
digital Systems Research Center

The Juno-2
Constraint-Based
Drawing Editor

Allan Heydon
Greg Nelson

Digital Equipment Corporation
Systems Research Center (SRC)

http://www.research.digital.com/SRC/ home.html

digital Systems Research Center

Issues in Constraint-Based Drawing

Issue Juno-2 Approach

Representing constraints
Specifying constraints
Underconstrained systems
Redundant constraints
Defining new constraints
Scale

Double-view editing
Entered directly with tools
Hints
Ignore redundancy
Powerful extension language
Hierarchical structure

digital Systems Research Center

 PS.MoveTo(a)
; PS.CurveTo(b,c,d)
; PS.LineTo(a)
; PS.Fill()

Double-View Editing

a

b

c

d

Drawing Program

digital Systems Research Center

Constraint Solving

Syntax:

Example:

VAR <var> ~ <hint> IN
 <constraint> -> <statement>
END

VAR x ~ 1 IN
 x * x = 2 -> Print(x)
END

 Built-In Constraints:
a HOR b
b VER c
(d,e) CONG (e,f)
(g,h) PARA (i,j)

a b

c

d

e

f

g

h

i

j

digital Systems Research Center

The REL Function

the point (x,y) in the coordinate system whose origin
is "a" and whose unit "x" vector goes from "a" to "b".

a

b

(1,1) REL (a,b)

(1,0) REL (a,b)

(0,1) REL (a,b)

(x,y) REL (a,b) =

digital Systems Research Center

Definitions

 Predicates, Functions, Procedures:

Examples:

PRED P(x) IS <constraint> END;
FUNC y = F(x) IS <constraint> END;
PROC Proc(x) IS <statement> END;

Existential Quantification:
(E <var> ~ <hint> :: <constraint>)

PRED Hor(a, b) IS
 (E ax, bx, y :: a = (ax, y) AND b = (bx, y))
END;

FUNC y = Half(x) IS
 2 * y = x
END;

digital Systems Research Center

The DiGraph Interface
MODULE DiGraph;

PROC Node(c);

PROC Curved1(a,b,c,d);

c

da

cb

digital Systems Research Center

∆ ∆
∆ ∆

Stroking with a Calligraphic Pen

p
qr

∆ ∆

aaL
aR

b

∆ ∆
bL bR

c

∆ ∆
cL

cR

ddL
dR

Control Points for pen
width and orientation.

Spline Points

a,b,c,d , p,q);

MODULE PenStroke;

PROC Curve(

digital Systems Research Center

System Architecture
Compile-Time:

 Run-Time:

Cmd Parser Compiler Bytestream

Run-Time

Solver

Numeric
Solver

AST

Bytestream Display

digital Systems Research Center

Solving Constraints
Two Phases:

Symbolic solving (s)
Numeric solving (n)

Compile-time
(s) Unpack — convert constraint to simple normal form
(s) Preprocess — reduce number of unknowns

Run-time
(s) Separate structural (pair) and numeric constraints
(s) Solve pair constraints (unification closure)
(s) Repack — eliminate unknowns and constraints
(n) Solve numeric constraints (Newton's method)

digital Systems Research Center

Difficulties with Numeric Solving
Hints were lost during unpacking, preprocessing, repacking

- Implement steps carefully so hints are preserved

Ordinary Newton willing to move large distances
- Ensure each Newton step is as small as possible

Ordinary Newton unreliable on redundant systems
- Modify Gassian elimination to use only the "well-
 conditioned part" of matrix and ignore ill-conditioned
 part

Difficult to know when to terminate Newton iteration
- Determine error threshold by estimating roundoff error

digital Systems Research Center

Conclusions
Juno-2 shows fast constraint-solving is possible with a
constraint language that is:

- highly extensible Á easy to define new constraints
- fully declarative Á avoid imperative computations

Generality of interface is daunting for new users:
- PostScript drawing model vs. object drawing model
- Power of full imperative language is often overkill
- Using constraints still takes careful thinking

Using Juno-2 is fun!

