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Abstract

We describe a system called Mir�o for specifying and checking security constraints.
Our system is general because it is not tied to any particular operating system. It is

exible because users express security policies in a formal speci�cation language, so it is
easy to extend or modify a policy simply by augmenting or changing the speci�cation for
the current policy. Finally, our system is expressive enough to describe many relations
on �le system con�gurations; however, it is not expressive enough to describe more
subtle security holes like Trojan horses or weaknesses in the passwords chosen by the
system's users.

This paper is a case study of the Mir�o languages and tools. We show how to represent
various Unix security constraints | including those described in a well-known paper on
Unix security [5] | using our graphical speci�cation language. We then describe the
results we obtained from running our tools to check an actual Unix �le system against
these constraints.

1 Introduction

An important security task faced by any system administrator is that of formulating and

enforcing a security policy. One example of a security policy was proposed by Bell and

LaPadula [2]. In their model, each user and �le is assigned a linear security level (e.g., top

secret, secret, not secret); roughly speaking, it is only acceptable for users to write �les at

their security level or higher and to read �les at their level or lower. If we could specify such

a policy and run a program to check a �le system against it, then we could easily detect

security holes on that �le system.

We are immediately faced with two problems: that of developing a language in which to

formulate such security policies, and that of developing algorithms to automatically check

that some speci�ed policy is not violated. Ideally, we would like to provide a policy speci�-

cation and checking system that is general, 
exible, and expressive. First, the system should

be general enough to allow and understand policy speci�cations for di�erent operating sys-

tems. Second, it should be 
exible enough to allow extensions and modi�cations to existing

policies. A system administrator should be able to easily specify a new security hole to

check for, without having to write a special-purpose program to perform the check. Finally,

1This research was sponsored in part by the National Science Foundation under a Presidential Young
Investigator Award, Contract CCR-8858087. It was also supported in part by the Avionics Laboratory,

Wright Research and Development Center, Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-

Patterson AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA Order No. 7597. Additional
support was received from Motorola, TRW, IBM, and the United States Postal Service.
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the system should be expressive enough to describe any security hole we might want to

detect.

To meet these goals, a group at Carnegie Mellon developed a security speci�cation and

checking system called Mir�o [10, 7]. The Mir�o system consists of two languages and a

collection of software tools. One speci�cation language is for protection con�gurations and

the other is for security policies.

The Mir�o system is general because it is not tied to any particular operating system. It is


exible because users express security policies in a formal speci�cation language, so it is easy

to extend or modify a policy simply by augmenting or changing the speci�cation for that

policy. In addition, our policy speci�cation language might be used to con�gure existing

security tools such as the Integrated Toolkit for Operating System Security (ITOSS) [16].

Finally, the system is expressive enough to describe many relations on the con�guration of

the �le system; however, it is not expressive enough to describe more subtle security holes

like Trojan horses or weaknesses in the passwords chosen by the system's users, since such

security threats cannot be thwarted by access control restrictions.

This paper is a case study of the Mir�o languages and software tools. It shows how the

Mir�o security checking tools can be used to specify a Unix security policy and to check that

policy against an existing Unix �le system. Hence, one aspect of the case study is to test

how well our tools performed on real Unix security policies. Some of the security policies we

examine are taken from previous Mir�o papers. However, most have been simply transcribed

from textual descriptions found in a well-known paper on Unix security by Grampp and

Morris [5]. Hence, the second aspect of the case study is to demonstrate the utility and

expressive power of the Mir�o policy speci�cation languages as applied to a set of well-known

Unix security holes.

Although the security constraints described here are written for the Unix operating

system, we want to stress that the Mir�o speci�cation languages described in Section 2 can

be applied to operating systems other than Unix. Also, as opposed to security systems like

COPS [4] or U-Kuang [1], the power of the Mir�o system derives from the ease by which it

allows users to express and check new security constraints.

Since textual speci�cations are often plagued by errors [3, 12], we have attempted to

develop speci�cation languages that are more intuitive to use so that errors will be less

likely. Our languages are primarily graphical, but they mix graphical and textual notations

where each is appropriate. For example, we use nested boxes to represent group membership

and directory containment, but we use text to represent Boolean formulas. Our graphical

notation borrows heavily from the higraphs proposed by David Harel [6]. We believe the

use of a graphical notation makes our speci�cations simpler and more natural to use than

equivalent textual speci�cations.

