
1

This talk will address a particular but pervasive aspect of systems: how
we build them and keep track of what we have.

In the jargon of the field, the problem I want to discuss goes under the
name of “software configuration management”. I’ll be telling you about
some research work -- the Vesta project -- that addresses this problem
and demonstrates the practicality of some novel solutions.

Roy Levin
Allan Heydon

Tim Mann
Yuan Yu

April 22, 1996

Staying Afloat in a Sea of Versions
or

Software Configuration Management:
The Vesta Approach

Digital Equipment Corporation
Systems Research Center

2

This is the outline for the talk.

I’ll briefly explain what the software configuration management problem
is and why it’s worthy of research effort, then I’ll discuss Vesta’s
approach to the problem. Next, I’ll talk about the key technical
components of the Vesta solution and conclude by explaining where the
project is at present.

I’m also prepared to demo some of the facilities.

2 Systems Research Center

Outline

• The Software Configuration Management problem

• Vesta’s approach to a solution

• Key technical components of Vesta

• Summary

3

Since we’re going to talk about Software Configuration Management,
we’d better define what we’re discussing. Well, that’s not so easy.

<explain points on the slide>

Asterisks denote Vesta’s area of emphasis, about which I’ll say more a
little later. <These are the essential points; others are ancillary to the core
of configuration management, as I hope will become clear.>

Each of these aspects has undergone considerable development over the
years, but generally in isolation or only limited cooperation with the
others. Each is rife with its own concepts, jargon, and techniques.
Recent attempts to bring these together by spreading system glue over it
all have been relatively unsuccessful.

Rather than getting caught up in the particulars of these individual
problem areas, let’s take a step back and begin by discussing what
problem we are actually trying to solve.

3 Systems Research Center

What is Software Configuration
Management?

• An ill-defined term that covers many aspects of a
software development environment:

✳ version management (1...2...3)

✳ source control (checkout/checkin)

✳ configuration management (what goes with what)

✳ building (source files => derived files)

– life-cycle management (bug tracking, metrics)

– process management (who does what when)

– specific tools (front-end design, documentation, analysis,
testing, etc.)

– . . .

4

The problem is the construction of a software system. We can quibble
about when “construction” starts, but for the purposes of today’s
discussion, let’s agree that it starts when you begin to write code. (I
think you’ll see that earlier stages, e.g., specification writing, will fit into
the organization I will describe. It’s just a little easier to start out by
thinking primarily about managing code.) When coding starts, you
obviously need basic development tools -- an editor, compiler, linker,
debugger -- and a file system to store things in. Do you need anything
else?

My answer: nearly always, yes.

If you are writing a small, single file application for yourself, you
probably don’t need SCM. And, with today’s customer-oriented PC-
based programming systems (like Visual Basic), this happens
occasionally. But nearly everything else needs SCM to some degree or
other.

Of course, you don’t need a sledge-hammer to kill an ant. Some quite
simple SCM facilities work quite well for smallish systems with only one
developer and a small set of friendly customers. But successful systems
like this tend to “grow up”: they acquire more developers, more code,
and more complexity. They outgrow the simple tools.

Let’s consider what good SCM does for you when this happens. <next
slide>

4 Systems Research Center

The SCM Problem

• Question: When do you need SCM?
Answer: If your system has

– more than one file, or

– more than one developer, or

– more than one customer (or perhaps target platform).

➨ The more files, developers, or customers you have, the
bigger your configuration management problem is.

5

Multiple files: the observation that you need to keep track of which file
versions go together is quite obvious. Yet, amazingly, very few
commercial version management systems address this need directly.
The most popular ones provide virtually no help in grouping files; they
are really programmer-controlled archiving systems. Good SCM keeps
track of true configurations of files.

Multiple developers: the “integration group” story. If you are old
enough to remember the days of punch cards and batch processing, you
have fond memories of submitting a deck and getting back the results (or
lack of results) of the run. Modern large-system integration has
reinvented that approach, since developers submit their changes to the
integration group which builds the system overnight. Why is this?
Because it is impractical for an individual to build and test a version of
the system containing only his changes. It’s too hard to specify the
environment, or the system can’t be built in isolation from other
developers, or both. So, it’s back to the punched card days. But it’s even
worse now, because the success or failure of the run depends not just on
your submission, but everyone else’s as well. Good SCM lets individual
developers build as much of the system as they need in order to test their
component.

Multiple customers: Versions on multiple platforms are attractive
because they broaden the market penetration. Versions on the same
platform may appeal to different market segments (e.g., Corel Draw,
which now sells version 3, 4, and 5 as distinct products). Good SCM
supports branching and parallel development.

