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Abstract
I discuss the foundations of object-based programming. Recent results validate the
long-standing intuition that everything can be represented in terms of objects, includ-
ing functions and classes. Similarly, function types and class types can be represented
via object types. The basic constructions are simple, flexible, and powerful. So, why are
object-based languages not taking over the (class-based) world?
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A Hierarchy of O-O Features

Object-Oriented

Class-Based Object-Based

Closures Prototypes

Embedding Delegation

Implicit . . . Explicit Implicit . . . Explicit
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• I’ll try to explain why I think that:

~ Prototype-based languages are not just an obscure sub-sub-
branch of a complex language hierachy.

~ They are, foundationally, the most important sub-sub-branch.

• By the eventual inevitability of simplicity:

~ Prototype-based languages should become more prominent.

~ But we do not seem to be there yet.
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The Imperative ς-calculus

The “simplest” prototype-based language.

• Fields can be encoded:

[..., l = b, ... ] @ let x = b in [..., l = ς(y)x, ... ]
b.l @ let x = b in x.l
b1.l := b2 @ let x1 = b1 in let x2 = b2 in x1.l Þ� ς(y)x2

b ::=
x
[li = ς(xi)bi iì1..n]
b.l
b1.l Þ� ς(x)b2

clone(b)
let x = b1 in b2

terms
identifiers
objects (i.e. object[l = method()...self...end, ...])
method invocation (with no parameters)
method update (imperative)
cloning (shallow copy)
local declaration (yields “;” and fields)
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Basic Examples

Let o1 @ [l=ς(x)[]] A convergent method.
then o1.l ñ� []

Let o2 @ [l=ς(x)x.l] A divergent method.
then o2.l ñ� x.l{x←o2} 7 o2.l ñ�  ...

Let o3 @ [l = ς(x)x] A self-returning method.
then o3.l ñ� x{x←o3} 7 o3

Let o4 @ [l = ς(y) (y.lÞ�ς(x)x)] A self-modifying method.
then o4.l ñ� (o4.lÞ�ς(x)x) ñ� [l = ς(x)x]
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... but also suggestive and expressive.
~ role of self (hidden recursion)

~ data structures (numbers, trees, etc.)

~ controls structures (functions, classes, state encapsulation, 
 conditionals, loops, recursion)

~ typing (soundness, subtyping, Self types)

~ semantics (formal o-o language definitions)
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A.k.a. Obliq

b ::=
x
{li => meth(xi)bi end iì1..n }
b.l
b1.l := meth(x)b2 end
clone(b)
let x = b1 in b2 end

terms
identifiers
objects
method invocation 
method update
cloning
local declaration (yields fields) 
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Stack-Frame Objects

arg
val

argument slot (initially undefined)
code slot for result value, with self = 

Stack-frame object f:

clone(f) is stack-frame allocation (sharing the code for the frame).
f.arg := a  is parameter-passing on the stack frame.
f.val   is “jumping to the program counter” of the stack frame.
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Procedures from Objects

Preview: this translation extends to typed calculi:

�A→B� @ [arg: �A�, val: �B�]

a, b ::= x | x:=a | λ(x)b | b(a) an imperative λ-calculus

�x�   @   x

�x := a� @

let y = �a� 
in x.arg := y

�λ(x)b� @

[arg = ς(x) x.arg,
 val = ς(x) �b�Yx←x.argZ]

�b(a)� @

let f = clone(�b�) 
in let y = �a�

in (f.arg := y).val
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• Call-by-value parameter passing is validated:

�(λ(x)b)(a)� 
7 let f = clone([arg = ς(x) x.arg, val = ς(x) �b�{x←x.arg}])

in let y = �a� in (f.arg := y).val
~ let y = �a� in [arg = y, val = ς(x) �b�{x←x.arg}].val 
= let y = �a� in �b�{x←y} 
7 let x = �a� in �b� 

(here ~ is equality modulo object identity)

• The technique generalizes easily to multiple parameters, default parameters, and
call-by-keyword.

• Thus, procedural languages are reduced to object-oriented languages.
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Objects from Procedures

(Assuming an encoding of records as procedures, or primitive records.)

Preview: this translation does not extend to typed calculi.

[li:Bi iì1..n]    @   µ(X)�li:X→Bi iì1..n�

But NOT, e.g.: µ(X)�l:X→A, l’:X→B� <: µ(Y)�l:Y→A�

�x�   @   x

�[li = ς(xi)bi iì1..n]�   @ �li = λ(xi)�bi� iì1..n�

�b.l�   @ �b�.l(�b�)

�b1.l Þ� ς(x)b2�   @ �b1�.l:=λ(x)�b2�

�clone(b)�   @ clone(�b�)

�let x = a in b�   @ let x = �a� in �b�
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Classes from Objects

• Inheritance is method reuse. One can reuse methods by: 

~ sharing them with other objects (delegation-based) 

~ extracting them from other objects (embedding-based)

~ sharing/extracting them from traits or classes (class-based)

• Embedding-based inheritance is the simplest. 

But one cannot easily extract a method of an existing object: 
method extraction is not type-sound in typed languages. 

• Delegation-based inheritance is more complex.

It has been handled formall [Honsell, Fisher, Mitchell], but is 
harder to think about and to typecheck. We don’t discuss it.
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• Class-based inheritance is useful or needed anyway.