We describe the tools comprising our system in Section 3. Our system is implemented

on Unix, and one of its components is built using the Garnet user interface management

system [15, 14], which runs on X windows.2 Throughout the design and implementation of

our tools, we have stressed algorithmic e�ciency, so the system runs quickly and is e�ective

at catching policy violations.

In summary, the novel contributions of this work are:

� tools for processing graphical descriptions,

� a library of prede�ned security constraints for Unix,

2Our system is available via anonymous ftp. For details, contact the authors or send mail to

miro@cs.cmu.edu.
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� a real and e�cient system for checking �le systems against security constraints, and

� security con�guration and policy speci�cation languages that are more natural to use.

In Section 4, we present some security constraints for Unix, and in Section 5, we evaluate

our tools by measuring their performance on these constraints.

2 The Mir�o Languages

We address two di�erent aspects of the security speci�cation domain.

First, we use the instance language to specify security con�gurations. By a security

con�guration we mean a set of access relationships between subjects and objects on a �le

system. In particular, the Mir�o semantics of a con�guration speci�cation is a Lampson ac-

cess matrix [13], which speci�es for every subject and object whether access for that subject

on that object is granted or denied for each access permission.3 Since these speci�cations

can be both read and written, they give users the ability to determine the access rights

granted on their directories and �les, and to modify those rights.

Second, we use the constraint language to specify security policies. The constraint

language is a meta-language of the instance language, since the semantics of a security

constraint c is simply a (possibly in�nite) set of con�gurations C. A policy is speci�ed

by a set of constraints, c1; : : : ; cn. If these constraints represent the sets of con�gurations

C1; : : : ; Cn, respectively, then we say a particular con�guration is consistent with the policy

if it is a member of the set
T

i
Ci; that is, if it is in each of the con�guration sets represented

by the constraints comprising the policy.

The constraint language has two orthogonal uses. First, we can use the constraint lan-

guage to guarantee that a con�guration is realizable by the underlying operating system.

Since the security mechanisms of any operating system can permit only certain access ma-

trices, some con�gurations must be disallowed. Second, we can use the constraint language

to guarantee that a con�guration is acceptable according to some security policy. The con-

straint language's domain of applicability in this second sense is quite large. We imagine

that some policies will be written by system administrators and enforced across entire sites,

while others will be written by individual users and enforced only on their own �les.

In this section, we describe the instance and constraint languages by example, so that

the constraints described in Section 4 will make sense to the reader. The detailed syntax

and semantics of both languages are described elsewhere [11].

2.1 The Instance Language

The vocabulary of the instance language consists of rectangular boxes and of arrows labeled

with access permissions. A typical picture drawn in the instance language | henceforth

called an instance picture | has its boxes arranged in two separate collections, as shown

in Figure 1. The boxes on the left are subjects (users) or sets of subjects, the boxes on the

right are objects (�les) or sets of objects, and the arrows represent relations between them.

We use box grouping to indicate sets, and the language permits us to focus on particular

levels of hierarchy in the picture. For example, we do not detail all of Bob's �les; we simply

use a single box to denote the entire set. A positive arrow indicates that access is permitted,

and an arrow with an \X" through it indicates that access is denied.

3The particular set of access permissions embodied by an access matrix depends on the security archi-
tecture of the underlying �le system.
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Figure 1 shows a simple instance picture. Reading the arrows from top to bottom, this

picture speci�es that: 1) every user in the admin group can read all of Alice's �les, except

for those in her private directory (which she alone can read), 2) Alice can write all of her

�les, 3) all users in the admin group can write the �les in Alice's papers directory, 4) all

users in the staff group can write all of Bob's �les (including Bob), and 5) all users can

read all of Bob's �les.

world

alice

bob

admin

file system

alice

bob

private

papers{write}

{write}

{read}

{read}

{read}

staff

{write}

{read}

Figure 1: 10A Simple Instance Language Picture.

Often, security speci�cations are stated in general rules with explicit exceptions, as

exempli�ed by the top three arrows in Figure 1. This pattern of exceptions is what makes

security speci�cation di�cult | the patterns are complicated, but the exceptions are very

important. Users want to know the speci�c exceptions to general access rules. In Mir�o,

exceptions are indicated by arrows connecting more tightly nested boxes. For example,

because the box for Alice's private �les is nested in the box alice for her home directory,

the negative arrow from admin to private takes precedence over the positive arrow from

admin to alice. Negative arrows are not strictly necessary; we can represent any access

con�guration by su�ciently many positive arrows alone. However, including negative arrows

allows us to represent exceptions explicitly and more concisely.