5 Systems Research Center

How Good SCM Helps

• Multiple files: what goes with what?

– version management of related groups of files

• Multiple developers: who is modifying what?

– change management of source files

• Multiple customers: who is using what?

– change management of derived files

6

OK, what are the technical challenges? What must an SCM system cope
with, in real-world development?

Well, systems just keep getting bigger. Vendors add functionality based
on their perception of what their customers want and what they
expect/fear their competitors will provide. They also want customers to
“subscribe” to yearly releases. One need only look at the long lists of
“checkoff” features on word-processors or spreadsheets or other mass-
market software to see this effect.

Not only is functionality increasing, but vendors feel pressured to get it
to market faster and faster. This leads to parallel development and
overlapping release cycles, in which work on version N+1 begins while
version N is still underway, and while bug fixes for version N-1 are still
being developed and shipped.

More system layers have to be built consistently, meaning that what
constitutes a “system” for configuration management purposes may
include a suite of applications, a set of libraries that they share, and
perhaps even an underlying operating system (E.g., Microsoft).

To reach the most customers, vendors must make their software run on
multiple platforms, which complicates their SCM needs.

Big systems are increasingly developed at multiple sites. Because of
wide-area bandwidth limitations, a central site storing all the files is
impractical. Replication is necessary, and with it comes the risk of
inconsistencies. Good SCM deals with this problem.

6 Systems Research Center

Why Is Good SCM Hard?

• Scale! Software keeps getting bigger and more
complicated.

• Bigger systems driven by (perceived) functional
demands.

• Parallel development driven by time-to-market.

• More layers that must be built consistently.

• Multi-target (hardware and OS) systems make
configurations more complex.

• Organizations that build large systems are often
geographically dispersed.

7

This all seems pretty obvious, right? So why haven’t tools been created
that do all this good stuff? It seems quite surprising that software
development organizations put up with the lack of good SCM, which
contributes directly to their development. I think there are two reasons.

First, I think many organizations actually haven’t recognized how
central SCM is to the development of large systems. They tend to treat
their editors, compilers, etc., as the core tools and SCM as ancillary. I
believe the opposite is true: SCM must lie at the core; it must manage the
process of software construction.

Second, it’s hard to build SCM tools that deal with all of these issues for
systems of realistic size. Moreover, you can’t get there by taking the
“bottom-up” approach, which continues to put SCM on the periphery,
writing tools that nibble away at one aspect of the problem, e.g., version
management, in isolation. 20 years of unsatisfactory results have shown
us that bottom-up solutions aren’t solutions at all.

Some people have understood the central importance of configuration
management and instead have adopted a “top-down” approach, trying
to organize a development environment around the problem of building
software, not compiling and linking. The approaches to date have often
been appealing, but regrettably impractical, with only modest
demonstration examples where implementations exist at all.

You’ve probably figured out where I’m leading with this polemic...

7 Systems Research Center

What Has Been Tried?

• Most approaches have been “bottom up”

– address only part of the problem

– achieve only a “local optimum”

• “Top-down” approaches have been idealized

– fail to deal with real-world code

– fail to scale

8

Here’s where we are.

8 Systems Research Center

Outline

• The Software Configuration Management problem

• Vesta’s approach to a solution

• Key technical components of Vesta

• Status of the project

9

Vesta takes the top-down approach and concentrates on the four topics
that I mentioned earlier, while providing the infrastructure for tools that
address the others. Moreover, it implements this approach on a scale
that is large enough to be used in the real world. Let me say briefly what
I mean by these topics.

* version management: chiefly a naming issue, but not entirely trivial
because of derived files (e.g., many can be produced from the same
source by varying compilation switches) and sharing between users.

* source control: keeping track of versions, etc., includes keeping
multiple users out of each other’s hair by managing the name space and
ensuring that there’s no confusion over source and derived files.

* configuration management: how files are aggregated into useful larger
units, and how the aggregation relates to source control and version
management, including the management of derived files.

* building: describing how derived files are produced from sources.

9 Systems Research Center

Vesta’s Goals

• Solve the central problem of software configuration
management

– version management (1...2...3)

– source control (checkout/checkin)

– configuration description (what goes with what)

– building (source files => derived files)

• Provide technical base for solving other SCM problems

– life-cycle management, etc.