We need something like classes, on top of objects, to achieve 
(typable) inheritance in our object-based framework.

• Here is the general idea:

~ A pre-method is a function that is later used (over and over) as a 
method.

~ A class is a collection of pre-methods plus a way of generating 
new objects. (I.e., a class is a trait plus a generator.)
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Classes and Inheritance

Example
We define classes cp1 and cp2 for one-dimensional and two-dimensional points:

We define points p1 and p2 by generating them from cp1 and cp2:

let cp1 =
[new = ς(z)[x = ς(s) z.x(s), mv_x = ς(s) z.mv_x(s)],
 x = λ(s) 0,
 mv_x = λ(s) λ(dx) s.x := s.x+dx];

let cp2 =
[new = ς(z)[…, y = ς(s) z.y(s), mv_y = ς(s) z.mv_y(s)],
 x = cp1.x,
 y = λ(s) 0,
 mv_x = cp1.mv_x,
 mv_y = λ(s) λ(dy) s.y := s.y+dy]

let p1 = cp1.new;
let p2 = cp2.new;
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Dynamic Inheritance

We change the mv_x pre-method of cp1 so that it does not set the x coordinate of a point
to a negative number:

• The update is seen by p1 because p1 was generated from cp1. 

• The update is seen also by p2 because p2 was generated from cp2 which inherited
mv_x from cp1:

cp1.mv_x Þ� ς(z) λ(s) λ(dx) s.x := max(s.x+dx, 0)

p1.mv_x(–3).x = 0
p2.mv_x(–3).x = 0
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In General

• If o 7 [li=ς(xi)bi iì1..n] is an object,

c 7 [new = ς(z)[li = ς(s) z.li(s) iì1..n],
li = λ(xi)bi iì1..n]

then c is a class for generating objects like o.

• A (sub)class c’ may inherit pre-methods from c:

c’ 7 [new = ... 
 ..., lk = c.lk, ... ]

• Roughly the same technique extends to various typed calculi.
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Typed Classes and Inheritance
If A 7 [li:Bi iì1..n] is an object type, then:

Class(A)   @   [new:A, li:A→Bi iì1..n] 

where 

new:A is a generator for objects of type A
li:A→Bi is a pre-method for objects of type A

c : Class(A)   @   
[new = ς(c:Class(A)) [li = ς(x:A) c.li(x) iì1..n],

  li = λ(xi:A) bi{xi} iì1..n]

We can produce new objects as follows:

c.new 7 [li = ς(x:A) bi{x} iì1..n] : A
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Subsumption Validates Inheritance

Let A 7 [li:Bi iì1..n] and A’ 7 [li:Bi iì1..n, lj:Bj jìn+1..m], with A’ <: A.

Class(A’) may inherit from Class(A)   iff    A’<:A

Note that Class(A) and Class(A’) are not related by subtyping.

Let c: Class(A), then 

c.li: A→Bi <: A’→Bi. 

Hence c.li is a good pre-method for Class(A’). For example, we may define:

c’ @ [new=..., li=c.li iì1..n, ... ] : Class(A’)

where class c’ inherits the methods li from class c.
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TRANSLATIONS

• The representation of object-oriented notions in λ-calculi has normally been carried
out informally and incompletely, in terms of examples.

• Object calculi allow us to discuss these representation issues formally and complete-
ly, in terms of translations of object calculi into λ-calculi.

• Trying to translate object calculi into λ-calculi means, intuitively, “trying to program
in object-oriented style within a procedural language”.
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Untyped Translations
• Give insights into the nature of object-oriented computation.

• Objects = records of functions.

O-O Language

λ-calculusς-calculus

= easy translation
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Type-preserving Translations
• Give insights into the nature of object-oriented typing and subsumption/coercion.

• Object types = recursive records-of-functions types. 

[li:Bi iì1..n]    @   µ(X)�li:X→Bi iì1..n�

typed

λ-calculusς-calculus

= useful for semantic purposes
impractical for actual programming
losing the “oo-flavor”

O-O Language

typed typed
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Subtype-preserving Translations
• Give insights into the nature of subtyping for object types.

• Object types = recursive bounded existential types.

[li:Bi iì1..n] @ µ(Y)ï(X<:Y)�r:X, lisel:X→Bi iì1..n, liupd:(X→Bi)→X iì1..n�

O-O Language

λ-calculusς-calculus

= very difficult to obtain,
impossible to use in actual programming

typed

typed typed

with <:
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Summary

• Everything can indeed be an object. (Even with types.)

~ Objects can emulate procedures (by “stack frame objects”).

~ Objects can emulate classes (by trait-like structures).

~ Objects can also emulate numbers, data structures, etc.

• Conversely, can everything be a function?

~ This is the dominant view in foundations (λ-calculus).

~ Untyped objects can be easily represented functionally.

~ But typed objects are very hard to represent functionally. And 
even if possible, it is practically unfeasible.

• Hence, objects are more basic than procedures.
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Future Directions

• I look forward to the continued development of typed 
object-based languages. 

~ The notion of object type arise more naturally in object-based 
languages than in class-based languages.

~ Traits, method update, and mode switching are typable 
(general reparenting is not easily typable).

• No real need for dichotomy.

~ object-based and class-based features can be merged within a 
single language, based on the common object-based semantics 
(Beta, O–1, O–2, O–3).
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