Unfortunately, the addition of negative arrows to the language makes it possible to draw

ambiguous pictures. For example, suppose Figure 1 also contained a negative write arrow

from the admin group to Bob's home directory. This negative write arrow denies access to

members of the admin group, but the positive write arrow grants access to members of the

staff group. Since Bob is in both these groups, it is not clear whether he should be allowed

write access to the �les in his home directory or not. We say such pictures are ambiguous.

The instance language semantics precisely de�nes for each subject/object/permission triple

in an instance picture whether the access relation for that subject on that object for the

named permission is positive, negative, or ambiguous.

Two other orthogonal aspects of the instance language are worth mentioning:

Box Layout and Box Aliases: It is not possible to represent all grouping relationships

using box containment. Moreover, symbolic links may also make it di�cult to lay out

boxes corresponding to a Unix �le system. The syntax and semantics of the instance

language can be extended easily to include the notion of box aliases, which would

address both of these problems. However, for reasons described in Section 3, we have
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not yet found it necessary to add box aliases to the instance language.

Correspondence to the File System: Users are not required to draw instance pictures that

have a one-to-one correspondence with the �le system. For example, if a subset the

entries in a particular directory share the same protections, a user can group them

by drawing an additional box around them, and then specify the protections for all of

the entries in the group by drawing arrows to the grouping box only. This grouping

box need not correspond to a directory on the �le system; its only function is to group

the relevant boxes in the instance picture so as to make the picture more concise and

to visually re
ect that the grouped boxes share certain security properties.

One important property of each box in an instance picture is its type. A Mir�o user can

de�ne an arbitrary type tree to suit a particular system and security policy. Figure 2 shows

a sample type tree for Unix. The three types outlined in bold at the top of the tree are

built in to the Mir�o system; users extend the tree by de�ning new subtypes of either the

subject or the object built-in types.

subject object

world user

device root home

entity

sysname: Integer
name: String
type: Box−Type
location: Integer−List
size: Integer−List
atomic: Boolean

group

owner: Identifier
group: Identifier
created: String
modified: String
setuid: Boolean
setgid: Boolean

file dir

sticky: Boolean

Figure 2: 10A Box Type Tree for Unix

Each type speci�cation includes a set of typed attributes associated with that type, and

any box in an instance picture with that type has values for those attributes. For example,

the entity type includes a Boolean valued attribute named atomic; this attribute is true

for a box i� that box contains no other boxes. Since the entity type is at the root of the

type tree, every type inherits the atomic attribute, so every box in an instance picture has a

Boolean value indicating whether or not it contains any other boxes. We can also associate

attributes with user-de�ned types. For example, to accommodate Unix, we've speci�ed that

a Boolean valued setuid attribute is associated with the file type. As we shall see in the

next section, types are used primarily in constraint speci�cations.
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2.2 The Constraint Language

A picture drawn in the constraint language | henceforth called a constraint picture or

simply a constraint | speci�es a (possibly in�nite) set of instance pictures. Each constraint

picture can be thought of as a pattern for instance pictures, just as a regular expression is

a pattern for character strings. We now brie
y describe the syntax and semantics of the

constraint language using examples.

The building blocks of the constraint language are box patterns. A box pattern is denoted

by a rectangle like an instance box, but it contains a Boolean predicate written in a simple

box predicate language instead of a simple name (see Figure 3(a)). An instance box b

matches a box pattern with predicate � if the values of b's attributes, when substituted

for the corresponding attribute names in �, make � true. The box predicate language

also provides a mechanism to require relationships between instance boxes matching two

di�erent box patterns. Box predicate variables (denoted by identi�ers preceded by \$")

allow users to require that some attributes of instance boxes matching two or more box

patterns are identical or distinct. For example, we can specify that the name of some user

di�ers from the owner of some �le by writing \name = $A" in the box predicate of one box

pattern and \owner # $A" in the box predicate of the other.