10

As I said, to be successful, these problems have to be addressed in a way
that works on real-world software. That is, it can’t be a toy. Ideally, a
comprehensive SCM system would handle development projects of
essentially any size. To make that quantitative, we established some
specific goals for Vesta’s SCM approach, as shown here. <cover points
on slide>

To put these numbers in perspective, the design center of Vesta is
appropriate for large operating systems such as OSF1 and VMS, a full-
featured relational database system, or a telephone switch. There may be
development projects that require larger code bases than these, but I’m
not aware of them.

However, there aren’t a lot of systems of that size. Vesta must work
comfortably on a smaller scale as well. That means not too much
mechanism, boilerplate, user overhead, etc.

10 Systems Research Center

Vesta’s Goals

• Do comprehensive SCM for real-world systems;
design center:

– 20 million source-code lines

– about 5 million derived files

– about 125 GB of disk

• Must work well for smaller systems too!

– more typical systems: 50,000–500,000 lines

• Portable and industrial-strength implementation

11

Solving this collection of problems sounds like it might be challenging.
Instead of keeping you in suspense, I’ll give you a quick summary of
some “hard results” and say a little more about them at the end of the
talk.

We developed an approach to SCM that I’ll begin to describe in a
minute. To test the feasibility of our approach, we built a rather
complete prototype SCM system and used it in earnest for about 15
months. 25 programmers developing a complex development
environment used it for their daily work. They were building an
operating system, a file server, a novel compiling system, an
experimental windowing system, a number of libraries, and a spectrum
of applications, including a text editor, a graphical editor, ray-tracing
software, and some mathematical analysis tools. To add to the
complication, most of these pieces were being built with the constantly
evolving compiling system, and were targeted for two different
platforms: a VAX multiprocessor with the custom operating system, and
a MIPS uniprocessor running OSF1. In short, it was a mess!

The good news: it worked. Of course, it was a prototype and had rough
edges and limitations, but it conclusively demonstrated that a
comprehensive approach to SCM could work effectively on real-world
development problems. Moreover, it had a qualitative effect on the style
of development <cover the second point on slide>.

Enough advertising. Let me tell you how we approached the problem.

11 Systems Research Center

Is This Feasible?

• Yes! We built a prototype and used it for over a year.

– 25 programmers (at one site)

– Code base of 1.4 million source lines

– 10 GB of disk for source and derived files

• Reliable, incremental development at all system levels

– integration and system test vastly strengthened

12

I’ll start by stating the “Vesta axiom”, that is, the premise that underlies
all of the key design choices made in the Vesta system. I like to call this
an axiom because (a) axioms are supposed to be self-evidently good, and
(b) you must not do anything in your system to make the negation of the
axiom true, or your system will be unsound. <read slide>

Source/derived distinction: hand-made vs. machine-made.

Source-based description means that the description explains how to
build a system from scratch. In principle, every system construction is
done from scratch. To be practical, of course, it is essential to reuse
previous results (derived files), although formally these are just
optimizations.

Complete descriptions tell the whole story, capturing every relevant
detail of the environment. Complete means complete; every version of
every tool and every switch is specified. Moreover, these details are in
terms of source, so the tools are specified giving the system description
that constructs them, and so on, back to the Big Bang (well, in theory at
least).

So, I hope it’s clear that a system with these properties is a Good Thing.
That’s why this is an axiom. Before I tell you what we derived from this
axiom, I’d like to spend a couple of minutes considering alternative
axioms, for those who might disagree that this one is self-evidently good.
(Or, in the vernacular, “different strokes for different folks.”)

12 Systems Research Center

The Vesta Axiom

Complete, modular, source-based system descriptions are
an essential foundation for configuration management.

• system descriptions are source-based;

• they include source files and building instructions;

• they are self-contained;

» no environmental dependencies

• they are immutable and immortal;

» same meaning forever

» nothing is ever lost

» reproducible builds

• large descriptions can be composed from small ones.

13

Not everyone finds the Vesta axiom self-evident or even appealing.
People have different development styles, and some of them assume
environments quite antithetical to Vesta’s. I’ll point out some
possibilities:

* Some people don’t like versioning to be too visible. They just want a
simple name that points to “the right” version and is rebound over time
as appropriate; that is, a “view” into the versioned name space. With
views, the meaning of a name changes over time. When and how does it
change? Well, generally the answer to that question is quite
complicated. (This is the usual Unix way. <Give example of
dependency on other people’s stuff.>)

* Some people like data bases. There’s lots of stuff related to keeping
track of software development: bug reports, project plans, budgets, etc.,
for which databases are a more natural medium. I like databases too --
some of my favorite systems are databases -- but they aren’t well-suited
to keeping an exhaustive historical trace in which one can easily return
to any previous state. They’re designed to move forward in atomic steps
of varying size, always presenting a single, consistent, current state.
Also, databases aren’t ideal for storing large, unstructured things like
source files, so an auxiliary file system is used. Hmm, sounds like Vesta.
Auxiliary DBs, however, are good.

