
~ Objects can emulate classes (by trait-like structures).
~ Objects can also emulate numbers, data structures, etc.

= Conversely, can everything be a function?

~ This is the dominant view In foundations (A-calculus).
~ Untyped objects can be easily represented functionally.

~ But typed objects are very hard to represent functionally. And
even If possible, it is practically unfeasible.

e Hence, objects are more basic than procedures.

e | look forward to the continued development of typed
object-based languages.

~ The notion of object type arise more naturally in object-based
languages than in class-based languages.

~ Traits, method update, and mode switching are typable
(general reparenting is not easily typable).

< No real need for dichotomy.

~ o0bject-based and class-based features can be merged within a
single language, based on the common object-based semantics
(Beta, O-1, O-2, O-3).

[1]
[2]

[3]
[4]

[5]

[6]

[7]
[8]

Abadi, M. and L. Cardelli, A theory of objects. Springer. 1996 (to appear).

Abadi, M. and L. Cardelli, A theory of primitive objects: untyped and first-or-
der systems. Proc. Theoretical Aspects of Computer Software. Lecture Notes in
Computer Science 789, 296-320. Springer-Verlag. 1994,

Adams, N. and J. Rees, Object-oriented programming in Scheme. Proc. 1988
ACM Conference on Lisp and Functional Programming, 277-288. 1988.

Agesen, O., L. Bak, C. Chambers, B.-W. Chang, U. Hoélzle, J. Maloney, R.B.
Smith, D. Ungar, and M. Wolczko, The Self 3.0 programmer's reference manu-
al. Sun Microsystems. 1993.

Alagic, S., R. Sunderraman, and R. Bagai, Declarative object-oriented program-
ming: inheritance, subtyping, and prototyping. Proc. ECOOP'94. Lecture
Notes in Computer Science 821, 236-259. Springer-Verlag. 1994,

Andersen, B., Ellie: a general, fine-grained, first-class, object-based language.
Journal of Object Oriented Programming 5(2), 35-42. 1992.

Apple, The NewtonScript programming language. Apple Computer, Inc. 1993.

Blaschek, G., Type-safe OOP with prototypes: the concepts of Omega. Struc-
tured Programming 12(12), 1-9. 1991.

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

Blaschek, G., Object-oriented programming with prototypes. Springer-Verlag.
1994.

Borning, A.H., The programming language aspects of ThingLab, a constraint-
oriented simulation laboratory. ACM Transactions on Programming Languages
and Systems 3(4), 353-387. 1981.

Borning, A.H., Classes versus prototypes in object-oriented languages. Proc.
ACMV/IEEE Fall Joint Computer Conference, 36-40. 1986.

Cardelli, L., A language with distributed scope. Computing Systems, 8(1), 27-59.
MIT Press. 1995.

Chambers, C., The Cecil language specification and rationale. Technical Re-
port 93-03-05. University of Washington, Dept. of Computer Science and Engi-
neering. 1993.

Chambers, C., D. Ungar, and E. Lee, An efficient implementation of Self, a dy-

namically-typed object-oriented language based on prototypes. Proc. OOPS-
LA'89, 49-70. ACM Sigplan Notices 24(10). 1989.

Dony, C., J. Malenfant, and P. Cointe, Prototype-based languages: from a new
taxonomy to constructive proposals and their validation. Proc. OOPSLA"92,
201-217. 1992.

Lieberman, H., A preview of Actl. Al Memo No 625. MIT. 1981.

Lieberman, H., Using prototypical objects to implement shared behavior in
object oriented systems. Proc. OOPSLA"86, 214-223. ACM Press. 1986.

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

Lieberman, H., Concurrent object-oriented programming in Act 1. In Object-
oriented concurrent programming, A. Yonezawa and M. Tokoro, ed., MIT Press. 9-
36. 1987.

Madsen, O.L., B. Mgller-Pedersen, and K. Nygaard, Object-oriented program-
ming in the Beta programming language. Addison-Wesley. 1993.

Paepcke, A., ed., Object-oriented programming: the CLOS perspective. MIT
Press, 1993.

Rajendra, K.R., E. Tempero, H.M. Levy, A.P. Black, N.C. Hutchinson, and E. Jul,
Emerald: a general-purpose programming language. Software Practice and Ex-
perience 21(1), 91-118. 1991.

Stein, L.A., H. Lieberman, and D. Ungar, A shared view of sharing: the treaty
of Orlando. In Object-oriented concepts, applications, and databases, W. Kim and F.
Lochowsky, ed., Addison-Wesley. 31-48. 1988.

Taivalsaari, A., Kevo, a prototype-based object-oriented language based on
concatenation and module operations. Report LACIR 92-02. University of Vic-
toria. 1992.

Taivalsaari, A., A critical view of inheritance and reusability in object-orient-
ed programming. Jyvaskyla Studies in computer science, economics and statis-
tics N0.23, A. Salminen, ed., University of Jyvaskyla. 1993.

Taivalsaari, A., Object-oriented programming with modes. Journal of Object
Oriented Programming 6(3), 25-32. 1993.

[26] Ungar, D., C. Chambers, B.-W. Chang, and U. Hdélzle, Organizing programs
without classes. Lisp and Symbolic Computation 4(3), 223-242. 1991.

[27] Ungar, D. and R.B. Smith, Self: the power of simplicity. Lisp and Symbolic Com-
putation 4(3), 187-205. 1991.

http://www.research.digital.com/SRC/
personal/Luca_Cardelli/TheoryOfObjects.html