Semantics Arrow

Syntax Arrow

    (Direct)
Containment
      Arrow

S

S

     Starred
Containment
     Arrow

Box Pattern

Starred Box Pattern

box-predicate

(a) (b)

box-predicate

Figure 3: 10Renderings of Box Patterns (a) and Constraint Arrows (b)

The constraint language includes three kinds of arrows, each of which may be negated

as in the instance language (see Figure 3(b)). The two arrows we use most in constraints

are the semantics arrow and the containment arrow. The former are labeled with access

permissions just like instance arrows. Two instance boxes b1 and b2 match box patterns

connected by a positive (negative) semantics arrow labeled with permission p if b1 has (does

not have) access permission p on b2. Boxes b1 and b2 match box patterns connected by a

positive (negative) containment arrow if b1 is (is not) directly contained in b2. As shown

in Figure 3, there are starred variants to both box patterns and containment arrows. Two

instance boxes b1 and b2 match box patterns connected by a positive (negative) starred

containment arrow if b1 is (is not) contained in b2.

The constraint language shares the instance language's powerful visual representation

for box containment. In the constraint language, however, drawing one box directly inside

another is simply a shorthand for connecting disjoint versions of the boxes with a contain-

ment arrow. As shown in Figure 4a, drawing one box pattern inside another is a shorthand
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for drawing the same two box patterns connected by a (direct) containment arrow. If the

inner box pattern is starred, as shown in Figure 4(b), the original constraint is equivalent

to one in which a starred containment arrow connects the two boxes.

A

B
B

A

(a)

A

B
B

A

(b)

Figure 4: 10The Direct (a) and Starred (b) Box Containment Shorthands

The constraint language presented so far allows us to require only the existence of certain

entities and relationships between those entities. However, typical security requirements are

often conditioned on the existence of some situation. The constraint language provides the

power to express such conditional constraints. Each box and arrow is drawn in either

thick or thin style. Those elements drawn with thick lines represent the antecedent of an

implication, while those drawn in thin lines represent its consequent. For example, the

constraint named write-read shown in Figure 5 is interpreted as follows. The thick part

of the constraint matches any user/�le pair such that the user has write permission on the

�le. The thin part of the constraint (the read arrow) then requires (as the consequent of

the implication) that the user also has read permission on the �le. Thus, Figure 5 expresses

the constraint that \write permission implies read permission".

type = user
{write}

{read}

type = file

Figure 5: 10The Constraint write-read

3 The Mir�o Software System

Figure 6 shows the software tools comprising the Mir�o system and their inter-relations [8].

We classify the tools (and languages) as either front end or back end components. The

front end components are designed to work independently of any operating system, while

the back end components depend on the particular details of the �le system with which they

interact. To check �le systems other than Unix �le systems, we would have to reimplement

only the back end tools. So far, we have implemented these tools only for Unix, but we

do not expect that they would be much more di�cult to implement for other kinds of �le

systems.4

The graphical editor allows users to draw and edit instance and constraint pictures,

and the PostScript translator produces PostScript programs to render these pictures on a

4In fact, it is quite easy to implement a prober that produces an instance picture that does not exploit the
instance language's grouping mechanism; the challenge is to build a prober that produces relatively concise

output pictures.

7



File System
     Prober

Consistent?
Access
 Matrix User

Back
 End

Front
 End

       List of
Discrepancies

Constraint Language
            Picture

Instance Language
          Picture

Verifier

Constraint
 Checker

Printer

Graphical
    Editor

PostScript
Translator

   File
System

  Matrix
Generator

Figure 6: 10The Software Tools and Languages Comprising the Mir�o System.

The tools and languages relevant to this paper are shown with a thick outline.

printer. To write this paper, we used the graphical editor to draw the constraint pictures

only; the instance picture we used was produced automatically by the prober tool described

below.

The access matrix generator veri�es that an instance picture is well-formed, and then

generates a compressed representation of the access matrix corresponding to the instance

picture. This access matrix and the instance itself can then be fed to the constraint checker

along with some constraint picture to check whether the instance is consistent with the

constraint. The constraint checker works by modeling the instance picture as a special kind

of database and compiling the constraint picture into a program that queries that database

[11].

The tools described so far work independently of any �le system. To interact with a

Unix �le system, we provide the back end veri�er and prober tools. The veri�er compares a

given instance picture to a �le system and produces a list of discrepancies between the two.