* The choice is between explicit complete descriptions and templates
whose actions are altered by the environment around them. (Latter is
bad; irreproducible. Macros processors are delicate: look at ‘make’)

13 Systems Research Center

Vesta Choices

• Versions, not views

• Files and directories, not databases

• Self-contained system-building descriptions, not
templates, rules, search paths and the like

14

Here’s where we are.

14 Systems Research Center

Outline

• The Software Configuration Management problem

• Vesta’s approach to a solution

• Key technical components of Vesta

• Status of the project

15

Here are the pieces of the Vesta system from the perspective of a user. At
this point, I want to introduce you to these pieces and give you a sense of
how they fit together.

Let’s start at the bottom. Clearly we need a place to store things: the
source files and descriptions that go into a system and the derived files
that are constructed by the building process. The Vesta repository
provides that storage facility. It does so in a way that integrates closely
with the file system; roughly speaking, it hides under the file system
abstraction, although, as the picture suggests, a small amount of it peeks
out. We’ll see more about this shortly.

We also need an engine for the construction process. This is the
interpreter of system descriptions, which we also call the builder. It
needs to call on particular tools to produce derived files; these tools are
compilers, linkers, macro processors, etc. We call them bridges; they are
part of the standard construction environment.

Finally, we need a way to communicate with this stuff. The control
panel and ordinary shell commands provide these facilities. The control
panel isn’t really central -- you can use shell commands instead -- but it
makes some common operations more convenient.

I’ll say more about the remaining pieces later.

15 Systems Research Center

A User’s View of Vesta

Builder

Standard file system

(e.g., Unix
with NFS)

Vesta
Repository

Standard construction
environment

Control
panel

Administration
tools

Conversion aids

Standard
editors

Replicator

Shell
commands

16

Now that we’ve seen the pieces, let’s look at a simple scenario to get a
little bit of intuition about how they work. Then we’ll come back and
discuss them in more detail.

16 Systems Research Center

A Simple Scenario

Sally is responsible for a standard utility program that

sorts the lines of a file. In the shower one morning, she

thinks of a clever optimization that will speed it up.

17

The choice of repository name is a convention; putting the site name in
the path makes replication easy later. I won’t have time to go into that
now, but can chat with anyone who is interested offline.

Contrast with conventional file-based checkout, in which individual files
are checked out to a directory of the user’s choice. Vesta versions whole
directories and extends that versioning right down to each run of the
builder. In fact, the builder can only process immutable sources, as we
shall see.

The reserved directory created by Checkout is called a stub. It is a
placeholder for an immutable directory that will be created later.

17 Systems Research Center

A Simple Scenario

• Upon arriving at the office, Sally uses the Vesta control
panel’s Checkout button to check out the sorter package.

❖ A package family is a directory stored in the Vesta
repository. The repository is just a directory tree; let’s call it
/vesta/pa.dec.com/

❖ The directories under the package family directory are
package versions. They are immutable.

❖ A package version directory contains source files only.

❖ Checking out a package reserves a new version number and
establishes two other directories, a session directory and a
working directory.

18

The versions of interest to others show up in the main repository, while
those created during checkout sessions (in the /checkout/ directory) are
generally not interesting to anyone but the developer. (This isn’t always
true -- developer A may want developer B to try something out before it
“goes public”.)

The working directory has conventional Unix semantics, so any tool can
be used to manipulate files here. The directory is implemented by the
repository, which enables us to add both performance and functionality.

18 Systems Research Center

A Simple Scenario

• By checking out the package, Sally reserves a specific
version number. (Actually, it’s the name of the directory
she will eventually check in.)

❖ In Vesta, directories, not files, are versioned.

❖ Let’s call the reserved directory
/vesta/pa.dec.com/sorter/5

❖ The working directory is where Sally edits the files. It is
/vesta-work/sally/sorter
and initially contains files identical to those in
/vesta/pa.dec.com/sorter/4

❖ The session directory is where intermediate versions appear
as Sally tries out her changes. It is
/vesta/pa.dec.com/sorter/checkout/5

19

Alternatively, she could use cd <working directory> and run the editor
from a shell. We’ll see that in the demo later.