The prober searches some subtree of a Unix �le system and produces an instance picture

with the same structure and security relationships as that �le system. The Unix prober

produces a picture that represents the read, write, and exec access relations between

users and �les, and the ins-del (insert-delete) and list access relations between users and

directories. The prober arranges for the access matrix corresponding to its output to re
ect

group memberships and the \execute" directory bits of each directory along the path down

to each directory (for ins-del and list permissions) or �le (for read, write, and exec

permissions).

The prober does not explicitly lay out the boxes in the result it produces, since we did
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not need to visually inspect each result. Instead, it represents the abstract containment

relation on boxes in its output. Hence, the prober need not determine a geometrically

correct rendering of the containment relation. Also, the prober ignores symbolic links, since

a symbolic link cannot be used to gain access permissions that are not otherwise granted

through hard links.

To perform the experiments described in this paper, we used both front- and back-end

tools. We �rst drew our constraint pictures using the graphical editor. We then used the �le

system prober to produce an instance picture corresponding to the /usr0 directory of one

of the �le systems at CMU. Next, we fed that instance picture through the access matrix

generator to generate its corresponding access matrix. Finally, we fed the access matrix, the

instance picture, and each of our constraint pictures to the constraint checker to determine

if the �le system was consistent with each constraint.

4 Unix Constraints

In this section, we describe the constraints that we use in Section 5 to evaluate the perfor-

mance of the constraint checker. We have adapted some of these constraints from original

constraints suggested in previous Mir�o papers [9, 10]. The others were suggested in the

Grampp-Morris article referred to earlier; we have simply translated their most promising

written security suggestions into constraint pictures.

4.1 Mir�o Security Constraints

The constraints suggested by previous Mir�o papers are designed to ful�ll a variety of needs.

We have chosen a few representative samples. The �rst is a general security constraint

for Unix, and the rest enforce various containment requirements relative to the box type

system.

4.1.1 private-mail

The private-mail constraint is shown in Figure 7. This constraint assumes that the mail

system organizes each user's mail �les in a certain way. Each user's mail is stored in a

subdirectory of their home directory called \Mail". That directory contains subdirectories

that partition the mail into categories, and the actual mail �les themselves (one �le for each

mail message) reside in those subdirectories. For each user whose mail is organized in this

manner, the private-mail constraint checks that no one besides the owner of the mail �les

can actually read them.

4.1.2 grp-in-1-w, grp-in-w-only, w-is-root

The constraints shown in Figure 8 place realizability restrictions on the nesting of group

and world boxes in Unix | namely, that every group box is contained in the unique world

box and no other.

Constraints (a) and (c) introduce a new aspect to the constraint language syntax and

semantics for restricting the cardinality of the number of thin matchings in a constraint.

This is done by associating an integer-valued interval with the constraint. For each matching

to the thick part of the constraint, we count the number of consistent extensions to the thin

part of the constraint, and that number must fall in the speci�ed interval. If no interval

9



is speci�ed, the default is \[1, 1]"; this interval corresponds to the original semantics we

described: for each thick matching, there must exist (i.e., be at least 1) consistent thin

matching.

The constraint named grp-in-1-w (a) requires that every group is contained in exactly

one world. However, it is still possible that a group could be contained in a box other than

a world. The grp-in-w-only constraint (b) therefore requires that every box containing

a group must be a world. Finally, the w-is-root constraint (c) requires that a world is

contained in no other box. The negative nature of this constraint stems from its [0,0] integer

range: an instance is consistent with the constraint only if there are zero thin extensions to

each thick matching.

4.2 Grampp-Morris Security Constraints for Unix

Grampp and Morris have described several possible attacks on the security of a Unix sys-

tem. They point out that most security attacks can be thwarted by educating users and

by ensuring the \existence of administrative procedures aimed at increased security". In

regards to their �rst point, users need to be taught the importance of choosing good pass-

words, and they need to be educated fully as to the security mechanisms they are using so

that: 1) they can use those mechanisms to protect their �les as they see �t, and 2) they do

not inadvertently leave any �les unprotected. As to their second point on administrative

procedures, it is precisely this sort of capability that systems like the constraint checker

provide.

Even if these points have been addressed, there can still be security lapses. Grampp

type = file
&& atomic

type = dir

type = dir && name="Mail"

{read}type = user
&& atomic
&& name = $A

type = home && name # $A

Figure 7: 10The Constraint private-mail

(a) (b) (c)

[1,1]

type = group

type = world

type = group

type = world

[0,0]

type = world

Figure 8: 10The Constraints grp-in-1-w, grp-in-w-only, and w-is-root
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and Morris go on to describe security holes that may occur on a Unix system. We have

transcribed their descriptions into the following constraint pictures.

4.2.1 passwd-safe

Unix uses passwords as its only barrier to unauthorized access; if a user's password is

compromised, then an intruder can act as that user with impunity. We must therefore

guarantee that passwords are adequately safeguarded. Unix stores encrypted passwords in

a world-readable �le called /etc/passwd. Obviously, no one besides its owner (the super

user) should have permission to change this �le. The constraint passwd-safe shown in

Figure 9 requires that no user can write the password �le except its owner.

{write}

type = dir
&& name = "etc"

type = root
&& name = "/"

type = file
&& atomic
&& name = "passwd"
&& owner = $A

type = user
&& atomic
&& name # $A

Figure 9: 10The Constraint passwd-safe

4.2.2 writable-dir

On Unix, every �le and directory has an associated set of protection bits that specify who

may access that �le or directory for each relevant access type. Grampp and Morris point out

that on Unix, \underlying directory permissions can adversely a�ect the safety of seemingly

protected �les". In particular, a user u may have the ability to change a �le f , even if f 's

protection bits specify that u is denied write access on f . How is this possible? Suppose

that f resides in a directory d, and that d's protection bits grant write permission to u.

That means that u can create and delete �les in d. So u can change f by deleting the

original f and then creating a new version of f in d. In this way, u can change f 's contents

arbitrarily.

Naive users are especially likely to be unaware of this Unix protection feature. The fact

that none of f 's write protection bits is on would seem to imply that the �le cannot be

changed. But the writable directory in which f resides gives u the power not only to change

the �le, but also to delete it entirely! We clearly need a constraint to detect occurrences of

this situation. However, if we translate this constraint directly, it may be overly sensitive.

It is not uncommon for users to give themselves write permission on a directory they own,

but to also explicitly deny themselves write permission on some of the �les in that directory

(to prevent them from being changed accidentally). For example, this situation arises in

the use of the RCS version control system, which automatically turns o� write permission

on �les that have not been explicitly \checked out" for modi�cation.
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Thus, the constraint we wish to express is that: Any non-owner of a directory who

has write permission on that directory must also have write permission on all �les in that

directory. This constraint is shown in Figure 10. There are several points we should make

about this constraint.

type = dir−dummy
&& atomic

type = file
&& atomic{write}

{in−del}

type = user
&& atomic
&& name = $A

type = dir
&& owner # $A

Figure 10: 10The Constraint writable-dir

First, it is the �rst constraint we have seen so far that involves permission on a directory.

Even though Unix overloads the protection bits on �les and directories, our Unix prober

distinguishes write and read permissions on �les from those on directories. On directories,

the prober instead generates the permissions in-del (insert-delete) and list, respectively.

Second, since permissions granted on a directory are completely unrelated to those

granted on the directory's parent, it would be di�cult for the prober to represent access

relations on directories directly. The prober therefore takes the following simple approach.

For each directory box, it installs a special atomic \dummy" box inside that directory

box, and it draws arrows to the dummy box so that the access relations on the directory

in the �le system are represented in the instance by the relations between users and the

unique dummy box inside that directory. The prober also gives the dummy box a type of

dir-dummy; this new type is a child of the object type in the type-tree.

4.2.3 setuid-safe

Many Unix security 
aws arise from the set-userid, or \setuid", facility. This feature of the

Unix protection semantics is a powerful tool, and it allows people to create systems that

would be di�cult to create otherwise. But as Grampp and Morris point out, \the feature

is by no means tame". They suggest that setuid programs should only be used as a means

of last resort, since each setuid program introduced onto the system is a potential security

hole.

Grampp and Morris also state that \setuid programs that are writable by anyone should

be considered threatening". The reason is that any user can write a copy of the shell, for

example, onto the setuid program. That user can then run the newly copied shell; since

it is a setuid program, it will be running as its owner. This bit of subterfuge thus gives a

malicious party the power to impersonate the owner of the writable setuid program.