The editor doesn’t know anything about Vesta. It is just editing an
apparently ordinary file in a working directory.

The snapshot exploits the fact that the working directory and session
directory are both implemented by the repository code. This makes the
snapshot very efficient, and much faster than it would be if it were a
conventional Unix directory. (Details on request.)

The builder can only work on immutable files (per the Vesta axiom).
That’s why the snapshot is made. However, it’s often handy to have
versioning during a development session -- e.g., to back out of
something that turned out to be a mistake.

19 Systems Research Center

A Simple Scenario

• Sally clicks the Edit button on the Vesta control panel,
which runs her favorite editor on a selected file in the
working directory.

❖ Let’s call it sorter.c (in /vesta-work/sally/sorter)

• After finishing her changes, she clicks Build on the Vesta
control panel.

�Vesta creates a snapshot of the working directory as a new
immutable directory under the session directory. It is
/vesta/pa.dec.com/sorter/checkout/5/1

�Vesta attempts to build the package in this directory, using
instructions in the file build.ves.

20

This build description says

“Build a C program by compiling and linking the two source files
sorter.c and sortersub.c with the libraries libc and libX11. The compiling
environment is to include the file sorter.h plus all the header files
associated with libc and libX11. Moreover, the C tools (compiler and
linker) plus the libraries (both implementations and header files) are to
be taken from an environment that is an implicit parameter to this
construction -- it is named ‘.’ The program produced by all of this is to
be called ‘sorter’. “

Now I don’t expect you to infer all that from what’s written on the page.
It reflects some assumptions about the standard construction
environment, especially the way libraries are organized. I’ll have more
to say about that later.

When Sally builds sorter/checkout/5/1/build.ves, it is likely that only
sorter.c will be compiled. The builder is incremental and Sally has only
modified sorter.c. The result of compiling sortersub.c at some previous
time is likely to be cached. Vesta manages this cache automatically; I’ll
say more about this later. Sally doesn’t have to be concerned about the
location or name of this file (sortersub.o) -- that’s Vesta’s problem.

20 Systems Research Center

A Simple Scenario

sorter/build.ves looks like this:

files
 hs = [sorter.h];
 cs = [sorter.c, sortersub.c];
{
 name = “sorter”;
 libs = [./C/libc, ./C/libX11];
 return
 ./C/Program(name, hs, cs, libs);
}

21

21 Systems Research Center

A Simple Scenario

• Sally tries out the version of sorter she has just built and
discovers it isn’t quite right. She edits sortersub.c
then clicks Build again.

�This produces a new version in the session directory:
/vesta/pa.dec.com/sorter/checkout/5/2

• This time it works, and Sally clicks Checkin to check in
the result.

�As a result, the originally checked out directory:
/vesta/pa.dec.com/sorter/5
now has the same contents as
/vesta/pa.dec.com/sorter/checkout/5/2

The second build is also incremental and only sortersub.c is compiled.

The pieces stay around in checkout/5 even after the checkin is
completed. This can be useful, but eventually it causes clutter. There’s
a way to deal with the clutter without compromising the Vesta axiom;
I’ll be happy to talk about it offline if you’re interested. (This is the
conversion of a directory to a ghost, and the issue of whether such a
directory’s name should be visible or not.)

OK, that’s the end of the scenario introducing some of the Vesta
components. Let’s now look at them in more detail.

22

As we’ve seen, the repository is mostly seen as a slightly peculiar part of
the file system. It supports creation of immutable directories with the
snapshot and checkin mechanisms. Replication is used to move files
between sites (often sites that have limited connectivity).

The builder is pretty much as I described -- the construction engine.
From the user’s perspective, its key property is incrementality; that is, it
builds only what’s necessary, no more, and certainly no less.

The standard construction environment provides the files you expect to
find in standard directories, such as /usr/include, /bin, etc. More
precisely (and more interesting), the standard construction environment
consists of a collection of system descriptions that build these directories.
These descriptions are heavily parameterized, so it’s easy to build
environments customized for a particular purpose, e.g., debugging or
testing of new versions of library components.

A provocative, and essentially correct way to think about the standard
construction environment system descriptions is that they produce,
every time you build, an entire file system customized for the build at
hand. The customization extends to compilers, their parameters,
libraries, the works. Of course, this environment is built incrementally,
and generally it’s the same as it was the last time, so there’s no work to
do. But the opportunity exists, on every build, to produce precisely
what’s needed.

Finally, there are some specialized tools that are peculiar to the
maintenance of the Vesta environment or the migration of development
to/from it.