The setuid-safe constraint shown in Figure 11 reports any setuid program writable by

someone other than its owner. The prober makes the setuid attribute true of any instance

box corresponding to a �le on the �le system whose setuid bit is turned on.
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4.2.4 login-safe

When a user logs in and/or starts a new shell, Unix automatically executes certain shell

\scripts" in that user's home directory. For example, at login, the system executes the �le

named \.login". Suppose user u's \.login" �le is writable by some other user u0. Then u0 is

free to edit the \.login" �le at will. With this power, u0 can edit the script to make a copy

of the shell (in some directory private to u0), turn on the setuid bit of that copy, and make

it world-executable. Since these commands will be executed when u logs in, the copied shell

executable is owned by u. Thus, once u logs in and unwittingly creates a copy of the shell

owned by him, u0 can execute that copy and impersonate u.

This example clearly illustrates that scripts such as \.login" should never be writable

by anyone but their owners. The login-safe constraint shown in Figure 12 tests for this

condition. The thick part of the constraint matches two distinct users and every �le named

\.login" contained in a home directory. The thin negative write arrow then requires that

that user does not have write access on the \.login" �le.

5 Constraint Checking Results

The constraint checker's payo� is its ability to �nd security holes. Even our simple exper-

iments uncovered some problems. If we had performed more comprehensive experiments,

we may very well have found more. Instead, our focus was on gathering measurements of

the constraint checker's performance.

To perform our tests, we applied our Unix prober to the /usr0 subtree of a mainframe

VAX at CMU. The instance picture produced by the prober contains 46 groups, 147 users,

677 directories, 5,195 �les, and a total of 17,614 arrows. The prober required approximately

206 seconds of CPU time and 314 seconds of real time to produce this instance on a Micro-

VAX II. The access matrix produced by our access matrix generator on this instance picture

contains a total of 2,490,033 entries; the access matrix �le is approximately 348 Kbytes in

size. The access matrix generator took 78 seconds of CPU time and 87 seconds of real time

to run on a DECstation 5000. These results are summarized in Table 1.

{write}type = user
&& atomic
&& name = $A

type = file
&& atomic
&& setuid
&& owner # $A

Figure 11: 10The Constraint setuid-safe

{write}

type = user
&& atomic
&& name = $A

type = home
&& name # $A

type = file
&& atomic
&& name = ".login"

Figure 12: 10The Constraint login-safe
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CPU Real

Tool Machine Time Time Output File \Size"

Prober DS-5000 206 314 23,679 total items

Generator uVAX-II 78 87 2,490,033 entries

Table 1: 10Running Times (in Seconds) of Preliminary Tools

We then checked this instance with respect to each of the constraint pictures described

in Section 4. The constraint checker models the instance picture (and its access matrix) as

a database. It �rst compiles the constraint picture into a query program over this database;

this compilation usually takes less than a second. To check the constraint, the checker

executes the query program. We divide the time required to execute the query program

into two parts: the time to load the instance database for that query, and the time required

to perform the query itself.

Table 2 shows the times required for these two phases on each of the constraints. These

experiments were performed on a DECstation 5000 with 128 MB of main memory running

the Mach operating system. We have also run these constraints against other subtrees of

the same �le system, such as /etc, /dev, and /sys0. From this table, we see that most

constraint checks required 1 or 2 minutes of CPU time. The notable exceptions were the

write-read and writable-dir constraints. These constraints took longer simply because

there were more ways to match the thick part of the constraint to the instance, so there

were more cases to check. Even so, it would still be quite practical to run these tests

automatically each night to check for new violations.

In general, we have shown that the constraint checking problem is �p

2
-hard [11], which

means that the problem is at least as hard as the hardest problems in the class NP. How well

the performance indicated by Table 2 scales up to larger �le systems is largely dependent on

the constraints being checked. The constraint with the worst performance | writable-

dir | has a running time only on the order of quadratic in the number of boxes in the

input.

Our experiments uncovered some constraint violations, which we summarize here. The

number of violations we report in each case is the number of thick matchings of the constraint

to the instance such that no thin matchings existed. The checker has the tendency to

produce voluminous output. We could easily implement simple �lters to help solve this

problem, but we suspect there may be more sophisticated and 
exible solutions.