22 Systems Research Center

Key Vesta Facilities

• Repository (storage system)
– immutability

– replication

• Builder (language interpreter)
– incremental construction from immutable sources

• Standard construction environment
– compilers, linkers, etc.

– libraries and their interfaces

• Specialty tools
– administration

– Vesta-specific utilities (e.g., makefile translators)

23

By “file system extension” I mean that the repository provides access to
the files it stores through the ordinary file system interface, thus making
them available to ordinary applications (like the editor) that don’t know
about Vesta. As we’ve seen, versions are encoded in ordinary file names
and remain visible to user (contrast with a view-oriented scheme, e.g.,
ClearCase or an explicit separate name-space scheme, e.g., RCS).

Not all repository facilities can be conveniently made available under the
file system interface, so a secondary interface is provided for tools that
exploit those facilities. That’s how Checkout and Checkin work.

A site is the unit of administration, e.g., SRC. Within a site, sources and
deriveds are segregated. Derived storage is site-wide. Only the results
of the build (like the sorter program) tend to be interesting and are
typically made visible. <Defer discussing how.>

An immutable directory holds a version of a package. As we’ve seen, the
version may be archival, or may be a snapshot of a state during a
development session. Either way, immutability applies.

Since immutable directories are created all at once, we need some way to
create incrementally the files that will make up an immutable directory.
As we’ve seen, this is the thing (indeed, the only thing) mutable
directories are used for.

Appendable directories can include other appendable directories. For
example, both .../sorter and .../sorter/checkout are appendable.

23 Systems Research Center

Repository

• File system extension (leverages standard utilities)

– Primary interface to repository is through file system
operations (but not all operations can be used everywhere).

– Supplementary interface for tools and operations that don’t fit
the usual file system mold.

• Each site has a collection of directory trees (of source files)
plus a derived file pool.

• Three kinds of directories

– immutable (e.g., a package version)

– appendable (e.g., package family, session directory)

– mutable (a working directory)

24

To support various kinds of tools, the repository permits labeling of files
and directories with attributes, which are mutable. (Example of uses of
attributes: link working directory to session directory; identify buggy
versions post facto so that model-revision tools will skip over them.
Maybe replication too.) These aren’t used for building, so mutability
doesn’t compromise reproducible construction.

Vesta expects that the bandwidth available between sites will typically
be significantly lower than that within a site, so that cross-site references
are unappealing. Availability may be a concern as well. Because cross-
site reference is unappealing, Vesta supports selective copying between
sites. Partial replication is possible; unreplicated names are “stubbed”.
Selective replication is often desirable because one site uses the end-
products of another; intermediate derived files need not be replicated.
Of course, this improves latency of replication too.

24 Systems Research Center

Repository

• Directories and files have an open-ended set of (mutable)
attributes

– not used by the builder; system descriptions can only
reference immutable directories

– hook for various higher-level tools, such as specialized
editors for system descriptions.

• A directory can be replicated for wide-area access

– partial replication is possible.

– directory’s “master” site synchronizes changes.

– time-grain of replication is configurable (e.g., on demand,
siphon, the postal service).

25

Anyone can do incremental construction -- look at ‘make’. The trick is to
get the right answer. ‘make’ doesn’t cut it for large systems, which is
why large groups abandon incremental construction. Leads to lack of
individual testing, long turnaround cycles with many trivial integration
bugs, etc.

Conventional ‘make’ fails to be adequate for large systems for several
reasons. First, it depends on a notion of “the current version”, which
fails when parallel development is needed. Second, its notion of
dependency is incomplete, even when extended by dependency
generators (i.e., files only). Third, dependency checking is expensive,
requiring a file system operation. Fourth, there is no notion of hierarchy,
which permits dependency checking at the component level rather than
the file level. <explain these in a bit more detail> All these deficiencies
prevent reliable, incremental construction.

I should point out that the picture isn’t quite as black as I’ve painted it.
The best modern derivatives of ‘make’ (that is, systems that retain ‘make’
syntax and (mostly) semantics) can’t fix all of these problems. ClearCase
comes closest, but still has fundamental performance problems and no
notion of hierarchical description.

25 Systems Research Center

Builder

• Reproducible, incremental construction

– eliminates “the nightly build”

– permits individual developers to do real testing

• Performance competitive with ‘make’

– Individual dependency tests must be cheap!

– Must avoid “going all the way to the leaves”

• Users benefit from each others’ builds

– When building a component for a user, must reuse work
performed on behalf of others.

26

The inescapable conclusion is that ‘make’ is too limited for large-scale
construction. It just doesn’t have a scaleable way of describing systems
that permits reliable incremental construction. A better form of
description is necessary. Let’s consider what characteristics this new
form of description should have. <next slide.>

26 Systems Research Center

Implications

• ‘make’ and its descendants are inherently limited in
scale.

• A different way to describe configurations is necessary.

27

Organizations should be able to control things like the structure of
libraries and the interfaces they provide; what’s in a package; what
constitutes a test of a package and when/how it is run; the relationship
of documentation to the code it references, etc.

=> A bad idea to wire this stuff in the description language.

=> Instead, we put in generic facilities as the basis, intended to be
extended in an organization-specific way rather than used raw.
(Familiar parallel: Emacs; <explain>).

=> Of course, to be usable, the system must provide at least one fairly
comprehensive extension as a starting point for everyone (and a
reasonable ending point for many). This also ensures that the base
facilities are equal to the task.

By the way, the challenges in creating robust extensions of this sort are
well-known, and the Vesta context shares most of them with other
environments. For example, we must work out ways to provide decent
error reporting at a suitable level of abstraction, and to avoid burdening
the user with a steep learning curve that makes small enhancements of
the standard extension expensive.

27 Systems Research Center

System Descriptions

• Structure of system descriptions is affected by many
considerations, e.g.

– Size and scope of system being described
– Structure of the organization building it

– Methodology of the organization

• Vesta must therefore support a broad spectrum of
descriptions.

– Start with a foundational language with fairly generic
facilities intended to support extension.

– Supply at least one fairly comprehensive extension.

– Extension can be tailored to organizational requirements (or
entirely replaced).

28

So, what is the base language? It’s a functional programming language,
which matches the incremental building approach well, since one can
easily (in principle) cache results at the function application level.

The language is in the spirit of LISP, with lambda calculus as the
semantic underpinnings, but with a more familiar, C-like syntax.
Functions (closures) are first-class entities in the language. The language
has “readable” scoping (no dynamic binding). Values are strongly
typed, but checking is not static. There’s no point in static checking,
since “runtime” is construction time of the program being described.

Language emphasizes manipulation of composite values, typically lists
or bindings (sets of <name, value> pairs). Bindings are essentially
cheaply-constructed directories, and Vesta exploits the similarity by
making it easy and inexpensive to pass a binding to a tool (e.g., a
compiler) and fool it into treating it as a directory .

Modular descriptions allow packages to be described independently and
clearly parameterized, permitting them to be composed in a well-defined
way. It is careful parameterization that permits separation of the
environment from the package description. Contrast this approach with
typical ‘make’ usage, in which many references to the environment are
implicit and difficult to spot by reading the descriptions.

In fact, the basic language has very little that is specific to system-
building. <elaborate on final three bullets>

28 Systems Research Center

Description Language

• Functional programming language
– C-like syntax

– firm semantic foundation (unlike ‘make’)

• Strong typing, dynamically checked

• Modular
– can separate environment and package descriptions

• Methodology-neutral
– operations peculiar to software construction aren’t wired-in:

– structure of libraries, applications, releases

– specific building actions, e.g., compilation

– programming-language independent

29

Let’s turn now from the base description language to the standard
extension that most users see as the actual description language. We
want it to be very easy to say ordinary things, but allow considerable
flexibility for saying less common things, like “compile this module with
these non-standard switches”, or “override the standard string library
with this one”. To quote a familiar maxim, <first bullet>.

Specifically, the extension enables the user to describe ordinary
configurations by lists of components (source files, libraries, etc.). There
are sensible defaults for compiling sources and combining the results in
libraries, or executable programs, or whatever. The defaults can be
selectively overridden with compact, intuitive notation and there are
selected “escape hatches” where a user-supplied function, written in the
description language, can be inserted. If all of that proves inadequate,
the entire extension is written in the description language, so it’s just a
bunch of system models, and can be modified or replaced by a more
demanding customer.

Well, complex things should be possible, yes, but not necessarily every
complex thing. At some point, the user has to modify the extension
rather than working within it. (Emacs analog, again.) Where that point
is is a question of organizational sensitivity and sophistication. We’ve
tried to provide a sufficiently comprehensive extension that most
organizations can go pretty far before they have to modify it.

29 Systems Research Center

The Standard Environment

• “Simple things should be simple, complex things should
be possible.”

• Provides a complete, versioned description of a
consistent set of tools, libraries, etc.

– described by a system model

– builds a (large) directory tree that is like a consistent,
customized snapshot of the relevant parts of a file system

• An extension built atop the generic description language.