5.1 private-mail | 438 Violations

The diagnostic output for this constraint/instance pair illustrates the problem with the

constraint checker's verbosity. The 438 violations reported in this case amount to a total

of only three world readable mail �les. Since there are 147 users on the system, 146 users

were found to be able to read each of these three �les when they should not have.

The three �les found by the constraint checker are not mail messages per se. One of

the mail systems at CMU keeps an index of messages in each mail directory. The index

summarizes the mail messages in that directory, including who sent the message, when it

was sent, and the subject line of the message. Even this summary information may be

considered sensitive by some users. Upon closer inspection, two of the three index �les were
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Constraint Name # Elts. CPU Seconds

grp-in-1-w 1 + 2 = 3 30.8 / 0.1

grp-in-w-only 2 + 1 = 3 19.4 / 0.1

w-is-root 1 + 2 = 3 20.8 / 0.0

write-read 3 + 1 = 4 39.8 / 194

private-mail 8 + 1 = 9 h 44.7 / 45.2 i

passwd-safe 6 + 1 = 7 [ 31.8 / 0.0 ]

writable-dir 7 + 1 = 8 h 44.1 / 1,200 i

setuid-safe 2 + 1 = 3 [ 24.8 / 0.0 ]

login-safe 4 + 2 = 6 h 43.3 / 13.7 i

Table 2: 10Constraint Checker Running Times. Values in the \# Elts." col-

umn indicate the number of thick, thin and total elements, respectively, in the

constraint for that row (including implicit containment arrows). Entries in [

square brackets ] have trivial query times, while those in h angle brackets i in-

dicate that the corresponding instance is inconsistent with the corresponding

constraint. Inconsistencies indicate potential security holes.

also found to be writable by someone other than their respective owners.

5.2 writable-dir | 26,435 Violations

Obviously, there were too many violations in this case to enumerate them all. However,

we can summarize some of the major security holes we found. One user alone accounts

for many hundreds of the violations. This user has left many of his directories writable to

members of the theory group, the default group for accounts on this machine. Since this

group includes 25 of the machine's users, giving such a large number of people the ability

to delete and overwrite �les at will seems dangerous. We surmise from the names of the

vulnerable directories that some of them probably contain sensitive �les. In many cases,

these same �les were also readable by all members of the theory group. Perhaps most

surprising is that one of this user's mail directories is writable by the same group of people.

Perhaps the most serious security hole detected by this run of the constraint checker is

the protection on a directory containing bulletin board �les. The protection bits on this

directory designate it to be world writable. Thus, any user on the system can overwrite or

delete any of the bulletin board �les in the directory. These bulletin board �les are read

by a large number of users, so this is a serious threat. Moreover, since any user can also

read these �les, a malicious user could easily make subtle changes to any of the �les, and it

would be impossible to track down the culprit. It is worth noting that since this directory

contains over 100 �les, and since there are approximately 150 users on the system, this one

security hole is responsible for approximately 15,000 of the reported violations.

5.3 login-safe | 24 Violations

All 24 violations were produced because a single user's \.login" �le was writable by the

theory group. As mentioned previously, the theory group on this machine has 25 members,

so the 24 people other than the �le's owner have the ability to maliciously alter his \.login"

�le.
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6 Conclusions

Specifying and manipulating security speci�cations is not a toy problem. It is a real problem

faced by anyone sharing a computer system with other users. Our constraint language and

its associated compiler and run time system provide a mechanism unlike any other to

solve this problem. The primary advantages it o�ers over existing tools are its generality,


exibility, and expressive power. This system can specify real world security policies and

detect violations of those policies. Moreover, the constraint language gives users the power

to formally specify abstract security models that closely match the way users think about

their security policies. It can thus be used to drive or con�gure other security modeling

tools.

This work can be extended to solve other problems. For example, as it is implemented

now, the Mir�o system we have described is a static security checker. However, our techniques

could be used to implement an automatic �le system security checker that continuously

monitors the �le system for security holes. To make such a system practical, we would

have to modify our algorithms to interpret incremental changes to the �le system or to the

security policy.

The work we have described in this paper is a speci�c application of a general approach.

Our approach has been to design formal speci�cation languages for a particular domain

in the area of computer systems, and then to build e�cient algorithms to process those

speci�cations. Our success in the application of this technique to the domain of �le system

security leads us to believe that it holds promise for other domains, such as network security,

parallel algorithm design, and computer systems management.
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