– provides functionality for many common cases

– can be modified by users for unanticipated situations

30

Here are some examples of the kinds of activities supported by the
standard environment. We used most of these in the prototype system,
in some cases, extensively.

30 Systems Research Center

Standard Environment

• Building for multiple platforms, either natively or with
cross-development tools

• Building in parallel on multiple machines

• Building a personalized version of a system

– with selected libraries replaced

– with selected components built with a special
compiler/linker or with unusual options

• Automated testing, including regression, as part of the
build

31

Returning to the needs of the average user, I want to say a little bit more
about the way the standard extension provides access to tools like
compilers and linkers.

We use system models to produce versioned snapshots of the compilers
and other tools, the library interfaces and implementations, related
documentation, etc. Each such snapshot represents an immutable,
consistent version of the construction environment.

Major tools are packaged as language-specific bridges. The basic
functions (e.g., compile, link) are available in the language, but most
users will prefer to use “wrappers” that conveniently bundle frequently
used functionality (e.g., build a program from these sources and
libraries). The definitions of wrappers, being in the environment, don’t
clutter the user’s system descriptions, which now reduce largely to
named lists of files.

We saw an example of a wrapper in the earlier scenario: ./C/Program.
Because of defaulting, we didn’t see the full power of the wrapper. The
wrapper permits each member of the source module list to be tagged
with optional compiler switches, and has a defaultable parameter with
loader switches. The library names refer by default to the environmental
snapshot, but can be overridden if desired.

Properly constructed wrappers give functionality that is largely
platform-independent.

31 Systems Research Center

The Standard Environment

• Language-specific tools grouped as “bridges”

– Bridge construction for ordinary languages is very simple
(written entirely in Vesta description language)

– “Wrapper functions” (e.g., ./C/Program) are largely
platform-independent

• Standard models provide templates for common
situations

– build a library, build an application, etc.

– build a hierarchy of libraries

– common overrides (e.g., compiler switches) easily expressed

32

Control panel: Vesta philosophy is that all construction occurs by
interpreting a system model. The control panel provides a GUI for
automating the construction of certain uninteresting models, for
example, the model that says “evaluate the most recent version of my
package in this version of the standard environment”. There are only
two pieces of information here; the latter changes rarely, and the former
is easy to compute. So, the model can be generated trivially upon
request.

Administration: I won’t say much about this, except to observe that the
user convenience of an immutable file system imposes additional
administrative burdens, so some extra tools are necessary to assist the
administrator. <explain items on slide>

32 Systems Research Center

Specialty Tools

• Control panel

– a GUI for top-level model construction

– conveniently separates package definition from
environment of construction, without sacrificing
completeness

• Administration

– repository embedding in file system

– server location and loading

– “siphon” (background replicator)

– “weeder” (like a garbage collector)

33

There’s one other specialty tool that’s worth mentioning today. Since
Vesta doesn’t use the same description language as ‘make’ (for all the
reasons I gave earlier), there is an “entry barrier” for users who wish to
move an existing system that uses ‘make’ into Vesta. We provide two
tools to make this easier. Our goal is to permit an existing system to be
converted a piece at a time, with some makefiles being rewritten as Vesta
descriptions, and others remaining unchanged for a while.

We provide an interpreter for makefiles to deal with the parts of the
system that aren’t going to be converted right away. We also provide a
translation assistant that helps convert makefiles to Vesta descriptions.
Regrettably, because make files have relatively little useful static
structure, we can’t translate them automatically to intelligible Vesta
models. However, we can make a running start at it, doing the first 80%
automatically and leaving only a small amount for the user to do by
hand.

If they choose, users can continue to use makefiles indefinitely, relying
on the Vesta interpreter. Of course, they won’t get the full benefits of
Vesta; in particular, they get reliable, but not very incremental building.
And, for parts of the system that are shared with organizations that don’t
use Vesta, it might be handy to retain descriptions as makefiles.

33 Systems Research Center

Specialty Tools

• Interoperation with ‘make’ to support gradual conversion

– interpreter

– translator

34

So, to summarize: <briefly cover points on the slide>

34 Systems Research Center

Summary

• No comprehensive SCM solution is presently available
commercially for large systems.

• The Vesta technology supports a comprehensive solution.

• The Vesta prototype proves its feasibility.

• A demonstration system will be running this summer.

• Publications available (based on the Vesta prototype):
– SRC Research Reports 105–108

http://www.research.digital.com/SRC/publications/src-rr.html

